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MODULE-I 

State space analysis. 
State space analysis is an excellent method for the design and analysis of control systems. 

The conventional and old method for the design and analysis of control systems is the 

transfer function method. The transfer function method for design and analysis had many 

drawbacks. 

Advantages of state variable analysis. 

 It can be applied to non linear system. 

 It can be applied to tile invariant systems. 

 It can be applied to multiple input multiple output systems. 

 Its gives idea about the internal state of the system. 
 

State Variable Analysis and Design 

State: The state of a dynamic system is the smallest set of variables called state variables such that 

the knowledge of these variables at time t=to (Initial condition), together with the knowledge of input 

for ≥ 𝑡0 , completely determines the behaviour of the system for any time 𝑡 ≥ 𝑡0 . 

State vector: If n state variables are needed to completely describe the behaviour of a given system, 

then these n state variables can be considered the n components of a vector X. Such a vector is called 

a state vector. 

State space: The n-dimensional space whose co-ordinate axes consists of the x1 axis, x2 axis,.... xn 

axis, where x1 , x2 ,..... xn are state variables: is called a state space. 

State Model  

Lets consider a multi input & multi output system is having  

r inputs 𝑢1 𝑡 ,𝑢2 𝑡 ,…… . 𝑢𝑟(𝑡) 

m no of outputs 𝑦1 𝑡 ,𝑦2 𝑡 ,…… . 𝑦𝑚(𝑡) 

n no of state variables 𝑥1 𝑡 , 𝑥2 𝑡 ,…… . 𝑥𝑛(𝑡) 

Then the state model is given by state & output equation 

X  t = AX t + BU t ………… state equation 

Y t = CX t + DU t ……… output equation 

A is state matrix of size (n×n) 

B is the input matrix of size (n×r) 

C is the output matrix of size (m×n)  
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D is the direct transmission matrix of size (m×r) 

X(t) is the state vector of size (n×1) 

Y(t) is the output vector of size (m×1) 

U(t) is the input vector of size (r×1) 

 

(Block diagram of the linear, continuous time control system represented in state space) 

𝐗  𝐭 = 𝐀𝐗 𝐭 + 𝐁𝐮 𝐭  

𝐘 𝐭 = 𝐂𝐗 𝐭 + 𝐃𝐮 𝐭  

 

STATE SPACE REPRESENTATION  OF N
TH 

 ORDER SYSTEMS OF LINEAR 

DIFFERENTIAL EQUATION IN WHICH FORCING FUNCTION DOES NOT INVOLVE 

DERIVATIVE TERM 

Consider following nth order LTI system relating the  output y(t) to the input u(t). 

𝑦𝑛 + 𝑎1𝑦
𝑛−1 + 𝑎2𝑦

𝑛−2 + ⋯+ 𝑎𝑛−1𝑦
1 + 𝑎𝑛𝑦 = 𝑢 

Phase variables: The phase variables are defined as those particular state variables which are 

obtained from one of the system variables & its (n-1) derivatives. Often the variables used is 

the system output & the remaining state variables are then derivatives of the output. 

Let us define the state variables as 

𝑥1 = 𝑦 

𝑥2 =
𝑑𝑦

𝑑𝑡
=
𝑑𝑥

𝑑𝑡
 

𝑥3 =
𝑑𝑦 

𝑑𝑡
=
𝑑𝑥2

𝑑𝑡
 

⋮         ⋮             ⋮ 

𝑥𝑛 = 𝑦𝑛−1 =
𝑑𝑥𝑛−1

𝑑𝑡
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From the above equations we can write 

𝑥1 = 𝑥2 

𝑥2 = 𝑥3 

⋮                 ⋮      

 

𝑥𝑛−1 = 𝑥𝑛  

𝑥𝑛 = −𝑎𝑛𝑥1 − 𝑎𝑛−1𝑥2 −⋯………− 𝑎1𝑥𝑛 + 𝑢 

Writing the above state equation in vector matrix form 

X  t = AX t + Bu t  

Where 𝑋 =  

𝑥1

𝑥2
⋮
⋮

𝑥𝑛

 

𝑛×1

, 𝐴 =

 
 
 
 
 

0 1 0…… 0
0 0 1…… 0
⋮
0

−𝑎𝑛

⋮   ⋮         
0 0……

−𝑎𝑛−1 −𝑎𝑛−2 …… .

⋮
1
−𝑎1 

 
 
 
 

𝑛×𝑛

 

Output equation can be written as 

Y t = CX t  

𝐶 =  1 0…… . 0 1×𝑛  

 

Example: Direct Derivation of State Space Model (Mechanical Translating) 

Derive a state space model for the system shown.  The input is fa and the output is y. 

 

 

 

 

 

We can write free body equations for the system at x and at y. 
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Freebody Diagram Equation 

 

 

 

 

There are three energy storage elements, so we expect three state equations.  The energy 

storage elements are the spring, k2, the mass, m, and the spring, k1.  Therefore we choose 

as our state variables x (the energy in spring k2 is ½k2x²), the velocity at x (the energy in 

the mass m is ½mv², where v is the first derivative of x), and y (the energy in spring k1 is 

½k1(y-x)² , so we could pick y-x as a state variable, but we'll just use y (since x is already a 

state variable; recall that the choice of state variables is not unique).  Our state variables 

become: 

 

Now we want equations for their derivatives.  The equations of motion from the free body 

diagrams yield 

 

or 
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with the input u=fa. 

 

 

Example: Direct Derivation of State Space Model (Electrical) 

Derive a state space model for the system shown.  The input is ia and the output is e2. 

 

There are three energy storage elements, so we expect three state equations.  Try 

choosing i1, i2 and e1 as state variables.  Now we want equations for their derivatives.  The 

voltage across the inductor L2 is e1 (which is one of our state variables) 

 

so our first state variable equation is 

 

If we sum currents into the node labeled n1 we get 

 

 

 

This equation has our input (ia) and two state variable (iL2 and iL1) and the current 

through the capacitor.  So from this we can get our second state equation 

 

Our third, and final, state equation we get by writing an equation for the voltage across 

L1 (which is e2) in terms of our other state variables 

 

 

We also need an output equation: 
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So our state space representation becomes 

  

 

 

 

State Space to Transfer Function 

Consider the state space system: 

  

Now, take the Laplace Transform (with zero initial conditions since we are finding a 

transfer function): 

  

We want to solve for the ratio of Y(s) to U(s), so we need so remove Q(s) from the 

output equation.  We start by solving the state equation for Q(s) 

 

 
The matrix Φ(s) is called the state transition matrix.  Now we put this into the output 

equation 

 
Now we can solve for the transfer function: 

 
Note that although there are many state space representations of a given system, all 

of those representations will result in the same transfer function (i.e., the transfer 

function of a system is unique; the state space representation is not). 
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Example: State Space to Transfer Function 

Find the transfer function of the system with state space representation 

 

 

First find (sI-A) and the Φ=(sI-A)
-1

 (note: this calculation is not obvious.  Details 

are here).  Rules for inverting a 3x3 matrix are here. 

 

 

 

Now we can find the transfer function 

 

  

To make this task easier, MatLab has a command (ss2tf) for converting from state space 

to transfer function.  

>> % First define state space system 

>> A=[0 1 0; 0 0 1; -3 -4 -2]; 

>> B=[0; 0; 1]; 

>> C=[5 1 0]; 

>> [n,d]=ss2tf(A,B,C,D) 

 

n = 

http://lpsa.swarthmore.edu/Representations/SysRepTransformations/TF2SS/html/SStoTFnum.html
http://lpsa.swarthmore.edu/BackGround/RevMat/MatrixReview.html#Invert3x3
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         0         0    1.0000    

5.0000 

d = 

    1.0000    2.0000    4.0000    

3.0000 

 

>> mySys_tf=tf(n,d) 

Transfer function: 

       s + 5 

---------------------- 

 s^3 + 2 s^2 + 4 s + 3 

 

 

Transfer Function to State Space 

Recall that state space models of systems are not unique; a system has many state space 

representations.  Therefore we will develop a few methods for creating state space models 

of systems. 

Before we look at procedures for converting from a transfer function to a state space 

model of a system, let's first examine going from a differential equation to state space.  

We'll do this first with a simple system, then move to a more complex system that will 

demonstrate the usefulness of a standard technique. 

First we start with an example demonstrating a simple way of converting from a single 

differential equation to state space, followed by a conversion from transfer function to state 

space. 

 

Example: Differential Equation to State Space (simple) 

Consider the differential equation with no derivatives on the right hand side.  We'll use 

a third order equation, thought it generalizes to n
th

 order in the obvious way. 

 

For such systems (no derivatives of the input) we can choose as our n state variables the 

variable y and its first n-1 derivatives (in this case the first two derivatives) 

http://lpsa.swarthmore.edu/Representations/SysRepSS.html#The_state_space_representation_is_not_unique
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Taking the derivatives we can develop our state space model 

 

Note: For an nth order system the matrices generalize in the obvious way (A has ones above the 

main diagonal and the differential equation constants for the last row, B is all zeros with b0 in the 

bottom row, C is zero except for the leftmost element which is one, and D is zero) 

 

Repeat Starting from Transfer Function 

Consider the transfer function with a constant numerator (note: this is the same system 

as in the preceding example).  We'll use a third order equation, thought it generalizes to 

n
th

 order in the obvious way. 

  

For such systems (no derivatives of the input) we can choose as our n state variables the 

variable y and its first n-1 derivatives (in this case the first two derivatives) 

  

Taking the derivatives we can develop our state space model (which is exactly the same 

as when we started from the differential equation). 
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Note: For an nth order system the matrices generalize in the obvious way (A has ones 

above the main diagonal and the coefficients of the denominator polynomial for the last 

row, B is all zeros with b0 (the numerator coefficient) in the bottom row, C is zero except 

for the leftmost element which is one, and D is zero) 

If we try this method on a slightly more complicated system, we find that it 

initially fails (though we can succeed with a little cleverness). 

 

Example: Differential Equation to State Space (harder) 

Consider the differential equation with a single derivative on the right hand side. 

  

We can try the same method as before: 
 

 

The method has failed because there is a derivative of the input on the right hand, and 

that is not allowed in a state space model. 

Fortunately we can solve our problem by revising our choice of state variables. 

 

Now when we take the derivatives we get: 
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The second and third equations are not correct, because ÿ is not one of the state 

variables.  However we can make use of the fact: 

  

The second state variable equation then becomes 

 

In the third state variable equation we have successfully removed the derivative of the 

input from the right side of the third equation, and we can get rid of the ÿ term using the 

same substitution we used for the second state variable. 

 

The process described in the previous example can be generalized to systems with 

higher order input derivatives but unfortunately gets increasingly difficult as the order 

of the derivative increases.  When the order of derivatives is equal on both sides, the 

process becomes much more difficult (and the variable "D" is no longer equal to 

zero).  Clearly more straightforward techniques are necessary.  Two are outlined 

below, one generates a state space method known as the "controllable canonical form" 

and the other generates the "observable canonical form (the meaning of these terms 

derives from Control Theory but are not important to us). 

Controllable Canonical Form (CCF) 

Probably the most straightforward method for converting from the transfer 

function of a system to a state space model is to generate a model in "controllable 

canonical form."  This term comes from Control Theory but its exact meaning is not 

important to us.  To see how this method of generating a state space model works, 

consider the third order differential transfer function: 

 
We start by multiplying by Z(s)/Z(s) and then solving for Y(s) and U(s) in terms of 

Z(s).  We also convert back to a differential equation. 
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We can now choose z and its first two derivatives as our state variables 

  

Now we just need to form the output 

 
From these results we can easily form the state space model: 

 

 
In this case, the order of the numerator of the transfer function was less than that of 

the denominator.  If they are equal, the process is somewhat more complex.  A result 

that works in all cases is given below; the details are here.  For a general n
th

 order 

transfer function: 

 
the controllable canonical state space model form is 

 

 

 

Key Concept: Transfer function to State Space (CCF) 

For a general n
th

 order transfer function: 

 

the controllable canonical state space model form is 

http://lpsa.swarthmore.edu/Representations/SysRepTransformations/TF2SS_CCF_OCF_hard.html#Controllable
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Observable Canonical Form (OCF) 

Another commonly used state variable form is the "observable canonical form."  

This term comes from Control Theory but its exact meaning is not important to us.  

To understand how this method works consider a third order system with transfer 

function: 

 
We can convert this to a differential equation and solve for the highest order 

derivative of y: 

 

 
Now we integrate twice (the reason for this will be apparent soon), and collect terms 

according to order of the integral: 

  

Choose the output as our first state variable 

 

 

Looking at the right hand side of the differential equation we note that y=q1 and we 

call the two integral terms q2: 

 

 
so 

 

 

 

This is our first state variable equation.  
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Now let's examine q2 and its derivative: 

 

 
Again we note that y=q1 and we call the integral terms q3: 

 

 

so 

 

 
This is our second state variable equation.  

Now let's examine q3 and its derivative: 

 
This is our third, and last, state variable equation. 

Our state space model now becomes: 

 
In this case, the order of the numerator of the transfer function was less than that of 

the denominator.  If they are equal, the process is somewhat more complex.  A result 

that works in all cases is given below; the details are here.  For a general n
th

 order 

transfer function: 

 
the observable canonical state space model form is 

  

 

 

http://lpsa.swarthmore.edu/Representations/SysRepTransformations/TF2SS_CCF_OCF_hard.html#Observable
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Key Concept: Transfer function to State Space (OCF) 

For a general n
th

 order transfer function: 

 

the observable canonical state space model form is 

 

 

 

 

=
𝐂 Adj SI − A 𝐁 +  SI − A D

 SI − A 
 

 SI − A  is also known as characteristic equation when equated to zero. 

 

MATLab Code 

Transfer Function to State Space(tf2ss) 

 
Y(s)

U(s)
=

s

s3 + 14s2 + 56s + 160
 

num=[1 0]; 

den=[1 14 56 160]; 

[A,B,C,D]=tf2ss(num,den) 

 

A = 

 

   -14   -56  -160 

     1     0     0 

     0     1     0 
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B = 

 

     1 

     0 

     0 

C = 

     0     1     0 

D = 

     0 

Concept of Eigen Values and Eigen Vectors 

The roots of characteristic equation that we have described above are known as eigen values 

of matrix A. 

Now there are some properties related to eigen values and these properties are written below- 

1. Any square matrix A and its transpose A
T
 have the same eigen values. 

2. Sum of eigen values of any matrix A is equal to the trace of the matrix A. 

3. Product of the eigen values of any matrix A is equal to the determinant of the matrix A. 

4. If we multiply a scalar quantity to matrix A then the eigen values are also get multiplied by 

the same value of scalar. 

5. If we inverse the given matrix A then its eigen values are also get inverses. 

6. If all the elements of the matrix are real then the eigen values corresponding to that matrix are 

either real or exists in complex conjugate pair. 

Eigen Vectors 

Any non zero vector 𝑚𝑖  that satisfies the matrix equation  𝜆𝑖𝐼 − 𝐴 𝑚𝑖 = 0 is called the eigen 

vector of A associated with the eigen value 𝜆𝑖 ,. Where𝜆𝑖 , i = 1, 2, 3, ……..n denotes the i
th

 

eigen values of A. 

This eigen vector may be obtained by taking cofactors of matrix  𝜆𝑖𝐼 − 𝐴  along any row   & 

transposing that row of cofactors. 
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Diagonalization 

Let 𝑚1,𝑚2 ,…… . .𝑚𝑛  be the eigenvectors corresponding to the eigen value 𝜆1,𝜆2 ,…… . . 𝜆𝑛  

respectively. 

Then 𝑀 =  𝑚1  ⋮  𝑚2  ⋮ ⋯   ⋮ 𝑚𝑛   is called diagonalizing  or modal matrix of A. 

Consider the nth  order MIMO state model  

X  t = AX t + BU t  

Y t = CX t + DU t  

System matrix A is non diagonal, so let us define a new state vector V(t) such that 

X(t)=MV(t). 

Under this assumption original state model modifies to 

V  t = 𝐴 V t + B U t  

Y t = C V t + DU t  

Where 𝑨 = 𝑴−𝟏𝑨𝑴 = 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑚𝑎𝑡𝑟𝑖𝑥,        𝑩 = 𝑴−𝟏𝑩 ,         𝑪 = 𝑪𝑴  

The above transformed state model is in canonical state model. The transformation described 

above is called similarity transformation. 

If the system matrix A is in companion form & if all its n eigen values are distinct, then 

modal matrix will be special matrix called the Vander Monde matrix. 

𝑉𝑎𝑛𝑑𝑒𝑟 𝑀𝑜𝑛𝑑𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 𝑉 =

 
 
 
 
 

1 1 1…… 1
𝜆1 𝜆2 𝜆3 …… 𝜆𝑛
⋮

𝜆1
𝑛−2

𝜆1
𝑛−1

⋮   ⋮         
𝜆2
𝑛−2 𝜆3

𝑛−2 ……

𝜆2
𝑛−1 𝜆3

𝑛−1 …… .

⋮
𝜆𝑛
𝑛−2

𝜆𝑛
𝑛−1 

 
 
 
 

𝑛×𝑛

 

State Transition Matrix and Zero State Response 

We are here interested in deriving the expressions for the state transition matrix and zero state 

response. Again taking the state equations that we have derived above and taking their 

Laplace transformation we have, 
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Now on rewriting the above equation we have 

 

 

 

Let [sI-A]
-1

 = θ(s) and taking the inverse Laplace of the above equation we have 

 

 

 

The expression θ(t) is known as state transition matrix(STM). 

 

L
-1

.θ(t)BU(s) = zero state response. 

Now let us discuss some of the properties of the state transition matrix. 

1. If we substitute t = 0 in the above equation then we will get 1.Mathematically we can write 

θ(0) =1. 

2. If we substitute t = -t in the θ(t) then we will get inverse of θ(t). Mathematically we can write 

θ(-t) = [θ(t)]
-1

. 

3. We also another important property [θ(t)]
n
 = θ(nt). 

Computation of STN using Cayley-Hamilton Theorem  

 

The Cayley–hamilton theorem states that every square matrix A satisfies its own 

characteristic equation. 

This theorem provides a simple procedure for evaluating the functions of a matrix. 

To determine the matrix polynomial 

𝑓 𝐴 = 𝑘0𝐼 + 𝑘1𝐴 + 𝑘2𝐴
2 + ⋯+ 𝑘𝑛𝐴

𝑛 + 𝑘𝑛+1𝐴
𝑛+1 + ⋯ 

Consider the scalar polynomial 

𝑓(𝜆) = 𝑘0 + 𝑘1𝜆 + 𝑘2𝜆
2 + ⋯+ 𝑘𝑛𝜆

𝑛 + 𝑘𝑛+1𝜆
𝑛+1 + ⋯ 

Here A is a square matrix of size (n×n). Its characteristic equation is given by 

𝑞 𝜆 =  𝜆𝐼 − 𝐴 = 𝜆𝑛 + 𝑎1𝜆
𝑛−1 + 𝑎2𝜆

𝑛−2 + ⋯+ 𝑎𝑛−1𝜆 + 𝑎𝑛 = 0 

If 𝑓 𝐴  is divided by the characteristic polynomial 𝑞 𝜆   , then 
𝑓 𝜆 

𝑞 𝜆 
= 𝑄 𝜆 +

𝑅 𝜆 

𝑞 𝜆 
 

𝑓 𝜆 = 𝑄 𝜆 𝑞 𝜆 + 𝑅 𝜆      …………… . . (1) 

Where  𝑅 𝜆  is the remainder polynomial of the form 

𝑅 𝜆 = 𝑎0 + 𝑎1𝜆 + 𝑎2𝜆
2 + ⋯+ 𝑎𝑛−1𝜆

𝑛−1     …………… (2) 
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If we evaluate 𝑓 𝐴  at the eigen values  𝜆1, 𝜆2 ,…… . . 𝜆𝑛  , then 𝑞 𝜆 = 0 and we have from 

equation (1)   𝑓 𝜆𝑖 = 𝑅 𝜆𝑖 ;     𝑖 = 1,2,… .𝑛                ……………… . . (3) 

 

The coefficients 𝑎0,𝑎1 ,…… . .𝑎𝑛−1 , can  be obtained by successfully substituting 

𝜆1, 𝜆2 ,…… . . 𝜆𝑛  into equation (3). 

Substituting A for the variable 𝜆 in equation (1), we get  

𝑓 𝐴 = 𝑄 𝐴 𝑞 𝐴 + 𝑅 𝐴  

As 𝑞 𝐴  𝑖𝑠 𝑧𝑒𝑟𝑜, 𝑠𝑜 𝑓 𝐴 = 𝑅 𝐴  

⇒      𝑓 𝐴 = 𝑎0𝐼 + 𝑎1𝐴 + 𝑎2𝐴
2 + ⋯+ 𝑎𝑛−1𝐴

𝑛−1 

𝑤𝑖𝑐 𝑖𝑠 𝑡𝑒 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑟𝑒𝑠𝑢𝑙𝑡. 

 

CONCEPTS OF CONTROLLABILITY & OBSERVABILITY 

 

State Controllability 

         A system is said to be completely state controllable if it is possible to transfer the 

system state from any initial state X(to) to any desired state X(t) in specified finite time by a 

control vector u(t). 

 

Kalman‟s test 

Consider n
th

 order multi input LTI system with m dimensional control vector 

X  t = AX t + BU t  

is completely controllable if & only if the rank of the composite matrix Qc is n. 

 

𝑸𝒄 =  𝑩 ⋮  𝑨𝑩 ⋮ ⋯ ⋮ 𝑨𝒏−𝟏𝑩  
Observability 

        A system is said to be completely observable, if every state X(to) can be completely 

identified by measurements of the outputs y(t) over a finite time interval(𝑡𝑜 ≤ 𝑡 ≤ 𝑡1). 

Kalman‟s test 

Consider n
th

 order multi input LTI system with m dimensional output vector 

X  t = AX t + BU t  

Y t = CX t + DU t  

is completely observable if & only if the rank of the observability matrix Qo is n. 

 

𝑸𝒐 = [𝑪𝑻  ⋮  𝑨𝑻𝑪𝑻  ⋮ ⋯ ⋮   𝑨𝑻 𝒏−𝟏𝑪𝑻] 
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Principle of Duality: It gives relationship between controllability & observability. 

 The Pair (AB) is controllable implies that the pair (ATBT) is observable. 

 The pair (AC) is observable implies that the pair (ATCT) is controllable. 

 

 

Design of Control System in State Space 

 
Pole placement at State Space 

  

Assumptions: 

 The system is completely state controllable. ƒ  

 The state variables are measurable and are available for feedback. ƒ 

 Control input is unconstrained. 

 

Objective: 

The closed loop poles should lie at 𝜇1, 𝜇2 ,…… . . 𝜇𝑛  which are their „desired locations‟ 

 

Necessary and sufficient condition: The system is completely state controllable. 

 

Consider the system 

X  t = AX t + BU t  

The control vector U is designed in the following state feedback form U =-KX 

This leads to the following closed loop system 

X  t =  A − BK X t = ACL X t  

 

The gain matrix K is designed in such a way that 

 𝑆𝐼 −  𝐴 − 𝐵𝐾  =  𝑆 − 𝜇1  𝑆 − 𝜇2 … . .  𝑆 − 𝜇𝑛  

 

Pole Placement Design Steps:Method 1 (low order systems, n ≤ 3): 

 Check controllability 

 Define 𝐾 =  𝑘1      𝑘2      𝑘3  

 Substitute this gain in the desired characteristic polynomial equation 

 𝑆𝐼 − 𝐴 + 𝐵𝐾 =  𝑆 − 𝜇1  𝑆 − 𝜇2 … . .  𝑆 − 𝜇𝑛  

 Solve for 𝑘1,𝑘2 , 𝑘3by equating the like powers of S on both sides 

 

MATLab Code 

 

Finding State Feedback gain matrix with MATLab 

MATLab code acker is based on Ackermann‟s formula and works for single input single 

output system only. 

MATLab code place works for single- or multi-input system. 
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Example 

Consider the system with state equation  

X  t = AX t + BU t  
Where   

A =  
0 1 0
0 0 1
−1 −5 −6

  , B =  
0
0
1
   

 

By using state feedback  control u=-Kx, it is desired to have the closed –loop poles at 

𝜇1 = −2 + 𝑗4, 𝜇2 = −2 − 𝑗4, 𝜇3 = −10 

 

Determine the state feedback gain matrix K with MATLab 

 
A=[0 1 0;0 0 1;-1 -5 -6]; 

B=[0;0;1]; 

J=[-2+i*4 -2-i*4 -10]; 

k=acker(A,B,J) 

      k = 

        199    55     8 

 
A=[0 1 0;0 0 1;-1 -5 -6]; 

B=[0;0;1]; 

J=[-2+i*4 -2-i*4 -10]; 

k=place(A,B,J) 

      k = 

 

  199.0000   55.0000    8.0000 

 

State Estimators or Observers 

• One should note that although state feed back control is very attractive because of precise 

computation of the gain matrix K, implementation of a state feedback controller is possible 

only when all state variables are directly measurable with help of some kind of sensors. 

• Due to the excess number of required sensors or unavailability of states for measurement, in 

most of the practical situations this requirement is not met. 

• Only a subset of state variables or their combinations may be available for measurements. 

Sometimes only output y is available for measurement. 
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• Hence the need for an estimator or observer is obvious which estimates all state variables 

while observing input and output. 

Full Order Observer : If the state observer estimates all the state variables, regardless of 

whether some are available for direct measurements or not, it is called a full order 

observer.  

 

Reduced Order Observer : An observer that estimates fewer than ``n'' states of the 

system is called reduced order observer.                                    

 

Minimum Order Observer : If the order of the observer is minimum possible then it is 

called minimum order observer. 

 

Observer Block Diagram 

 

 

Design of an Observer 

The governing equation for a dynamic system (Plant) in statespace representation may be 

written as:  

X  t = AX t + BU t  

Y t = CX t  

The governing equation for the Observer based on the block diagram is shown below. The 

superscript „∼‟ refers to estimation. 

𝑋  = 𝐴𝑋 + 𝐵𝑈 + 𝐾𝑒(𝑌 − 𝑌 ) 

𝑌 = 𝐶𝑋  
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Define the error in estimation of state vector as 

𝑒 = (𝑋 − 𝑋 ) 

The error dynamics could be derived now from the observer governing equation and state 

space equations for the system as: 

𝑒 = (𝐴 − 𝐾𝑒𝐶)𝑒 

𝑌 − 𝑌 = 𝐶𝑒 

The corresponding characteristic equation may be written as: 

|𝑆𝐼 − (𝐴 − 𝐾𝑒𝐶) | = 0 

You need to design the observer gains such that the desired error dynamics is obtained. 

 

Observer  Design Steps:Method 1 (low order systems, n ≤ 3): 

 

 Check the observability 

 Define 𝐾𝑒 =  

𝑘𝑒1

𝑘𝑒2

𝑘𝑒3

  

 Substitute this gain in the desired characteristic polynomial equation 

|𝑆𝐼 − (𝐴 − 𝐾𝑒𝐶) | =  𝑆 − 𝜇1  𝑆 − 𝜇2 … . .  𝑆 − 𝜇𝑛  

 Solve for 𝑘1,𝑘2 , 𝑘3by equating the like powers of S on both sides 

 

Here 𝜇1, 𝜇2 ,…… . . 𝜇𝑛  are desired eigen values of observer matrix. 
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MODEL QUESTIONS  

Module-1 

Short Questions each carrying Two marks. 

1. The System matrix of a continuous time system, described in the state variable form 

is 

A =  
x 0 0
0 y −1
0 1 −2

  

 
Determine the range of x & y so that the system is stable. 

2. For a single input system   
X = AX + BU 

Y = CX 

A =  
0 1
−1 −2

 ;   B =  
0
1
 ;   C =  1 1  

Check the controllability & observability of the system. 

3. Given the homogeneous state space equation X =  
0 1
−1 −2

 X ;  

Determine the steady state value 𝑋𝑠𝑠 = lim𝑡→∞ 𝑋(𝑡) given the initial state value 

X(0) =  
10
−10

  . 

4. State Kalman‟s test for observability. 

 
The figures in the right-hand margin indicate marks. 

5. For a system represented by the state equation X = AX 
Where   

A =  
0 1 0
3 0 2

−12 −7 −6
   

Find the initial condition state vector X(0) which will excite only the mode 

corresponding to the eigenvalue with the most negative real part.             [10] 

6. Write short notes on Properties of state transition matrix.             [3.5] 

7. Investigate the controllability and observability of the following system: 

𝑋 =  
1 0
0 2

 𝑋 +  
0
1
 𝑢;𝑌 =  0 1 𝑋                                                                         [8] 

8. Write short notes on                             [4×5] 

(a) Pole placement by state feedback.     

(b) state transition matrix 

(c) MIMO systems 

(d) hydraulic servomotor  

(e) Principle of duality due to kalman                                         

9.  A system is described by the following differential equation. Represent the system in 

state space: 
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𝑑3𝑋

𝑑𝑡3
+ 3

𝑑2𝑋

𝑑𝑡2
+ 4

𝑑𝑋

𝑑𝑡
+ 4𝑋 = 𝑢1 𝑡 + 3𝑢2 𝑡 + 4𝑢3(𝑡) 

and outputs are 

𝑦1 = 4
𝑑𝑋

𝑑𝑡
+ 3𝑢1 

 

𝑦2 =
𝑑2𝑋

𝑑𝑡2
+ 4𝑢2 + 𝑢3                                                                                                 [8] 

10. Find the time response of the system described by the equation 

𝑋 (𝑡) =  
−1 1
0 −2

 𝑋 +  
0
1
 𝑢(t) 

X 0 =  
−1
0
 , u t = 1, t > 0                   [14] 

11. (a) Obtain a state space representation of the system 

  
C(s)

U(s)
=

10(s+2)

s3+3s2+5s+15
                                                                                          [7] 

       (b) A linear system is represented by 

  𝑋 =  
−6 4
−2 0

 𝑋 +  
1
1
 𝑈;         𝑌 =  

1 0
1 1

 𝑋 

                 (i) Find the complete solution for Y(t) when U(t)=1(t), 𝑋1 0 = 1,𝑋2 0 = 0 

                 (ii) Draw a block diagram representing the system.                                    [5+3]  

12. Discuss the state controllability of the system 

   
𝑋1
 

𝑋2
 
 =  

−3 1
−2 1.5

  
𝑋1

X2
 +  

1
4
 u 

 Prove the conditions used.                 [3+4] 

13. If a continuous-time state equation  is represented in discrete form as  

       X[(K+1)T]=G(T)X(KT) + H(T) U(KT) 

      Deduce the expressions for the matrices G(T) & H(T) 

      Discretise the continuous-time system described by  

                     𝑋 =  
0 1
0 0

 𝑋 +  
0
1
 𝑈;         

        Assume the sampling period is 2 secs.                            [5+4] 

14.(a) Choosing 𝑥1=current through the inductor                 [8] 

                 𝑥2=voltage across capacitor,determine the state equation for the system shown 

in fig below 

 
 

      (b) Explain controllability and observability.                                                                   [8] 

15. A linear system is represented by 

                𝑥 = 
−6 4
−2 0

 𝑥 +  
1
1
 u 
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                 Y= 
1 0
1 1

 𝑥 

        (a)Find the complete solution for y(t) when 

    U(t)=1(t), 𝑥1(0)=1 and 𝑥2(0)=0 

        (b) Determine the transfer function 

        (c) Draw a   block  diagram representing the system                    [9+4+3] 

16.(a) Derive  an expression for the transfer function of a pump controlled hydraulic system. 

State the assumption made.           [8] 

      (b) Simulate a pneumatic PID controller and obtain its linearized transfer function.       [8] 

17. Describe the constructional features of a rate gyro, explain its principle of operation and 

obtain its transfer function.                      [8] 

18. (a) Explain how poles of a closed loop control system can be placed at the desired points 

on the s plane.            [4] 

      (b) Explain how diagonalisation of a system matrix a helps in the study of controllability 

of control systems.                   [4] 

19. Construct the state space model of the system whose signal flow graph is shown in fig 2.  

                                                                                                                                                 [7]   

 
20. (a)Define state of a system, state variables, state space and state vector. What are the 

advantages of state space analysis?         [5] 

      (b) A two input two output linear dynamic system is governed by 

            𝑋 (𝑡)= 
0 1
−2 −3

 X(t)+ 
2 1
0 1

 R(t) 

            Y(t)= 
1 0
1 1

 X(t) 

              i)Find out the transfer function matrix.         [5] 

             ii)Assuming 𝑋 0 = 0 find the output response Y(t) if     [5] 

                  R(t)= 
0

𝑒−3𝑡  for t≥ 0 

21.(a) A system is described by         [8] 

           𝑋 (t)= 
−4 1 0
0 −3 1
0 0 −2

 X(t) 

           Diagonalise the above system making use of suitable transformation    X=PZ 

      (b) Show how can you compute 𝑒𝐴𝑡  using results of (a)     [7] 

22. Define controllability and observability and of control systems.    [4] 

23. A feed back system has a closed loop transfer function: 
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𝑌(𝑠)

𝑅(𝑠)
=

10𝑠 + 40

𝑠3 + 𝑠2 + 3𝑠
 

Construct three different state models showing block diagram in each case.           [5×3] 

24. Explain the method of pole placement by state-feedback. Find the matrix  k=[𝑘1 𝑘2 ] 

which is called the state feedback gain matrix for the closed loop poles to be located at -1.8+

.
 

j2.4 for the original system governed by the state equation: 

𝑋 = 
0 1

20.6 0
 X + 

0
1
  𝑈                                                                                                          [6] 

25.(a) From a system represented by the state equation 

𝑥 𝑡 = 𝐴 𝑥(𝑡) 

       The response of  

         X(t)= 𝑒−2𝑡

−2𝑒−2𝑡  when x(0)= 
1

−2
      

        And x(t)= 𝑒
−𝑡

−𝑒−𝑡
  when x(o)= 

1
−1

   

       Determine the system  matrix A and the states transition matrix φ(t).   [12] 

     (b) Prove non uniqueness of state space model.      [4] 

26.(a) Show the following system is always controllable 

𝑥 𝑡 =  
0 1 0
0 0 1

−𝑎3 −𝑎2 −𝑎 1

 𝑥 +  
0
0
1
 𝑢

 

 

     (b)  Explain the design of state observer. 

      (c)  Illustrate and explain pole placement by state feedback.                                     [4+4+4] 
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MODULE-II 

COMPENSATOR DESIGN 

 

 Every control system which has been designed for a specific application should 

meet certain performance specification. There are always some constraints which are 

imposed on the control system design in addition to the performance specification. The 

choice of a plant is not only dependent on the performance specification but also on the 

size , weight & cost. Although the designer of the control system is free to choose a new 

plant, it is generally not advised due to the cost & other constraints. Under this 

circumstances it is possible to introduce some kind of corrective sub-systems in order to 

force the chosen plant to meet the given specification. We refer to these sub-systems as 

compensator whose job is to compensate for the deficiency in the performance of the 

plant. 

 

REALIZATION OF BASIC COMPENSATORS 

Compensation can be accomplished in several ways. 

Series or Cascade compensation 

Compensator can be inserted in the forward path as shown in fig below. The transfer 

function of compensator is denoted as Gc(s), whereas that of the original process of the 

plant is denoted by G(s). 

 

 

feedback compensation 

 

Combined Cascade & feedback compensation 
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Compensator can be electrical, mechanical, pneumatic or hydrolic type of device. Mostly 

electrical networks are used as compensator in most of the control system. The very 

simplest of these are Lead, lag & lead-lag networks.  

 

Lead Compensator 

Lead compensator are used to improve the transient response of a system. 

 

Fig: Electric Lead Network 

Taking i2=0 & applying Laplace Transform, we get 

 
𝑉2(𝑠)

𝑉1(𝑠)
=

𝑅2(𝑅1𝐶𝑠 + 1)

𝑅2 + 𝑅2𝑅1𝐶𝑠 + 𝑅1
 

 

Let  𝜏 = 𝑅1𝐶   ,        𝛼 =
𝑅2

𝑅1+𝑅2
 < 1 

 
𝑉2(𝑠)

𝑉1(𝑠)
=

𝛼(𝜏𝑠+1)

(1+𝜏𝛼𝑠 )
  Transfer function of Lead Compensator 

 

Fig: S-Plane representation of Lead Compensator 

 

Bode plot for Lead Compensator 

Maximum phase lead occurs at 𝑤𝑚 =
1

𝜏 𝛼
 

Let 𝜙𝑚= maximum phase lead 

sin𝜙𝑚 =
1 − 𝛼

1 + 𝛼
 

 

𝛼 =
1 − sin𝜙𝑚
1 + sin𝜙𝑚

 

 

Magnitude at maximum phase lead  𝐺𝑐(𝑗𝑤) =
1

 𝛼
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Fig: Bode plot of Phase Lead network with amplifier of gain 𝐴 = 1
𝛼  

 

Lag Compensator 

Lag compensator are used to improve the steady state response of a system. 

 

Fig: Electric Lag Network 

 

Taking i2=0 & applying Laplace Transform, we get 

 
𝑉2(𝑠)

𝑉1(𝑠)
=

𝑅2𝐶𝑠 + 1

(𝑅2 + 𝑅1)𝐶𝑠 + 1
 

 

Let  𝜏 = 𝑅2𝐶   ,        𝛽 =
𝑅1+𝑅2

𝑅2
 > 1 

 
𝑉2(𝑠)

𝑉1(𝑠)
=

𝜏𝑠+1

1+𝜏𝛽𝑠
  Transfer function of Lag Compensator 
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Fig: S-Plane representation of Lag Compensator 

 

Bode plot for Lag Compensator 

Maximum phase lag occurs at 𝑤𝑚 =
1

𝜏 𝛽
 

Let 𝜙𝑚= maximum phase lag 

sin𝜙𝑚 =
1 − 𝛽

1 + 𝛽
 

 

𝛽 =
1 − sin𝜙𝑚
1 + sin𝜙𝑚

 

 

Fig: Bode plot of Phase Lag network 

 

 

Cascade compensation in Time domain 

 Cascade compensation in time domain is conveniently carried out by the root locus 

technique. In this method of compensation, the original design specification on dynamic 

response are converted into 𝜁 & 𝑤𝑛  of a pair of desired complex conjugate closed loop pole 
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based on the assumption the system would be dominated by these two complex pole 

therefore its dynamic behavior can be approximated by that of a second order system. 

 A compensator is now designed so that the least damped complex pole of the 

resulting transfer function correspond to the desired dominant pole & all other closed loop 

poles are located very close to the open loop zeros or relatively far away from the jw axis. 

This ensures that the poles other than the dominant poles make negligible contribution to 

the system dynamics. 

 

Lead Compensation 

 Consider a unity feedback system with a forward path unalterable Transfer function   

𝐺𝑓(𝑠), then let the dynamic response specifications are translated into desired 

location Sd for the dominant complex closed loop poles. 

 If the angle criteria as Sd  is not meet i.e ∠𝐺𝑓(𝑠) ≠ ±180° the uncompensated Root 

Locus with variable open loop gain will not pass through the desired root location, 

indicating the need for the compensation. 

 The lead compensator 𝐺𝑐(𝑠) has to be designed that the compensated root locus 

passes through Sd . In terms of angle criteria this requires that 

∠𝐺𝑐 𝑠𝑑 𝐺𝑓 𝑠𝑑 = ∠𝐺𝑐 𝑠𝑑 + ∠𝐺𝑓 𝑠𝑑 ± 180° 

∠𝐺𝑐 𝑠𝑑  = 𝜙 = ±180° − ∠𝐺𝑓 𝑠𝑑  

 Thus for the root locus for the compensated system  to pass through the desired root 

location the lead compensator pole-zero pair must contribute an angle 𝜙 . 

 For a given angle 𝜙 required for lead compensation there is no unique location for 

pole-zero pair. The best compensator pole-zero location is the one which gives the 

largest value of  . 

Where 𝛼 =
𝑍𝑐

𝑃𝑐
  

 

 

Fig: Angle contribution of Lead compensator 
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 The compensator zero is located by drawing a line from Sd making an angle 𝛾 with 

𝜁 line. 

 The compensator pole then located by drawing a further requisite angle 𝜙 to be 

contribute at  Sd by the pole zero pair. From the geometry of the figure 
𝑧𝑐

sin 𝛾
=

𝑤𝑛

sin(𝜋 − 𝜃 − 𝛾)
 

                

⇒ 𝑧𝑐 =
𝑤𝑛 sin 𝛾

sin(𝜋 − 𝜃 − 𝛾)
 

Assuming big triangle 
𝑝𝑐

sin(𝜙 + 𝛾)
=

𝑤𝑛

sin(𝜋 − 𝜃 − 𝛾 − 𝜙)
 

                

⇒ 𝑝𝑐 =
𝑤𝑛 sin(𝜙 + 𝛾)

sin(𝜋 − 𝜃 − 𝛾 − 𝜙)
 

 

𝛼 =
𝑍𝑐
𝑃𝑐

==
sin(𝜋 − 𝜃 − 𝛾 − 𝜙) sin 𝛾

sin(𝜋 − 𝜃 − 𝛾) sin(𝜙 + 𝛾)
 

To find 𝛼𝑚𝑎𝑥  ,
𝑑𝛼

𝑑𝛾
= 0 

⇒ 𝛾 =
1

2
(𝜋 − 𝜃 − 𝜙) 

 

Though the above method of locating the lead compensator pole-zero  yields the largest 

value of 𝛼, it does not guarantee the dominance of the desired closed loop poles in the 

compensated root-locus. The dominance condition must be checked before completing the 

design. With compensator pole-zero so located the system gain at Sd is computed to 

determine the error constant. If the value of the error constant so obtained is unsatisfactory 

the above procedure is repeated after readjusting the compensator pole-zero location while 

keeping the angle contribution fixed as 𝜙. 

 

Lag Compensation 

Consider a unit feedback system with forward path transfer function 

 

𝐺𝑓 𝑠 =
𝑘  (𝑠 + 𝑧𝑖)

𝑚
𝑖=1

𝑠𝑟  (𝑠 + 𝑝𝑗 )𝑛
𝑗=𝑟+1

 

At certain value of K, this system has satisfactory transient response i.e its root locus plot 

passes through(closed to) the desired closed loop poles location Sd . 

 

It is required to improve the system error constant to a specified value 𝐾𝑒
𝑐  without 

damaging its transient response. This requires that after compensation the root locus should 

continue to pass through Sd while the error constant at Sd is raised to 𝐾𝑒
𝑐 . To accomplish 

this consider adding a lag compensator pole-zero pair with zero the left of the pole. If this 
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pole-zero pair is located closed to each other it will contribute a negligible angle at Sd such 

that Sd continues to lie on the root locus of the compensated system. 

 

 

Fig:Locating the Lag Compensator Pole-zero 

 

From the above fig. that apart from being close to each other the pole-zero pair close to 

origin, the reason which will become obvious from discussion below. 

The gain of the uncompensated system at Sd is given by 

 

𝐾𝑢𝑐 (𝑠𝑑) =
 𝑠𝑑  

𝑟  (𝑠𝑑 + 𝑝𝑗 )𝑛
𝑗=𝑟+1

 (𝑠𝑑 + 𝑧𝑖)
𝑚
𝑖=1

 

 

For compensated system the system gain at Sd is given by 

 

𝐾𝑐 𝑠𝑑 =
 𝑠𝑑  

𝑟   𝑠𝑑 + 𝑝𝑗  
𝑛
𝑗=𝑟+1

  𝑠𝑑 + 𝑧𝑖 
𝑚
𝑖=1

   
𝑎

𝑏
 

 

Since the pole & zero are located close to each other they are nearly equidistance from Sd 

i.e  𝑎 ≈ 𝑏 

i.e 𝐾𝑐 𝑠𝑑 ≅  𝐾𝑢𝑐  𝑠𝑑  

 

The error constant for the compensated system is given by 

𝐾𝑒
𝑐 = 𝐾𝑐 𝑠𝑑   

 𝑧𝑖
𝑚
𝑖=1

 𝑝𝑗
𝑛
𝑗=𝑟+1

  
𝑧𝑐
𝑝𝑐

 

 

𝐾𝑒
𝑐 ≅ 𝐾𝑢𝑐  𝑠𝑑   

 𝑧𝑖
𝑚
𝑖=1

 𝑝𝑗
𝑛
𝑗=𝑟+1

  
𝑧𝑐
𝑝𝑐

 

 

𝐾𝑒
𝑐 = 𝐾𝑒

𝑢𝑐   
𝑧𝑐
𝑝𝑐

 

 

𝐾𝑒
𝑢𝑐 → is error constant at Sd for uncompensated system. 

𝐾𝑒
𝑐 → is error constant at Sd for compensated system. 

 



38 
 

𝛽 =   
𝑧𝑐
𝑝𝑐

=
𝐾𝑒
𝑐

𝐾𝑒
𝑢𝑐  …………… . . (1) 

 

The 𝛽 parameter of lag compensator is nearly equal to the ratio of specified error constant 

to the error constant of the uncompensated system. 

Any value of 𝛽 =
𝑧𝑐

𝑝𝑐
 > 1 with −𝑝𝑐  & −𝑧𝑐  close to each other can be realized by keeping 

the pole-zero pair close to origin. 

 

Since the Lag compensator does contribute a small negative angle 𝜆 at Sd , the actual error 

constant will some what fall short of the specified value if 𝛽 obtained from equation(1) is 

used. Hence for design purpose we choose 𝛽 somewhat larger than that the given by this 

equation(1).  

For the effect of the small lag angle 𝜆 is to give the closed loop pole Sd with specified 𝜁  

but slightly lower  𝑤𝑛  . This can be anticipated & counteracted by taking the  𝑤𝑛  of Sd to 

be somewhat larger than the specified value. 

 

Cascade compensation in Frequency domain 

 

Lead Compensation 

 

Procedure of Lead Compensation 

Step1: Determine the value of loop gain K to satisfy the specified error constant. Usually 

the error constant (Kp,Kv,Ka) & Phase margin are the specification given. 

Step2: For this value of K draw the bode plot & determine the phase margin 𝜙 for the 

system. 

Step3: If ϕs =specified phase margin &  

𝜙 = phase margin of uncompensated system (found out from the bode plot drawn) 

𝜖 =margin of safety (since crossover frequency may increase due to compensation) 

 𝜖 is the unknown reduction in phase angle ∠𝐺𝑓(𝑠) on account of the increase in cross-

over frequency. A guess is made on the value of 𝜖 depending on the slope in this 

region of the dB-log w plot of the uncompensated system. 

 For a slope of -40dB/decade 𝜖 = 5° − 10° is a good guess. The guess value may have 

to be as high as 15° 𝑡𝑜 20° for a slope of -60dB/decade. 

 Phase lead required 𝜙𝑙 = 𝜙𝑠 − 𝜙 + 𝜖 

 

Step4: Let 𝜙𝑙 = 𝜙𝑚  

Determine  

𝛼 =
1 − sin𝜙𝑚
1 + sin𝜙𝑚

 

  

If 𝜙𝑚 > 60°, two identical networks each contributing a maximum lead of 𝜙𝑙/2 are used. 
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Step5: Find the frequency 𝜔𝑚  at which the uncompensated system will have a gain equals 

to −10 log
1

𝛼
 from the bode plot drawn. 

Take 𝜔𝑐2 = 𝜔𝑚 = cross-over frequency of compensated system. 

 

Step6: Corner frequency of the network are calculated as 

 𝜔1 =
1

𝜏
= 𝜔𝑚 𝛼    ,𝜔2 =

1

𝜏𝛼
=

𝜔𝑚

 𝛼
  

 

Transfer function for compensated system in Lead network 𝐺𝑐 𝑠 =
𝑠+

1

𝜏

𝑠+
1

𝜏𝛼

 

 

Step7: Draw the magnitude & Phase plot for the compensated system & check the resulting 

phase margin. If the phase margin is still low raise the value of 𝜖 & repeat the procedure. 

 

Lag Compensation 

 

Procedure of Lead Compensation 

Step1: Determine the value of loop gain K to satisfy the specified error constant. 

Step2: For this value of K draw the bode plot & determine the phase margin 𝜙 for the 

system. 

Step3: If ϕs =specified phase margin &  

𝜙 = phase margin of uncompensated system (found out from the bode plot drawn) 

𝜖 =margin of safety (5° − 10°) 

 For a suitable 𝜖 find  𝜙2 = 𝜙𝑠 + 𝜖 ,where 𝜙2 is measured above −180° line. 

 

Step4: Find the frequency 𝜔𝑐2 where the uncompensated system makes a phase margin 

contribution of 𝜙2. 

 

Step5: Measure the gain of uncompensated system at 𝜔𝑐2. Find 𝛽 from the equation  

𝑔𝑎𝑖𝑛 𝑎𝑡 𝜔𝑐2 = 20 log𝛽 

Step6: Choose the upper corner frequency 𝜔2 =
1

𝜏
 of the network one octave to one decade 

below 𝜔𝑐2(𝑖. 𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 
𝜔𝑐2

2
 𝑡𝑜 

𝜔𝑐2

10
) 

Step7: Thus 𝛽 & 𝜏 are determined which can be used to find the transfer function of Lag 

compensator. 

𝐺𝑐 𝑠 =
1

𝛽
 
𝑠 +

1
𝜏

𝑠 +
1
𝜏𝛼

  

 

Compensated Transfer function 𝐺(𝑠) = 𝐺𝑓  𝐺𝑐  

Draw the bode plot of the compensated system & check if the given specification are met. 
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MATLab Code 

Plotting rootlocus with MATLAB(rlocus) 

Consider a unity-feedback control system with the following feedforward transfer function: 

𝐺 𝑠 =
𝐾

𝑠 𝑠 + 1 (𝑠 + 2)
 

Using MATLAB, plot the rootlocus. 

 

 

𝐺 𝑠 =
𝐾

𝑠 𝑠 + 1 (𝑠 + 2)
=

𝐾

𝑠3 + 3𝑠2 + 2𝑠
 

 

num=[1]; 

den=[1 3 2 0]; 

h = tf(num,den); 

rlocus(h) 

 

 

 

 

 

Plotting Bode Diagram with MATLAB(bode) 

Consider the following transfer function 

𝐺 𝑠 =
25

𝑠2 + 4𝑠 + 25
 

Plot the Bode diagram for this transfer function 
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num=[25]; 

den=[1 4 25]; 

bode(num,den) 

grid on 
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Digital Control Systems 

Sampling operation in sampled data and digital control system is used to model either the 

sample and hold operation or the fact that the signal is digitally coded. If the sampler is used 

to represent S/H (Sample and Hold) and A/D (Analog to Digital) operations, it may involve 

delays, finite sampling duration and quantization errors. On the other hand if the sampler is 

used to represent digitally coded data the model will be much simpler. Following are two 

popular sampling operations: 

1. Single rate or periodic sampling  

2. Multi-rate sampling 

We would limit our discussions to periodic sampling only. 

1.1 Finite pluse width sampler 

In general, a sampler is the one which converts a continuous time signal into a pulse 

modulated or discrete signal. The most common type of modulation in the sampling and hold 

operation is the pulse amplitude modulation. 

The symbolic representation, block diagram and operation of a sampler are shown in 

Figure 1. The pulse duration is p second and sampling period is T second. Uniform rate 

sampler is a linear device which satisfies the principle of superposition. As in Figure 1, p(t) is 

a unit pulse train with period T. 

  

where 𝑢𝑠(𝑡) represents unit step function. Assume that leading edge of the pulse at t 

= 0 coincides with t = 0. Thus 𝑓𝑝
∗(𝑡) can be written as 

 

http://nptel.ac.in/courses/108103008/module1/lec3/1.html#fig:l3:1
http://nptel.ac.in/courses/108103008/module1/lec3/1.html#fig:l3:1
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Figure  : Finite pulse with sampler : (a) Symbolic representation (b) Block diagram (c) Operation 

According to Shannon's sampling theorem, "if a signal contains no frequency higher 

than wc rad/sec, it is completely characterized by the values of the signal measured at instants 

of time separated by T = π/wc sec." 

Sampling frequency rate should be greater than the Nyquist rate which is twice the highest 

frequency component of the original signal to avoid aliasing. 

If the sampling rate is less than twice the input frequency, the output frequency will be 

different from the input which is known as aliasing. The output frequency in that case is 

called alias frequencyand the period is referred to as alias period. 

The overlapping of the high frequency components with the fundamental component in the 

frequency spectrum is sometimes referred to as folding and the frequency ws/2 is often 

known as folding frequency. The frequency wc is called Nyquist frequency.  

 

A low sampling rate normally has an adverse effect on the closed loop stability. Thus, often 

we might have to select a sampling rate much higher than the theoretical minimum. 

Ideal Sampler : In case of an ideal sampler, the carrier signal is replaced by a train of unit 

impulses as shown in Figure 2. The sampling duration p approaches 0, i.e., its operation is 

instantaneous. 

http://nptel.ac.in/courses/108103008/module1/lec3/7.html#fig:l3:2
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the output of an ideal sampler can be expressed as 

 
One should remember that practically the output of a sampler is always followed by a hold 

device which is the reason behind the name sample and hold device. Now, the output of a 

hold device will be the same regardless the nature of the sampler and the attenuation 

factor p can be dropped in that case. Thus the sampling process can be be always 

approximated by an ideal sampler or impulse modulator. 

 

Z- Transform 

Let the output of an ideal sampler be denoted by f*(t)  

 

𝐿 𝑓∗(𝑡) = 𝑓∗(𝑠) =  𝑓(𝐾𝑇)

∞

𝐾=0

𝑒−𝐾𝑇𝑠  

If we substitute 𝑍 = 𝑒𝑇𝑠 ,then we get F(z), is the Z-transform of f(t) at the sampling 

instants k 
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Z - Transforms of some elementary functions 
 

Unit step function is defined as: 

 

Assuming that the function is continuous from right 

 

The above series converges if  𝑍 > 1 

Unit ramp function is defined as: 

 

The Z-transform is:  

 

The above series converges if  𝑍 > 1 
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For a polynomial function 𝒙 𝒌 = 𝒂𝒌 

The Z-transform is:  

 

With ROC:  𝑍 > 𝑎 

Exponential function is defined as: 
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Properties of Z-transform 

 

 

Inverse Z-transforms 

 

f(t) is the continuous time function whose Z-transform is F(z). Then the inverse transform 

is not necessarily equal to f(t), rather it is equal to f(kT) which is equal to f(t) only at the 

sampling instants. Once f(t) is sampled by an the ideal sampler, the information between 

the sampling instants is totally lost and we cannot recover actual f(t) from F(z). 

 

 

The transform can be obtained by using  

1. Partial fraction expansion  

2. Power series  

3. Inverse formula.  

The Inverse Z-transform formula is given as: 
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MATLab Code to Obtain the inverse Z transform (filter) 
 Example 

Obtain the inverse z transform of 𝑋 𝑧 =
𝑧(𝑧+2)

(𝑧−1)2
 

X(z) can be written as 

𝑋 𝑧 =
𝑧2 + 2𝑧

𝑧2 − 2𝑧 + 1
 

num=[1 2 0]; 

den=[1 -2 1]; 

u=[1 zeros(1,30)];%If the values of x(k) for k=0,1,2,....,30 are desired 

filter(num,den,u) 
 

ans = 

 

  Columns 1 through 15 

 

     1     4     7    10    13    16    19    22    25    28    31    34    37    40    43 

 

  Columns 16 through 30 

 

    46    49    52    55    58    61    64    67    70    73    76    79    82    85    88 

 

  Column 31 

 

    91 
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Application of Z-transform in solving Difference Equation 

One of the most important applications of Z-transform is in the solution of linear difference 
equations. Let us consider that a discrete time system is described by the following difference 
equation. 

 

The initial conditions are  y(0) = 0, y(1) = 0 .  

We have to find the solution y(k) for k > 0.  

Taking z-transform on both sides of the above equation:  

 

Using partial fraction expansion:  

 

 

To emphasize the fact that y(k) = 0 for k < 0 , it is a common practice to write the solution 

as: 

 

where 𝑢𝑠(𝑘) is the unit step sequence. 

Relationship between s-plane and z-plane 

In the analysis and design of continuous time control systems, the pole-zero configuration of 

the transfer function in s-plane is often referred. We know that: 

. Left half of s-plane  Stable region. 

. Right half of s-plane  Unstable region. 

For relative stability again the left half is divided into regions where the closed loop transfer 

function poles should preferably be located.  

Similarly the poles and zeros of a transfer function in z-domain govern the performance 

characteristics of a digital system. 
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One of the properties of F*(s) is that it has an infinite number of poles, located periodically with 

intervals of ±𝑚𝑤𝑠 with m = 0, 1, 2,......, in the s-plane where 𝑤𝑠 is the sampling frequency in 

rad/sec. 

If the primary strip is considered, the path, as shown in Figure below, will be mapped into a unit 
circle in the z-plane, centered at the origin. 

 

Figure : Primary and complementary strips in s-plane 

The mapping is shown in Figure below. 

 

Figure : Mapping of primary strip in z-plane 
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Since 

 

where m is an integer, all the complementary strips will also map into the unit circle. 

Mapping guidelines 

1. All the points in the left half s-plane correspond to points inside the unit circle in z-plane.  

2. All the points in the right half of the s-plane correspond to points outside the unit circle.  

3. Points on the jw axis in the s-plane correspond to points on the unit circle  𝑍 = 1 in the z-

plane.  

 

Pluse Transfer Function 

Pulse transfer function relates Z-transform of the output at the sampling instants to the Z- 

transform of the sampled input. 

When the same system is subject to a sampled data or digital signal r*(t), the corresponding 

block diagram is given in Figure 1 . 

 

Figure 1: Block diagram of a system subject to a sampled input 

 

The output of the system is C(s) = G(s)R*(s). The transfer function of the above system is 

difficult to manipulates because it contains a mixture of analog and digital components. 

Thus, for ease of manipulation, it is desirable to express the system characteristics by a 

transfer function that relates r*(t) to c*(t), a fictitious sampler output, as shown in Figure 1. 
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One can then write: 

𝐶∗(𝑠) =  𝑐(𝐾𝑇)

∞

𝐾=0

𝑒−𝐾𝑇𝑠  

Since c(kT) is periodic, 

𝐶∗ 𝑠 =
1

𝑇
 𝐶 𝑠 + 𝑗𝑛𝑤𝑠 

∞

𝑛=−∞

        𝑤𝑖𝑡 𝐶 0 = 0 

The detailed derivation of the above expression is omitted. Similarly,  

 
Since R*(s) is periodic R*( s + jnws ) = R*(s). Thus  

 
If we define 

 
is known as pulse transfer function. Sometimes it is also referred to as the starred 

transfer function. 

If we now substitute z = e
Ts

 in the previous expression, we will directly get the z-transfer 

functionG(z) as  

𝐺 𝑧 =
𝐶(𝑧)

𝑅(𝑧)
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Pulse transfer of discrete data systems with cascaded elements 

            1. Cascaded elements are separated by a sampler  

The block diagram is shown in Figure below. 

 

Figure: Discrete data system with cascaded elements, separated by a sampler 

 

The input-output relations of the two systems G1 and G2 are described by 

 

and 

 

Thus the input-output relation of the overall system is 

 

We can therefore conclude that the z-transfer function of two linear system separated by a 

sampler are the products of the individual z-transfer functions. 

2. Cascaded elements are not separated by a sampler 

The block diagram is shown in Figure below 

 

Figure : Discrete data system with cascaded elements, not separated by a sampler 

The continuous output C(s) can be written as 

 

The output of the fictitious sampler is 

 

z-transform of the product G1(s)G2(s)s is denoted as 

 

Note: 

 

http://nptel.ac.in/courses/108103008/module2/lec3/4a.html#m2:l3:f2
http://nptel.ac.in/courses/108103008/module2/lec3/4a.html#m2:l3:f2
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The overall output is thus, 

 

 Pluse Transfer Function of Closed Loop Systems 

 A simple single loop system with a sampler in the forward path is shown in Figure  below. 

 

 

Figure : Block diagram of a closed loop system with a sampler in the forward path 

 

The objective is to establish the input-output relationship. For the above system, the output of 

the sampler is regarded as an input to the system. The input to the sampler is regarded as 

another output. Thus the input-output relations can be formulated as  

 

 

Taking pulse transform on both sides of E(s)  

 

We can write from equation (3), 
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Taking pulse transformation on both sides of C(s) 

 

Now, if we place the sampler in the feedback path, the block diagram will look like the 

Figure 2. 

 

Figure 2: Block diagram of a closed loop system with a sampler in the feedback path 

The corresponding input output relations can be written as: 

𝐸 𝑠 = 𝑅 𝑠 − 𝐻 𝑠 𝐶∗(𝑠)        ……………… . (4) 

𝐶 𝑠 = 𝐺 𝑠 𝐸 𝑠 = 𝐺 𝑠 𝑅 𝑠 − 𝐺 𝑠 𝐻 𝑠 𝐶∗ 𝑠           …………… (5) 

Taking pulse transformation of equations (4) and (5)  

http://nptel.ac.in/courses/108103008/module2/lec4/2.html#m2:l4:f2
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We can no longer define the input output transfer function of this system by either 
𝐶∗(𝑠)

𝑅∗(𝑠)
 or 

𝐶(𝑧)

𝑅(𝑧)
 . 

Since the input r(t) is not sampled, the sampled signal 𝑟∗(𝑡) does not exist.  

The continuous-data output C(s) can be expressed in terms of input as. 

 

Stability Analysis of closed loop system in z-plane 

 

Similar to continuous time systems, the stability of the following closed loop system 

 
can also be determined from the location of closed loop poles in z-plane which are the 

roots of the characteristic equation 

 
1.For the system to be stable, the closed loop poles or the roots of the characteristic 

equation must lie within the unit circle in z-plane. Otherwise the system would be unstable. 

 

2. If a simple pole lies at  𝑧 = 1, the system becomes marginally stable. Similarly if a pair 

of complex conjugate poles lie on the  𝑧 = 1 circle, the system is marginally stable. 

Multiple poles at the same location on unit circle make the system unstable. 
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Two stability tests can be applied directly to the characteristic equation without solving for 

the roots.  

→ Jury Stability test  

→ Routh stability coupled with bi-linear transformation.  

Jury Stability Test 

Assume that the characteristic equation is as follows,  

 

Where 𝑎0 > 0 
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Example :   The characteristic equation is 

 

 

 

Next we will construct the Jury Table. 

 

Jury Table 

 

 

 

Rest of the elements are also calculated in a similar fashion. The elements are b1=-0.0756 
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All criteria are satisfied. Thus the system is stable. 
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MODEL QUESTIONS  

Module-2 

Short Questions each carrying Two marks. 

 
1. Determine the maximum phase lead of the compensator 

D s =
0.5s + 1

0.5s + 1
 

2. State the various effects and limitations of a lag compensator. Draw a representative 

sketch of a lag-lead compensator. 

3. Derive Z transform of the following 

X(1)=2;  X(4)=-3; X(7)=8 

and all other samples are zero. Define the stability of discrete time function. 

 

 

4. Find the inverse Z-transform if X(z)=Z. 

The figures in the right-hand margin indicate marks. 

5. The unity feedback system has the open loop plant 𝐺 𝑠 =
1

𝑠 𝑠+3 (𝑠+6)
 

 
 

Design a lag compensation to meet the following specifications: 

(i) Step response settling time < 5s. 

(ii) Step response overshoot < 15% 

(iii) Steady state error to a unit ramp input < 10%.              [10] 

6. A discrete time system is described by the difference equation  

y(k+2) + 5y(k+1) + 6y (k) = U (k) 

y(0) = y(1) =0; T=1sec 

(i) Determine a state model in canonical form. 

(ii) Find the output y(k) for the input u(k)=1 for ≥ 0.                     [10]  

 

7. Use Jury‟s test to show that the two roots of the digital system F(z)=Z
2
+Z+0.25=0 are 

inside the circle.           [3]              

8.  (a)What is the principal effect of (i) lag, (ii) lead compensation on a root locus.    [3] 

 (b) A type-1 unity feedback system has an open-loop transfer function 

𝐺 𝑠 =
𝐾

𝑠 𝑠 + 1 (0.2𝑠 + 1)
 

+ 
- 

Lag 

compensator 
G(s) C 
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Design phase lag compensation for the system to achieve the following 

 specifications: 

Velocity error constant Kv = 8 

Phase margin ≈ 40°                                                                                     [13] 

9 . A discrete-time system is described by the difference equation 

y(k+2)+5y(k+1) +6y(k) =u(k) 

y(0)=y(1)=0;  T=1 sec 

(i) Determine a state model in canonical form 

(ii) Find the state transition matrix 

(iii) For input u(k)=1 for k ≥ 0, find the output y(k)                                [5+5+6]      

 

10. Determine the z-transform of 

       (i) 𝐹 𝑠 =
1

 𝑠+𝛼 2 

        (ii) 𝐹 𝑠 =
10(1−𝑒−𝑠)

𝑠(𝑠+2)
                                                                                                 [8]  

11. Write short notes on                 [4×7] 

       (a) Feedback compensation 

       (b) stability analysis of sampled data control system 

       (c) R-C notch type a.c. lead network     

       (d) Hold circuits in sample data control 

       (e) Network compensation of a.c systems 

       (f) Z domain and s domain relationship 

       (g) Spectral factorisation 

 

12. (a) Describe the effect of: 

              (i) Lag and 

              (ii) Lead compensation on a root locus                                                              [4] 

    (b) Design a suitable phase lag compensating network for a type-1 unity feedback 

system having an open-loop transfer function 

𝐺 𝑠 =
𝐾

𝑠 0.1𝑠 + 1 (0.2𝑠 + 1)
 

to meet the following specifications: 

Velocity error constant Kv = 30sec−1 and phase margin ≥ 40°                 [12] 

13. Consider the system 

  X  𝑘 + 1 =  
−2 −1
−1 −2

 𝑋  𝑘 +  
0
1
 𝑢 𝑘  

Y k =  1 −1 X (k) 

      Find, if possible, a control sequence{u(0), u(1)} to drive the system from 

 𝑋  0 =  
1
0
  𝑡𝑜 𝑋  2 =  

−1
0
                                                                            [8] 

14. Find the inverse z-transform of 

       (i)    𝐹 𝑧 =
10𝑧

 𝑧−1 (𝑧−2)
 

        (ii) 𝐹 𝑧 =
𝑧(1−𝑒−𝑎𝑇 )

 𝑧−1 (𝑧−𝑒−𝑎𝑇 )
                                                                                      [4+4] 
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15. Find Y(z) for the system in figure below, if r(t)=1(t), T=1 Sec, 

          𝐺 𝑠 =
1

𝑠+1
 ,𝐻 𝑠 =

1

𝑠
              [7] 

 
16. Explain the relationship between s-plane & z-plane.     [3] 

17. How do you find out response between sampling instants?     [4] 

18. The open-loop transfer function of a servo mechanism is given by 

            𝑮 𝒔 =
𝟕

𝒔 𝟏+𝟎.𝟓𝒔 (𝟏+𝟎.𝟏𝟓𝒔)
                                                                                    [15] 

       Add series lag compensation to the servo mechanism to give a gain margin of  ≥ 

15dB and a phase margin ≥ 45
◦
 . Realise the compensator.                             

19.(a) Determine the state model of the system whose pulse transfer function given by 

   G(z)=
4𝑧3−12𝑧2+13𝑧−7

 𝑧−1 2(𝑧−2)
                                             [8] 

      (b) Find the z transform                        [8]      

            i)
3

𝑠2+3𝑠
 

     ii) 4𝑡2+10t+6 

20. (a) Derive the transfer function of zero order hold circuit            [4×3] 

      (b) State the specification in time domain  and frequency domain used for the design of 

continuous time linear system. 

      (c) Explain how signal is reconstructed from the output of the sampler. 

21. Find the z transform of the following transfer function.                                                  [8] 

           i) G(s)=
1

(𝑠+𝑎)2 

           ii) G(s)=
𝑠+𝑏

(𝑠+𝑎)2+𝑤2 

22.(a) A discrete time system is described by the difference equation                [7] 

              Y(k+2)+5 y(k+1)+6 y(k) =u(k) 

              Y(0)=y(1)=0 u(k)=1 for k≥0  

              Find the output 𝑦(k) 

      (b) Find out the range of values of gain k for which the closed loop system shown in 

figure below remains stable.         [8] 
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23. Prove that ZOH is a low pass filter.       [4] 

24. Explain what do you mean by aliasing in linear discrete data system.   [4] 

 

25.(a) Clearly explain how stability of sample data  control system is assessed by Jury‟s 

stability test.           [7] 

 

     (b) Check the stability of the linear discrete system having the characteristics equation: 

𝑧4 − 1.7𝑧3 + 1.04𝑧2 − 0.268𝑧 + 0.024 = 0                                                                       [8] 

26.(a) Determine the weighing sequence (impulse response ) of linear discrete system 

described by 

C(k)-𝛼c(k-1)=r(k)                      [7] 

    (b) With a neat circuit diagram, explain the principle of operation of sample and hold 

device.             [4] 

    (c) Explain the significance of shanon‟s theorem in sampling process.    [4] 

27. A linear control system is to be  compensated by a compensating network having  

𝐺𝐶(𝑆)= 𝐾𝑝+ 𝐾𝐷𝑠+ 
𝐾𝑖

𝑠
 

The system is shown in figure below 

 

Find  𝐾𝑝 ,𝐾𝐷𝑠 and 𝐾𝑖  so that the roots of the characteristics equation are placed at s= -50,  -5 
+

.
 

j5.            [9] 

28. A unity feedback system has an open loop transfer function of                [16] 

         G(s)=
4

𝑠(2𝑠+1)
 

It is desired  to obtain a phase margin of 40 degree without sacrificing the kv of the system. 

Design a suitable lag network and compute the value of network components assuming any 

suitable impedance level. 

29. (a) Find the z transform of the following:             [4+4] 

           i)y(t)=𝑒−𝑎𝑡 𝑡2 

          ii)G(s)=
𝑠+𝑎

 𝑠+𝑎 2+𝑤2 

      (b) For the system shown in fig below        [8] 

 

            G(z)=
𝑘(𝑧+0.9)

(𝑧−1)(𝑧−0.7)
 

            Determine the range of k for stability. 
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MODULE-III 

 
Introduction 

    A linear system designed to perform satisfactorily when excited by a standard test 

signal, will exhibit satisfactory behavior under any circumstances. Furthermore, the 

amplitude of the test signal is unimportant since any change in input signal amplitude 

results simply in change of response scale with no change in the basic response 

characteristics. The stability of nonlinear systems is determined solely by the location of 

the system poles & is independent entirely of whether or not the system is driven.  

    In contrast to the linear case, the response of nonlinear systems to a particular test 

signals is no guide to their behavior to other inputs, since the principle of superposition no 

longer holds. In fact, the nonlinear system response may be highly sensitive to the input 

amplitude. Here the stability dependent on the input & also the initial state. Further, the 

nonlinear systems may exhibit limit cycle which are self sustained oscillations of fixed 

frequency & amplitude. 

 

Behaviour of Nonlinear Systems 

A nonlinear system, when excited by a sinusoidal input, may generate several harmonics in 

addition to the fundamental corresponding to the input frequency. The amplitude of the 

fundamental is usually the largest, but the harmonics may be of significant amplitude in 

many situations. 

Another peculiar characteristic exhibited by nonlinear systems is called jump phenomenon. 

Jump Resonance 

 Consider the spring-mass-damper system as shown in Fig3.1(a). below.If the components 

are assumed to be linear, the system equation with a sinusoidal forcing function is given by 

 

𝑀𝑥 + 𝑓𝑥 + 𝐾𝑥 = 𝐹𝑐𝑜𝑠 𝑤𝑡………………… . . (3.1) 

 

 
Fig.3.1 (a) A spring-mass-damper system      (b)Spring Characteristics 

 

 The frequency response curve of this system is shown in Fig3.2. 
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Fig. 3.2 Frequency response curve of spring-mass-damper system       

 

 

Fig. 3.3 (a) Jump resonance in nonlinear system(hard spring case); 

           (b) Jump resonance in nonlinear system(hard spring case). 

 

Let us now assume that the restoring force of the spring is nonlinear,given by 𝐾1𝑥 +

𝐾2𝑥
3.The nonlinear spring characteristic is shown in Fig.3.1(b). Now the system equation 

becomes 

𝑀𝑥 + 𝑓𝑥 + 𝐾1𝑥 + 𝐾2𝑥
3 = 𝐹𝑐𝑜𝑠 𝑤𝑡……………… . (3.2) 

The frequency response curve for the hard spring(𝐾2 > 0) is shown in Fig3.3(a).  

For a hard spring, as the input frequency is gradually increased from zero, the measured 

two response follows the curve through the A, B and C, but at C an increment in frequency 

results in discontinuous jump down to the point D, after which with further increase in 

frequency, the response curve follows through DE. If the frequency is now decreased, the 

response follows the curve EDF with a jump up to B from the point F and then the 

response curve moves towards A. This phenomenon which is peculiar to nonlinear systems 

is known as jump resonance. For a soft spring, jump phenomenon will happen as shown in 

fig. 3.3(b). 

 

Methods of Analysis 

 Nonlinear systems are difficult to analyse and arriving at general conclusions are tedious. 

However, starting with the classical techniques for the solution of standard nonlinear 

differential equations, several techniques have been evolved which suit different types of 

analysis. It should be emphasised that very often the conclusions arrived at will be useful 

for the system under specified conditions and do not always lead to generalisations. The 

commonly used methods are listed below.  
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Linearization Techniques:  

In reality all systems are nonlinear and linear systems are only approximations of the 

nonlinear systems. In some cases, the linearization yields useful information whereas in 

some other cases, linearised model has to be modified when the operating point moves 

from one to another. Many techniques like perturbation method, series approximation 

techniques, quasi-linearization techniques etc. are used for linearise a nonlinear system. 

Phase Plane Analysis:  

This method is applicable to second order linear or nonlinear systems for the study of the 

nature of phase trajectories near the equilibrium points. The system behaviour is 

qualitatively analysed along with design of system parameters so as to get the desired 

response from the system. The periodic oscillations in nonlinear systems called limit cycle 

can be identified with this method which helps in investigating the stability of the system. 

Describing Function Analysis:  

This method is based on the principle of harmonic linearization in which for certain class 

of nonlinear systems with low pass characteristic. This method is useful for the study of 

existence of limit cycles and determination of the amplitude, frequency and stability of 

these limit cycles. Accuracy is better for higher order systems as they have better low pass 

characteristic. 

 

 

Classification of Nonlinearities:  

The nonlinearities are classified into 

 i) Inherent nonlinearities and 

 ii) Intentional nonlinearities.  

The nonlinearities which are present in the components used in system due to the inherent 

imperfections or properties of the system are known as inherent nonlinearities. Examples 

are saturation in magnetic circuits, dead zone, back lash in gears etc. However in some 

cases introduction of nonlinearity may improve the performance of the system, make the 

system more economical consuming less space and more reliable than the linear system 

designed to achieve the same objective. Such nonlinearities introduced intentionally to 

improve the system performance are known as intentional nonlinearities. Examples are 

different types of relays which are very frequently used to perform various tasks. 

 

Common Physical Non Linearities:  

The common examples of physical nonlinearities are saturation, dead zone, coulomb 

friction, stiction, backlash, different types of springs, different types of relays etc.  

 

Saturation: This is the most common of all nonlinearities. All practical systems, when 

driven by sufficiently large signals, exhibit the phenomenon of saturation due to limitations 

of physical capabilities of their components. Saturation is a common phenomenon in 

magnetic circuits and amplifiers. 
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Fig. 3.4 Piecewise linear approximation of saturation nonlinearity 

 

Friction: Retarding frictional forces exist whenever mechanical surfaces come in sliding 

contact. The predominant frictional force called the viscous friction is proportional to the 

relative velocity of sliding surfaces. Vicous friction is thus linear in nature. In addition to 

the viscous friction, there exist two nonlinear frictions. One is the coulomb friction which 

is constant retarding force & the other is the stiction which is the force required to initiate 

motion.The force of stiction is always greater than that of coulomb friction since due to 

interlocking of surface irregularities,more force is require to move an object from rest than 

to maintain it in motion. 

 

 

Fig. 3.5 Characteristics of various types of friction 
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Dead zone: Some systems do not respond to very small input signals. For a particular 

range of input, the output is zero. This is called dead zone existing in a system. The input-

output curve is shown in figure. 

 

Fig. 3.6 Dead-zone nonlinearity 

 

Backlash: Another important nonlinearity commonly occurring in physical systems is 

hysteresis in mechanical transmission such as gear trains and linkages. This nonlinearity is 

somewhat different from magnetic hysteresis and is commonly referred to as backlash. In 

servo systems, the gear backlash may cause sustained oscillations or chattering 

phenomenon and the system may even turn unstable for large backlash. 

 

Figure 3.7: (a) gear box having backlash (b) the teeth A of the driven gear located midway 

between the teeth B1, B2 of the driven gear(c) gives the relationship between input and 

output motions. 

As the teeth A is driven clockwise from this position, no output motion takes place until 

the tooth A makes contact with the tooth B1 of the driven gear after travelling a distance 
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x/2. This output motion corresponds to the segment mn of fig3.7 (c). After the contact is 

made the driven gear rotates counter clockwise through the same angle as the drive gear, if 

the gear ratio is assumed to be unity. This is illustrated by the line segment no. As the input 

motion is reversed, the contact between the teeth A and B1 is lost and the driven gear 

immediately becomes stationary based on the assumption that the load is friction controlled 

with negligible inertia. 

The output motion therefore causes till tooth A has travelled a distance x in the reverse 

direction as shown in fig3.7 (c) by the segment op. After the tooth A establishes contact 

with the tooth B2, the driven gear now mores in clockwise direction as shown by segment 

pq. As the input motion is reversed the direction gear is again at standstill for the segment 

qr and then follows the drive gear along rn. 

Relay: A relay is a nonlinear power amplifier which can provide large power amplification 

inexpensively and is therefore deliberately introduced in control systems. A relay 

controlled system can be switched abruptly between several discrete states which are 

usually off, full forward and full reverse. Relay controlled systems find wide applications 

in the control field. The characteristic of an ideal relay is as shown in figure. In practice a 

relay has a definite amount of dead zone as shown. This dead zone is caused by the facts 

that relay coil requires a finite amount of current to actuate the relay. Further, since a larger 

coil current is needed to close the relay than the current at which the relay drops out, the 

characteristic always exhibits hysteresis. 

 

Figure3.8:Relay Non Linearity (a) ON/OFF (b) ON/OFF with Hysteresis (c) ON/OFF 

with Dead Zone 
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Multivariable Nonlinearity: Some nonlinearities such as the torque-speed characteristics 

of a servomotor, transistor characteristics etc., are functions of more than one variable. 

Such nonlinearities are called multivariable nonlinearities. 

 

Phase Plane Analysis 

 

Introduction 

 Phase plane analysis is one of the earliest techniques developed for the study of second 

order nonlinear system. It may be noted that in the state space formulation, the state 

variables chosen are usually the output and its derivatives. The phase plane is thus a state 

plane where the two state variables x1 and x2 are analysed which may be the output 

variable y and its derivative 𝑦 . The method was first introduced by Poincare, a French 

mathematician. The method is used for obtaining graphically a solution of the following 

two simultaneous equations of an autonomous system. 

𝑥1 = 𝑓1 𝑥1, 𝑥2  

𝑥2 = 𝑓2 𝑥1, 𝑥2  

 

The 𝑥1 = 𝑓1 𝑥1, 𝑥2  & 𝑥2 = 𝑓2 𝑥1, 𝑥2  are either linear or nonlinear functions of the state 

variables x1 and x2 respectively. The state plane with coordinate axes x1 and x2 is called 

the phase plane. In many cases, particularly in the phase variable representation of 

systems, take the form 

 

𝑥1 = 𝑥2 

𝑥2 = 𝑓2 𝑥1, 𝑥2  

The curve described by the state point  𝑥1,𝑥2  in the phase plane with time as running 

parameter is called phase trajectory.The plot of the state trajectories or phase trajectories 

of above said equation thus gives an idea of the solution of the state as time t evolves 

without explicitly solving for the state. The phase plane analysis is particularly suited to 

second order nonlinear systems with no input or constant inputs. It can be extended to 

cover other inputs as well such as ramp inputs, pulse inputs and impulse inputs. 

 

Phase Portraits 

 From the fundamental theorem of uniqueness of solutions of the state equations or 

differential equations, it can be seen that the solution of the state equation starting from an 

initial state in the state space is unique. This will be true if 𝑓1 𝑥1, 𝑥2 and 𝑓2 𝑥1, 𝑥2  are 

analytic. For such a system, consider the points in the state space at which the derivatives 

of all the state variables are zero. These points are called singular points. These are in fact 

equilibrium points of the system. If the system is placed at such a point, it will continue to 

lie there if left undisturbed. A family of phase trajectories starting from different initial 

states is called a phase portrait. As time t increases, the phase portrait graphically shows 

how the system moves in the entire state plane from the initial states in the different 
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regions. Since the solutions from each of the initial conditions are unique, the phase 

trajectories do not cross one another. If the system has nonlinear elements which are piece-

wise linear, the complete state space can be divided into different regions and phase plane 

trajectories constructed for each of the regions separately. 

 

Analysis & Classification of Singular Points 

 

Nodal Point: Consider eigen values are real, distinct and negative as shown in figure3.9 

(a). For this case the equation of the phase trajectory follows as 𝑧2 = 𝑐 𝑧1 
𝜆2

𝜆1
 

Where c is 

an integration constant . The trajectories become a set of parabola as shown in figure 3.9(b) 

and the equilibrium point is called a node. In the original system of coordinates, these 

trajectories appear to be skewed as shown in figure 3.9(c).  

If the eigen values are both positive, the nature of the trajectories does not change, except 

that the trajectories diverge out from the equilibrium point as both z1(t) and z2(t) are 

increasing exponentially. The phase trajectories in the x1-x2 plane are as shown in figure3.9 

(d). This type of singularity is identified as a node, but it is an unstable node as the 

trajectories diverge from the equilibrium point.  

 

 

   

(c) Stable node in (X1,X2)-plane  
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(d) Unstable node in (X1,X2)-plane 

Fig. 3.9 

 

Saddle Point: Both eigen values are real,equal & negative of each other.The 

corresponding phase portraits are shown in Fig 3.10. The origin in this case a saddle point 

which is always unstable, one eigen value being positive. 

 

Fig 3.10 

Focus Point: Consider a system with complex conjugate eigen values. A plot for negative 

values of real part is a family of equiangular spirals. Certain transformation has been 

carried out for  𝑥1, 𝑥2  to  𝑦1,𝑦2  to present the trajectory in form of a true spiral. The 

origin which is a singular point in this case is called a stable focus. When the eigen values 

are complex conjugate with positive real parts, the phase portrait consists of expanding 

spirals as shown in figure and the singular point is an unstable focus. When transformed 

into the x1-x2 plane, the phase portrait in the above two cases is essentially spiralling in 

nature, except that the spirals are now somewhat twisted in shape. 
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Fig 3.11 

 

 
Centre or Vortex Point: 

Consider now the case of complex conjugate eigen values with zero real parts. 

ie., λ1, λ2 = ±jω 

 
dy2

dy1
=

jwy1

−jwy2
=
−y1

y2
     for which      y1dy1 + y2dy2 = 0 

 
Integrating the above equation, we get 𝑦1

2 + 𝑦2
2 = 𝑅2 which is an equation to a circle of 

radius R. The radius R can be evaluated from the initial conditions. The trajectories are thus 

concentric circles in y1-y2 plane and ellipses in the x1-x2 plane as shown in figure. Such a 

singular points, around which the state trajectories are concentric circles or ellipses, are 

called a centre or vortex. 

 

 

 

Fig.3.12 (a) Centre in (y1,y2)-plane (b) Centre in (X1,X2)-plane 

  

 

Construction of Phase Trajectories: 

Consider the homogenous second order system with differential equations 

𝑀
𝑑2𝑥

𝑑𝑡2
+ 𝑓

𝑑𝑥

𝑑𝑡
+ 𝐾𝑥 = 0 

𝑥 + 2𝜉𝑤𝑛𝑥 + 𝑤𝑛
2𝑥 = 0 
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where ζ and ωn are the damping factor and undamped natural frequency of the 

system.Defining the state variables as x = x1 and 𝑥 = 𝑥2, we get the state equation in the 

state variable form as 

𝑥1 = 𝑥2 

𝑥2 = −𝑤𝑛
2𝑥1 − 2𝜉𝑤𝑛𝑥2 

 

These equations may then be solved for phase variables x1 and x2. The time response plots of 

x1, x2 for various values of damping with initial conditions can be plotted. When the 

differential equations describing the dynamics of the system are nonlinear, it is in general not 

possible to obtain a closed form solution of x1, x2. For example, if the spring force is 

nonlinear say (k1x + k2x
3
) the state equation takes the form 

𝑥1 = 𝑥2 

𝑥2 = −
𝑘1

𝑀
𝑥1 −

𝑓

𝑀
𝑥2 −

𝑘2

𝑀
𝑥1

3 

 

Solving these equations by integration is no more an easy task. In such situations, a graphical 

method known as the phase-plane method is found to be very helpful. The coordinate plane 

with axes that correspond to the dependent variable x1 and x2 is called phase-plane. The curve 

described by the state point (x1,x2) in the phase-plane with respect to time is called a phase 

trajectory. A phase trajectory can be easily constructed by graphical techniques. 

Isoclines Method: 
 
Let the state equations for a nonlinear system be in the form 

𝑥1 = 𝑓1 𝑥1, 𝑥2  

𝑥2 = 𝑓2 𝑥1, 𝑥2  

 

When both f1(x1,x2) and f2(x1,x2) are analytic. 

From the above equation, the slope of the trajectory is given by 

 
𝑑𝑥2

𝑑𝑥1
=
𝑓

2
 𝑥1, 𝑥2 

𝑓
1
 𝑥1, 𝑥2 

= 𝑀 

 
Therefore, the locus of constant slope of the trajectory is given by f2(x1,x2) = Mf1(x1,x2) 

 

The above equation gives the equation to the family of isoclines. For different values of M, the 

slope of the trajectory, different isoclines can be drawn in the phase plane. Knowing the value of 

M on a given isoclines, it is easy to draw line segments on each of these isoclines. 

 

Consider a simple linear system with state equations 

𝑥1 = 𝑥2 

𝑥2 = 𝑥2 − 𝑥1 
 

Dividing the above equations we get the slope of the state trajectory in the x1-x2 plane as 

 
𝑑𝑥2

𝑑𝑥1
=
𝑥2 − 𝑥1

𝑥2
= 𝑀 
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For a constant value of this slope say M, we get a set of equations 

 

𝑥2 =
−1

𝑀 + 1
𝑥1 

 

which is a straight line in the x1-x2 plane. We can draw different lines in the x1-x2 plane for 

different values of M; called isoclines. If draw sufficiently large number of isoclines to cover 

the complete state space as shown, we can see how the state trajectories are moving in the 

state plane. Different trajectories can be drawn from different initial conditions. A large 

number of such trajectories together form a phase portrait. A few typical trajectories are 

shown in figure3.13 given below. 

 
Fig. 3.13 

The Procedure for construction of the phase trajectories can be summarised as below: 

 

1.For the given nonlinear differential equation, define the state variables as x1 and x2 and 

obtain the state equations as 

𝑥1 = 𝑥2 

𝑥2 = 𝑓2 𝑥1, 𝑥2  

 

2.Determine the equation to the isoclines as 

 
𝑑𝑥2

𝑑𝑥1
=
𝑓(𝑥1, 𝑥2)

𝑥2
= 𝑀 

 

3. For typical values of M, draw a large number of isoclines in x1-x2 plane 
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4. On each of the isoclines, draw small line segments with a slope M. 

5. From an initial condition point, draw a trajectory following the line segments With slopes 

M on each of the isoclines. 

 

Delta Method: 

 

The delta method of constructing phase trajectories is applied to systems of the form 

 

𝑥 + 𝑓 𝑥, 𝑥 , 𝑡 = 0 

Where 𝑓 𝑥, 𝑥 , 𝑡  may be linear or nonlinear and may even be time varying but must be 

continuous and single valued. 

 
With the help of this method, phase trajectory for any system with step or ramp or any time 

varying input can be conveniently drawn. The method results in considerable time saving 

when a single or a few phase trajectories are required rather than a complete phase portrait. 

 
While applying the delta method, the above equation is first converted to the form 

 

𝑥 + 𝑤𝑛[𝑥 + 𝛿(𝑥, 𝑥 , 𝑡)] = 0 

 

 In general 𝛿(𝑥, 𝑥 , 𝑡) depends upon the variables 𝑥, 𝑥  𝑎𝑛𝑑 𝑡 but for short intervals the changes in 

these variables are negligible. Thus over a short interval, we have 

 

𝑥 + 𝑤𝑛[𝑥 + 𝛿] = 0, where δ is a constant. 

 

Let us choose the state variables as     𝑥1 = 𝑥 , 𝑥2 = 𝑥 
𝑤𝑛
  , giving the state equations 

 

𝑥1 = 𝑤𝑛𝑥2 
 

𝑥2 = −𝑤𝑛(𝑥1 + 𝛿) 
 

Therefore, the slope equation over a short interval is given by 

 
𝑑𝑥2

𝑑𝑥1
=
−𝑥1 + 𝛿

𝑥2
 

 
With δ known at any point P on the trajectory and assumed constant for a short interval, we can 

draw a short segment of the trajectory by using the trajectory slope dx2/dx1 given in the above 

equation. A simple geometrical construction given below can be used for this purpose. 

 

1. From the initial point, calculate the value of δ. 

2. Draw a short arc segment through the initial point with (-δ, 0) as centre, thereby 

determining a new point on the trajectory. 

3. Repeat the process at the new point and continue. 
  

Example : For the system described by the equation given below, construct the trajectory 

starting at the initial point (1, 0) using delta method. 

 
 

𝑥 + 𝑥 + 𝑥2 = 0 
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Let = 𝑥1  𝑎𝑛𝑑  𝑥 = 𝑥2 , then 

𝑥1 = 𝑥2 

𝑥2 = 𝑥2 − 𝑥1
2 

 
The above equation can be rearranged as 

 

𝑥2 = −(𝑥1 + 𝑥2 + 𝑥1
2 − 𝑥1) 

So that 

𝛿 = 𝑥2 + 𝑥1
2 − 𝑥1 

 

At initial point δ is calculated as δ = 0+1-1 = 0. Therefore, the initial arc is centered at 

point(0, 0). The mean value of the coordinates of the two ends of the arc is used to calculate 

the next value of δ and the procedure is continued. By constructing the small arcs in this way 

the arcs in this way the complete trajectory will be obtained as shown in figure3.14. 

 

 
 

Fig.3.14 

 

Limit Cycles: 

 

Limit cycles have a distinct geometric configuration in the phase plane portrait, namely, that 

of an isolated closed path in the phase plane. A given system may have more than one limit 

cycle. A limit cycle represents a steady state oscillation, to which or from which all 

trajectories nearby will converge or diverge. In a nonlinear system, limit cycles describes the 

amplitude and period of a self sustained oscillation. It should be pointed out that not all 

closed curves in the phase plane are limit cycles. A phase-plane portrait of a conservative 
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system, in which there is no damping to dissipate energy, is a continuous family of closed 

curves. Closed curves of this kind are not limit cycles because none of these curves are 

isolated from one another. Such trajectories always occur as a continuous family, so that there 

are closed curves in any neighborhoods of any particular closed curve. On the other hand, 

limit cycles are periodic motions exhibited only by nonlinear non conservative systems. 

 

 As an example, let us consider the well known Vander Pol‟s differential equation 

 

𝑑2𝑥

𝑑𝑡2
− 𝜇(1 − 𝑥2)

𝑑𝑥

𝑑𝑡
+ 𝑥 = 0 

 
which describes physical situations in many nonlinear systems. 

 

In terms of the state variables = 𝑥1  𝑎𝑛𝑑  𝑥 = 𝑥2 , we obtained 

𝑥1 = 𝑥2 

𝑥2 = 𝜇(1 − 𝑥1
2)𝑥2 − 𝑥1   

 
The figure shows the phase trajectories of the system for μ > 0 and μ < 0. In case of μ > 0 we 

observe that for large values of x1(0), the system response is damped and the amplitude of x1(t) 

decreases till the system state enters the limit cycle as shown by the outer trajectory. On the other 

hand, if initially x1(0) is small, the damping is negative, and hence the amplitude of x1(t) 

increases till the system state enters the limit cycle as shown by the inner trajectory. When μ < 0, 

the trajectories moves in the opposite directions as shown in figure3.15. 

 

 

Fig.3.15 Limit cycle behavior of nonlinear system 

 
A limit cycle is called stable if trajectories near the limit cycle, originating from outside or inside, 

converge to that limit cycle. In this case, the system exhibits a sustained oscillation with constant 

amplitude. This is shown in figure (i). The inside of the limit cycle is an unstable region in the 

sense that trajectories diverge to the limit cycle, and the outside is a stable region in the sense that 

trajectories converge to the limit cycle. 

A limit cycle is called an unstable one if trajectories near it diverge from this limit cycle. In this 

case, an unstable region surrounds a stable region. If a trajectory starts within the stable region, it 

converges to a singular point within the limit cycle. If a trajectory starts in the unstable region, it 

diverges with time to infinity as shown in figure (ii). The inside of an unstable limit cycle is the 

stable region, and the outside the unstable region. 
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Describing Function Method of Non Linear Control System 

Describing function method is used for finding out the stability of a non linear system. Of 

all the analytical methods developed over the years for non linear control systems, this 

method is generally agreed upon as being the most practically useful. This method is 

basically an approximate extension of frequency response methods including Nyquist 

stability criterion to non linear system. 

The describing function method of a non linear system is defined to be the complex ratio of 

amplitudes and phase angle between fundamental harmonic components of output to input 

sinusoid. We can also called sinusoidal describing function. Mathematically, 
 

 
Where, N = describing function, 

X = amplitude of input sinusoid, 

Y = amplitude of fundamental harmonic component of output, 

φ1 = phase shift of the fundamental harmonic component of output. 

Let us discuss the basic concept of describing function of non linear control system.  

Let us consider the below block diagram of a non linear system, where G1(s) and G2(s) 

represent the linear element and N represent the non linear element. 

 

Let us assume that input x to the non linear element is sinusoidal, i.e,  

 
For this input, the output y of the non linear element will be a non sinusoidal periodic 

function that may be expressed in terms of Fourier series as  
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Most of non linearities are odd symmetrical or odd half wave symmetrical; the mean value Y0 

for all such case is zero and therefore output will be,  

 
As G1(s) G2(s) has low pass characteristics , it can be assumed to a good degree of 

approximation that all higher harmonics of y are filtered out in the process, and the input x to 

the nonlinear element N is mainly contributed by fundamental component of y i.e. first 

harmonics . So in the describing function analysis, we assume that only the fundamental 

harmonic component of the output. Since the higher harmonics in the output of a non linear 

system are often of smaller amplitude than the amplitude of fundamental harmonic 

component. Most control systems are low pass filters, with the result that the higher 

harmonics are very much attenuated compared with the fundamental harmonic component. 

Hence y1 need only be considered. 

 
We can write y1(t) in the form ,  

 
Where by using phasor,  

 
The coefficient A1 and B1 of the Fourier series are given by-  

 
From definition of describing function we have,  
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Describing Function for Saturation Non Linearity 

We have the characteristic curve for saturation as shown in the given figure3.16 

 

Fig. 3.16. Characteristic Curve for Saturation Non Linearity. 

 

Let us take input function as 

 

Now from the curve we can define the output as :  

 

Let us first calculate Fourier series constant A1.  

 

On substituting the value of the output in the above equation and integrating the function 

from 0 to 2π we have the value of the constant A1 as zero. 
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Similarly we can calculate the value of Fourier constant B1 for the given output and the value 

of B1 can be calculated as,  

 

 

 

The phase angle for the describing function can be calculated as  

 

Thus the describing function for saturation is  
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Describing Function for Ideal Relay  

 

We have the characteristic curve for ideal relay as shown in the given figure 3.17.

Fig. 3.17.  Characteristic Curve for Ideal Relay Non Linearity. 

Let us take input function as 

 

Now from the curve we can define the output as  

 

The output periodic function has odd symmetry :  

 

Let us first calculate Fourier series constant A1.  

 

On substituting the value of the output in the above equation and integrating the function 

from 0 to 2π we have the value of the constant A1 as zero. 

Similarly we can calculate the value of Fourier constant B1 for the given output and the value 

of B1 can be calculated as  
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On substituting the value of the output in the above equation y(t) = Y we have the value of 

the constant B1  

 

And the phase angle for the describing function can be calculated as  

 

Thus the describing function for an ideal relay is  

 

Describing Function for Real Relay (Relay with Dead Zone) 

 

We have the characteristic curve for real realy as shown in the given figure 3.18. If X is less 

than dead zone Δ, then the relay produces no output; the first harmonic component of Fourier 

series is of course zero and describing function is also zero. If X > &Delta, the relay produces 

the output.  
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Fig. 3.18. Characteristic Curve for Real Relay Non Linearities. 

Let us take input function as  

 

Now from the curve we can define the output as  

 

The output periodic function has odd symmetry :  

 

Let us first calculate Fourier series constant A1.  
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On substituting the value of the output in the above equation and integrating the function 

from 0 to 2π we have the value of the constant A1 as zero. 

Similarly we can calculate the value of Fourier constant B for the given output and the value 

of B can be calculated as  

 

Due to the symmetry of y, the coefficient B1 can be calculated as follows,  

 

Therefore, the describing function is  

 

Describing Function for Backlash Non Linearity 

We have the characteristic curve for backlash as shown in the given figure 3.19.  

  

Fig. 3.19. Characteristic Curve of Backlash Non Linearity. 
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Let us take input function as  

 

 

Now from the curve we can define the output as  

 

Let us first calculate Fourier series constant A1.  

 

On substituting the value of the output in the above equation and integrating the function 

from zero to 2π we have the value of the constant A1 as  

 

Similarly we can calculate the value of Fourier constant B for the given output and the value 

of B1 can be calculated as  

 

On substituting the value of the output in the above equation and integrating the function 

from zero to pi we have the value of the constant B1 as  

 

We can easily calculate the describing function of backlash from below equation  
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Liapunov’s Stability Analysis 

Consider a dynamical system which satisfies 

 

x = f(x, t); with initial condition 𝑥 𝑡𝑜 = 𝑥𝑜   ;      𝑥 ∈ 𝑅𝑛  ……………… (3.3) 

 

We will assume that f(x, t) satisfies the standard conditions for the existence and uniqueness 

of solutions. Such conditions are, for instance, that f(x, t) is Lipschitz continuous with respect 

to x, uniformly in t, and piecewise continuous in t. A point 𝑥∗ ∈ 𝑅𝑛  is an equilibrium point of 

equation (3.3) if F(x*, t) ≡ 0.  

 

Intuitively and somewhat crudely speaking, we say an equilibrium point is locally stable if all 

solutions which start near x* (meaning that the initial conditions are in a neighborhood of 𝑥∗ 
remain near 𝑥∗ for all time. 

 

The equilibrium point x* is said to be locally Asymptotically stable if x* is locally stable and, 

furthermore, all solutions starting near x* tend towards x* as t → ∞. 

 
We say somewhat crude because the time-varying nature of equation (3.3) introduces all 

kinds of additional subtleties. Nonetheless, it is intuitive that a pendulum has a locally stable 

equilibrium point when the pendulum is hanging straight down and an unstable equilibrium 

point when it is pointing straight up. If the pendulum is damped, the stable equilibrium point 

is locally asymptotically stable. By shifting the origin of the system, we may assume that the 

equilibrium point of interest occurs at x* = 0. If multiple equilibrium points exist, we will 

need to study the stability of each by appropriately shifting the origin. 

 

3.1 Stability in the sense of Lyapunov 

 

The equilibrium point x* = 0 of (3.3) is stable (in the sense of Lyapunov) at t = t0 if for any 

𝜖 > 0 there exists a δ(t0, 𝜖 ) > 0 such that 

 

 𝑥(𝑡𝑜) < 𝛿  ⇒   𝑥(𝑡) < 𝜖  ,      ∀𝑡 ≥ 𝑡𝑜 …………… . . (3.4) 
 
Lyapunov stability is a very mild requirement on equilibrium points. In particular, it does not 

require that trajectories starting close to the origin tend to the origin asymptotically. Also, 

stability is defined at a time instant t0. Uniform stability is a concept which guarantees that 

the equilibrium point is not losing stability. We insist that for a uniformly stable equilibrium 

point x*, δ in the Definition 3.1 not be a function of t0, so that equation (3.4) may hold for all 

t0. Asymptotic stability is made precise in the following definition: 

 

3.2 Asymptotic stability 

 

An equilibrium point x* = 0 of (3.3) is asymptotically stable at t = t0 if 

1. x * = 0 is stable, and 

2. x * = 0 is locally attractive; i.e., there exists δ(t0) such that 

 

 𝑥(𝑡𝑜) < 𝛿  ⇒  lim
𝑡→∞

𝑥(𝑡) = 0, …………… . . (3.5) 

 
As in the previous definition, asymptotic stability is defined at t0. 
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Uniform asymptotic stability requires: 

 

1. x * = 0 is uniformly stable, and 

2. x * = 0 is uniformly locally attractive; i.e., there exists δ independent 

of t0 for which equation (3.5) holds. Further, it is required that the convergence in equation 

(3.5) is uniform. 

 

Finally, we say that an equilibrium point is unstable if it is not stable. This is less of a 

tautology than it sounds and the reader should be sure he or she can negate the definition of 

stability in the sense of Lyapunov to get a definition of instability. In robotics, we are almost 

always interested in uniformly asymptotically stable equilibria. If we wish to move the robot 

to a point, we would like to actually converge to that point, not merely remain nearby. Figure 

below illustrates the difference between stability in the sense of Lyapunov and asymptotic 

stability. 

 
 Definitions 3.1 and 3.2 are local definitions; they describe the behavior of a system near an 

equilibrium point. We say an equilibrium point x* is globally stable if it is stable for all initial 

conditions 𝑥0 ∈ 𝑅𝑛 . Global stability is very desirable, but in many applications it can be 

difficult to achieve. We will concentrate on local stability theorems and indicate where it is 

possible to extend the results to the global case. Notions of uniformity are only important for 

time-varying systems. Thus, for time-invariant systems, stability implies uniform stability 

and asymptotic stability implies uniform asymptotic stability. 

 

 
Figure:3.20  Phase portraits for stable and unstable equilibrium points. 
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Basic theorem of Lyapunov 

 

Let V (x, t) be a non-negative function with derivative 𝑉  along the trajectories of the system. 

 

1. If V (x, t) is locally positive definite and 𝑉 (x, t) ≤ 0 locally in x and for all t, then the 

origin of the system is locally stable (in the sense of Lyapunov). 

 

2. If V (x, t) is locally positive definite and decrescent, and 𝑉 (x, t) ≤ 0 locally in x and for all 

t, then the origin of the system is uniformly locally stable (in the sense of Lyapunov). 

 

3. If V (x, t) is locally positive definite and decrescent, and − 𝑉 (x, t) is locally positive 

definite, then the origin of the system is uniformly locally asymptotically stable. 

 

4. If V (x, t) is positive definite and decrescent, and − 𝑉 (x, t) is positive definite, then the 

origin of the system is globally uniformly asymptotically stable. 

 
Theorm-1 

 

Consider the system 

𝑥 = 𝑓 𝑥 ;  𝑓 0 = 0 
 

Suppose there exists a scalar function v(x) which for some real number ∈> 0 satisfies the 

following properties for all x in the region  𝑥(𝑡) < 𝜖   
 

(a) V(x)>0; 𝑥 ≠ 0 that is v(x) is positive definite scalar function. 

(b) V (0) = 0 

(c)V(x) has continuous partial derivatives with respect to all component of x 

(d) 
𝑑𝑣

𝑑𝑡
≤ 0 (i.e dv/dt is negative semi definite scalar function) 

Then the system is stable at the origin 

 

Theorem-2 

If the property of (d) of theorem-1 is replaced with (d) 
𝑑𝑣

𝑑𝑡
< 0 , 𝑥 ≠ 0  (i.e dv/dt is negative 

definite scalar function),then the system is asymptotically stable. 

It is intuitively obvious since continuous v function>0 except at x=0, satisfies the condition 

dv/dt <0, we except that x will eventually approach the origin .We shall avoid the rigorous of 

this theorem. 

 

Theorem-3 

 
If all the conditions of theorem-2 hold and in addition. 

 

𝑉 𝑥 → ∞   𝑎𝑠   𝑥 → ∞ 
 

Then the system is asymptotically stable in-the-large at the origin. 
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Instability 
 
It may be noted that instability in a nonlinear system can be established by direct recourse to 

the instability theorem of the direct method .The basic instability theorem is presented below: 

 

Theorem-4  
Consider a system 

  
𝑥 = 𝑓 𝑥 ;  𝑓 0 = 0 

 

Suppose there a exist a scalar function W(x) which, for real number ∈> 0 , satisfies the 

following properties for all x in the region  𝑋 < 𝜖  ; 
 

(a) W(x)>0; 𝑥 ≠ 0 

(b) W (0) = 0 

(c)W(x) has continuous partial derivatives with respect to all component of  x 

(d) 
𝑑𝑊

𝑑𝑡
≥ 0 

Then the system is unstable at the origin. 

 

Direct Method of Liapunov & the Linear System: 

 
In case of linear systems, the direct method of liapunov provides a simple approach to 

stability analysis. It must be emphasized that compared to the results presented, no new 

results are obtained by the use of direct method for the stability analysis of linear systems. 

However, the study of linear systems using the direct method is quite useful because it 

extends our thinking to nonlinear systems. 

Consider a linear autonomous system described by the state equation 

 

X = AX   ……………………… . (3.6) 

 

The linear system is asymptotically stable in-the-large at the origin if and only if given any 

symmetric, positive definite matrix Q, there exists a symmetric positive definite matrix P 

which is the unique solution 

 

ATP + PA = −Q ……………… (3.7) 

 

Proof 

To prove the sufficiency of the result of above theorem, let us assume that a symmetric 

positive definite matrix P exists which is the unique solution of eqn.(3.8). Consider thescalar 

function. 

 
And 

 

The time derivate of V(x) is 
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V  X = X TPX + XTPX  
 

Using eqns. (3.6) and (3.7) we get 

 
Since Q is positive definite, V(x) is negative definite. Norm of x may be defined as 

 𝑋 =  𝑋𝑇𝑃𝑋 
1

2  
Then 

𝑉 𝑋 =  𝑋 2 

𝑉 𝑋 → ∞   𝑎𝑠   𝑋 → ∞ 
 
The system is therefore asymptotically stable in-the large at the origin. 

 

In order to show that the result is also necessary, suppose that the system is asymptotically 

stable and P is negative definite, consider the scalar function 

 

V 𝐗 = 𝐗𝐓𝐏𝐗 ………………………… (3.8) 

Therefore 

 

V  X = − 𝐗 𝐓𝐏𝐗 + 𝐗𝐓𝐏𝐗     

= 𝐗𝐓𝐐𝐗              
> 0                   

 

There is contradiction since V(x) given by eqn. (3.8) satisfies instability theorem. 

 

Thus the conditions for the positive definiteness of P are necessary and sufficient for 

asymptotic stability of the system of eqn. (3.6). 

 

Methods of constructing Liapunov functions for Non linear Systems 

 
As has been said earlier ,the liapunov theorems give only sufficient conditions on system 

stability and furthermore there is no unique way of constructing a liapunov function except in 

the case of linear systems where a liapunov function can always be constructed and both 

necessary and sufficient conditions Established .Because of this draw back a host of methods 

have become available in literature and many refinements have been suggested to enlarge the 

region in which the system is found to be stable. Since this treatise is meant as a first 

exposure of the student to the liapunov direct method, only two of the relatively simpler 

techniques of constructing a liapunov‟s function would be advanced here. 

 

Krasovskii’s method 

 

Consider a system 

𝑥 = 𝑓 𝑥 ;  𝑓 0 = 0 
 

Define a liapunov function as 
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V = 𝐟𝐓𝐏𝐟  ……………………… (3.9) 

 

Where P=a symmetric positive definite matrix. 

Now 

V = 𝐟 𝐓𝐏𝐟 + 𝐟𝐓𝐏𝐟   ……………………… . . (3.10) 
 

f =
∂f

∂X
  
∂X

∂t
= Jf 

 

J =

 
 
 
 
 
 
 
 
 
∂f1

∂x1

∂f1

∂x2

 ……
∂f1

∂xn

∂f2

∂x1

∂f2

∂x2
……

∂f2

∂xn

⋮
 
∂fn

∂x1

⋮          
 

∂fn

∂x2
…… .

⋮
 

∂f2n

∂xn  
 
 
 
 
 
 
 
 

n×n

is Jacobian matrix 

 

Substituting in eqn (3.10), we have 

 

V = 𝐟𝐓𝐉𝐓𝐏𝐟 + 𝐟𝐓𝐏𝐉𝐟   
= 𝐟𝐓(𝐉𝐓𝐏 + 𝐏𝐉)𝐟 

Let 

𝐐 = 𝐉𝐓𝐏 + 𝐏𝐉   
 

Since V is positive definite, for the system to be asymptotically stable, Q should be negative 

definite. If in addition  𝑋 → ∞   𝑎𝑠   𝑋 → ∞ , the system is asymptotically stable in-the-

large. 
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POPOV CRITERION 
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MODEL QUESTIONS  

Module-3 

 

Short Questions each carrying Two marks. 

1. Explain how jump phenomena can occur in a power frequency circuit. Extend this 

concept to show that a ferro resonant circuit can be used to stabilize wide 

fluctuations in supply voltage of a.c. mains in a CVT(constant voltage 

transformer). 

2. Explain various types of equilibrium points encountered in non-linear systems and 

draw approximately the phase plane trajectories. 

3. Bring out the differences between Liapunov‟s stability criterion and Popov‟s 

stability criterion. 

4. Explain what do you understand by limit cycle? 
 

The figures in the right-hand margin indicate marks. 

5. (a)Determine the describing function for the non-linear element described by 

y=x
3
; where x=input and y= output of the non-linear element.                           

[5] 
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(b) Draw the phase trajectory for the system described by the following differential 

equation 

𝑑2𝑋

𝑑𝑡2
+ 0.6 

𝑑𝑋

𝑑𝑡
+ 𝑋 = 0 

With X(0)=1 and 
𝑑𝑋

𝑑𝑡
 0 = 0.                                                                                     [5] 

6. Investigate the stability of the equilibrium state for the system governed by: 

𝑑𝑋1

𝑑𝑡
= −3𝑋1 + 𝑋2 

𝑑𝑋2

𝑑𝑡
= 𝑋1 − 𝑋2 − 𝑋2

3                                                                                                 [7] 

7. Distinguish between the concepts of stability, asymptotic stability and global 

stability.            [3] 

8. Write short notes on                                                                                       [3.5×6]   

(a) Signal stabilisation 

(b) Delta method of drawing phase trajectories   

(c) Phase plane portrait 

(d) Jump resonance in non linear closed loop system 

(e) Stable and unstable limit cycle 

(f) Popov s stability criterion 

 

9. (a) The origin is an equilibrium point for the pair of equations  

𝑋1
 = 𝑎𝑋1 + 𝑏𝑋2 

𝑋2
 = 𝑐𝑋1 + 𝑑𝑋2 

Using Liapunov‟s theory find sufficient conditions on a, b, c and d such that the 

origin is asymptotically stable.        [8] 

            (b) A nonlinear system is described by 

                      
𝑑2𝑥

𝑑𝑡2 + sin 𝑥 = 0.707 

               Draw the phase plane trajectory when the initial conditions are 𝑥 0 =
𝜋

3
, 𝑥  0 = 0. 

              Use phase plane 𝛿 method. Compute x vs. t till t=0.1 sec.    [8] 

10. Determine the amplitude and frequency of oscillation of the limit cycle of the system 

shown in Figure below. Find the stability of the limit cycle oscillation.             [16] 

 

11. Write short notes on Popov‟s stability criterion and its geometrical interpretation.  [4] 
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12. Derive the expression for describing function of the following non-linearity as shown 

in figure below.                    [14] 

 

13. Describe Lyaponov‟s stability criterion.        [3] 

14. What do you mean by sign definiteness of a function? Check the positive definiteness 

of  

   V X  = x1
2 +

2𝑋2
2

1+𝑋2
2                                                                                                          [4]    

15. Distinguish between the concepts of stability, asymptotic stability & global stability.

             [4] 

16. (a) What are singular points in a phase plane? Explain the following types of 

singularity with sketches:                                                                                                 [9] 

          Stable node, unstable node, saddle point, stable focus, unstable focus, vortex. 

  (b)  Obtain the describing function of N(x) in figure below. Derive the formula used.              

                                      [6]    

17. (a) Evaluate the describing function of the non linear element shown in figure below. 

                                                                                                                                         [6] 
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      (b) This non linear element forms part of a closed loop system shown in fig below. 

Making use of the describing function analysis. Determine the frequency amplitude and 

stability of any possible self oscillation.                 [10] 

 

18. (a) Explain of the method of drawing the trajectories in the phase plane using             [10] 

               i) Lienard‟s construction 

               ii)Pell‟s method 

       (b) A second order non linear system is described by      [6] 

                     𝑥    +25(1+0.1 𝑥2)𝑥 = 0 

           Using delta method obtain the first five points in the phase plane for initial condition 

                    X(0)==1.8   𝑥 (0)=-1.6 

19. (a) In the following quadratic form negative definite?     [5] 

           Q=-𝑥1
2-3𝑥2

2-11𝑥3
2 + 2𝑥1𝑥2-4𝑥2𝑥3-2𝑥1𝑥3 

      (b) State and prove Liapunov‟s theorem for asymptotic stability of the system 𝑥 =A x  

            Hence show the following linear autonomous model            [6+5] 

             𝑥 = 
0 1
−𝑘 −𝑎

 x  

              Is asymptotically stable if a>0,k>0. 

20. (a) Bring out the differnces between Liapunov‟s stability criterion and Popov‟s stability 

criterion.            [5] 

    (b) 𝑥1  =𝑥2 

         𝑥2 =-0.9 sin 𝑥1+0.5 

        Find the nature of singular points lying between 𝑥1 = 00 to 1800               [10] 

21. A second order servo containing a relay with a dead zone  and hysteresis is shown in fig   

below. Obtain the phase trajectory of the system for the initial condition e(0)=0.65 and 

𝑒 (0)=0.does the system has a limit cycle? If so determine its amplitude and time period. 

                                                                                                                                               [15] 

 
22. Explain the phenomena of jump resonance in a non-linear system.   [4] 

23. Sometimes non-linear elements are intentionally introduced into control system. Give an 

example stating clearly the reason for the introduction of non-linear element.  [4] 
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24. (a) A non-linear system is governed by 

𝑑2𝑥

d𝑡2
+ 8𝑥 − 4𝑥2 = 0 

Determine the singular point s and their nature. Plot the trajectory passing through((𝑋1 =

2,𝑋2 = 0) without any approximation. 

   (b) What are the limitations of phase-plane analysis.        [12+3] 

25.(a) Find the describing function of the following type of non linearities.              [8] 

            i)ideal on off relay 

           ii)ideal saturation 

      (b) Derive a Liapunov function for the defined by      [8] 

𝑥1= 𝑥2 

𝑥2 = −3𝑥1
2 − 3 𝑥2
  

             Also check the stability of the system. 

26.(a) Determine the singular points in the phase plane and sketch the plane trajectories for a 

system of characteristics equation 

             
𝑑2𝑥(𝑡)

𝑑𝑡2 + 8𝑥 𝑡 − 4𝑥2 𝑡 = 0                   [8] 

    (b) A system described by the system shown in fig below 

 
         Will there be a limit cycle? If so determine its amplitude and frequency.  [8] 
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MODULE-IV 

OPTIMAL CONTROL SYSTEMS 

Introduction: 

There are two approaches to the design of control systems. In one approach we select the 

configuration of the overall system by introducing compensators to meet the given 

specifications on the performance. In other approach, for a given plant we find an overall 

system that meets the given specifications & then compute the necessary compensators.  

The classical design based on the first approach, the designer is given a set of specifications 

in time domain or in frequency domain & system configuration. Compensators are selected 

that give as closely as possible, the desired system performance. In general, it may not be 

possible to satisfy all the desired specifications. Then, through a trial & error procedure, an 

acceptable system performance is achieved.  

The trial & error uncertainties are eliminated in the parameter optimization method. In 

parameter optimization procedure, the performance specification consists of a single 

performance index. For a fixed system configuration, parameters that minimize the 

performance index are selected. 

Parameter Optimization: Servomechanisms 

The analytical approach of parameter optimization consists of the following steps:- 

(i) Compute the performance index J as a function of the free parameters 

K1,K2,….,Kn of the system with fixed configuration: 

 

J=f(K1,K2,….,Kn)   ……………….(1) 

(ii) Determine the solution set Ki of the equations 

𝜕𝐽

𝜕𝐾𝑖
= 0;     𝑖 = 1,2,…… . .𝑛       ……………………… . (2) 

Equation (2) give the necessary conditions for J to be minimum. 

 

Sufficient conditions 

From the solution set of equation(2), find the subset that satisfies the sufficient conditions 

which require that the Hessian matrix given below is positive definite. 

𝐻 =

 
 
 
 
 
 
 
 
 𝜕

2
𝐽

𝜕𝐾1
2

𝜕
2
𝐽

𝜕𝑘1𝜕𝑘2
……

𝜕
2
𝐽

𝜕𝑘1𝜕𝑘𝑛

𝜕
2
𝐽

𝜕𝑘2𝜕𝑘1

𝜕
2
𝐽

𝜕𝐾2
2
…… .

𝜕
2
𝐽

𝜕𝑘2𝜕𝑘𝑛
…… .

𝜕
2
𝐽

𝜕𝑘𝑛𝜕𝑘1

…… . .

𝜕
2
𝐽

𝜕𝑘𝑛𝜕𝑘2
……

………

𝜕
2
𝐽

𝜕𝐾𝑛
2

 
 
 
 
 
 
 
 
 

         …………… (3) 
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Since  
𝜕2𝐽

𝜕𝑘 𝑖𝜕𝑘 𝑗
=  

𝜕2𝐽

𝜕𝑘 𝑗𝜕𝑘 𝑖
 , the matrix H is always symmetric. 

 

(iii) If there are two or more sets of Ki satisfying the necessary as well as sufficient 

conditions of minimization given by equations (2) & (3) respectively, then 

compute the corresponding J for each set. 

The set that has the smallest J gives the optimal parameters. 

 

Solution of Optimization Problem 

 

The minimization problem will be more easily solved if we can express performance index 

interms of transform domain quantities. 

The quadratic performance index, this can be done by using the Parseval‟s theorem which 

allows us to write 

 𝑥2 𝑡  𝑑𝑡

∞

0

=
1

2𝜋𝑗
 𝑋 𝑠 𝑋 −𝑠 𝑑𝑠

𝑗∞

−𝑗∞

     …………………… (4) 

 

The values of right hand integral in equation(4) can easily be found from the published tables, 

provided that X(s) can be written in the form 

 

𝑋 𝑠 =
𝐵(𝑠)

𝐴(𝑠)
=
𝑏0 + 𝑏0𝑠 + ⋯+ 𝑏𝑛−1𝑠

𝑛−1

𝑎0 + 𝑎0𝑠 + ⋯+ 𝑎𝑛𝑠𝑛
 

  

Where A(s) has zeros only in the left half of the complex plane. 

𝐽1 =
𝑏0

2

2𝑎0𝑎1
 

𝐽2 =
𝑏1

2𝑎0 + 𝑏0
2𝑎2

2𝑎0𝑎1𝑎2
 

𝐽3 =
𝑏2

2𝑎0𝑎1 +  𝑏1
2 − 2𝑏0𝑏2 𝑎0𝑎3 + 𝑏0

2𝑎2𝑎3

2𝑎0𝑎3(−𝑎0𝑎3 + 𝑎1𝑎2)
 

 

 

 

Servomechanism or Tracking Problem 

 

In servomechanism or tracking systems, the objective of design is to maintain the actual 

output c(t) of the system as close as possible to the desired output which is usually the 

reference input r(t) to the system. 

 

We may define error e(t)=c(t) - r(t) 

 

 The design objective in a servomechanism or tracking problem is to keep error e(t) small. So 

performance index 𝐽 =  𝑒2(𝑡)
∞

0
𝑑𝑡  is to be minimized if control u(t) is not constrained in 

magnitude. 
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EXAMPLE 

 Referring to the block diagram given below, consider 𝐺 𝑠 =
100

𝑠2  and  𝑠 =
1

𝑠
 . 

Determine the optimal value of parameter K such that 𝐽 =  𝑒2(𝑡)
∞

0
𝑑𝑡 is minimum. 

 
Solution 

H s =
G(s)

1 + G s Ks
=

100 s2 

1 +
100
s2 Ks

=
100

s + 100K
 

𝐸 𝑠 

𝑅 𝑠 
=

1

1 + 𝐻 𝑠 
 

⇒ 𝐸 𝑠 =
𝑅(𝑠)

1 + 𝐻 𝑠 
=

1 𝑠 

1 +
100

𝑠 + 100𝐾

=
𝑠 + 100𝑘

𝑠2 + 100𝑘𝑠 + 100
 

 

Here       b0=100K,      b1=1,      a0=100,      a1=100K,       a2=1 

 

As E(s) is 2
nd

 order 

𝐽2 =
𝑏1

2𝑎0 + 𝑏0
2𝑎2

2𝑎0𝑎1𝑎2
=

1 + 100𝐾2

200𝑘
 

𝜕𝐽

𝜕𝐾
= 0 gives K=0.1 (necessary condition) 

To check the sufficient condition, the Hessian matrix is 
𝜕2𝐽

𝜕𝐾2 > 0  (+ve definite) 

∴ As necessary & sufficient condition satisfied, so the optimal value of the free parameter of 

the system is K=0.1. 

Compensator design subject to constraints 
 

The optimal design of servo systems obtained by minimizing the performance index 

𝐽 =  𝑒2(𝑡)

∞

0

𝑑𝑡 ………… . (5) 

may be unsatisfactory because it may lead to excessively large magnitudes of some control 

signals. 

 

A more realistic solution to the problem is reached if the performance index is modified to 

account for physical constraints like saturation in physical devices. Therefore, a more realistic 

PI should be to minimize 

𝐽 =  𝑒2(𝑡)

∞

0

𝑑𝑡 ………… . (6) 

Subject to the constraint 

𝑚𝑎𝑥 𝑢(𝑡)  ≤ 𝑀 ……………… . (6𝑎) 
 

The constant M is determined by the linear range of the system plant. 
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If criterion given by equation(6) is used, the resulting optimal system is not necessarily a 

linear system; i.e in order to implement the optimal design, nonlinear &/or time-varying 

devices are required. So performance criterion given by equation (6) is replaced by the 

following quadratic PI: 

𝐽 =  [𝑒2 𝑡 + 𝜆𝑢2 𝑡 ]

∞

0

𝑑𝑡………… . (7) 

 

Where λ, a positive constant, is called the weighting factor. 

 

If λ is a small positive number, more weight is imposed on the error. As 𝜆 → 0 ,the 

contribution of u(t) becomes less significant & PI reduces to 𝐽 =  𝑒2(𝑡)
∞

0
𝑑𝑡 . In this case, 

the magnitude of u(t) will be very large & the constraint given by equation (6a) may be 

violated. If → ∞ , performance criterion given by equation(7) reduces to  

𝐽 =  𝑢2(𝑡)

∞

0

𝑑𝑡 ………… . (8) 

& the optimal system that minimizes this J is one with u=0. 

 

From these two extreme cases, we conclude that if λ is properly chosen, then the constraint of 

(6a) will be satisfied. 

 

EXAMPLE 

 
 

𝐺 𝑠 =
100

𝑠2
 ;    𝑅 𝑠 =

1

𝑠
 

Determine the optimal values of the parameters K1 & K2 such that 

(i) 𝐽𝑒 =  𝑒2(𝑡)
∞

0
𝑑𝑡 is minimized 

(ii) 𝐽𝑢 =  𝑢2(𝑡)
∞

0
𝑑𝑡 = 0.1 

 

Solution 

H s =
K1G(s)

1 + K1G(s)K2s
=

K1
100
s2

1 +
K1

s2 100K2s
=

K1 100 s 

s + K1K2100
 

𝐸 𝑠 

𝑅 𝑠 
=

1

1 + 𝐻 𝑠 
=

1

1 +
K1100

s2 + K1K2100

=
s2 + K1K2s100

s2 + K1K2s100 + K1100
 

⇒ 𝐸 𝑠 =

1
𝑠 𝑠
 𝑠 + K1K2100 

s2 + K1K2s100 + K1100
=

𝑠 + K1K2100

s2 + K1K2s100 + K1100
 

 

Here     b0=K1K2100,        b1=1,             a0=K1100,   a1=K1K2100,                a2=1 
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As E(s) is of 2
nd

 order, so PI 

 

𝐽𝑒2 =  𝑒2(𝑡)

∞

0

𝑑𝑡 =
𝑏1

2𝑎0 + 𝑏0
2𝑎2

2𝑎0𝑎1𝑎2
=

1 + 100K1𝐾2
2

200K1K2
 

𝐶 𝑠 =
100K1

𝑠 s2 + K1K2s100 + K1100 
=

100

𝑠2
𝑈(𝑠) 

𝑈 𝑠 =
𝑠K1

s2 + K1K2s100 + K1100
 

 

Here     b0=0,        b1=K1,             a0=K1100,   a1=K1K2100,                a2=1 

𝐽𝑢2 =  𝑢2(𝑡)

∞

0

𝑑𝑡 =
K1

200K2
 

The energy constraint on the system is thus expressed by the equation 

𝐽𝑢 =
K1

200K2
= 0.1………………… . (𝑎) 

The PI for the system is 𝐽 = 𝐽𝑒 + 𝜆𝐽𝑢 =
1+100K1𝐾2

2

200K1K2
+ 𝜆

K1

200K2
 

 
𝜕𝐽

𝜕𝐾𝑖
= 0  𝑓𝑜𝑟 𝑖 = 1,2 𝑔𝑖𝑣𝑒𝑠 

𝜆𝐾1
2 = 1………… . . (𝑏) 

100K1𝐾2
2 − 1 − 𝜆𝐾1

2 = 0……… . . (𝑐) 

 

Solving equation (a),(b),(c), we get 𝜆 = 0.25, 𝐾1 = 2, 𝐾2 = 0.1 

 

The Hessian matrix 𝐻 =  

𝜕2𝐽

𝜕𝐾1
2

𝜕2𝐽

𝜕𝑘1𝜕𝑘2

𝜕2𝐽

𝜕𝑘2𝜕𝑘1

𝜕2𝐽

𝜕𝐾2
2

 =  

1

100K1
3K2

1−𝜆𝐾1
2

200𝐾1
2𝐾2

2

1−𝜆𝐾1
2

200𝐾1
2𝐾2

2

1

K2
−

100K1𝐾2
2−1

100K2
3K1

  

 
For 𝐾1 = 2, 𝐾2 = 0.1 

𝐻 =  
1

80
0

0 5
  is positive definite 

 

∴Therefore, 𝐾1 = 2, 𝐾2 = 0.1 satisfy the necessary as well as sufficient conditions for J to 

be minimum. 

 

 

Output Regulator Problem 

 

It is a special case of tracking problem in which r(t)=0. For zero input, the output is zero if all 

the initial conditions  are zero. The response c(t) is due to non zero initial conditions that,in 

turn, are caused by  disturbances. The primary objective of the design  is to damp out the 

response due to initial conditions quickly without excessive overshoot & oscillations. 
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For example:- The disturbance torque of the sea causes the ship to roll. The response(roll 

angle Ө(t)) to this disturbance is highly oscillatory. The oscillations in the rolling motion are 

to be damped out quickly without excessive overshoot. 

 

If there is no constraint on “control effort”, the controller which minimizes the performance 

index. 

  

 

𝐽 =   𝜃 𝑡 − 𝜃𝑑(𝑡) 2

∞

0

𝑑𝑡 ………………… (9) 

 

 

Will be optimum. 

 

𝜃𝑑(𝑡) → desired roll angle which is clearly zero. 

 
Therefore, the problem of stabilization of ship against rolling motion is a regular problem. If for 

disturbance torque applied at t=to , the controller is required to regulate the roll motion which is 

finite time (tf-to), a suitable performance criterion for design of optimum controller is to minimize 

𝐽 =  𝜃2(𝑡)

𝑡𝑓

𝑡𝑜

𝑑𝑡 ………… . (10) 

 

Optimal Control Problems: State Variable Approach 
 

Following steps are involved in the solution of an optimal control problem using state 

variable approach: 

 

(i)Given plant in the  of state equations 

 

X  t = AX t + Bu(t)   ……………………… . (11) 

A is constant matrix of size (n×n) 

B is the constant matrix of size (n×m) 

X(t) is the state vector of size (n×1) 

U(t) is the control vector of size (m×1) 

Find the control function u* which is optimal with respect to given performance criterion. 

(ii) Realize the control function obtained from step (i). 

The State Regulator Problem 

When a system variable x1(t)(the output) is required to be near zero, the performance measure is  
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𝐽 =  𝑥1
2(𝑡)

𝑡𝑓

𝑡𝑜

𝑑𝑡 

A performance index written interms of two state variables of a system would be then 

𝐽 =  (𝑥1
2 𝑡 + 𝑥2

2(𝑡)

𝑡𝑓

𝑡𝑜

)𝑑𝑡 

Therefore if the state x(t) of a system described by equation (11) is required to close to Xd=0, 

a design criterion would be to determine a control function that minimizes 

𝐽 =  (𝑋𝑇𝑋 )

𝑡𝑓

𝑡𝑜

𝑑𝑡 

In practical, the control of all the states of the system is not equally important. 

Example:  In addition to roll angle 𝜃(𝑡) of aship,the pitch angle ∅(𝑡) is also required to be 

zero,so the PI gets modified to 

𝐽 =  (𝜃2 𝑡 + 𝜆∅2(𝑡)

𝑡𝑓

𝑡𝑜

)𝑑𝑡 

Where 𝜆 is a positive constant, a weighting factor. 

The roll motion contributes much discomfort to passengers, in the design of passenger 

ship,the value of 𝜆 will be less than one. 

A weighted PI is     𝐽 =  (𝑋𝑇𝑄𝑋 )
𝑡𝑓
𝑡𝑜

𝑑𝑡  

Where, Q=Error weighted matrix which is  positive definite,real,symmetric,constant matrix. 

The simplest form of Q is a diagonal matrix: 

𝑄 =  

𝑞1 0… . . 0
0
⋮

𝑞2 … .
⋮

0
⋮

0 0… . . 𝑞𝑛

   

The ith entry of Q represents the amount of weight the designer places on the constraint on 

state variable xi(t). The larger the value of qi relative to other values of q,the more control 

effort is spent to regulate  xi(t). 

To minimize the deviation of the final state  𝑋(𝑡𝑓) of the system from the desired state 

𝑋𝑑 = 0, a possible performance measure is:  
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𝐽 = 𝑋𝑇(𝑡𝑓)𝐹𝑋(𝑡𝑓) 

Where, F= Terminal cost weighted matrix which is positive definite, real, symmetric, 

constant matrix.  

In the infinite time state regulator problem  𝑡𝑓 → ∞ , the final state should approach the 

equilibrium state X=0; so the terminal constraint is no longer necessary.. 

The optimal design obtained by minimizing  

𝐽 = 𝑋𝑇 𝑡𝑓 𝐹𝑋 𝑡𝑓 +  𝑋𝑇 𝑡 𝑄𝑋 𝑡 

𝑡𝑓

𝑡𝑜

𝑑𝑡 

The above PI is unsatisfactory in practice. 

If PI is modified by adding a penalty term for physical constraints, then solution would be 

more realistic. So this is accomplished by introducing the quadratic control term in the PI 

𝐽 =  𝑢𝑇 𝑡 𝑅 𝑢 𝑡 

𝑡𝑓

𝑡𝑜

𝑑𝑡 

 Where, R=Control weighted matrix which is positive definite,real,symmetric,constant 

matrix. 

By giving sufficient weight to control terms, the amplitude of controls which minimize the 

overall  PI may be kept within practical bound, although at the expense of increased error in 

X(t). 

Continuous-time systems (state regulator problem) 

Consider an LTI system 

 X  t = AX t + Bu t …………… . . (12) 

Find the optimal control law u*(t),𝑡 ∈  𝑡0, 𝑡𝑓  , where 𝑡0 & 𝑡𝑓  are specified initial & final 

times respectively, so that the optimal PI 

𝐽 =
1

2
𝑋𝑇 𝑡𝑓 𝐹𝑋 𝑡𝑓 +

1

2
  𝑋𝑇 𝑡 𝑄𝑋 𝑡 + 𝑢𝑇 𝑡 𝑅 𝑢 𝑡  

𝑡𝑓

𝑡𝑜

𝑑𝑡 ………………… . (13) 

Is minimized, subject to initial state x(t0)=x0 . tf is fixed & given & X(tf) is free. 
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The matrices Q & F may be positive definite or semidefinite. We shall assume that, both 

Q & F  are not simultaneously zero matrices to avoid trival solution. 

Solution 

(1) Solve matrix differential  Riccati equation 

P  t = −P t A − ATP t − Q + P t BR−1BTP t ………………… . . (14) 

With final condition P(t=tf)=F 

Where P(t)=Riccati coefficient matrix,time varying matrix,symmetric positive definite 

matrix. 

Riccati equation is nonlinear & for this reason, we usually cannot obtain closed form of 

solutions; therefore we must compute P(t) using digital computer.Numerical integration is 

carried out backward in time; from t=tf to t=t0 with boundary condition P(tf)=F. 

(2) Obtain the optimal control u*(t) as 

u∗ t = −R−1BTP t X t = −K t X t ……………………… . . (15) 

Where K(t) = −R−1BTP t  is called Kalman gain. 

EXAMPLE 

A first order system is described by the differential equation x  t = 2x t + u t  . 

It is desired to find the control Law that minimizes the PI 

𝐽 =
1

2
  3𝑥2 +

1

4
𝑢2 

𝑡𝑓

𝑡𝑜

𝑑𝑡  ,    𝑡𝑓 = 1 𝑠𝑒𝑐 

Solution 

Comparing the state equation with equation(12), A=2,  B=1 

Comparing PI with equation(13), we get 𝐹 = 0,𝑅 =
1

4
,𝑄 = 3 

As there is one state variable so P(t)=p(t), matrix reduces to scalar function. 

The matrix differential Riccatii equation becomes scalar differential equation 

P  t = −P t A − ATP t − Q + P t BR−1BTP t  

= −P t × 2 − 2P t − 3 + P t × 1 × 4 × 1 × P t  

= −4P t − 3 + 4𝑃2 t  

With boundary condition 𝑃 𝑡𝑓 = 𝐹 = 0 

Solution is obtained by numerical integration backward intime 

 P  t 

𝑡

𝑡𝑓

𝑑𝑡 =   −4P t − 3 + 4𝑃2 t  

𝑡

𝑡𝑓

𝑑𝑡 
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⇒  𝑑P t 

𝑡

𝑡𝑓

=   4  P t −
3

2
  P t +

1

2
  

𝑡

𝑡𝑓

𝑑𝑡 

Separating variables 

⇒  
1

4  P t −
3
2  P t +

1
2 

𝑑P t 

𝑡

𝑡𝑓

=  𝑑𝑡

𝑡

𝑡𝑓

 

⇒
1

8
 𝑙𝑛  

 P t −
3
2 

−
3
2

 P t +
1
2 

1
2

   = 𝑡 − 𝑡𝑓  

⇒ P t =

3
2  1 − 𝑒8 𝑡−𝑡𝑓  

1 + 3𝑒8 𝑡−𝑡𝑓 
 

The Optimal control law 

u∗ t = −R−1BTP t X t = −4P t x t  

The block diagram for Optimal control system is 

 

 
 

Infinite time regulator problem 

In equation (13), if the terminal time tf ,is not constrained, the PI is  

𝐽 =
1

2
  𝑋𝑇 𝑡 𝑄𝑋 𝑡 + 𝑢𝑇 𝑡 𝑅 𝑢 𝑡  

𝑡𝑓

𝑡𝑜

𝑑𝑡 ………………… . (16) 

Salient points of infinite time regulator problem: 

(1) When 𝑡𝑓 → ∞ ,𝑋(∞) → 0 for the optimal system to be stable.Therefore the terminal 

penalty term has no significance; consequently it does not appear in J  i.e we set F=0 in 

general quadratic PI. 

(2) As 𝑡𝑓 → ∞ & 𝐹 = 0 = 𝑃(𝑡𝑓) 

            ⇒ limtf→∞  P(tf) = P  which is a constant matrix 

(3)As P  is a constant ,so 𝑃  𝑡 = 0 , substituting this in equation(14),we get 
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−P  A − ATP  − Q + P  BR−1BTP  = 0 

The above equation is known as algebraic matrix Riccatic equation(ARE) or reduced 

matrix Riccati equation. 

(4) Solve ARE to get P  ,then the optimal control law is given by 

u∗ t = −R−1BTP  X t = −KX t  

Where K(t) = −R−1BTP  is called Kalman gain. 

The optimal law is implemented using time invariant Kalman gain in contrast to the finite-

time case. 

(5) The optimal value of PI is 

𝐽∗ =
1

2
𝑋𝑇 0  P  𝑋 0  

EXAMPLE 

Obtain the control Law which minimizes the performance index 

𝐽 =   𝑥1
2 + 𝑢2 

∞

0

𝑑𝑡   

For the system  

 
𝑥1 
𝑥2 
 =  

0 1
0 0

  
𝑥1

𝑥2
 +  

0
1
 𝑢 

Solution 

𝐴 =  
0 1
0 0

 ,𝐵 =  
0
1
 ,𝑄 =  

2 0
0 0

 ,𝑅 = 2 

ARE  

−P  A − ATP  + P  BR−1BTP  − Q = 0 

−  
p11 p12

p12 p22
  

0 1
0 0

 −  
0 0
1 0

  
p11 p12

p12 p22
 +  

p11 p12

p12 p22
  

0
1
  

1

2
  0 1  

p11 p12

p12 p22
 −  

2 0
0 0

 =  
0 0
0 0

  

 

Simplifying 

−
p12

2

2
+ 2 = 0 

p11 −
p12p22

2
= 0 

−
p22

2

2
+ 2p12 = 0 

For P  to be positive definite matrix we get the solution P =  
2 2 2

2 2 2
 ,  

The Optimal Control Law is given by 
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u∗ t = −R−1BTP  X t = −  
1

2
  0 1  

2 2 2

2 2 2
  
𝑥1(𝑡)

𝑥2(𝑡)
 = −𝑥1 𝑡 −  2𝑥2(𝑡) 

It can be easily verified that closed loop system is asymptotically stable.(Though Q is 

positive definite) 

 

The Output Regulator Problem 

In the state regulator problem, we are concerned with making all the components of the state 

vector X(t) small.In the output regulator problem on the other hand, we ere concerned with 

making the components of the output vector small. 

Consider an observable controlled process described by the  equations 

X  t = AX t + Bu t …………… . .  17  

Y t = CX t  

Find the optimal control law u*(t),𝑡 ∈  𝑡0, 𝑡𝑓  , where 𝑡0 & 𝑡𝑓  are specified initial & final 

times respectively, so that the optimal PI 

𝐽 =
1

2
𝑌𝑇 𝑡𝑓 𝐹 𝑌 𝑡𝑓 +

1

2
  𝑌𝑇 𝑡 𝑄𝑌 𝑡 + 𝑢𝑇 𝑡 𝑅 𝑢 𝑡  

𝑡𝑓

𝑡𝑜

𝑑𝑡………………… (18) 

Is minimized,subject to initial state x(t0)=x0 . 

Tracking Problem 

Consider an observable controlled process described by the equation(17). Suppose that the 

vector Z(t) is the desired output. 

The error vector e(t)=Z(t)-Y(t) 

Find the optimal control law u*(t),𝑡 ∈  𝑡0, 𝑡𝑓  , where 𝑡0 & 𝑡𝑓  are specified initial & final 

times respectively, so that the optimal PI 

𝐽 =
1

2
𝑒𝑇 𝑡𝑓 𝐹 𝑒 𝑡𝑓 +

1

2
  𝑒𝑇 𝑡 𝑄𝑒 𝑡 + 𝑢𝑇 𝑡 𝑅 𝑢 𝑡  

𝑡𝑓

𝑡𝑜

𝑑𝑡 

Is minimized . 

Output Regulator as state regulator Problem 

If the controlled process given by equation(17) is observable then, we can reduce the output 

regulator problem to the state regulator problem. 
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Substituting Y(t)=CX(t) in the PI given by equation (18), we get 

𝐽 =
1

2
𝑋𝑇 𝑡𝑓 𝐶

𝑇𝐹𝐶𝑋 𝑡𝑓 +
1

2
  𝑋𝑇 𝑡 𝐶𝑇𝑄𝐶𝑋 𝑡 + 𝑢𝑇 𝑡 𝑅 𝑢 𝑡  

𝑡𝑓

𝑡𝑜

𝑑𝑡 

For this PI , a unique optimal control exists & is given by 

u∗ t = −R−1BTP t X t = −K t X t  

Where P(t) is the solution of the matrix Riccati equation given by: 

P  t = −P t A − ATP t − CTQC + P t BR−1BTP t ………………… . . (19) 

With boundary condition 𝑃 𝑡𝑓 = CTFC 

The Tracking Problem 

Here we shall study a class of tracking problems which are reducible to the form of the output 

regulator problem. 

Consider an observable controlled process described by the  equations 

X  t = AX t + Bu t  

Y t = CX t  

It is desired to bring & keep output Y(t) close to the desired output r(t). 

We define error vector e(t)=Y(t)-r(t) 

 

Find the optimal control law u*(t),𝑡 ∈  𝑡0, 𝑡𝑓  , where 𝑡0 & 𝑡𝑓  are specified initial & final 

times respectively, so that the optimal PI 

𝐽 =
1

2
𝑒𝑇 𝑡𝑓 𝐹 𝑒 𝑡𝑓 +

1

2
  𝑒𝑇 𝑡 𝑄𝑒 𝑡 + 𝑢𝑇 𝑡 𝑅 𝑢 𝑡  

𝑡𝑓

𝑡𝑜

𝑑𝑡 

Is minimized . 

To reduce this problem to the form of output regulator problem,we consider only those r(t) 

that can be generated by arbitrary initial conditions Z(0) in the system. 

Z  t = AZ t  

r t = CZ t  

The matrices A & C are same as those of the plant. Now define a new variable W=X-Z 
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Then  

W  t = AW t + Bu t  

e t = CW t  

Applying results of the output regulator problem gives immediately that the optimal control 

for the tracking problem under consideration is 

u∗ t = −R−1BTP t W t = −K t [X − Z] 

Where P(t) is the solution of the Riccati equation(19). 

 

Parameter Optimization: Regulators 

Solution of control problem when some elements of feedback matrix K are constrained 

Consider completely controllable process  

X  t = AX t + Bu t  

The PI is 𝐽 =
1

2
  𝑋𝑇 𝑡 𝑄𝑋 𝑡 + 𝑢𝑇 𝑡 𝑅 𝑢 𝑡  
∞

0
𝑑𝑡 

Optimal control is linear combination of the state variables u=KX(t) 

With the above feedback law,closed loop system is described by  

X  t = AX t + BKX t =  A + BK X(t) 

Solution 

(1) Determine elements of P as functions of the elements of the feedback matrix K from the 

equations given below 

 A + BK TP + P A + BK + KTRK + Q = 0……………… . (20) 

(2) Find PI which is given as 

𝐽 =
1

2
𝑋𝑇 0 𝑃 𝑋 0 ……………… . (21) 

 If  K1,K2,….,Kn  are the free elements of matrix P, we have 

                                          J=f(K1,K2,….,Kn) ....................................(22)   

(3) The necessary & sufficient conditions for J to be minimum are given by 

𝜕𝐽

𝜕𝐾𝑖
= 0;     𝑖 = 1,2,…… . .𝑛       (𝑛𝑒𝑐𝑒𝑠𝑠𝑎𝑟𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) 

Hessian matrix is positive definite (sufficient condition) 
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Solution set Ki of equation(22) satisfies necessary & sufficient condition is obtained which 

gives the suboptimal solution to  the control problem. Of course, Ki must satisfy the further 

constraint that the closed-loop system be asymptotically stable. If all the parameters of P are 

free, the procedure above will yield an optimal solution. 

 

Special Case 

Where the PI is independent of the control u, we have  

𝐽 =
1

2
  𝑋𝑇 𝑡 𝑄𝑋 𝑡  

∞

0

𝑑𝑡 

In this case the matrix P is obtained from the equation(20) by substituting R=0 resulting in 

the modified matrix equation 

 A + BK TP + P A + BK + Q = 0……………… . (23) 

EXAMPLE 

Consider the second order system, where it is desired to find optimum 𝜁 which minimizes the 

integral square error i.e  J= 𝑒2(𝑡)
∞

0
𝑑𝑡 for the initial conditions c(0)=1,𝑐  0 = 0 

 

Solution 

The problem is reframed in the state form with one of obtaining feedback control law with 

constraint K1=1 

 

 
𝑥1 
𝑥2 
 =  

0 1
0 1

  
𝑥1

𝑥2
 +  

0
1
 𝑢,               𝑥1 0 = 1, 𝑥2 0 = 0 

u = − K1 K2  
𝑥1

𝑥2
  

Now 𝐽 =  𝑒2(𝑡)
∞

0
𝑑𝑡 =  𝑥1

2∞

0
𝑑𝑡      𝑠𝑖𝑛𝑐𝑒 𝑒 = −𝑐 = −𝑥1 

Therefore 𝑄 =  
2 0
0 1
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Substituting the values in equation(23) 

 
0 −1
0 −K2

  
p11 p12

p12 p22
 +  

p11 p12

p12 p22
  

0 1
−1 −K2

 +  
2 0
0 0

 =  
0 0
0 0

  

Solving we get 𝑃 =  

1+K2
2

K2
1

1
1

K2

  

 

PI   𝐽 =
1

2
𝑋𝑇 0 𝑃 𝑋 0 =

1+K2
2

2K2
 

 

J to be minimum,  
𝜕𝐽

𝜕𝐾2
=  

1

2
−

1

2K2
2 = 0 

                             ⟹ K2 = 1 

𝜕2𝐽

𝜕K2
2 =

1

K2
3 > 0 , this is satisfied for K2 = 1 

 

Therefore, optimal value of parameter K2 = 1 . Since K2 = 2ξ,   ⇒ ξ = 0.5 minimizes 

integral square error for the given initial conditions. 

It can be easily verified that the suboptimal control derived above results in a closedloop 

system which is asymptotically stable. 

The control given by 𝐽 =
1

2
𝑋𝑇 0 𝑃 𝑋 0  will vary from one x(0) to another. For practical 

reasons, it is desirable to have one control irrespective of what x(0) is.  

One way to solve this problem is to assume that x(0) is a random variable, uniformly 

distributed on the surface of the n-dimensional unit sphere. 

𝐸 𝑋 0 𝑋𝑇 0  =
1

𝑛
𝐼 

New PI   𝐽 = 𝐸 𝐽 = 𝐸  
1

2
𝑋𝑇 0 𝑃 𝑋 0  =

1

2𝑛
𝑡𝑟 𝑝  

𝑡𝑟 𝑝 = 𝑡𝑟𝑎𝑐𝑒 𝑜𝑓 𝑃 = 𝑠𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 𝑃 

The parameter K2 that optimizes  𝐽  is  2 . 

Therefore  

u = − 1  2  
𝑥1

𝑥2
  

is suboptimal control law that is independent of initial conditions. 

 

INTRODUCTION TO ADAPTIVE CONTROL 

To implement high performance control systems when the plant dynamic characteristics are 

poorly known or when large & unpredictable variations occur, a new class of control systems 

called nonlinear control systems have evolved which provide potential solutions. Four classes 

of nonlinear controllers for this purposes are 

(1)Robust controllers (2) Adaptive controllers (3) Fuzzy logic controllers (4) Neural 

controllers 
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Adaptive control 

An adaptive controller is a controller that can modify its behaviour in response to 

changes in dynamics of the process & the disturbances. One of the goals of adaptive 

control is to compensate for parameter variations, which may occur due to nonlinear 

actuators, changes in the operating conditions of the process, & non-stationary 

disturbances acting on the process. 

An adaptive controller is a controller with adjustable parameters & a mechanism for 

adjusting the parameters. 

An adaptive control system may be thought of as having two loops. One loop is a normal 

feedback with the process(plant) & controller. The other loop is a parameter 

adjustment loop. The block diagram of an adaptive system is shown below. The 

parameter adjustment loop is often slower than the normal feedback loop. 

 

Fig: Adaptive Controller 

There are two main approaches for designing adaptive controllers. They are 

(1) Model Reference Adaptive control Method 

(2) Self-Tuning method 

(1) Model Reference Adaptive control (MRAC) 

The MRAC system is an adaptive system in which the desired performance is expressed 

in terms of a reference model, which gives the desired response signal.  

Marc is composed of four parts. 

(a) a plant containing unknown parameters 

(b) A reference model for compactly specifying the desired output of the control system. 

(c) a feedback control law containing adjustable parameters. 

(d) parameter adjustment loop is called as outer loop.. 

The ordinary feedback loop is known as the inner loop. 
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Fig: Model Reference Adaptive controller 

(2) Self-Tuning control 

A general architecture for the self tuning control is shown below. 

 

Fig: A general configuration of Self -Tuning controller 

 

Self tuning control has two essential components. They are 

(1) Parameter estimation     (2) control law 

(1) Parameter estimation: Parameter estimation is performed online. The model 

parameters are estimated based on the measureable process input, process output & 

the state signals. A number of recursive parameter estimation schemes are employed 

for self tuning control. The most popular scheme is the recursive least square 

estimation method.      

(2) Control law: The control law is derived based on control performance criterion 

optimization. Since the parameters are estimated on-line, the calculation of control law 

is based on a procedure called certainty equivalent in which the current parameter 

estimates are accepted while ignoring their uncertainties. This approach of designing 

controller using estimated parameters of the transfer function of the process is known 

as indirect self-tuning method. 
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MODEL QUESTIONS  

Module-4 

The figures in the right-hand margin indicate marks. 

1. What do you understand about parameter optimisation of Regulators?                 [2] 

2. Find the control law which minimizes the performance index             

𝐽 =  (𝑋1
2 + 𝑈2)

∞

0

𝑑𝑡 

For the system 

 
𝑋1
 

𝑋2
 
 =  

0 1
0 0

  
𝑋1

X2
 +  

0
1
 u                                                                                   [10] 

 

3. Write short notes on.                                                          [3.5×2]     

(a) State regulator problem    

(b) Pontryagin‟s minimum principle 

4. A system is described by 

𝑋1
 = 𝑋2 

𝑋2
 = −2𝑋1 − 3𝑋2 + 𝑢 

   Determine the optimal control law 𝑢𝑜𝑝𝑡 (𝑡) such that the following performance 

index is minimised               

𝐽 =
1

2
 (𝑥1

2 + 𝑥2
2 + 𝑢2)

∞

0

𝑑𝑡 

Derive the formula used.                                                                                        [8+8] 

5. What are the different types of performance indices? Explain ISE & ITAE. Why ISE 

is widely used?           [8] 

6.(a) Explain the  following error performance indices: 

           ISE, ISTE, IAE, ITAE                                                                                           [6] 

 (b) Determine the optimal controller to minimize  

𝐽 =  (𝑦2 + 𝑢2)

∞

0

𝑑𝑡 

 

          for the process described by 
𝑑𝑦

𝑑𝑡
+ 𝑦 = 𝑢                                                          [9] 

7. Consider a system described by  

      𝑋 = 
0 1
0 0

 X+ 
0
1
 u;𝑥1 0 = 𝑥2 0 = 1 

Where u =-𝑥1-k𝑥2 

     (i) Find the value of k so that  

   J=
1

2
  𝑥1

2 + 𝑥2
2 𝑑𝑡 𝑖𝑠 𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒𝑑,

∞

0
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    (ii) Find the minimum value of J 

    (iii) Find sensitivity of J with respect to k                                                                         [15] 

8. A linear autonomous system is described in the state equation  

𝑋 =  
−4𝐾 4𝐾
2𝐾 −6𝐾

 
 

 X 

Find restriction on the parameter k to guarantee stability of the system.                              [15] 

9. A first order system is described by the differential equation  

𝑋 𝑡 = 2𝑋 𝑡 + 𝑢(𝑡)  

Find the control law that minimises the performance index 

J=
1

2
 (3𝑋2 +

1

4

𝑡𝑓
0

𝑢2) dt 

When 𝑡𝑓  =1 second                                                                                                                [15] 

10.(a) What do you understand about parameter optimisation of regulator?              [6] 

      (b) Find the control laws which minimises the performance index               [10] 

               J=  𝑥1
2 + 𝑢2 

∞

0
𝑑𝑡  

                For the system 

 
𝑥1 
𝑥2 
 =  

0 1
0 1

  
𝑥1

𝑥2
 +  

0
1
 𝑢 

 

 

 

      


