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COURSE CONTENTS 

Module-I 

Compressibility of soils: consolidation theory (one, two, and three dimensional 

consolidation theories), consolidation in layered soil and consolidation for time dependent 

loading, determination of coefficient of consolidation (Casagrande method and Taylors 

method) 

Module-II 

Strength behavior of soils; Mohr Circle of Stress; UU, CU, CD tests, drained and 

undrained behavior of sand and clay, significance of pore pressure parameters; determination 

of shear strength of soil; Interpretation of triaxial test results. 

Module-III 

Stress path; Drained and undrained stress path; Stress path with respect to different 

initial state of the soil; Stress path for different practical situations. 

Module-IV 

Elastic and plastic deformations: elastic wall; introduction to yielding and hardening; yield 

curve and yield surface, associated and non-associated flow rule, Failure theories and 

constitutive modelling. 

Module-V 

Critical state soil mechanics; Critical state parameters; Critical state for normally 

consolidated and over consolidated soil; Significance of Roscoe and Hvorslev state boundary 

surface; drained and un drained plane. Critical void ratio; effect of dilation in sands; different 

dilation-models. 

Reference Books: 

Atkinson, J.H. and Bransby, P.L, The Mechanics of Soils: An introduction to Critical soil 

mechanics, McGraw Hill, 1978. 

Atkinson J.H, An introduction to the Mechanics of soils and Foundation, McGraw- Hill Co., 

1993. 

Das, B.M., Advanced Soil Mechanics, Taylor and Francis, 2nd Edition, 1997. 

Wood, D.M., Soil Behavior and Critical State Soil Mechanics, Cambridge University Press, 

1990. 

Craig, R.F., Soil Mechanics, Van Nostrand Reinhold Co. Ltd., 1987. 

Terzaghi, K., and Peck, R.B., Soil Mechanics in Engineering Practice, John Wiley & Sons, 

1967. 

Lambe, T.W. and Whitman, R.V., Soil Mechanics, John Wiley & Sons, 1979 

COURSE OUTCOME 

1. The students obtain knowledge on compressibility parameters of soil mass. 

2. The students are able to select the shear strength to design different structures for 

different conditions of loading, drainage and failure criteria. 

3. The students can estimate the stress path in soil under drainage condition. 

4. The students can describe the mathematical models for solving different problems in 

soil mechanics. 

5. The students can illustrate the deformation behavior of soil mass. 
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1.0 Consolidation and Compression of Soils 

When a soil layer is subjected to vertical stress, volume change can take place through 

rearrangement of soil grains, and some amount of grain fracture may also take place. The volume 

of soil grains remains constant, so change in total volume is due to change in volume of water. In 

saturated soils, this can happen only if water is pushed out of the voids. The movement of water 

takes time and is controlled by the permeability of the soil and the locations of free draining 

boundary surfaces. 

It is necessary to determine both the magnitude of volume change (or the settlement) and the 

time required for the volume change to occur. The magnitude of settlement is dependent on the 

magnitude of applied stress, thickness of the soil layer, and the compressibility of the soil. 

When soil is loaded undrained, the pore pressure increases. As the excess pore pressure 

dissipates and water leaves the soil, settlement takes place. This process takes time, and the rate 

of settlement decreases over time. In coarse soils (sands and gravels), volume change occurs 

immediately as pore pressures are dissipated rapidly due to high permeability. In fine soils (silts 

and clays), slow seepage occurs due to low permeability. 

Elastic settlement is on account of change in shape at constant volume, i.e. due to vertical 

compression and lateral expansion. Primary consolidation (or simply consolidation) is on 

account of flow of water from the voids, and is a function of the permeability and 

compressibility of soil. Secondary compression is on account of creep-like behaviour. 

Primary consolidation is the major component and it can be reasonably estimated. A general 

theory for consolidation, incorporating three-dimensional flow is complicated and only 

applicable to a very limited range of problems in geotechnical engineering. For the vast majority 

of practical settlement problems, it is sufficient to consider that both seepage and strain take 

place in one direction only, as one-dimensional consolidation in the vertical direction. 

1.1 Compressibility Characteristics 

Soils are often subjected to uniform loading over large areas, such as from wide foundations, fills 

or embankments. Under such conditions, the soil which is remote from the edges of the loaded 

area undergoes vertical strain, but no horizontal strain. Thus, the settlement occurs only in one-

dimension. 

The compressibility of soils under one-dimensional compression can be described from the 

decrease in the volume of voids with the increase of effective stress. This relation of void ratio 

and effective stress can be depicted either as an arithmetic plot or a semi-log plot. 
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Fig.1.1 Effective stress versus void ratio  

In the arithmetic plot as shown, as the soil compresses, for the same increase of effective 

stress σ', the void ratio reduces by a smaller magnitude, from ∆e1 to ∆e2. This is on account of an 

increasingly denser packing of the soil particles as the pore water is forced out. In fine soils, a 

much longer time is required for the pore water to escape, as compared to coarse soils. 

It can be said that the compressibility of a soil decreases as the effective stress increases. This 

can be represented by the slope of the void ratio – effective stress relation, which is called 

the coefficient of compressibility, av. 

𝑎𝑣 = −
𝑑𝑒

𝑑𝜎′------------------------        Eq.1.1 

Or  

𝑎𝑣 = −
∆𝑒

∆𝜎′------------------------         Eq.1.2 

For a small range of effective stress, 𝑎𝑣 = −
∆𝑒

∆𝜎′ 

The -ve sign is introduced to make  av  a positive parameter. 

If e0 is the initial void ratio of the consolidating layer, another useful parameter is the coefficient 

of volume compressibility, mv, which is expressed as 

𝑚𝑣 =
𝑎𝑣

1+𝑒0
-------------------------         Eq.1.3 

It represents the compression of the soil, per unit original thickness, due to a unit increase of 

pressure. 

1.2 Normally Consolidated and Over Consolidated 

If the current effective stress, 𝜎′ , is equal (note that it cannot be greater than) to the pre-

consolidation stress, then the deposit is said to be normally consolidated (NC). If the current 

effective stress is less than the pre-consolidation stress, then the soil is said to be over-

consolidated (OC). 
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Fig.1.2: Relation between void ratio and logarithmic effective stress 

The figure shows the relation of void ratio and effective stress of a clay soil as a semi-log plot. 

OP corresponds to initial loading of the soil. PQ corresponds to unloading of the 

soil. QFR corresponds to a reloading of the soil. Upon reloading beyond P, the soil continues 

along the path that it would have followed if loaded from O to R continuously. 

The pre-consolidation stress, s'pc, is defined to be the maximum effective stress experienced by 

the soil. This stress is identified in comparison with the effective stress in its present state. For 

soil at state Q or F, this would correspond to the effective stress at point P. 

It may be seen that for the same increase in effective stress, the change in void ratio is much less 

for an over-consolidated soil (from e0 to ef), than it would have been for a normally consolidated 

soil as in path OP. In unloading, the soil swells but the increase in volume is much less than the 

initial decrease in volume for the same stress difference. 

The distance from the normal consolidation line has an important influence on soil behaviour. 

This is described numerically by the over-consolidation ratio (OCR), which is defined as the 

ratio of the pre-consolidation stress to the current effective stress. 

𝑂𝐶𝑅 =
𝜎𝑝𝑐

′

𝜎′ --------------------------         Eq.1.4 

 

Note that when the soil is normally consolidated, OCR = 1 

Settlements will generally be much smaller for structures built on over consolidated soils. Most 

soils are over-consolidated to some degree. This can be due to shrinking and swelling of the soil 

on drying and rewetting, changes in ground water levels, and unloading due to erosion of 

overlying strata. 

For NC clays, the plot of void ratio versus log of effective stress can be approximated to a 

straight line, and the slope of this line is indicated by a parameter termed as compression 

index, Cc. 
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𝐶𝑐 =
∆𝑒

𝑙𝑜𝑔10(
𝜎2

′

𝜎1
1)

-----------------------         Eq.1.5 

1.3 Estimation of Pre-Consolidation Stress 

It is possible to determine the pre-consolidation stress that the soil had experienced. The soil 

sample is to be loaded in the laboratory so as to obtain the void ratio - effective stress 

relationship. Empirical procedures are used to estimate the pre-consolidation stress, the most 

widely used being Casagrande's construction which is illustrated. 

 

 

 

 

 

Fig.1.3: Casagrande’s construction method to find pre-consolidation pressure 

The steps in the construction are:  

1. Draw the graph using an appropriate scale. 

2. Determine the point of maximum curvature A. 

3. At A, draw a tangent AB to the curve. 

4. At A, draw a horizontal line AC. 

5. Draw the extension ED of the straight line portion of the curve. 

Where the line ED cuts the bisector AF of angle CAB that point corresponds to the pre-

consolidation stress. 

The total stress increases when additional vertical load is first applied. Instantaneously, the pore 

water pressure increases by exactly the same amount. Subsequently there will be flow from 

regions of higher excess pore pressure to regions of lower excess pore pressure causing 

dissipation. The effective stress will change and the soil will consolidate with time. This is 

shown schematically. 

 

 

 

 

Fig.1.4: Change of effective stress, consolidation with time 
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1.4 SPRING ANALOGY TO EXPLAIN CONSOLIDATION THEORY 

A mechanistic model for the phenomenon of consolidation was given by Taylor (1948), by 

which the process can be better understood. This model, with slight modifications, is presented 

in Fig. 1 and is explained below: 

A spring of initial height Hi is surrounded by water in a cylinder. The spring is analogous to the 

soil skeleton and the water to the pore water. The cylinder is fitted with a piston of area A 

through which a certain load may be transmitted to the system representing a saturated soil. The 

piston, in turn, is fitted with a vent, and a valve by which the vent may be opened or closed. 

Referring to Fig.1.5 (a), let a load P be applied on the piston. Let us assume that the valve of the 

vent is open and no flow is occurring. This indicates that the system is in equilibrium under the 

total stress P/A which is fully borne by the spring, the pressure in the water being zero. 

 
Fig.1.5: Spring Model for Consolidation of Soil mass 

 

Referring to Fig.1.5 (b), let us apply an increment of load δP to the piston, the valve being kept 

closed. Since no water is allowed to flow out, the piston cannot move downwards and compress 

the spring; therefore, the spring carries the earlier stress of P/A, while the water is forced to carry 

the additional stress of δP/A imposed on the system, the sum counteracting the total stress 

imposed. This additional stress δP/A in the water in known as the hydrostatic excess pressure. 

Referring to Fig.1.5(c), let us open the valve and start reckoning time from that instant. Water 

just starts to flow under the pressure gradient between it and the atmosphere seeking to return to 

its equilibrium or atmospheric pressure. The excess pore pressure begins to diminish, the spring 

starts getting compressed as the piston descends consequent to expulsion of pore water. It is just 
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the beginning of transient flow, simulating the phenomenon of consolidation. The openness of 

the valve is analogous to the permeability of soil. 

Referring to Fig.1.5 (d), flow has occurred to the extent of dissipating 50% of the excess pore 

pressure. The pore water pressure at this instant is half the initial value, i.e., 1/2(δP/A). This 

causes a corresponding increase in the stress in the spring of ½ (δP/A), the total stress remaining 

constant at [(P/A) + (δP/A)]. This stage refers to that of “50% consolidation”. 

Referring to Fig.5 (e), the final equilibrium condition is reached when the transient flow situation 

ceases to exist, consequent to the complete dissipation of the pore water pressure. The spring 

compresses to a final height Hf < Hi, carrying the total stress of (P + δP)/A, all by itself, since the 

excess pore water pressure has been reduced to zero, the pressure in it having equalled the 

atmospheric. The system has reached the equilibrium condition under the load (P + δP). This 

represents “100% consolidation” under the applied load or stress increment. We may say that the 

“soil” has been consolidated to an effective stress of (P + δP)/A.  

In this mechanistic model, the compressible soil skeleton is characterised by the spring and the 

pore water by the water in the cylinder. The more compressible the soil, the longer the time 

required for consolidation; the more permeable the soil, the shorter the time required. There is 

one important aspect in which this analogy fails to simulate consolidation of a soil. It is that the 

pressure conditions are the same throughout the height of the cylinder, whereas the consolidation 

of a soil begins near the drainage surfaces and gradually progresses inward. In may be noted that 

soil consolidates only when effective stress increases; that is to say, the volume change 

behaviour of a soil is a function of the effective stress and not the total stress. 

Similar arguments may be applied to the expansion characteristics under the decrease of load. 

An alternative mechanical analogy to the consolidation process is shown in Fig. 6. A cylinder is 

fitted with a number of pistons connected by springs to one another. Each of the compartments 

thus formed is connected to the atmosphere with the aid of standpipes. The cylinder is full of 

water and is considered to be airtight. The pistons are provided with perforations through which 

water can move from one compartment to another. The topmost piston is fitted with valves 

which may open or close to the atmosphere. It is assumed that any pressure applied to the top 

piston gets transmitted undiminished to the water and springs. 

 

 

 

 

 

 

 

Fig.1.6: Mechanical Analogy to Consolidation process 
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Initially, the cylinder is full of water and weights of the pistons are balanced by the springs; the 

water is at atmospheric pressure and the valves may be open. The water level stands at the 

elevation PP in the standpipes as shown. The valves are now closed, the water level continuing 

to remain at PP. An increment of pressure ∆𝜎 is applied on the top piston. It will be observed 

that the water level rises instantaneously in all the stand pipes to an elevation 

QQ, above PP by a height h = Δσ/γw. Let all the valves be opened simultaneously with the 

application of the pressure increment, the time being reckoned from that instant. The height of 

the springs remains unchanged at that instant and the applied increment of pressure is fully taken 

up by water as the hydrostatic excess pressure over and above the atmospheric. An equal rise of 

water in all the standpipes indicates that the hydrostatic excess pressure is the same in all 

compartments immediately after application of pressure. As time elapses, the water level in the 

pipes starts falling, the pistons move downwards gradually and water comes out through the 

open valves. At any time t = t1, the water pressure in the first compartment is least and that in 

the last or the bottommost is highest, as indicated by the water levels in the standpipes. The 

variation of hydrostatic excess pressure at various points in the depth of the cylinder, as shown 

by the dotted lines, varies with time. Ultimately, the hydrostatic excess pressure reduces to zero 

in all compartments, the water levels in the standpipes reaching elevation PP; this theoretically 

speaking, is supposed to happen after the lapse of infinite time. As the hydrostatic excess 

pressure decreases in each compartment, the springs in each compartment experience a 

corresponding pressure and get compressed. For example, at time t = t1, the hydrostatic excess 

pressure in the first compartment is given by the head PJ; the pressure taken by the springs is 

indicated by the head JQ, the sum of the two at all times being equivalent to the applied pressure 

increment; that is to say, it is analogous to the effective stress principle: σ = σ + u, the pressure 

transferred to the springs being analogous to inter-granular or effective stress in a saturated soil, 

and the hydrostatic excess pressure to the neutral pressure or excess pore water pressure. 

Since water is permitted to escape only at one end, it is similar to the case of a single drainage 

face for a consolidating clay sample. The distribution of hydrostatic excess pressure will be 

symmetrical about mid-depth for the situation of a double drainage face, the maximum occurring 

at mid-depth and the minimum or zero values occurring at the drainage faces. 

 

1.5 TERZAGHI’S THEORY OF ONE-DIMENSIONAL CONSOLIDATION 

 

Terzaghi (1925) advanced his theory of one-dimensional consolidation based upon the following 

assumptions, the mathematical implications being given in parentheses: 

1. The soil is homogeneous (kz is independent of z). 

2. The soil is completely saturated (S = 100%). 

3. The soil grains and water are virtually incompressible (γw is constant and volume change of 

soil is only due to change in void ratio). 

4. The behaviour of infinitesimal masses in regard to expulsion of pore water and consequent 

consolidation is no different from that of larger representative masses (Principles of calculus may 

be applied). 
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5. The compression is one-dimensional (u varies with z only). 

6. The flow of water in the soil voids is one-dimensional, Darcy’s law being valid. 

𝜕𝑣𝑥

𝜕𝑥
=

𝜕𝑣𝑦

𝜕𝑦
= 0 and 𝑣𝑧 = 𝑘𝑧

𝜕ℎ

𝜕𝑧
---------------       Eq.1.6 

Also, flow occurs on account of hydrostatic excess pressure (h = u/γw). 

7. Certain soil properties such as permeability and modulus of volume change are constant; these 

actually vary somewhat with pressure. (k and mv are independent of pressure). 

8. The pressure versus void ratio relationship is taken to be the idealised one, av is constant). 

9. Hydrodynamic lag alone is considered and plastic lag is ignored, although it is known to exist. 

(The effect of k alone is considered on the rate of expulsion of pore water). 

The first three assumptions represent conditions that do not vary significantly from actual 

conditions.  

The fourth assumption is purely of academic interest and is stated because the differential 

equations used in the derivation treat only infinitesimal distances. It has no significance for the 

laboratory soil sample or for the field soil deposit.  

The fifth assumption is certainly valid for deeper strata in the field owing to lateral confinement 

and is also reasonably valid for an oedometer sample.  

The sixth assumption regarding flow of pore water being one-dimensional may be taken to be 

valid for the laboratory sample, while its applicability to a field situation should be checked. 

However, the validity of Darcy’s law for flow of pore water is unquestionable.  

The seventh assumption may introduce certain errors in view of the fact that certain soil 

properties which enter into the theory vary somewhat with pressure but the errors are considered 

to be of minor importance. 

The eighth and ninth assumptions lead to the limited validity of the theory. The only justification 

for the use of the eighth assumption is that, otherwise, the analysis becomes unduly complex. 

The ninth assumption is necessitated because it is not possible to take the plastic lag into account 

in this theory. These two assumptions also may be considered to introduce some errors. 

Now let us see the derivation of Terzaghi’s theory with respect to the laboratory oedometer 

sample with double drainage as shown in Fig. 1.7. 

 
Fig.1.7: Consolidation of clay soil sample with double drainage 



12 
 

Let us consider a layer of unit area of cross-section and of elementary thickness dz at depth z 

from the pervious boundary. Let the increment of pressure applied be Δσ. immediately on 

application of the pressure increment, pore water starts to flow towards the drainage faces. Let 

∂h be the head lost between the two faces of this elementary layer, corresponding to a decrease 

of hydrostatic excess pressure ∂u. 

Equation 2, for flow of water through soil, holds here also, 

𝑘𝑥
𝜕2ℎ

𝜕𝑥2 + 𝑘𝑧
𝜕2ℎ

𝜕𝑧2=
1

1+𝑒
[𝑒

𝜕𝑠

𝜕𝑡
+ 𝑆

𝜕𝑒

𝜕𝑡
]------------------      Eq.1.7 

For one-dimensional flow situation, this reduces to: 

𝑘𝑧
𝜕2ℎ

𝜕𝑧2=
1

1+𝑒
[𝑒

𝜕𝑠

𝜕𝑡
+ 𝑆

𝜕𝑒

𝜕𝑡
]-----------------------------      Eq.1.8 

During the process of consolidation, the degree of saturation is taken to remain constant at 100%, 

while void ratio changes causing reduction in volume and dissipation of excess hydrostatic 

pressure through expulsion of pore water; that is, 

S=0  or unity and 
𝜕𝑠

𝜕𝑡
= 0 

Hence  𝑘𝑧
𝜕2ℎ

𝜕𝑧2=−
1

1+𝑒
[

𝜕𝑒

𝜕𝑡
] =

𝜕

𝜕𝑡
[

𝑒

1+𝑒
]------------------      Eq.1.9 

Negative sign denoting decrease of e for increase of h. 

 

Since volume decrease can be due to a decrease in the void ratio only as the pore water and soil 

grains are virtually incompressible,  
𝜕

𝜕𝑡
[

𝑒

1+𝑒
]  represents time-rate of volume change per unit 

volume 

The flow is only due to the hydrostatic excess pressure, ℎ =
𝑢

𝛾𝑤
 

So 
𝑘

𝛾𝑤

𝜕2𝑢

𝜕𝑧2 = −
𝜕𝑉

𝜕𝑡
---------------------------------------               Eq.1.10 

Here k is the permeability of soil in the direction of flow, and ∂V represents the change in 

volume per unit volume. The change in hydrostatic excess pressure, ∂u, changes the intergranular 

or effective stress by the same magnitude, the total stress remaining constant. 

The change in volume per unit volume, ∂V, may be written, as per the definition of the modulus 

of volume change, mv 

𝜕𝑉 = 𝑚𝑣𝜕𝜎 = −𝑚𝑣𝜕𝑢---------------------------                Eq.1.11 

Negative sign is used, since increase in stress reduces pore water pressure. 

Differentiating both sides with respect to time, 
𝜕𝑉

𝜕𝑡
= −𝑚𝑣

𝜕𝑢

𝜕𝑡
-------------------------------------------                Eq.1.12 

From Eq. 1.11 and 1.12, we get 

𝜕𝑢

𝜕𝑡
=

𝑘

𝛾𝑤𝑚𝑣

𝜕2𝑢

𝜕𝑧2------------------------------------------                 Eq.1.13 

This is written as: 

𝜕𝑢

𝜕𝑡
= 𝑐𝑣

𝜕2𝑢

𝜕𝑧2----------------------------------------------                           Eq.1.14 

Where 𝑐𝑣 =
𝑘

𝛾𝑤𝑚𝑣
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cv is known as the “Coefficient of consolidation”. u represents the hydrostatic excess pressure at 

a depth z from the drainage face at time t from the start of the process of consolidation. 

The coefficient of consolidation may also be written in terms of the coefficient of compressibility 

𝑐𝑣 =
𝑘

𝛾𝑤𝑚𝑣
=

𝑘(1+𝑒0)

𝑎𝑣𝛾𝑤
-----------------------------------                Eq.1.15 

Equation 1.13 is the basic differential equation of consolidation according to Terzaghi’s theory 

of one-dimensional consolidation. The coefficient of consolidation combines the effect of 

permeability and compressibility characteristics on volume change during consolidation. Its units 

can be shown to be mm2/s or L2 T-1. 

The initial hydrostatic excess pressure, ui, is equal to the increment of pressure Δσ, and is the 

same throughout the depth of the sample, immediately on application of the pressure, and is 

shown by the heavy line in Fig. 1.7 (b). The horizontal portion of the heavy line indicates the fact 

that, at the drainage face, the hydrostatic excess pressure instantly reduces to zero, theoretically 

speaking. Further, the hydrostatic excess pressure would get fully dissipated throughout the 

depth of the sample only after the lapse of infinite time*, as indicated by the heavy vertical line 

on the left of the figure. At any other instant of time, the hydrostatic excess pressure will be 

maximum at the farthest point in the depth from the drainage faces, that is, at the middle and it is 

zero at the top and bottom. The distribution of the hydrostatic excess pressure with depth is 

sinusoidal at other instants of time, as shown by dotted lines. These curves are called 

“Isochrones”. 

1.6 Alternative Method: 

With reference to Fig.1, the hydraulic gradient i1 at depth z 
𝜕ℎ

𝜕𝑧
=

1

𝛾𝑤

𝜕𝑢

𝜕𝑧
----------------------------                  Eq.1.16 

The hydraulic gradient i2 at depth z+𝜕𝑧 =
1

𝛾𝑤
(

𝜕𝑢

𝜕𝑧
+

𝜕2𝑢

𝜕𝑧2 𝑑𝑧)-----              Eq.1.17 

Rate of inflow per unit area = Velocity at depth z = k.i1, by Darcy’s law.  

Rate of outflow per unit area = Velocity at (z + dz) = k.i2 

Water lost per unit time = k(i2 – i1) =
𝑘

𝛾𝑤
(

𝜕2𝑢

𝜕𝑧2 𝑑𝑧)---------------                   Eq.1.18 

This should be the same as the time-rate of volume decrease.  

Volumetric strain = mv.Δσ  = – mv∂(σ – u)---------------------                          Eq.1.19 

As per the definition of the modulus of volume change, mv 

(The negative sign denotes decrease in volume with increase in pressure). 

∴ Change of volume = – mv∂(σ – u).dz--------------------------               Eq.1.20 

Since the elementary layer of thickness dz and unit cross-sectional area in considered. 

Time-rate of change of volume = − 𝑚𝑣
𝜕

𝜕𝑡
(𝜎 − 𝑢)𝑑𝑧--------               Eq.1.21 

But 
𝜕𝜎

𝜕𝑡
= 0, since σ is constant. 

∴ Time-rate of change of volume = +𝑚𝑣
𝜕𝑢

𝜕𝑡
𝑑𝑧------------------                 Eq.1.22 

Equating this to water lost per unit time 

    
𝑘

𝛾𝑤𝑚𝑣

𝜕2𝑢

𝜕𝑧2dz=-𝑚𝑣
𝜕𝑢

𝜕𝑡
𝑑𝑧--------------              Eq.1.23 
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𝜕𝑢

𝜕𝑡
= 𝑐𝑣

𝜕2𝑢

𝜕𝑧2------------                                        Eq.1.24 

 

Where 𝑐𝑣 =
𝑘

𝛾𝑤𝑚𝑣
---------------                  Eq.1.25 

1.7 SOLUTION OF TERZAGHI’S EQUATION FOR ONE-DIMENSIONAL 

CONSOLIDATION 

 

Terzaghi solved the differential equation for a set of boundary conditions which have utility in 

solving numerous engineering problems and presented the results in graphical form using 

dimensional parameters. 

The following are the boundary conditions: 

1. There is drainage at the top of the sample: At z = 0, u = 0, for all t. 

2. There is drainage at the bottom of the sample: At z = 2H, u = 0, for all t. 

3. The initial hydrostatic excess pressure ui is equal to the pressure increment, Δσ u = ui = Δσ, at 

t = 0. 

Terzaghi chose to consider this situation where u = ui initially throughout the depth, although 

solutions are possible when ui varies with depth in any specified manner. The thickness of the 

sample is designated by 2H, the distance H thus being the length of the longest drainage path, 

i.e., maximum distance water has to travel to reach a drainage face because of the existence of 

two drainage faces. (In the case of only one drainage face, this will be equal to the total thickness 

of the clay layer). 

The general solution for the above set of boundary conditions has been obtained on the basis of 

separation of variables and Fourier Series expansion and is as follows: 

𝑢 = 𝑓(𝑧, 𝑡) = ∑ {
1

𝐻
∫ 𝑢𝑖𝑠𝑖𝑛

𝑛𝜋𝑧

2𝐻

2𝐻

0
𝑑𝑧} (𝑠𝑖𝑛

𝑛𝜋𝑧

2𝐻
)𝑒−𝑛2𝜋2𝑐𝑣/4𝐻2∞

𝑛=1 -----             Eq.1.26 

This solution enables the hydrostatic excess u to be computed for a soil mass under any initial 

system of stress ui, at any depth z, and at any time t. 

In particular, if ui is considered constant with respect to depth, this equation reduces to 

𝑢 = ∑ {
2𝑢𝑖

𝑛𝜋
(1 − 𝑐𝑜𝑠𝑛𝜋)} (𝑠𝑖𝑛

𝑛𝜋𝑧

2𝐻
)𝑒−𝑛2𝜋2𝑐𝑣/4𝐻2∞

𝑛=1 -------------              Eq.1.27 

When n is even, (1 – cosnπ) vanishes; when n is odd, this factor becomes 2. Therefore it is 

convenient to replace n by (2m + 1), m being an integer. Thus, we have 

𝑢 = ∑
4𝑢𝑖

(2𝑚+1)𝜋
[𝑠𝑖𝑛

(2𝑚+1)

2𝐻
]𝑒−(2𝑚+1)2𝜋2𝑐𝑣/4𝐻2∞

𝑛=1 -------------               Eq.1.28 

Three-dimensionless parameters are introduced for convenience in presenting the results in a 

form usable in practice. The first is z/H, relating to the location of the point at which 

consolidation is considered, H being the maximum length of the drainage path. The second is the 

consolidation ratio, Uz, to indicate the extent of dissipation of the hydrostatic excess pressure in 

relation to the initial value: 

𝑈𝑧 =
𝑢𝑖−𝑢

𝑢𝑖
= [1 −

𝑢

𝑢𝑖
]-----------------------                 Eq.1.29 

The subscript z is significant, since the extent of dissipation of excess pore water pressure is 

different for different locations, except at the beginning and the end of the consolidation process. 
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The third dimensionless parameter, relating to time, and called ‘Time-factor’, T, is defined as 

follows: 

𝑇 =
𝑐𝑣𝑡

𝐻2 ------------------------                   Eq.1.30 

where cv is the coefficient of consolidation, 

H is the length drainage path, and t is the elapsed time from the start of consolidation process. 

In the context of consolidation process at a particular site, cv and H are constants, and the time 

factor is directly proportional to time. Introducing the time factor we have 

𝑢 = ∑
2𝑢𝑖

𝑀

∞
𝑚=0 ⌈𝑠𝑖𝑛

𝑀𝑧

𝐻
⌉ 𝑒−𝑀2𝑇--------------                 Eq.1.31 

Introducing the consolidation ratio, Uz, we have: 

𝑈𝑧 = 1 −
𝑢

𝑢𝑖
= 1 − ∑

2

𝑀

∞
𝑚=0 ⌈𝑠𝑖𝑛

𝑀𝑧

𝐻
⌉ 𝑒−𝑀2𝑇----------------------              Eq.1.32 

The following approximate expressions have been found to yield values for T with good degree 

of precision: 

When U < 60%, T = (π/4)U2----------------------------                Eq.1.33 

When U > 60%, T = – 0.9332 log10 (1 – U) – 0.0851                                            Eq.1.34acy  

1.8 THREE-DIMENSIONAL CONSOLIDATION OF SOIL  

Terzaghi’s theory of consolidation assumes that the expulsion of pore water during consolidation 

takes place in vertical direction alone. This is generally true for most of the cases, where the 

pervious layers, which form the drainage faces, are horizontal, located above and /or below the 

compressible soil layer. In some special cases, where vertical sand drains or sand wicks are 

installed to accelerate the consolidation of a natural or man-made fill, the compressible soil layer 

is surrounded by vertical drainage face, facilitating the pore water flow in horizontal direction 

from the stressed zone of compressible soil. 

In such cases, where horizontal flow of pore water takes place, Terzaghi’s 1D theory of 

consolidation grossly underestimates the rate of consolidation. This is because the time required 

for dissipation of pore water pressure reduces because of additional flow in horizontal (lateral) 

direction and it is also because the permeability of soils in horizontal direction is several times 

(up to 25 times or more) more than that in vertical direction. For such cases, it is necessary to 

consider the flow in all directions to estimate the rate of consolidation 

 

1. 9 THREE-DIMENSIONAL CONSOLIDATION EQUATION IN CARTESIAN 

COORDINATES 

 

Consider the flow that is taking place through a small soil element of dimensions dx, dy, and dz 

in x, y, and z coordinate directions, respectively, as shown in Fig. 1.8. Let vx be the velocity of 

pore water entering the soil element in X-direction, vy be the velocity of pore water entering the 

soil element in Y-direction, and vz be the velocity of pore water entering the soil element in Z-

direction. 
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Fig.1.8: Flow through soil mass during 3D consolidation 

Then the velocity of pore water leaving the soil element can be expressed as  

in X-direction = vx + (∂vx/∂x) x dx 

in Y-direction = vy + (∂vy/∂y) x dy 

in Z-direction = vz + (∂vz/∂z) x dz 

We know that the rate of flow (i.e., volume per unit time) of pore water is given by q = v x A, 

where v is the velocity of flow and A is the area of flow. Hence, the total volume of water 

entering the soil element per unit time is  

𝑞𝑖 = 𝑣𝑥 × 𝑑𝑦 × 𝑑𝑧 + 𝑣𝑦 × 𝑑𝑧 × 𝑑𝑥 + 𝑣𝑧 × 𝑑𝑥 × 𝑑𝑦-----------              Eq.1.35 

Volume of the water leaving the soil element per unit time is given as 

𝑞0 = [𝑣𝑥 + (
𝜕𝑣𝑥

𝜕𝑥
× 𝑑𝑥)] × 𝑑𝑦 × 𝑑𝑧 + [𝑣𝑦 + (

𝜕𝑣𝑦

𝜕𝑦
× 𝑑𝑦)] × 𝑑𝑧 × 𝑑𝑥 + [𝑣𝑧 + (

𝜕𝑣𝑧

𝜕𝑧
× 𝑑𝑧)] × 𝑑𝑥 × 𝑑𝑦 

-       Eq.1.36 

Volume of pore water squeezed (expelled) out of the element per unit time is expressed as 

∆𝑞 = 𝑞0 − 𝑞𝑖 = [{𝑣𝑥 + (
𝜕𝑣𝑥

𝜕𝑥
× 𝑑𝑥)} × 𝑑𝑦 × 𝑑𝑧 + {𝑣𝑦 + (

𝜕𝑣𝑦

𝜕𝑦
× 𝑑𝑦)} × 𝑑𝑧 × 𝑑𝑥 + {𝑣𝑧 + (

𝜕𝑣𝑧

𝜕𝑧
×

𝑑𝑧)} × 𝑑𝑥 × 𝑑𝑦]--                  Eq.1.37 

∆𝑞 =
𝜕𝑣𝑥

𝜕𝑥
× 𝑑𝑥 × 𝑑𝑦 × 𝑑𝑧 +

𝜕𝑣𝑦

𝜕𝑦
× 𝑑𝑥 × 𝑑𝑦 × 𝑑𝑧 +

𝜕𝑣𝑧

𝜕𝑧
× 𝑑𝑥 × 𝑑𝑦 × 𝑑𝑧--------          Eq.1.38 

0r  ∆𝑞 = [
𝜕𝑣𝑥

𝜕𝑥
+

𝜕𝑣𝑦

𝜕𝑦
+

𝜕𝑣𝑧

𝜕𝑧
] × 𝑉1-------------------------             Eq.1.39 

where V1 the initial volume = 𝑑𝑥 × 𝑑𝑦 × 𝑑𝑧. From Eq. (11.22), we have   
𝜕𝑣𝑧

𝜕𝑧
=

𝜕

𝜕𝑧
[𝑘 ×

1

𝛾𝑤
(

𝜕𝑢

𝜕𝑧
)]----------------------------              Eq.1.40 

Since the permeability of soil is not identical in x-, y-, and z-directions, we can write 
𝜕𝑣𝑧

𝜕𝑧
=

𝜕

𝜕𝑧
[𝑘𝑧 ×

1

𝛾𝑤
(

𝜕𝑢

𝜕𝑧
)]----------------------               Eq.1.41 

where kz is the permeability of soil in z-direction. Similarly we can obtain  
𝜕𝑣𝑥

𝜕𝑥
=

𝜕

𝜕𝑥
[𝑘𝑥 ×

1

𝛾𝑤
(

𝜕𝑢

𝜕𝑥
)]--------------------------               Eq.1.42 
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𝜕𝑣𝑦

𝜕𝑦
=

𝜕

𝜕𝑦
[𝑘𝑦 ×

1

𝛾𝑤
(

𝜕𝑢

𝜕𝑦
)]-------------                 Eq.1.43 

where kx and ky  are the permeability of soil in x-direction and y-direction respectively. 

Substituting the value of 
𝜕𝑣𝑥

𝜕𝑥
, 

𝜕𝑣𝑦

𝜕𝑦
 , and 

𝜕𝑣𝑧

𝜕𝑧
 in Eq. (1.39), we have  

∆𝑞 = [
𝜕

𝜕𝑥
{𝑘𝑥 ×

1

𝛾𝑤
(

𝜕𝑢

𝜕𝑥
)}+

𝜕

𝜕𝑦
{𝑘𝑦 ×

1

𝛾𝑤
(

𝜕𝑢

𝜕𝑦
)}+

𝜕

𝜕𝑧
{𝑘𝑧 ×

1

𝛾𝑤
(

𝜕𝑢

𝜕𝑧
)}] × 𝑉1---------------            Eq.1.44 

Assuming the soil to be homogeneous, density of water (γw) is uniform in all directions, while 

permeability (k) is uniform in the respective coordinate direction , than the above equation can 

be expressed as 

∆𝑞 =
1

𝛾𝑤
[{𝑘𝑥 × (

𝜕2𝑢

𝜕𝑥2)} + {𝑘𝑦 × (
𝜕2𝑢

𝜕𝑦2)} + {𝑘𝑧 × (
𝜕2𝑢

𝜕𝑧2)}] × 𝑉1-------------------------           Eq.1.45 

From the definition of coefficient of volume compressibility, we have  

𝑚𝑣 = −∆𝑉
𝑉1

⁄ ×
1

∆𝜎′--------------------                 Eq.1.46 

Change in the volume of soil is  

∆𝑉 = −𝑚𝑣 × 𝑉1 × ∆𝜎′---------------------------------                Eq.1.47 

Change in the volume per unit time is given as  

∂/∂t (ΔV) = ∂/∂t (–mv x V1 x Δσ’)-------                 Eq.1.48 

Assuming that (a) the coefficient of volume compressibility (mv) remains constant with time and 

(b) the change in the volume of soil due to consolidation is negligible, we have  
𝜕

𝜕𝑡
(∆𝑉) = −𝑚𝑣 × 𝑉1 ×

𝜕

𝜕𝑡
(∆𝜎′)------------------------                Eq.1.49 

From Terzaghi’s effective stress principle, we have Δσ = Δσ’ + u. Differentiating both sides with 

respect to time, we have  
𝜕

𝜕𝑡
∆𝜎 =

𝜕

𝜕𝑡
∆𝜎′ +

𝜕𝑢

𝜕𝑡
-------------------                  Eq.1.50 

As the total stress, Δσ, is constant with time during the consolidation, so  

(∂/∂t) Δσ = 0-------------------------------------                 Eq.1.51 

we have , 
𝜕

𝜕𝑡
∆𝜎 = 0 or 

𝜕

𝜕𝑡
∆𝜎′ +

𝜕𝑢

𝜕𝑡
= 0 

Hence 
𝜕

𝜕𝑡
(∆𝜎′) = −

𝜕𝑢

𝜕𝑡
 

Substituting this value in Eq. (1.49), we have 
𝜕

𝜕𝑡
(∆𝑉) = −𝑚𝑣 × 𝑉1 × (−

𝜕𝑢

𝜕𝑡
) = 𝑚𝑣 × 𝑉1 ×

𝜕𝑢

𝜕𝑡
---------------------              Eq.1.52 

As the change in the volume of soil is only due to expulsion of pore water, we get 

(∂/∂t) (ΔV) = Δq 

Hence, equating Eqs. (1.52) and (1.45), we have  

𝑚𝑣 × 𝑉1 ×
𝜕𝑢

𝜕𝑡
=

1

𝛾𝑤
[{𝑘𝑥 × (

𝜕2𝑢

𝜕𝑥2)} + {𝑘𝑦 × (
𝜕2𝑢

𝜕𝑦2)} + {𝑘𝑧 × (
𝜕2𝑢

𝜕𝑧2)}] × 𝑉1-----------            Eq.1.53 

Or 
𝜕𝑢

𝜕𝑡
=

1

𝛾𝑤×𝑚𝑣
[{𝑘𝑥 × (

𝜕2𝑢

𝜕𝑥2) + 𝑘𝑦 × (
𝜕2𝑢

𝜕𝑦2) + 𝑘𝑧 × (
𝜕2𝑢

𝜕𝑧
)}] × 𝑉1----------------------------   Eq.1.54 

𝜕𝑢

𝜕𝑡
= [{𝐶𝑣𝑥 × (

𝜕2𝑢

𝜕𝑥2) + 𝐶𝑣𝑦 × (
𝜕2𝑢

𝜕𝑦2) + 𝐶𝑣𝑧 × (
𝜕2𝑢

𝜕𝑧
)}]------               Eq.1.55 

Here Cvx, Cvy, and Cvz are coefficient of consolidation in x-, y-, and z-directions, respectively.  
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1.10 SUMMARIZING THE ASSUMPTIONS MADE IN THE DERIVATION OF 

TERZAGHI’S CONSOLIDATION EQUATION, WE HAVE THE FOLLOWING 

 

i. The soil is homogeneous and fully saturated. 

ii. Soil particles and pore water are incompressible. 

iii. The flow of water during expulsion of pore water occurs only in vertical direction, that is, 

consolidation is one dimensional 

iv. The change in the volume of soil due to consolidation is negligible compared to the initial 

volume of soil. 

v. Flow is laminar and Darcy’s law is valid. 

vi. Permeability is the same throughout the thickness of the compressible soil layer. 

vii. The coefficient of volume compressibility (mv) remains constant with time. 

viii. Compression takes place only due to expulsion of pore water, that is, the effect of secondary 

consolidation is neglected. 

1.11  THREE-DIMENSIONAL CONSOLIDATION EQUATION IN POLAR 

COORDINATES 

 

For most practical cases, the 3D consolidation is identical about the x- and y-axes. Hence, it is 

more convenient to express the consolidation equation in polar coordinates consisting of only the 

radial and vertical axes. The 3D consolidation in Cartesian coordinates can be transformed into 

polar coordinates as follows  

x = r cos θ, y = r sin θ, z = z 

Hence 

r2 = x2 + y2 …                     Eq.1.56 

and y/x = sinθ/cosθ = tanθ -------                  Eq.1.57 

Differentiating Eq. 1.56 partially with respect to x we get  

2𝑟 × 𝜕𝑥 = 2𝑥 × 𝜕𝑥------------                   Eq.1.57 

Or 
𝜕𝑟

𝜕𝑥
=

𝑥

𝑟
= 𝑐𝑜𝑠𝜃---------------                   Eq.1.58 

Similarly, 

∂r/∂y = y/r = sinθ-----------------                   Eq.1.59 

Differentiating Eq. (11.65) partially with respect to x we get – 

∂θ/∂x = y/r2 = sinθ/r---------------------                  Eq.1.60 

Similarly, 

∂θ/∂y = x/r2 = cosθ/r---------------------                  Eq.1.61 

The excess hydrostatic pressure (u) is a function of r and θ  

𝑢 = 𝑓1(𝑟) × 𝑓2(𝜃)---------------------                             Eq.1.62 
𝜕𝑢

𝜕𝑥
=

𝜕𝑢

𝜕𝑟
×

𝜕𝑟

𝜕𝑥
+

𝜕𝑢

𝜕𝜃
×

𝜕𝜃

𝜕𝑥
-------------------                 Eq.1.63 

Hence 
𝜕𝑢

𝜕𝑥
=

𝜕𝑢

𝜕𝑟
× 𝑐𝑜𝑠𝜃 −

𝜕𝑢

𝜕𝜃
×

𝑠𝑖𝑛𝜃

𝑟
--------------                 Eq.1.64 

and 
𝜕𝑢

𝜕𝑦
=

𝜕𝑢

𝜕𝑟
×

𝜕𝑟

𝜕𝑦
+

𝜕𝑢

𝜕𝜃
×

𝜕𝜃

𝜕𝑦
------------------                  Eq.1.65 
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Differentiating Eqs. (1.64) and (1.66) again, adding and simplifying, we have  

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2 =
𝜕2𝑢

𝜕𝑟2 +
1

𝑟
×

𝜕𝑢

𝜕𝑟
+

1

𝑟2 ×
𝜕2𝑢

𝜕2𝜃
--------------                Eq.1.66 

For the case of radial symmetry, excess pore pressure (u) is independent of θ. Hence  

∂u2/∂2θ = 0--------------------                   Eq.1.67 

Therefore, Eq. (1.66) becomes  

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2 =
𝜕2𝑢

𝜕𝑟2 +
1

𝑟
×

𝜕𝑢

𝜕𝑟
----------------------------------               Eq.1.68 

Rewriting Eq. (1.55), we get  

𝜕𝑢

𝜕𝑡
= [{𝐶𝑣𝑥 × (

𝜕2𝑢

𝜕𝑥2
) + 𝐶𝑣𝑦 × (

𝜕2𝑢

𝜕𝑦2
) + 𝐶𝑣𝑧 × (

𝜕2𝑢

𝜕𝑧
)}] 

For radial symmetry, 

Cvx = Cvy = Cvr and x = y = r 

Substituting these values in Eq. (1.55), we obtain 

𝜕𝑢

𝜕𝑡
= 𝐶𝑣𝑟 [

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2
] + 𝐶𝑣𝑧 × (

𝜕2𝑢

𝜕𝑧
)-------------------                Eq.1.69 

Substituting Eq. (1.68) in Eq. (1.69), we get  

𝜕𝑢

𝜕𝑡
= 𝐶𝑣𝑟 [

𝜕2𝑢

𝜕𝑟2 +
1

𝑟

𝜕𝑢

𝜕𝑟
] + 𝐶𝑣𝑧 × (

𝜕2𝑢

𝜕𝑧
)-------------------                Eq.1.70 

 

1.12 SOLUTION OF 3D CONSOLIDATION EQUATION 

 

Typical solution for 3D consolidation problem can be obtained by considering the expulsion of 

pore water in vertical and radial directions separately. Thus, Eq. (1.70) consists of two parts as 

follows – 

Vertical flow – 

𝜕𝑢

𝜕𝑡
= 𝐶𝑣𝑧 × (

𝜕2𝑢

𝜕𝑧
)---------------                  Eq.1.71 

The solution of Eq. (1.71) is given by Terzaghi using Eq. (1.34), which is reproduced below  

 

𝑇𝑧 =
𝐶𝑣𝑧×𝑡

𝑑2 ------------------                   Eq.1.72 

where Tz is the time factor for vertical flow and Cvz the coefficient of consolidation for vertical 

flow. 

Radial flow  

𝜕𝑢

𝜕𝑡
= 𝐶𝑣𝑟 [

𝜕2𝑢

𝜕𝑟2 +
1

𝑟

𝜕𝑢

𝜕𝑟
]-----------------                  Eq.1.73 

 

The solution of Eq. (1.73) was obtained by Rendulic (1935) using an equation similar to that in 

the vertical flow – 

Ur = f x (Tr) ------------------                   Eq.1.74 

where Ur is the degree of consolidation in radial direction and Tr the time factor for the radial 

flow of pore water which  is given as 
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𝑇𝑟 =
𝐶𝑣𝑟

2𝑟
× 𝑡---------------------------                  Eq.1.75 

Where, Cvr is the coefficient of consolidation in radial (horizontal) direction and 2r the effective 

diameter of a soil cylinder from which pore water flows into the sand drain. 

1.13 THE SOLUTION OF RADIAL FLOW PROBLEM WAS OBTAINED FOR THE 

FOLLOWING TWO TYPES OF VERTICAL STRAINS 

i.  Free Vertical Strain Case: 

In this case, it is assumed that the consolidation settlements at the surface do not change the 

distribution of load to the soil. Solutions for this case were obtained by Glover (1930) and 

Rendulic (1935), assuming that pore water pressure is uniform at a radial distance equal to 2r, 

which is the effective diameter of the soil cylinder as defined in Eq. (1.75). 

ii.  Equal Vertical Strain Case: 

In this case, the redistribution of surface loads due to arching is considered. As the expulsion of 

pore water occurs faster near the surface of the sand drains, consolidation (settlement) at any 

time is more near the surface of sand drain than elsewhere. This would redistribute the stress that 

is known as arching. In extreme limit, the arching action in soil would redistribute the stresses to 

such an extent that the consolidation settlement at the surface is the same at all points. 

Barron (1948) developed solution for equal vertical strain case, given by the following equations  

𝑈𝑟 = 1 − 𝑒𝛼-------------------                   Eq.1.76 

Here 𝛼 =
−8𝑇𝑟

𝑓(𝑛)
-----------------                   Eq.1.77 

And 𝑓(𝑛) =
𝑛2

𝑛2−1
𝑙𝑜𝑔𝑒𝑛 −

3𝑛2−1

4𝑛2  , 𝑛 =
𝑟

𝑟𝑤
 

where rw is the radius of sand drains. 

It was observed that for values of n > 10, free vertical strain, and equal vertical strain case give 

more or less same results. As the free vertical strain case requires more time for evaluation, equal 

vertical strain case is commonly used for solving radial consolidation problems. 

Equations (1.76) and (1.77) are combined to form Eq. (1.78) to solve the 3D consolidation prob-

lems of sand drains  

(1 − 𝑈) = (1 − 𝑈𝑍)(1 − 𝑈𝑟)------------------                Eq.1.78 

(1 – U) = (1 – Uz)(1 – Ur) …(11.78) 

where U is the degree of consolidation for 3D flow, Uz the degree of consolidation for vertical 

flow, and Ur the degree of consolidation for radial flow. 

 

1.14 LABORATORY CONSOLIDATION TESTS  

The one-dimensional consolidation testing procedure was first suggested by Terzaghi. This test 

is performed in a consolido meter (sometimes referred to as an oedometer). The schematic 

diagram of a consolido meter is shown in Figure 1.9(a). Figure 1.9(b) shows a photograph of a 

consolido meter. The soil specimen is placed inside a metal ring with two porous stones, one at 

the top of the specimen and another at the bottom. The specimens are usually 64 mm in diameter 

and 25 mm thick. The load on the specimen is applied through a lever arm, and compression is 

measured by a micrometer dial gauge. The specimen is kept under water during the test. Each 
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load usually is kept for 24 hours. After that, the load usually is doubled, which doubles the 

pressure on the specimen, and the compression measurement is continued. At the end of the test, 

the dry weight of the test specimen is determined. Figure 1.9(c) shows a consolidation test in 

progress. The general shape of the plot of deformation of the specimen against time for a given 

load increment is shown in Figure 1.10. From the plot, we can observe three distinct stages, 

which may be described as follows: 

Stage I: Initial compression, which is caused mostly by preloading 

Stage II: Primary consolidation, during which excess pore water pressure gradually is transferred 

into effective stress because of the expulsion of pore water 

Stage III: Secondary consolidation, which occurs after complete dissipation of the excess pore 

water pressure, when some deformation of the specimen takes place because of the plastic 

readjustment of soil fabric 

 

 

 

 

 

 

 

 

Fig. 1.9 (a): Schematic diagram of a consolidometer 

 

 

 

 

 

 

 

 

Fig. 1.9 (b): Photograph of a consolidometer  (c): Consolidation test in progress.  
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Fig. 1.10: Deformation shape of the specimen 

1.15 VOID RATIO–PRESSURE PLOTS 

After the time–deformation plots for various loadings are obtained in the laboratory, it is 

necessary to study the change in the void ratio of the specimen with pressure. Following is a 

step-by-step procedure for doing so: 

Step 1: Calculate the height of solids, Hs, in the soil specimen (Fig.1.11) using the equation 

𝐻𝑆 =
𝑊𝑆

𝐴𝐺𝑆𝛾𝑤
=

𝑀𝑆

𝐴𝐺𝑆𝜌𝑤
-----------------------                 Eq.1.79 

where Ws =dry weight of the specimen 

Ms = Dry mass of the specimen 

A = Area of the specimen 

Gs = Specific gravity of soil solids 

𝛾𝑤 = Unit weight of water 

𝜌𝑤 =Density of water 

Step 2: Calculate the initial height of voids as 

𝐻𝑉 = 𝐻 − 𝐻𝑆-----------------------                  Eq.1.80 

where HV = initial height of the specimen. 

Step 3: Calculate the initial void ratio, of the specimen, using the equation 

𝑒0 =
𝑉𝑉

𝑉𝑆
=

𝐻𝑉

𝐻𝑆

𝐴

𝐴
=

𝐻𝑉

𝐻𝑆
----------------------                 Eq.1.81 

Step 4: For the first incremental loading, s1 (total load/unit area of specimen), which causes a 

deformation ∆H1, calculate the change in the void ratio as 
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∆𝑒1 =
∆𝐻1

𝐻𝑆
--------------------                   Eq.1.82 

∆H1 is obtained from the initial and the final dial readings for the loading). 

It is important to note that, at the end of consolidation, total stress s1 is equal to effective stress 

Step 5: Calculate the new void ratio after consolidation caused by the pressure increment as 

𝑒1 = 𝑒0 − ∆𝑒1--------------------                  Eq.1.83 

For the next loading, 𝜎2 (note: 𝜎2  equals the cumulative load per unit area of specimen), which 

causes additional deformation ∆H2, the void ratio at the end of consolidation can be calculated as 

𝑒2 = 𝑒1 −
∆𝐻2

𝐻2
--------------------                  Eq.1.84 

At this time, 𝜎2
′ effective stress, proceeding in a similar manner, one can obtain the void ratios at 

the end of the consolidation for all load increments. 

The effective stress 𝜎′  and the corresponding void ratios (e) at the end of consolidation are 

plotted on semi logarithmic graph paper. The typical shape of such a plot is shown in Fig. 1.12 

 

 
Fig. 1.11: Change of height of specimen in one-dimensional consolidation test 

 

 
 

Fig. 1.12: Typical plot of e against log 𝜎 ′ 

1.16 EVALUATION OF COEFFICIENT OF CONSOLIDATION FROM 

OEDOMETER TEST DATA 

The coefficient of consolidation, Cv, in any stress range of interest, may be evaluated from its 

definition, however it can be evaluated by experimentally determining the parameters k, av and e0 
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for the stress range under consideration. k may be got from a permeability test conducted on the 

oedometer sample itself, after complete consolidation under the particular stress increment av  

and e0 may be obtained from the oedometer test data, by plotting the e – σ curve. However, 

consolidation equation is rarely used for the determination of cv. Instead, cv is evaluated from the 

consolidation test data by the use of characteristics of the theoretical relationship between the 

time factor T, and the degree of consolidation, U as shown in Fig.1.13. These methods are known 

as ‘fitting methods’, as one tries to fit in the characteristics of the theoretical curve with the 

experimental or laboratory curve.  

The more generally used fitting methods are the following: 

(a) The square root of time fitting method 

(b) The logarithm of time fitting method 

These two methods will be presented in the following sub-sections. 

 

 
Fig. 1.13: Time versus reduction in sample thickness for a load-increment 

 

1.16.1 The Square Root of Time Fitting Method 

This method has been devised by D.W. Taylor (1948). The coefficient of consolidation is the soil 

property that controls the time-rate or speed of consolidation under a load-increment. The 

relation between the sample thickness and elapsed time since the application of the loading 

increment is obtainable from an oedometer test and is somewhat as shown in Fig. 1.13 for a 

typical load-increment. This figure depicts change in sample thickness with time essentially due 

to consolidation only the elastic compression which occurs almost instantaneously on application 

of load increment is shown. The effect of prolonged compression that occurs after 100% 

dissipation of excess pore pressure is not shown or is ignored; this effect is known as ‘Secondary 

consolidation which is briefly presented in the following section. The curves of Figs. 1.14 and 

the theoretical curves bear striking similarity; in fact, one should expect it if Terzaghi’s theory is 

to be valid for the phenomenon of consolidation. This similarity becomes more apparent if the 

curves are plotted with square root of time/time factor as the function, as shown in Fig. 1.14 (a) 

and (b). The theoretical curve on the square root plot is a straight line up to about 60% 

consolidation with a gentle concave upward curve thereafter. If another straight line, shown 

dotted, is drawn such that the abscissae of this line are 1.15 times those of the straight line 

portion of the theoretical curve, it can be shown to cut the theoretical curve at 90% consolidation. 

This may be established from the values of T at various values of U given in Fig. 7.24 for case I; 
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that is, the value of T at 90% consolidation is 1.15 times the abscissa of an extension of the 

straight line portion of the U versus T relation. This property is used for ‘fitting’ the theoretical 

curve to the laboratory curve. 

The laboratory curve shows a sudden initial compression, called ‘elastic compression’ which 

may be partly due to compression of gas in the pores. The corrected zero point at zero time is 

obtained by extending the straight line portion of the laboratory plot backward to meet the axis 

showing the sample thickness/dial gauge reading. The so-called ‘primary compression’ or 

‘primary consolidation’ is reckoned from this corrected zero. A dashed line is constructed from 

the corrected zero such that its abscissa is 1.15 times those of the straight line portion of the 

laboratory plot. The intersection of the dashed line with the laboratory plot identifies the point 

representing 90% consolidation in the sample. The time corresponding to this can be read off 

from the laboratory plot. The point corresponding to 100% primary consolidation may be easily 

extrapolated on this plot. 

 

 
Fig. 1.14: Square root of time fitting method (After Taylor, 1948) 

The coefficient of consolidation, cv, may be obtained from 

𝑐𝑣 =
𝑇90𝐻2

𝑡90
-----------------                 Eq.1.85 

Where,  t90  is read off from Fig. 1.14(a) 

T90 is 0.848 from Terzaghi’s theory 

H is the drainage path, which may be taken as half the thickness of the sample for double 

drainage conditions. 

1.16.2 The Logarithm of Time Fitting Method 

This method was devised by A. Casagrande and R.E. Fadum (1939). The point corresponding to 

100 per cent consolidation curve is plotted on a semi-logarithmic scale, with time factor on a 
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logarithmic scale and degree of consolidation on arithmetic scale, the intersection of the tangent 

and asymptote is at the ordinate of 100% consolidation. A comparison of the theoretical and 

laboratory plots in this regard is shown in Figs. 1.15(a) and (b). 

 

 
Fig. 1.15(a): Sample thickness/Dial gauge reading versus logarithm of time (Laboratory curve) 

 

 
Fig. 1.15 (b): Logarithm of time fitting method (After A. Casagrande, 1939) 

 

Since the early portion of the curve is known to approximate a parabola, the corrected zero point 

may be located as follows: The difference in ordinates between two points with times in the ratio 

of 4 to 1 is marked off; then a distance equal to this difference may be stepped off above the 

upper points to obtain the corrected zero point. This point may be checked by more trials, with 
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different pairs of points on the curve. After the zero and 100% primary compression points are 

located, the point corresponding to 50% consolidation and its time may easily be obtained and 

the coefficient of consolidation computed from: 

𝑐𝑣 =
𝑇50𝐻2

𝑡50
--------------------------                  Eq.1.86 

where  t50  is read off from Fig. 1.15(a) 

T50 = 0.197 from Terzaghi’s theory, and H is the drainage path as stated in the previous 

subsection. 

 

1.17 SECONDARY CONSOLIDATION 

 

The time-settlement curve for a cohesive soil has three distinct parts as illustrated in Fig. 1.16. 

When the hydrostatic excess pressure is fully dissipated, no more consolidation should be 

expected. However, in practice, the decrease in void ratio continues, though very slowly, for a 

long time after this stage, called ‘Primary Consolidation’. The effect or the phenomenon of 

continued consolidation after the complete dissipation of excess pore water pressure is termed 

‘Secondary Consolidation’ and the resulting compression is called ‘Secondary Compression’.  

During this stage, plastic readjustment of clay platelets takes place and other effects as well as 

colloidal-chemical processes and surface phenomena such as induced electro kinetic potentials 

occur. These are, by their very nature, very slow. 

 

 
Fig.1.16: Time settlement curve for cohesive soil 

 

Secondary consolidation is believed to come into play even in the range of primary 

consolidation, although its magnitude is small, because of the existence of a plastic lag right 

from the beginning of loading. However, it is almost impossible to separate this component from 

the primary compression. Since dissipation of excess pore pressure is not the criterion here, 

Terzaghi’s theory is inapplicable to secondary consolidation. The fact that experimental time 

compression curves are in agreement with Terzaghi’s theoretical curve only up to about 60% 
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consolidation is, in itself, an indication of the manifestation of secondary consolidation even 

during the stage of primary consolidation. 

Secondary consolidation of mineral soils is usually negligible but it may be considerable in the 

case of organic soils due to their colloidal nature. This may constitute a substantial part of total 

compression in the case of organic soils, micaceous soils, loosely deposited clays, etc. A possible 

disintegration of clay particles is also mentioned as one of the reasons for this phenomenon. 

Secondary compression is usually assumed to be proportional to the logarithm of time. Hence, 

the secondary compression can be identified on a plot of void ratio versus logarithm of time (Fig. 

1.17). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1.17: Voids ratio versus logarithmic of time 

 

Secondary compression appears as a straight line sloping downward or, in some cases, as a 

straight line followed by a second straight line with a flatter slope. The void ratio, ef, at the end 

of primary consolidation can be found from the intersection of the backward extension of the 

secondary line with a tangent drawn to the curve of primary compression, as shown in the figure. 

The rate of secondary compression depends upon the increment of stress and the characteristics 

of the soil. 

The equation for the rate of secondary compression may be approximated as follows: 

∆𝑒 = −𝛼𝑙𝑜𝑔10(
𝑡2

𝑡1
)-------------------                 Eq.1.87 

Here, t1 is the time required for the primary compression to be virtually complete, t2  any later 

time, and is Δe is the corresponding change in void ratio. This means that the secondary 
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compression which occurs during the hydrodynamic phase is ignored, but the error is not 

probably serious. α is a coefficient expressing the rate of secondary compression. 

Another way of expressing the time–rate of secondary compression is through the ‘coefficient of 

secondary compression’, 𝐶𝛼, in terms of strain or percentage of settlement as follows: 

∆𝑒 = −𝐶𝛼𝑙𝑜𝑔10 (
𝑡2

𝑡1
)----------------------------                 Eq.1.88 

In other words, 𝐶𝛼  may be taken to be the slope of the straight line representing the secondary 

compression on a plot of strain versus logarithm of time. 

The relation between α and 𝐶𝛼 is 

𝐶𝛼 =
𝛼

1+𝑒
---------------------------------                  Eq.1.89 

Generally α and 𝐶𝛼  increase with increasing stress 

Some common values of 𝐶𝛼are given below 

Table.1: Values of Cα for different soils 

Sl. No Nature of Soil 𝐶𝛼Value 

1 Over consolidated days 0.0005 to 0.0015 

2 Normally consolidated days 0.005 to 0.030 

3 Organic soils, peats 0.04 to 0.10 

 

1.18 CONSOLIDATION IN A LAYERED SOIL 

1.18.1 Numerical solution for one-dimensional consolidation 

i) Finite difference solution 

In this section, we will consider the finite difference solution for one dimensional consolidation, 

starting from the basic differential equation of Terzaghi’s consolidation theory: 

𝜕𝑢

𝜕𝑡
= 𝑐𝑣

𝜕2𝑢

𝜕𝑧2-------------------------                  Eq.1.90 

Let uR_ tR, and zR be any arbitrary reference excess pore water pressure, time, and distance, 

respectively. From these, we can define the following non-dimensional terms: 

Non dimensional excess pore water = �̅� =
𝑢

𝑢𝑅
 ---------------------------              Eq.1.91 

Non dimensional depth, 𝑧̅ =
𝑧

𝑧𝑅
--------------                  Eq.1.92 

Non dimensional time, 𝑡�̅� =
𝑡

𝑡𝑅
--------------                  Eq.1.93 

Now from the above equations, we get 
𝜕𝑢

𝜕𝑡
=

𝑢𝑅

𝑡𝑅

𝜕𝑢

𝜕�̅�
------------------                    Eq.1.94 

Again 

𝑐𝑣
𝜕2𝑢

𝜕𝑧2 = 𝑐𝑣
𝑢𝑅

𝑧𝑅
2

𝜕2𝑢

𝜕�̅�2----------------                   Eq.1.95 

Hence, 
𝑢𝑅

𝑡𝑅

𝜕𝑢

𝜕�̅�
= 𝑐𝑣

𝑢𝑅

𝑧𝑅
2

𝜕2𝑢

𝜕�̅�2---------                   Eq.1.96 

Or 

1

𝑡𝑅

𝜕𝑢

𝜕�̅�
=

𝑐𝑣

𝑧𝑅
2

𝜕2𝑢

𝜕�̅�2-----------------                   Eq.1.97 
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If we adopt the reference time in such a way that,𝑡𝑅 =
𝑍𝑅

2

𝐶𝑣
, then the above differential Eq. will be 

of the form 

𝜕𝑢

𝜕�̅�
=

𝜕2𝑢

𝜕�̅�2-----------------                  Eq.1.98 

The left-hand side of the Eq can be written as 

 
𝜕𝑢

𝜕�̅�
=

1

∆�̅�
[�̅�0,𝑡+∆̅̅ ̅̅ ̅̅ 𝑡 − �̅�0,�̅�]-----------------                 Eq.1.99 

Where,  �̅�0,�̅�  and �̅�0,𝑡+∆̅̅ ̅̅ ̅̅ 𝑡 are the non-dimensional pore water pressures at point 0 (Fig. 1.18 a) at 

non-dimensional times t and  𝑡 + ∆𝑡. Again, similarly 

𝜕2𝑢

𝜕�̅�2 =
1

(∆�̅�)2
[�̅�1,�̅� + �̅�3,�̅� − 2�̅�0,�̅�]-------                Eq.1.100 

Equating both left and right hand sides, we get 
1

∆�̅�
[�̅�0,𝑡+∆̅̅ ̅̅ ̅̅ 𝑡 − �̅�0,�̅�]=

1

(∆�̅�)2
[�̅�1,�̅� + �̅�3,�̅� − 2�̅�0,�̅�]------------             Eq.1.101 

Or 

[�̅�0,𝑡+∆̅̅ ̅̅ ̅̅ 𝑡]=
∆�̅�1

(∆�̅�)2
[�̅�1,�̅� + �̅�3,�̅� − 2�̅�0,�̅�]+�̅�0,�̅�------------------             Eq.1.102 

 To converge the above equation, ∆𝑡̅ and ∆𝑧̅ must be chosen such that 
∆�̅�

(∆�̅�)2 be less than 0.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.18: Numerical solution of consolidation 
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It is not always possible to develop a closed-form solution for consolidation in layered soils. 

There are several variables involved, such as different coefficients of permeability, the thickness 

of layers, and different values of coefficient of consolidation. Fig.1.19 shows the nature of the 

degree of consolidation of a two-layered soil. 

In view of the above, numerical solutions provide a better approach. If we are involved with the 

calculation of excess pore water pressure at the interface of two different types (i.e., different 

values of Cv) of clayey soils, the general equation will have to be modified to some extent. as 

follows (Scott, 1963) that 

𝑘

𝑐𝑣

𝜕𝑢

𝜕𝑡
= 𝑘

𝜕2𝑢

𝜕𝑧2--------------                 Eq.1.103 

Now based on permeability of layered soil concept we get 

𝑘
𝜕2𝑢

𝜕𝑧2 =
1

2
⌊

𝑘1

(∆𝑧)2 +
𝑘2

(∆𝑧)2
⌋ (

2𝑘1

𝑘1+𝑘2
𝑢1,𝑡 +

2𝑘2

𝑘1+𝑘2
𝑢3,𝑡 − 2𝑢0,𝑡)-------------            Eq.1.104 

where k1 and k2 are the coefficients of permeability in layers 1 and 2, respectively, and u0,t, u1,t 

and u3,t are the excess pore water pressures at time t for points 0, 1, and 3, respectively 

 

 
Fig.1.19: Degree of consolidation in two-layered soil [Part (b) after Luscher, 1965] 

 

Also, the average volume change for the element at the boundary is 

 
𝑘

𝑐𝑣

𝜕𝑢

𝜕𝑡
=

1

2
(

𝑘1

𝑐𝑣1
+

𝑘2

𝑐𝑣2
)

1

∆𝑡
(𝑢0,𝑡+∆𝑡 − 𝑢0,𝑡)-----------------             Eq.1.105 
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where u0,1 and u0,t+ ∆𝑡  are the excess pore water pressures at point 0 at times t and t+ ∆𝑡 , 

respectively. Now equating the right-hand sides of Eqs.1.104 and 1.105, we obtain 

(
𝑘1

𝑐𝑣1
+

𝑘2

𝑐𝑣2
)

1

∆𝑡
(𝑢0,𝑡+∆𝑡 − 𝑢0,𝑡) =

1

(∆𝑧)2 (𝑘1 + 𝑘2) (
2𝑘1

𝑘1+𝑘2
𝑢1,𝑡 +

2𝑘2

𝑘1+𝑘2
𝑢3,𝑡 − 2𝑢0,𝑡)--------  Eq.1.106 

Or 

𝑢0,𝑡+∆𝑡 =
∆𝑡

(∆𝑧)2

𝑘1+𝑘2
𝑘1

𝑐𝑣1
+

𝑘2
𝑐𝑣2

× (
2𝑘1

𝑘1+𝑘2
𝑢1,𝑡 +

2𝑘2

𝑘1+𝑘2
𝑢3,𝑡 − 2𝑢0,𝑡) + 2𝑢0,𝑡-            Eq.1.107 

Or 

𝑢0,𝑡+∆𝑡 =
∆𝑡𝑐𝑣1

(∆𝑧)2

1+
𝑘2
𝑘1

1+
𝑘2
𝑘1

(𝑐𝑣1/𝑐𝑣2)
× (

2𝑘1

𝑘1+𝑘2
𝑢1,𝑡 +

2𝑘2

𝑘1+𝑘2
𝑢3,𝑡 − 2𝑢0,𝑡) + 2𝑢0,𝑡-----------------     Eq.1.108 

Assuming 
1

𝑡𝑅
=

𝐶𝑣1 

𝑍𝑅
2 and introducing  

Non dimensional excess pore water =�̅� =
𝑢

𝑢𝑅
 --------              Eq.1.109 

Non dimensional depth, 𝑧̅ =
𝑧

𝑧𝑅
----------------               Eq.1.110 

From (109)-(110) and combining with Eq. 1.108 we get 

𝑢0,𝑡+∆𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅ =
1+

𝑘2
𝑘1

1+
𝑘2
𝑘1

(𝑐𝑣1/𝑐𝑣2)

∆�̅�

(∆�̅�)2 × (
2𝑘1

𝑘1+𝑘2
�̅�1,𝑡 +

2𝑘2

𝑘1+𝑘2
�̅�3,𝑡 − 2�̅�0,𝑡) + 𝑢0,𝑡------------- -        Eq.1.111 

Example:  

A uniform surcharge of q = 150kN/m2 is applied at the ground surface of the soil profile shown 

in Figure 2 a. Using the numerical method, determine the distribution of excess pore water 

pressure for the clay layers after 10 days of load application 

Solution  

Since this is a uniform surcharge, the excess pore water pressure immediately after the load 

application will be 150kN/m2 throughout the clay layers. However, owing to the drainage 

conditions, the excess pore water pressures at the top of layer 1 and bottom of layer 2 will 

immediately become zero. Now,  let zR= =8m and uR= =1.5kN/m2.  

So  𝑧̅ =
𝑧

𝑧𝑅
=1 and . �̅� =

𝑢

𝑢𝑅
 =150kN/m2/1.5kN/m2 = 100.  

Figure below shows the distribution of  �̅� at time t = 0; note that ∆𝑧̅ = 2/8 = 0.25.  
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Now, 𝑡𝑅 =
𝑍𝑅

2 

𝐶𝑣
  again 𝑡̅ =

𝑡

𝑡𝑅
  

Hence, ∆𝑡̅ =
∆�̅�

𝑡𝑅
 , since tR is constant 

So , ∆𝑡̅ =
∆�̅�

𝑍𝑅
2 𝑐𝑣  

Let ∆t = 5 days for both layers. So, for layer 1, 

∆𝑡̅ =
∆𝑡̅

𝑍𝑅
2 𝑐𝑣 = 0.0203 
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1.19 CONSOLIDATION UNDER TIME-DEPENDENT LOADING 

Olson (1977) presented a mathematical solution for one-dimensional consolidation due to a 

single ramp load. Olson’s solution can be explained with the help of Fig.1.20, in which a clay 

layer is drained at the top and at the bottom (H is the drainage distance). A uniformly distributed 

load q is applied at the ground surface. Note that q is a function of time, as shown in Fig.1.20b. 

The expression for the excess pore water pressure for the case where ui = u0 is given in Eq. 1.112 

as 

𝑢 = ∑
2𝑢0

𝑀

𝑚=∞
𝑚=0 𝑠𝑖𝑛

𝑀𝑧

𝐻 
×exp (−𝑀2𝑇𝑣)--------------              Eq.1.112 

 Where 𝑇𝑣 =
𝐶𝑣𝑡

𝐻2  

As stated above, the applied load is a function of time: 

𝑞 = 𝑓(𝑡𝑎)----------------                 Eq.1.113 

where 𝑡𝑎 is the time of application of any load. 

For a differential load dq applied at time, 𝑡𝑎, the instantaneous pore pressure increase will be 

found as dui= dq. At time t the remaining excess pore water pressure du at a depth z can be given 

by the expression 

𝑑𝑢 = ∑
2𝑑𝑢𝑖

𝑀

𝑚=∞
𝑚=0 sin

𝑀𝑧

𝐻
 𝑒𝑥𝑝 [

−𝑀2𝐶𝑣(𝑡−𝑡𝑎)

𝐻2
]-----------------------           Eq.1.114 

=∑
2𝑑𝑞

𝑀

𝑚=∞
𝑚=0 sin

𝑀𝑧

𝐻
 𝑒𝑥𝑝 [

−𝑀2𝐶𝑣(𝑡−𝑡𝑎)

𝐻2
]--------------                                                               Eq.1.115 

The average degree of consolidation can be defined as 

𝑢𝑎𝑣 =
𝛼𝑞𝑐−

1

𝐻𝑡
∫ 𝑢𝑑𝑧

𝐻𝑡
0

𝑞𝑐
=

𝑠𝑒𝑡𝑡𝑙𝑒𝑚𝑒𝑛𝑡 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

𝑠𝑒𝑡𝑡𝑙𝑒𝑚𝑒𝑛𝑡 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡=∞
----------------            Eq.1.116 

where, qc is the total load per unit area applied at the time of the analysis.  

Ta   is the time of application of any loading  

The settlement at time t = ∞ is, of course, the ultimate settlement. 

Note that the term qc in the denominator of Eq. 1.113 is equal to the instantaneous excess pore 

water pressure ui = qc that might have been generated throughout the clay layer had the stress qc 

been applied instantaneously. 
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Fig.1.20: One-dimensional consolidation due to single ramp load (after Olson, 1977) 

 

Proper integration of Eqs. 1.115 and 116 gives the following: 

For 𝑇𝑣 ≤ 𝑇𝑐 

𝑢 = ∫
2𝑞𝑐

𝑀3𝑇𝑐

𝑚=∞

𝑚=0
𝑠𝑖𝑛

𝑀𝑧

𝐻
[1 − 𝑒𝑥𝑝(−𝑀2𝑇𝑣)]--------------             Eq.1.117 

And 

𝑈𝑎𝑣𝑔 =
𝑇𝑣

𝑇𝑐
{1 −

2

𝑇𝑣
∑

1

𝑀4
[1 − exp (−𝑀2𝑇𝑣)]𝑚=∞

𝑚=0 }-----------             Eq.1.118 

For 𝑇𝑣 ≥ 𝑇𝑐 

𝑢 = ∫
2𝑞𝑐

𝑀3𝑇𝑐

𝑚=∞

𝑚=0
[𝑒𝑥𝑝(𝑀2𝑇𝑣) − 1]𝑠𝑖𝑛

𝑀𝑧

𝐻
exp (−𝑀2𝑇𝑣)--------------            Eq.1.119 

And  

𝑈𝑎𝑣𝑔 = 1 −
2

𝑇𝑐
∑

1

𝑀4
𝑚=∞
𝑚=0 ⌊exp(𝑀2𝑇𝑣) − 1⌋exp (−𝑀2𝑇𝑣)--------------           Eq.1.120 

Where 𝑇𝑐 =
𝐶𝑣𝑡𝑐

𝐻2 ---------------------                Eq.1.121 

Figure 1.20 c shows the plot of Uavg against Tv for various values of Tc. 

Example: 

Based on one-dimensional consolidation test results on a clay, the coefficient of consolidation for 

a given pressure range was obtained as 8×10-3 mm2/s. In the field there is a 2-m-thick layer of 

the same clay with two-way drainage. Based on the assumption that a uniform surcharge of 

70kN/m2 was to be applied instantaneously, the total consolidation settlement was estimated to 
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be 150 mm. However, during the construction, the loading was gradual; the resulting surcharge 

can be approximated as 
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2.0 SHEAR STRENGTH OF SOILS 

 

2.1 Introduction 

Shearing Strength’ of a soil is perhaps the most important of its engineering properties. This is 

because all stability analyses in the field of geotechnical engineering, whether they relate to 

foundation, slopes of cuts or earth dams, involve a basic knowledge of this engineering property 

of the soil. ‘Shearing strength’ or merely ‘Shear strength’ may be defined as the resistance to 

shearing stresses and a consequent tendency for shear deformation. 

Shearing strength of a soil is the most difficult to comprehend in view of the multitude of factors 

known to affect it. A lot of maturity and skill may be required on the part of the engineer in 

interpreting the results of the laboratory tests for application to the conditions in the field. 

Basically speaking, a soil derives its shearing strength from the following: 

(1) Resistance due to the interlocking of particles. 

(2) Frictional resistance between the individual soil grains, which may be sliding friction, rolling 

friction, or both. 

(3) Adhesion between soil particles or ‘cohesion’. 

Granular soils of sands may derive their shear strength from the first two sources, while cohesive 

soils or clays may derive their shear strength from the second and third sources. 

Highly plastic clays, however, may exhibit the third source alone for their shearing strength. 

Most natural soil deposits are partly cohesive and partly granular and as such, may fall into the 

second of the three categories just mentioned, from the point of view of shearing strength. The 

shear strength of a soil cannot be tabulated in codes of practice since a soil can significantly 

exhibit different shear strengths under different field and engineering conditions. 

 

2.2 INTERNAL FRICTION WITHIN GRANULAR SOIL MASSES 

In granular or cohesionless soil masses, the resistance to sliding on any plane through the point 

within the mass is similar to that discussed in the previous sub-section; the friction angle in this 

case is called the ‘angle of internal friction’. However, the frictional resistance in granular soil 

masses is rather more complex than that between solid bodies, since the nature of the resistance 

is partly sliding friction and partly rolling friction. Further, a phenomenon known as 

‘interlocking’ is also supposed to contribute to the shearing resistance of such soil masses, as part 

of the frictional resistance. 

The angle of internal friction, which is a limiting angle of obliquity and hence the primary 

criterion for slip or failure to occur on a certain plane, varies appreciably for given sand with the 

density index, since the degree of interlocking is known to be directly dependent upon the 

density. This angle also varies somewhat with the normal stress. However, the angle of internal 

friction is mostly considered constant, since it is almost so for a given sand at a given density. 

Since failure or slip within a soil mass cannot be restricted to any specific plane, it is necessary 

to understand the relationships that exist between the stresses on different planes passing through 

a point, as a prerequisite for further consideration of shearing strength of soils. 
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2.3 PRINCIPAL PLANES AND PRINCIPAL STRESSES-MOHR’S CIRCLE 

 

At a point in a stressed material, every plane will be subjected, in general, to a normal or direct 

stress and a shearing stress. In the field of geotechnical engineering, compressive direct stresses 

are usually considered positive, while tensile stresses are considered negative. A ‘Principal 

plane’ is defined as a plane on which the stress is wholly normal, or one which does not carry 

shearing stress. From mechanics, it is known that there exists three principal planes at any point 

in a stressed material. The normal stresses acting on these principal planes are known as the 

‘principal stresses’. The three principal planes are to be mutually perpendicular. In the order of 

decreasing magnitude the principal stresses are designated the ‘major principal stress’, the 

‘intermediate principal stress’ and the ‘minor principal stress’, the corresponding principal planes 

being designated exactly in the same manner. It can be engineering by two-dimensional analysis, 

the intermediate principal stress being commonly ignored. 

Let us consider an element of soil whose sides are chosen as the principal planes, the major and 

the minor, as shown in Fig.2.1. (a): 

 
Fig.2.1: Stresses on a plane inclined to the principal planes 

 

Let O be any point in the stressed medium and OA and OB be the major and minor principal 

planes, with the corresponding principal stresses σ1 and σ3. The plane of the figure is the 

intermediate principal plane. Let it be required to determine the stress conditions on a plane 

normal to the figure, and inclined at an angle θ to the major principal plane, considered positive 

when measured counter-clockwise. If the stress conditions are uniform, the size of the element is 

immaterial. If the stresses are varying, the element must be infinitesimal in size, so that the 

variation of stress along a side needed to be considered. 

Let us consider the element to be of unit thickness perpendicular to the plane of the figure, AB 

being l. The forces on the sides of the element are shown dotted and their components parallel 

and perpendicular to AB are shown by full lines. Considering the equilibrium of the element and 

resolving all forces in the directions parallel and perpendicular to AB, the following equations 

may be obtained: 

𝜎𝜃 = 𝜎1𝑐𝑜𝑠2𝜃 + 𝜎3𝑠𝑖𝑛2𝜃 = 𝜎3(𝜎1 − 𝜎3)𝑐𝑜𝑠2𝜃 
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    =
𝜎1+𝜎3

2
+ (

𝜎1−𝜎3

2
) 𝑐𝑜𝑠2𝜃-----------    Eq.2.1 

𝜏𝜃 =
𝜎1−𝜎3

2
𝑠𝑖𝑛2𝜃--------------         Eq.2.2 

Thus it may be noted that the normal and shearing stresses on any plane which is normal to the 

intermediate principal plane may be expressed in terms of σ1, σ3, and θ. Otto Mohr (1882) 

represented these results graphical in a circle diagram, which is called Mohr’s circle. Normal 

stress is represented as abscissa and shear stress as ordinate. If the coordinates, σɵ and τɵ 

represented by Eqs.1 and 2 are plotted for all possible values of θ, the locus is a circle as shown 

in Fig.2. This circle has its centre on the axis and cuts it at values σ3 and σ1. This circle is known 

as the Mohr’s circle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2.2: Mohr’s circle for the stress conditions illustrated in Fig.2 1 

 

The Mohr’s circle diagram provides excellent means of visualisation of the orientation of 

different planes. Let a line be drawn parallel to the major principal plane through D, the 

coordinate of which is the major principal stress. The intersection of this line with the Mohr’s 

circle, Op is called the ‘Origin of planes’. If a line parallel to the minor principal plane is drawn 

through E, the co-ordinate of which is the minor principal stress, it will also be observed to pass 

through Op; the angle between these two lines is a right angle from the properties of the circle. 

Likewise it can be shown that any line through Op, parallel to any arbitrarily chosen plane, 

intersects the Mohr’s circle at a point the co-ordinates of which represent the normal and shear 

stresses on that plane. Thus the stresses on the plane represented by AB in Fig.2.1 (a), may be 

obtained by drawing Op parallel to AB, that is, at an angle θ with respect to OpD, the major 

principal plane, and measuring off the co-ordinates of C, namely σɵ and τɵ. 

Since angle COpD = θ, angle CFD = 2θ, from the properties of the circle. From the geometry of 

the figure, the co-ordinates of the point C, are established as follows: 

𝜎𝜃 = 𝑀𝐺 = 𝑀𝐹 + 𝐹𝐺----------------------                   Eq.2.3 
𝜎1+𝜎3

2
+ (

𝜎1−𝜎3

2
) 𝑐𝑜𝑠2𝜃------------------        Eq.2.4 
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And   𝜏𝜃 = 𝐶𝐺 =
𝜎1−𝜎3

2
𝑠𝑖𝑛2𝜃--------------------      Eq.2.5 

These are the same as in Eqs.2.1 and 2.2, which prove our statement. In the special case where 

the major and minor principal planes are vertical and horizontal respectively, or vice-versa, the 

origin of planes will be D or E, as the case may be. In other words, it will lie on the σ-axis. A 

few important basic facts and relationships may be directly obtained from the Mohr’s circle: 

1. The only planes free from shear are the given sides of the element which are the principal 

planes. The stresses on these are the greatest and smallest normal stresses. 

2. The maximum or principal shearing stress is equal to the radius of the Mohr’s circle, and 

it occurs on planes inclined at 45° to the principal planes.  

𝜏𝑚𝑎𝑥 =
𝜎1−𝜎3

2
 -------------------        Eq.2.6 

3. The normal stresses on planes of maximum shear are equal to each other and is equal to 

half the sum of the principal stresses. 

σc = (σ1 + σ3)/2 ----------------         Eq.2.7 

4. Shearing stresses on planes at right angles to each other are numerically equal and are of 

an opposite sign. These are called conjugate shearing stresses. 

5. The sum of the normal stresses on mutually perpendicular planes is a constant (MG′+ 

MG = 2MF = σ1 + σ3). If we designate the normal stress on a plane perpendicular to the plane on 

which it is 𝜎𝜃 as 𝜎𝜃
′  

𝜎𝜃 + 𝜎𝜃
′ = 𝜎1 + 𝜎3--------------        Eq.2.8 

Of the two stresses 𝜎𝜃 and 𝜎𝜃
′ the one which makes the smaller angle with σ1 is the greater of the 

two. 

6. The resultant stress, 𝜎𝑟, on any plane is  

𝜎𝑟 = √𝜎𝜃
2 + 𝜏𝜃

2 -----------------        Eq.2.9 

and has an obliquity, β, which is equal to  

𝛽 = 𝑡𝑎𝑛−1 (
𝜏𝜃

𝜎𝜃
)----------------                  Eq.2.10 

7. Stresses on conjugate planes, that is, planes which are equally inclined in different 

directions with respect to a principal plane are equal. (This is indicated by the co-ordinates of C 

and C1 in Fig. 2). 

8. When the principal stresses are equal to each other, the radius of the Mohr’s circle 

becomes zero, which means that shear stresses vanish on all planes. Such a point is called an 

isotropic point. 

9. The maximum angle of obliquity, βm, occurs on a plane inclined at 

𝜃𝑐𝑟 =
450+𝛽𝑚

2
---------------                 Eq.2.11 

This may be obtained by drawing a line which passes through the origin and is tangential to the 

Mohr’s circle. The co-ordinates of the point of tangency are the stresses on the plane of 

maximum obliquity; the shear stress on this plane is obviously less than the principal or 

maximum shear stress. On the plane of principal shear the obliquity is slightly smaller than βm. It 

is the plane of maximum obliquity which is most liable to failure and not the plane of maximum 
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shear, since the criterion of slip is limiting obliquity. When βm approaches and equals the angle 

of internal friction, φ, of the soil, failure will become incipient. Mohr’s circle affords an easy 

means of obtaining all important relationships. The following are a few such relationships 

𝑠𝑖𝑛𝛽𝑚 = (
𝜎1−𝜎3

𝜎1+𝜎3
)-----------------                 Eq.2.12 

𝜎1

𝜎3
= (

1+𝑠𝑛𝛽𝑚

1−𝑠𝑖𝑛𝛽𝑚
)----------------                  Eq.2.13 

In case the normal and shearing stresses on two mutually perpendicular planes are known, the 

principal planes and principal stresses may be determined with the aid of the Mohr’s circle 

diagram, as shown in Fig.2 3(a). The shearing stresses on two mutually perpendicular planes are 

equal in magnitude by the principle of complementary shear. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) General two-dimensional stress system 

 
(b) Mohr’s circle for general two-dimensional stress system 

Fig.2 3: Determination of principal planes and principal stresses from Mohr’s circle 

 

Figure 2.3 (a) shows an element subjected to a general two-dimensional stress system, normal 

stresses 𝜎𝑥 and 𝜎𝑦 on mutually perpendicular planes and shear stresses 𝜏𝑥𝑦  on these planes, as 
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indicated. Fig. 2.3 (b) shows the corresponding Mohr’s circle, the construction of which is 

obvious. 

From a consideration of the equilibrium of a portion of the element, the normal and shearing 

stress components, 𝜎𝜃 and 𝜏𝜃, respectively, on a plane inclined at an angle θ, measured counter-

clockwise with respect to the plane on which 𝜎𝑥 acts, may be obtained as follows: 

𝜎𝜃 =
𝜎𝑥+𝜎𝑦

2
+ (

𝜎𝑥−𝜎𝑦

2
) 𝑐𝑜𝑠2𝜃 + 𝜏𝑥𝑦𝑠𝑖𝑛2𝜃---------                Eq.2.14 

𝜏𝜃 =
𝜎𝑥−𝜎𝑦

2
𝑠𝑖𝑛2𝜃 − 𝜏𝑥𝑦𝑐𝑜𝑠𝜃---------------                 Eq.2.15 

Squaring and adding these Eqs, we obtain 

[𝜎𝜃 −
𝜎𝑥+𝜎𝑦

2
]

2

+ 𝜏𝜃
2 = (

𝜎𝑥−𝜎𝑦

2
)

2

+ 𝜏𝑥𝑦
2 ----------                Eq.2.16 

This represents a circle with centre 
𝜎𝑥+𝜎𝑦

2
, 0 and radius √(

𝜎𝑥−𝜎𝑦

2
)

2

+ 𝜏𝑥𝑦
2  

Once the Mohr’s circle is constructed, the principal stresses σ1 and σ3, and the orientation of the 

principal planes may be obtained from the diagram. The shearing stress is to be plotted upward 

or downward according as it is positive or negative. It is common to take a shear stress which 

tends to rotate the element counter-clockwise, positive. 

It may be noted that the same Mohr’s circle and hence the same principal stresses are obtained, 

irrespective of how the shear stresses are plotted. (The centre of the Mohr’s circle, C, is the mid-

point of DE, with the co-ordinates and 0; the radius of the circle is CG), the co-ordinates of G 

being σy and τxy. 

The following relationships are also easily obtained 

𝜎1 =
𝜎𝑥+𝜎𝑦

2
+

1

2
√(𝜎𝑥 − 𝜎𝑦)

2
+4𝜏𝑥𝑦

2 ---------------                Eq.2.17 

𝜎3 =
𝜎𝑥+𝜎𝑦

2
−

1

2
√(𝜎𝑥 − 𝜎𝑦)

2
+4𝜏𝑥𝑦

2 -----------------                Eq.2.18 

𝑡𝑎𝑛2𝜃1.3 =
2𝜏𝑥𝑦

𝜎𝑥−𝜎𝑦
---------------                  Eq.2.19 

𝜏𝑚𝑎𝑥 =
1

2
√(

𝜎𝑥−𝜎𝑦

2
)

2

+ 4𝜏𝑥𝑦
2 ---------------                 Eq.2.20 

Invariably, the vertical stress will be the major principal stress and the horizontal one the minor 

principal stress in geotechincal engineering situations. 

 

2.4 MOHR’S STRENGTH THEORY 

We have seen that the shearing stress may be expressed as τ = σ tan β on any plane, where β is 

the angle of obliquity. If the obliquity angle is the maximum or has limiting value φ, the shearing 

stress is also at its limiting value and it is called the shearing strength, s. For a cohesionless soil 

the shearing strength may be expressed as: 

s = σ tan φ ...                    Eq.2.21 

If the angle of internal friction φ is assumed to be a constant, the shearing strength may be 

represented by a pair of straight lines at inclinations of + φ and – φ with the σ-axis and passing 

through the origin of the Mohr’s circle diagram. A line of this type is called a Mohr envelope. 



44 
 

The Mohr envelopes for a cohesionless soil, as shown in Fig. 2.4, are the straight lines OA and 

OA′. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2.4:Mohr’s strength theory—Mohr envelopes for cohesionless soil 

 

If the stress conditions at a point are represented by Mohr’s circle I, the shear stress on any plane 

through the point is less than the shearing strength, as indicated by the line BCD; 

BC represents the shear stress on a plane on which the normal stress is given by OD.BD, 

representing the shearing strength for this normal stress, is greater than BC. 

The stress conditions represented by the Mohr’s Circle II, which is tangential to the Mohr’s 

envelope at F, are such that the shearing stress, EF, on the plane of maximum obliquity is equal 

to the shearing strength. Failure is incipient on this plane and will occur unless the normal stress 

on the critical plane increases. 

It may be noted that it would be impossible to apply the stress conditions represented by Mohr’s 

circle III (dashed) to this soil sample, since failure would have occurred even by the time the 

shear stress on the critical plane equals the shearing strength available on that plane, thus 

eliminating the possibility of the shear stress exceeding the shearing strength. 

The Mohr’s strength theory, or theory of failure or rupture, may thus be stated as follows:  

The stress condition given by any Mohr’s circle falling within the Mohr’s envelope represents a 

condition of stability, while the condition given by any Mohr’s circle tangent to the Mohr’s 

envelope indicates incipient failure on the plane relating to the point of tangency. The Mohr’s 

envelope may be treated to be a property of the material and independent of the imposed stresses. 

Also, the Mohr’s circle of stress depends only upon the imposed stresses and has nothing to do 

with the nature and properties of the material. 

To emphasise that the stresses in Eq.2.21 are those on the plane on which failure is incipient, we 

add the subscript f to σ, so that it becomes 

𝑠 = 𝜎𝑓tan∅---------------                   Eq.2.22 

It is possible to express the strength in terms of normal stress on any plane, with the aid of the 

Mohr’s circle of stress. Some common relationships are  

𝜎𝑓 = 𝜎3(1 + 𝑠𝑖𝑛∅) = 𝜎1(1 − 𝑠𝑖𝑛∅)---------------               Eq.2.23 
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𝑠 = 𝜎𝑓𝑡𝑎𝑛∅ =
𝜎1−𝜎3

2
𝑐𝑜𝑠∅--------------------                Eq.2.24 

The primary assumptions in the Mohr’s strength theory are that the intermediate principal stress 

has no influence on the strength and that the strength is dependent only upon the normal stress on 

the plane of maximum obliquity. However, the shearing strength, in fact, does depend to a small 

extent upon the intermediate principal stress, density speed of application of shear, and so on. 

But the Mohr theory explains satisfactorily the strength concept in soils and hence is in vogue.  

It may also be noted that the Mohr envelope will not be a straight line but is actually slightly 

curved since the angle of internal friction is known to decrease slightly with increase in stress. 

 

2.5 MOHR-COULOMB THEORY 

 

The Mohr-Coulomb theory of shearing strength of a soil, first propounded by Coulomb (1976) 

and later generalised by Mohr, is the most commonly used concept. The functional relationship 

between the normal stress on any plane and the shearing strength available on that plane was 

assumed to be linear by Coulomb; thus the following is usually known as Coulomb’s law: 

s = c + σ tan φ -------------                  Eq. 2.25 

where c and φ are empirical parameters, known as the ‘apparent cohesion’ and ‘angle of shearing 

resistance’ (or angle of internal friction), respectively. These are better visualised as ‘parameters’ 

and not as absolute properties of a soil since they are known to vary with water content, 

conditions of testing such as speed of shear and drainage conditions, and a number of other 

factors besides the type of soil. 

Coulomb’s law is merely a mathematical equation of the failure envelope shown in Fig.2 5 (a); 

Mohr’s generalisation of the failure envelope as a curve which becomes flatter with increasing 

normal stress is shown in Fig.2.5 (b). 

 

 

 

 

 

 

 

 

 

 

 

Fig.2.5: Mohr-Coulomb Theory—failure envelopes 

 

The envelopes are called ‘strength envelopes’ or ‘failure envelopes’. The meaning of an 

envelope has already been given in the previous section; if the normal and shear stress 

components on a plane plotted on to the failure envelope, failure is supposed to be incipient and 
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if the stresses plot below the envelope, the condition represents stability. And, it is impossible 

that these plot above the envelope, since failure should have occurred previously 

Coulomb’s law is also written as follows to indicate that the stress condition refers to that on the 

plane of failure: 

s = c + σf tan φ -----------        Eq.2.26 

In a different way, it can be said that the Mohr’s circle of stress relating to a given stress 

condition would represent, incipient failure condition if it just touches or is tangent to the 

strength or failure envelope (circle I); otherwise, it would wholly lie below the envelopes as 

shown in circle II, Fig.2 5 (b). 

The Coulomb envelope in special cases may take the shapes given in Fig.2.6 (a) and (b); for a 

purely cohesionless or granular soil or a pure sand, it would be as shown in Fig. 6 (a) and for a 

purely cohesive soil or a pure clay, it would be as shown in Fig.2. 6 (b). 

 

 

 

 

 

 

 

 

 

 

Fig.2.6: Coulomb envelopes for pure sand and for pure clay 

 

2.6 SHEARING STRENGTH—A FUNCTION OF EFFECTIVE STRESS 

 

Equation 2.26 apparently indicates that the shearing strength of a soil is governed by the total 

normal stress on the failure plane. However, according to Terzaghi, it is the effective stress on 

the failure plane that governs the shearing strength and not the total stress. 

It may be expected intuitively that the denser a soil, the greater the shearing strength. It has been 

learnt in chapter seven that a soil deposit becomes densest under any given pressure after the 

occurrence of complete consolidation and consequent dissipation of pore water 

Thus, complete consolidation, dependent upon the dissipation of pore water pressure and hence 

upon the increase in the effective stress, leads to increase in the shearing strength of a soil. In 

other words, it is the effective stress in the case of a saturated soil and not the total stress which 

is relevant to the mobilisation of shearing stress. 

Further, the density of a soil increase when subjected to shearing action, drainage being allowed 

simultaneously. Therefore, even if two soils are equally dense on having been consolidated to the 

same effective stress, they will exhibit different shearing strengths if drainage is permitted during 

shear for one, while it is not for the other. 
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These ideas lead to a statement that ‘‘the strength of a soil is a unique function of the effective 

stress acting on the failure plane’’. 

Equation 8.26 may now be modified to read: 

𝑠 = 𝑐′ + 𝜎𝑓𝑡𝑎𝑛𝜑′----------------------Eq.2.7 

where c′ and φ′ are called the effective cohesion and effective angle of internal friction, 

respectively, since they are based on the effective normal stress on the failure plane. 

Collectively, they are called ‘effective stress parameters’, while c and φ of Eq. 2.25 are called 

‘‘total stress parameters’’. 

 

2.7 SHEARING STRENGTH TESTS 

 

Determination of shearing strength of a soil involves the plotting of failure envelopes and 

evaluation of the shear strength parameters for the necessary conditions. The following tests are 

available for this purpose : 

Laboratory Tests 

1. Direct Shear Test 

2. Triaxial Compression Test 

3. Unconfined Compression Test 

4. Laboratory Vane Shear Test 

5. Torsion Test 

6. Ring Shear Tests 

Field Tests 

1. Vane Shear Test 

2. Penetration Test 

The first three tests among the laboratory tests are very commonly used, while the fourth is 

gaining popularity owing to its simplicity. The fifth and sixth are mostly used for research 

purposes and hence are not dealt with here. 

The principle of the field vane test is the same as that of the laboratory vane shear test, except  

that the apparatus is bigger in size for convenience of field use. The penetration test involves the 

measurement of resistance of a soil to penetration of a cone or a cylinder, as an indication of the 

shearing strength. This procedure is indirect and rather empirical in nature although correlations 

are possible. The field tests are also not considered here. The details of the test procedures are 

available in the relevant I.S. codes or any book on laboratory testing, such as Lambe (1951). 

2.7.1 Direct Shear Test 

The direct shear device, also called the ‘shear box apparatus’, essentially consists of a brass box, 

split horizontally at mid-height of the soil specimen, as shown schematically in Fig. 2.7. 

The soil is gripped in perforated metal grilles, behind which porous discs can be placed if 

required to allow the specimen to drain. For undrained tests, metal plates and solid metal grilles 

may be used. The usual plan size of the specimen is 60 mm square; but a larger size such as 300 

mm square or even more, is employed for testing larger size granular material such as gravel. 

The minimum thickness or height of the specimen is 20 mm. After the sample to be tested is 
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placed in the apparatus or shear box, a normal load which is vertical is applied to the top of the 

sample by means of a loading yoke and weights. Since the shear plane is predetermined as the 

horizontal plane, this becomes the normal stress on the failure plane, which is kept constant 

throughout the test. A shearing force is applied to the upper-half of the box, which is zero 

initially and is increased until the specimen fails. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2.7: Direct Shear Test Device 

 

Two types of application of shear are possible—one in which the shear stress is controlled and 

the other in which the shear strain is controlled. The principles of these two types of devices are 

illustrated schematically in Fig. 1 (b) and (c), respectively. In the stress-controlled type, the shear 

stress, which is the controlled variable, may be applied at a constant rate or more commonly in 

equal increments by means of calibrated weights hung from a hanger attached to a wire passing 

over a pulley. Each increment of shearing force is applied and held constant, until the shearing 

deformation ceases. The shear displacement is measured with the aid of a dial gauge attached to 

the side of the box. In the strain-controlled type, the shear displacement is applied at a constant 
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rate by means of a screw operated manually or by motor. With this type of test the shearing force 

necessary to overcome the resistance within the soil is automatically developed. This shearing 

force is measured with the aid of a proving ring—a steel ring that has been carefully machined, 

balanced and calibrated. The deflection of the annular ring is measured with the aid of a dial 

gauge set inside the ring, the causative force being got for any displacement by means of the 

calibration chart supplied by the manufacturer. 

The shear displacement is measured again with the aid of another dial gauge attached to the side 

of the box 

In both cases, a dial gauge attached to the plunger, through which the normal load is applied, will 

enable one to determine the changes in the thickness of the soil sample which will help in the 

computation of volume changes of the sample, if any. The strain-controlled type is very widely 

used. The strain is taken as the ratio of the shear displacement to the thickness of the sample. The 

proving ring readings may be taken at fixed displacements or even at fixed intervals of time as 

the rate of strain is made constant by an electric motor. A sudden drop in the proving ring 

reading or a leveling-off in successive readings indicates shear failure of the soil specimen. 

The shear strain may be plotted against the shear stress; it may be plotted versus the ratio of the 

shearing stress on normal stress; and it may also be plotted versus volume change. 

Each plot may yield information useful in one way or the other. The stresses may be obtained 

from the forces by dividing them by the area of cross-section of the sample. The stress-

conditions on the failure plane and the corresponding Mohr’s circle for direct shear test are 

shown in Fig. 2 (a) and (b) respectively. 

 

 
Fig.2.8: Mohr’s circle representation of stress condition for Direct shear test results 

The failure plane is predetermined as the horizontal plane here. Several specimens are tested 

under different normal loads and the results plotted to obtain failure envelopes.  

The direct shear test is a relatively simple test. Quick drainage, i.e., quick dissipation of pore 

pressures is possible since the thickness of the specimen is small. However, the test suffers from 

the following inherent disadvantages, which limit its application. 

The stress conditions are complex primarily because of the non-uniform distribution of normal  

and shear stresses on the plane. 

2. There is virtually no control of the drainage of the soil specimen as the water content of a 

saturated soil changes rapidly with stress. 
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3. The area of the sliding surface at failure will be less than the original area of the soil specimen 

and strictly speaking, this should be accounted for. 

4. The ridges of the metal gratings embedded on the top and bottom of the specimen, causes 

distortion of the specimen to some degree. 

5. The effect of lateral restraint by the side walls of the shear box is likely to affect the results. 

6. The failure plane is predetermined and this may not be the weakest plane. In fact, this is the 

most important limitation of the direct shear test. 

2.7.2 Triaxial Shear Test 

The triaxial shear test is one of the most reliable methods available for determining shear 

strength parameters. It is used widely for research and conventional testing. A diagram of the 

triaxial test layout is shown in Figure 2.9.  

In this test, a soil specimen about 36 mm in diameter and 76 mm (3 in.) long generally is used. 

The specimen is encased by a thin rubber membrane and placed inside a plastic cylindrical 

chamber that usually is filled with water or glycerine. The specimen is subjected to a confining 

pressure by compression of the fluid in the chamber. (Note: Air is sometimes used as a 

compression medium.) To cause shear failure in the specimen, one must apply axial stress 

(sometimes called deviator stress) through a vertical loading ram. 

This stress can be applied in one of two ways: 

1. Application of dead weights or hydraulic pressure in equal increments until the specimen fails. 

2. Application of axial deformation at a constant rate by means of a geared or hydraulic loading 

press. This is a strain-controlled test. 

The axial load applied by the loading ram corresponding to a given axial deformation is 

measured by a proving ring or load cell attached to the ram. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2.9:Triaxial experimental set up 



51 
 

2.7.2.1: Test Procedure 

The essential steps in the conduct of the test are as follows: 

(i) A saturated porous stone is placed on the pedestal and the cylindrical soil specimen is placed 

on it. 

(ii) The specimen is enveloped by a rubber membrane to isolate it from the water with which the 

cell is to be filled later; it is sealed with the pedestal and top cap by rubber ‘‘O’’ rings. 

(iii) The cell is filled with water and pressure is applied to the water, which in turn is transmitted 

to the soil specimen all-round and at top. This pressure is called ‘cell pressure’, ‘chamber 

pressure’ or ‘confining pressure’. 

(iv) Additional axial stress is applied while keeping the cell pressure constant. This introduces 

shearing stresses on all planes except the horizontal and vertical planes, on which the major, 

minor and intermediate principal stresses act, the last two being equal to the cell pressure on 

account of axial symmetry. 

(v) The additional axial stress is continuously increased until failure of the specimen occurs. 

(What constitutes failure is often a question of definition and may be different for different kinds 

of soils. This aspect would be discussed later on). 

A number of observations may be made during a triaxial compression test regarding the physical 

changes occurring in the soil specimen: 

(a) As the cell pressure is applied, pore water pressure develops in the specimen, which can be 

measured with the help of a pore pressure measuring apparatus, such as Bishop’s pore pressure 

device (Bishop, 1960), connected to the pore pressure line, after closing the valve of the drainage 

line. 

(b) If the pore pressure is to be dissipated, the pore water line is closed, the drainage line opened 

and connected to a burette. The volume decrease of the specimen due to consolidation is 

indicated by the water drained into the burette. 

(c) The axial strain associated with the application of additional axial stress can be measured by 

means of a dial gauge, set to record the downward movement of the loading piston. 

(d) Upon application of the additional axial stress, some pore pressure develops. It may be 

measured with the pore pressure device, after the drainage line is closed. On the other hand, if it 

is desired that any pore pressure developed be allowed to be dissipated, the pore water line is 

closed and the drainage line opened as stated previously. 

(e) The cell pressure is measured and kept constant during the course of the test. 

(f) The additional axial stress applied is also measured with the aid of a proving ring and dial 

gauge. 

Thus the entire triaxial test may be visualised in two important stages: 

(i) The specimen is placed in the triaxial cell and cell pressure is applied during the first stage. 

(ii) The additional axial stress is applied and is continuously increased to cause a shear failure, 

the potential failure plane being that with maximum obliquity during the second stage. 

2.7.2.2  Area Correction for the Determination of Additional Axial Stress or Deviatoric Stress 

The additional axial load applied at any stage of the test can be determined from the proving ring 

reading. During the application of the load, the specimen undergoes axial compression and 
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horizontal expansion to some extent. Little error is expected to creep in if the volume is supposed 

to remain constant, although the area of cross-section varies as axial strain increases. 

The assumption is perfectly valid if the test is conducted under undrained conditions, but, for 

drained conditions, the exact relationship is somewhat different. 

If A0, h0 and V0 are the initial area of cross-section, height and volume of the soil specimen 

respectively, and if A, h, and V are the corresponding values at any stage of the test, the 

corresponding changes in the values being design 

𝐴(ℎ0 − ∆ℎ) = 𝑉 = 𝑉0 + ∆𝑉-----------------------     Eq.2.8 

Hence 𝐴 =
𝑉0+∆𝑉

ℎ0−∆ℎ
-------------------------------------     Eq.2.9 

But, for axial compression, Δh is known to be negative. 

𝐴 =
𝑉0+∆𝑉

ℎ0−∆ℎ
=

𝑉0(1+
∆𝑉

𝑉0
)

ℎ0(1−
∆ℎ

ℎ0
)
=

𝐴0(1+
∆𝑉

𝑉0

1−𝜖𝑎
----------------------     Eq.2.10 

since the axial strain, εa = Δh/h0--------------------     Eq.2.11 

For an undrained test, 𝐴 =
𝐴0

1−𝜖𝑎
---------------------     Eq.2.12 

since ΔV = 0. 

This is called the ‘Area correction’ and  
1

1−𝜖𝑎
is the correction factor.  

A more accurate expression for the corrected area is given by 

𝐴 =
𝐴0

1−𝜖𝑎
=

𝑉0+∆𝑉

ℎ0−∆ℎ
-------------------------------------     Eq.2.14 

Once the corrected area is determined, the additional axial stress or the deviator stress, Δσ, is 

obtained as 

Δσ = σ1 – σ3 = Axial load (from proving ring reading)/Corrected area 

The cell pressure or the confining pressure, σc, itself being the minor principal stress, σ3, this is 

constant for one test; however, the major principal stress, σ1, goes on increasing until failure. 

σ1 = σ3 + Δσ---------------------------------------     Eq.2.15 

2.7.2.3  Mohr’s Circle for Triaxial Test 

The stress conditions in a triaxial test may be represented by a Mohr’s circle, at any stage of the 

test, as well as at failure, as shown in Fig. 2.10 

 

 

 

 

 

 

 

 

 

Fig.2.10: Mohr’s circle during Triaxial test 
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The cell pressure, σc which is also the minor principal stress is constant and σ11, σ12, σ13, .... σ1f 

are the major principal stresses at different stages of loading and at failure. The Mohr’s circle at 

failure will be tangential to the Mohr-Coulomb strength envelope, while those at intermediate 

stages will be lying wholly below it. The Mohr’s circle at failure for one particular value of cell 

pressure will be as shown in Fig.2.11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.11: Mohr’s circle at failure for a particular cell pressure 

 

The Mohr’s circles at failure for one particular cell pressure are shown for the three typical cases 

of a general c–φ soil, a φ-soil and a c-soil in Figs. 2.11 (a), (b), and (c) respectively. 

With reference to Fig. 2.11 (a), the relationship between the major and minor principal stresses at 

failure may be established from the geometry of the Mohr’s circle, as follows: 

From ΔDCG, 2α = 90° + φ 

∴ α = 45° + φ/2----------------------------------      Eq.2.16 

Again from ΔDCG 

𝑠𝑖𝑛∅ =
𝐷𝐶

𝐺𝐶
=

𝐷𝐶

𝐺𝑀+𝑀𝐶
=

(
𝜎1−𝜎3

2
)

𝑐𝑐𝑜𝑡∅+
𝜎1+𝜎3

2

-----------      Eq.2.17 

𝜎1 − 𝜎3 = 2𝑐𝑐𝑜𝑡∅ + (𝜎1 + 𝜎3)𝑠𝑖𝑛∅--------------------------    Eq.2.18 

Or,  σ1 = σ3 tan2 (45° + φ/2) + 2c tan(45° + φ/2) -------------    Eq.2.19 

Or , σ1 = σ3 tan2 α + 2c tan α -------------------     Eq.2.20 
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 This is also written as 

σ1 = σ3 Nφ + 2c Nφ -----------------       Eq.2.21 

where, Nφ = tan2 α = tan2(45° + φ/2) ---------------------    Eq.2.22 

The above equations define the relationship between the principal stresses at failure. This state of 

stress is defined as ‘Plastic equilibrium condition’, when failure is imminent. 

From one test, a set of σ1 and σ3 is known; however, it can be seen from that at least two such 

sets are necessary to evaluate the parameters c and φ. conventionally; three or more such sets are 

used from a corresponding number of tests. 

The usual procedure is to plot the Mohr’s circles for a number of tests and take the best common 

tangent to the circles as the strength envelope. A small curvature occurs in the strength envelope 

of most soils, but since this effect is slight, the envelope for all practical purposes, may be taken 

as a straight line. The intercept of the strength envelope on the τ-axis gives the cohesion and the 

angle of slope of this line with σ-axis gives the angle of internal friction, as shown in Fig. 2.12. 

 

 

 

 

 

 

 

Fig.2.12: Mohr’s circle at failure for different cell pressures 

 

2.7.2.4  Merits of Triaxial Compression Test 

The following are the significant points of merit of triaxial compression test: 

(1) Failure occurs along the weakest plane unlike along the predetermined plane in the case of 

direct shear test. 

(2) The stress distribution on the failure plane is much more uniform than it is in the direct shear 

test: the failure is not also progressive, but the shear strength is mobilised all at once. Of course, 

the effect of end restraint for the sample is considered to be a disadvantage; however, this may 

not have pronounced effect on the results since the conditions are more uniform to the desired 

degree near the middle of the height of the sample where failure usually occurs. 

(3) Complete control of the drainage conditions is possible with the triaxial compression test; this 

would enable one to simulate the field conditions better. 

(4) The possibility to vary the cell pressure or confining pressure also affords another means to 

simulate the field conditions for the sample, so that the results are more meaningfully interpreted. 

(5) Precise measurements of pore water pressure and volume changes during the test are 

possible. 

(6) The state of stress within the specimen is known on all planes and not only on a 

predetermined failure plane as it is with direct shear tests. 

(7) The state of stress on any plane is capable of being determined not only at failure but also at 

any earlier stage. 
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(8) Special tests such as extension tests are also possible to be conducted with the triaxial testing 

apparatus. 

(9) It provides an ingenious and a symmetrical three-dimensional stress system better suited to 

simulate field conditions. 

2.7.2.5  Types of Shear Tests Based on Drainage Conditions 

Before considering various methods of conducting shearing strength tests on a soil, it is 

necessary to consider the possible drainage conditions before and during the tests since the 

results is significantly affected by these. 

A cohesionless or a coarse-grained soil may be tested for shearing strength either in the dry 

condition or in the saturated condition. A cohesive or fine-grained soil is usually tested in the 

saturated condition. Depending upon whether drainage is permitted before and during the test, 

shear tests on such saturated soils are classified as follows: 

2.7.2.6  Unconsolidated Undrained Test 

Drainage is not permitted at any stage of the test, that is, either before the test during the 

application of the normal stress or during the test when the shear stress is applied. Hence no time 

is allowed for dissipation of pore water pressure and consequent consolidation of the soil; also, 

no significant volume changes are expected. Usually, 5 to 10 minutes may be adequate for the 

whole test, because of the shortness of drainage path. However, undrained tests are often 

performed only on soils of low permeability. This is the most unfavourable condition which 

might occur in geotechnical engineering practice and hence is simulated in shear testing. Since a 

relatively small time is allowed for the testing till failure, it is also called the ‘Quick test.’ It is 

designated UU, Q, or Qu test. 

2.7.2.7  Consolidated Undrained Test 

Drainage is permitted fully in this type of test during the application of the normal stress and no 

drainage is permitted during the application of the shear stress. Thus volume changes do not take 

place during shear and excess pore pressure develops. Usually, after the soil is consolidated 

under the applied normal stress to the desired degree, 5 to 10 minutes may be adequate for the 

test. This test is also called ‘consolidated quick test’ and is designated CU or Qc test, These 

conditions are also common in geotechnical engineering practice. 

2.7.2.8  Consolidated-Drained Triaxial Test 

In the CD test, the saturated specimen first is subjected to an all around confining pressure, 𝜎3, 

by compression of the chamber fluid. As confining pressure is applied, the pore water pressure of 

the specimen increases by uc (if drainage is prevented). This increase in the pore water pressure 

can be expressed as a nondimensional parameter in the form 

𝐵 =
𝑢𝑐

𝜎3
------------------         Eq.2.23 

Where, B= Skempton’s pore pressure parameter (Skempton, 1954). 

For saturated soft soils, B is approximately equal to 1; however, for saturated stiff soils, the 

magnitude of B can be less than 1. Black and Lee (1973) gave the theoretical values of B for 

various soils at complete saturation.  

Now, if the connection to drainage is opened, dissipation of the excess pore water pressure, and 

thus consolidation, will occur. With time, uc will become equal to 0. In saturated soil, the change 
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in the volume of the specimen (∆Vc) that takes place during consolidation can be obtained from 

the volume of pore water drained (Fig.2.13 a) 

Next, the deviator stress, ∆𝜎𝑑 on the specimen is increased very slowly (Figure 2.13 b). The 

drainage connection is kept open, and the slow rate of deviator stress application allows 

complete dissipation of any pore water pressure that developed as a result (∆𝑢𝑑=0) 

A typical plot of the variation of deviator stress against strain in loose sand and normally 

consolidated clay is shown in Figure 2.13 b. and c shows a similar plot for dense sand and over 

consolidated clay. The volume change, ∆Vd, of specimens that occurs because of the application 

of deviator stress in various soils is also shown in Figures 2.13 d and 1e. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2.13: Consolidated-drained triaxial test: (a) volume change of specimen caused by chamber-confining 

pressure; (b) plot of deviator stress against strain in the vertical direction for loose sand and normally consolidated 

clay; (c) plot of deviator stress against strain in the vertical direction for dense sand and over consolidated clay; (d) 

volume change in loose sand and normally consolidated clay during deviator stress application; (e) volume change 

in dense sand and over consolidated clay during deviator stress application 

 

Because the pore water pressure developed during the test is completely dissipated, we have 

Total and effective confining stress = 𝜎3 = 𝜎3
′ 

Total and effective axial stress at failure=𝜎3 + ∆𝜎𝑑𝑓
= 𝜎1 = 𝜎1

′ 

In a triaxial test,𝜎1
′ is the major principal effective stress at failure and is the minor principal 

effective stress at failure. Several tests on similar specimens can be conducted by varying the 

confining pressure. With the major and minor principal stresses at failure for each test the 
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Mohr’s circles can be drawn and the failure envelopes can be obtained. Fig. 2.14 shows the type 

of effective stress failure envelope obtained for tests on sand and normally consolidated clay.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2.14: Effective stress failure envelope from drained tests on sand and normally consolidated clay 

 

The coordinates of the point of tangency of the failure envelope with a Mohr’s circle (that is, 

point A) give the stresses (normal and shear) on the failure plane of that test specimen. 

For normally consolidated clay, referring to Figure 2 

𝑠𝑖𝑛∅′=
𝑂𝐴′

𝑂𝑂′--------------------------       Eq.2.24 

OR 𝑠𝑖𝑛∅′=
𝜎1

′ −𝜎3
′

𝜎1
′+𝜎3

1---------------------       Eq.2.25 

Hence ∅′ = 𝑠𝑖𝑛−1(
𝜎1

′−𝜎3
′

𝜎1
′ +𝜎3

1)-------------------      Eq.2.26 

Also, the failure plane will be inclined at an angle of  𝜃 = 45 +
∅

2
to the major principal plane, as 

shown in Figure 2.14. 

Over consolidation results when a clay initially is consolidated under an all-around chamber 

pressure of 𝜎𝑐 = 𝜎𝑐
′ and is allowed to swell by reducing the chamber pressure to 𝜎3 = 𝜎3

′ . The 

failure envelope obtained from drained triaxial tests of such overconsolidated clay specimens 

shows two distinct branches (ab and bc in Figure 2.15). The portion ab has a flatter slope with a 

cohesion intercept, and the shear strength equation for this branch can be written as 

𝑟𝑓 = 𝑐′ + 𝜎′𝑡𝑎𝑛∅′----------------------------------     Eq.2.27 
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Fig. 2.15 Effective stress failure envelope for over consolidated clay 

 

A consolidated-drained triaxial test on a clayey soil may take several days to complete. This 

amount of time is required because deviator stress must be applied very slowly to ensure full 

drainage from the soil specimen. For this reason, the CD type of triaxial test is uncommon. 

 

2.7.2.9  Consolidated-Un-drained Triaxial Test 

 

The consolidated-un-drained test is the most common type of triaxial test. In this test, the 

saturated soil specimen is first consolidated by an all-around chamber fluid pressure, 𝜎3, that 

results in drainage (Figures 2.16 a & 4b).  

After the pore water pressure generated by the application of confining pressure is dissipated, the 

deviator stress, ∆𝜎𝑑, on the specimen is increased to cause shear failure (Figure 4c). During this 

phase of the test, the drainage line from the specimen is kept closed. Because drainage is not 

permitted, the pore water pressure, ∆𝑢𝑑, will increase. 

During the test, simultaneous measurements of ∆𝜎𝑑, and ∆𝑢𝑑  are made. The increase in the pore 

water pressure, ∆𝑢𝑑can be expressed in a non dimensional form as 

�̅� =
∆𝑢𝑑

∆𝜎𝑑
-------------------------------       Eq.2.28 

where �̅� = Skempton’s pore pressure parameter (Skempton, 1954). 
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Fig.2.26: Consolidated-un-drained test: (a) specimen under chamber-confining pressure; (b) volume change in 

specimen caused by confining pressure; (c) deviator stress application; (d) deviator stress against axial strain for 

loose sand and normally consolidated clay; (e) deviator stress against axial strain for dense sand and over 

consolidated clay; (f) variation of pore water pressure with axial strain for loose sand and normally consolidated 

clay; (g) variation of pore water pressure with axial strain for dense sand and over consolidated clay 

 

The general patterns of variation of ∆𝜎𝑑 and ∆𝑢𝑑with axial strain for sand and clay soils are 

shown in Figures 2.26 d through g. In loose sand and normally consolidated clay, the pore water 

pressure increases with strain. In dense sand and over consolidated clay, the pore water pressure 

increases with strain to a certain limit, beyond which it decreases and becomes negative (with 

respect to the atmospheric pressure). This decrease is because of a tendency of the soil to dilate.  

Unlike the consolidated-drained test, the total and effective principal stresses are not the same in 

the consolidated-undrained test. Because the pore water pressure at failure is measured in this 

test, the principal stresses may be analyzed as follows: 

• Major principal stress at failure (total):  

• Major principal stress at failure (effective): 

• Minor principal stress at failure (total):  

• Minor principal stress at failure (effective): 

The preceding derivations show that  

𝜎1 − 𝜎3 = 𝜎1
′ − 𝜎3

′-------------------       Eq.2.29 
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Tests on several similar specimens with varying confining pressures may be conducted to 

determine the shear strength parameters. Figure 2.27 shows the total and effective stress 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.27: Total and effective stress failure envelopes for consolidated undrained triaxial tests 

 

Mohr’s circles at failure obtained from consolidated-undrained triaxial tests in sand and normally 

consolidated clay. Note that A and B are two total stress Mohr’s circles obtained from two tests. 

C and D are the effective stress Mohr’s circles corresponding to total stress circles A and B, 

respectively. The diameters of circles A and C are the same; similarly, the diameters of circles B 

and D are the same. In Figure 2.27, the total stress failure envelope can be obtained by drawing a 

line that touches all the total stress Mohr’s circles. For sand and normally consolidated clays, this 

will be approximately a straight line passing through the origin and may be expressed by the 

equation 

𝜏𝑓 = 𝜎𝑡𝑎𝑛∅------------------------       Eq.2,30 

where  𝜎 = total stress 

∅ =the angle that the total stress failure envelope makes with the normal stress axis, also known 

as the consolidated-undrained angle of shearing resistance 

For sand and normally consolidated clay, we can write 

∅ = 𝑠𝑖𝑛−1 (
𝜎1−𝜎3

𝜎1+𝜎3
)------------------       Eq.2.31 

And  

∅′ = 𝑠𝑖𝑛−1 (
𝜎1−𝜎3

𝜎1+𝜎3−2(∆𝑢𝑑)
)----------------      Eq.2.32 
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Fig.2.28: Total stress failure envelope obtained from consolidated-undrained tests in over consolidated 

clay 

 

Again referring to Figure 2.27, we see that the failure envelope that is tangent to all the effective 

stress Mohr’s circles can be represented by the equation  

𝜏𝑓 = 𝜎′𝑡𝑎𝑛∅′---------------------------       Eq.2.33 

which is the same as that obtained from consolidated-drained tests. In over consolidated clays, 

the total stress failure envelope obtained from consolidated un-drained tests will take the shape 

shown in Figure 6. The straight line is represented by the equation  

𝜏𝑓 = 𝜎𝑡𝑎𝑛∅1---------------------       Eq.2.34 

and the straight line follows the relationship given by the above equation. The effective stress 

failure envelope drawn from the effective stress Mohr’s circles will be similar to that shown in 

Figure 2.14. 

Consolidated-drained tests on clay soils take considerable time. For this reason, consolidated-

undrained tests can be conducted on such soils with pore pressure measurements to obtain the 

drained shear strength parameters. Because drainage is not allowed in these tests during the 

application of deviator stress, they can be performed quickly. Skempton’s pore water pressure 

parameter was defined as follows. At failure, the parameter can be written as 

�̅� = 𝐴𝑓
̅̅ ̅ =

∆𝑢𝑑𝑓

∆𝜎𝑑𝑓

-------------------       Eq.2.35 

2.7.2.10  Unconsolidated-Undrained Triaxial Test 

In unconsolidated-undrained tests, drainage from the soil specimen is not permitted during the 

application of chamber pressure 𝜎3. The test specimen is sheared to failure by the application of 

deviator stress, ∆𝜎𝑑, and drainage is prevented. Because drainage is not allowed at any stage, the 

test can be performed quickly. Because of the application of chamber confining pressure, 𝜎3, the 

pore water pressure in the soil specimen will increase by uc. A further increase in the pore water 

pressure (∆𝜎𝑑) will occur because of the deviator stress application. Hence, the total pore water 

pressure u in the specimen at any stage of deviator stress application can be given as 

𝑢 = 𝑢𝑐 + ∆𝑢𝑑---------------------       Eq.2.36 

But we know that 𝑢𝑐 = 𝐵𝜎3 and ∆𝑢𝑐 = �̅�∆𝜎𝑑 
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Now substituting above relation, we obtain 

𝑢 = 𝐵𝜎3 +�̅�∆𝜎𝑑-----------------------       Eq.2.37 

This test usually is conducted on clay specimens and depends on a very important strength 

concept for cohesive soils if the soil is fully saturated. The added axial stress at failure ∆𝜎𝑑𝑓  is 

practically the same regardless of the chamber confining pressure. This property is shown in 

Figure 2.29. The failure envelope for the total stress Mohr’s circles becomes a horizontal line 

and hence is called a ∅ = 0 condition. So we get 

𝜏𝑓 = 𝑐 = 𝑐𝑢--------------------        Eq.2.38 

where 𝑐𝑢 is the un-drained shear strength and is equal to the radius of the Mohr’s circles. 

Note that the ∅ = 0 concept is applicable to only saturated clays and silts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.29: Mohr’c circle for total and effective stress and failure envelope,  ∅ = 0 

 

The reason for obtaining the same added axial stress ∆𝜎𝑑𝑓 regardless of the confining pressure 

can be explained as follows. If a clay specimen (No.I) is consolidated at a chamber pressure 

𝜎3and then sheared to failure without drainage, the total stress conditions at failure can be 

represented by the Mohr’s circle P in Figure 2.29. The pore pressure developed in the specimen 

at failure is equal to  ∆𝜎𝑑𝑓 . Thus, the major and minor principal effective stresses at failure are, 

respectively, 
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Fig. 2.30: The ∅ = 0 concept 

 

𝜎1
′ = [𝜎3 + ∆𝜎𝑑𝑓] − ∆𝑢𝑑𝑓=𝜎1 − (∆𝑢𝑑)𝑓-------------------------   Eq.2.39 

𝜎3
′ = 𝜎3−(∆𝑢𝑑)𝑓----------------------       Eq.2.40 

Q is the effective stress Mohr’s circle drawn with the preceding principal stresses.  

Note that the diameters of circles P and Q are the same. 

Any value of 𝜎3 could have been chosen for testing the specimen. In any case, the deviator stress 

∆𝜎𝑑𝑓  to cause failure would have been the same as long as the soil was fully saturated and fully 

un-drained during both stages of the test. 

 

2.3 SHEARING CHARACTERISTICS OF SANDS 

 

The shearing strength in sand may be said to consist of two parts, the internal frictional 

resistance between grains, which is a combination of rolling and sliding friction and another part 

known as ‘interlocking’. Interlocking, which means locking of one particle by the adjacent ones, 

resisting movements, contributes a large portion of the shearing strength in dense sands, while it 

does not occur in loose sands. The Mohr strength theory is not invalidated by the occurrence of 

interlocking. The Mohr envelopes merely show large ordinates and steeper slopes for dense soils 

than for loose ones. The angle of internal friction is a measure of the resistance of the soil to 

sliding along a plane. This varies with the density of packing, characterised by density index, 

particle shape angularity and roughness of particles and also with better gradation. This is 

influenced to some extent by the normal pressure on the plane of shear and also the rate of 

application of shear. 

The ‘angle of repose’ is the angle to the horizontal at which a heap of dry sand, poured freely 

from a small height, will stand without support. It is approximately the same as the angle of 

friction in the loose state. Some clean sands exhibit slight cohesion under certain conditions of 
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moisture content, owing to capillary tension in the water contained in the voids. Since this is 

small and may disappear with change in water content, it should not be relied upon for shear 

strength. On the other hand, even small percentages of silt and clay in a sand give it cohesive 

properties which may be sufficiently large so as to merit consideration. Unless drainage is 

deliberately prevented, a shear test on sand will be a drained one as the high value of 

permeability makes consolidation and drainage virtually instantaneous. A sand can be tested 

either in the dry or in the saturated condition. If it is dry, there will be no pore water pressures 

and if it is saturated, the pore water pressure will be zero due to quick drainage. In either case, 

the intergranular pressure will be equal to the applied stress. However, there may be certain 

situations in which significant pore pressures are developed, at least temporarily, in sands. For 

example, during earth-quakes, heavy blasting and operation of vibratory equipment 

instantaneous pore pressures are likely to develop due to large shocks or dynamic loads. These 

may lead to the phenomenon of ‘liquefaction’ or sudden and total loss of shearing strength, 

which is a grave situation of lack of stability. 

Further discussion of shear characteristics of sands is presented in the following subsections. 

2.3.1 Stress-strain Behaviour of Sands 

The stress-strain behaviour of sands is dependent to a large extent on the initial density of 

packing, as characterised by the density index. This is represented in Fig. 2.31. It can be 

observed from Fig. 2.31 (a), the shear stress (in the case of direct shear tests) or deviator stress 

(in the case of triaxial compression tests) builds up gradually for an initially loose sand, while for 

an initially dense sand, it reaches a peak value and decreases at greater values of shear/axial 

strain to an ultimate value comparable to that for an initially loose specimen. 

The behaviour of medium-dense sand is intermediate to that of loose sand and dense sand. 

Intuitively, it should be expected that the denser sand is stronger. The hatched portion represents 

the additional strength due to the phenomenon of interlocking in the case of dense sands. 
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Fig. 2.31: Stress-strain characteristics of sands 

 

The volume change characteristic of sands is another interesting feature, as depicted in Fig. 1(b). 

An initially dense specimen tends to increase in volume and become loose with increasing values 

of strain, while an initially loose specimen tends to decrease in volume and become dense. This 

is explained in terms of the rearrangement of particles during shear. 

The changes in pore water pressure during undrained shear, which is rather not very common 

owing to high permeability of sands, are depicted in Fig. 2.31 (c). Positive pore pressures 

develop in the case of an initially loose specimen and negative pore pressures develop in the case 

of an initially dense specimen. 

2.3.2  Critical Void Ratio 

Volume change characteristics depend upon various factors such as the particle size, particle 

shape and distribution, principal stresses, previous stress history and significantly on density 

index. Volume changes, expressed in terms of the void ratio versus shear strain are typically as 

shown in Fig. 2. 
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Fig. 2.32: Effect of initial density on changes in void ratio 

At large strains both initially loose and initially dense specimens attain nearly the same void 

ratio, at which further strain will not produce any volume changes. Such a void ratio is usually 

referred to as the ‘Critical Void Ratio’. Sands with initial void ratio greater than the critical value 

will tend to decrease in volume during shearing, while sands with initial void ratio less than the 

critical with tend to increase in volume. 

The critical void ratio is dependent upon the cell pressure (in the case of triaxial compression 

tests) or effective normal pressure (in the case of direct shear tests), besides a few other particle 

characteristics. It bears a reciprocal relationship with pressure. The value of critical void ratio 

under a given set of conditions may be determined by plotting the volume changes versus void 

ratio. The value for which the volume change is zero is the critical one. 

2.4 SHEARING STRENGTH OF SANDS 

 

The shearing strength of cohesionless soils has been established to depend primarily upon the 

angle of internal friction which itself is dependent upon a number of factors including the normal 

pressure on the failure plane. The nature of the results of the shear tests will be influenced by the 

type of test—direct shear or triaxial compression, by the fact whether the sand is saturated or dry 

and also by the nature of stresses considered—total or effective. 

Each direct shear test is usually conducted under a certain normal stress. Each stress strain 

diagram therefore reflects the beahaviour of a specimen under a particular normal stress. A 

number of specimens are tested under different normal stresses. It is to be noted that only the 

effective normal stress is capable of mobilising shear strength. The results when plotted appear 

as shown in Fig.2.32. 
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Fig. 2.32: Shear characteristics of sands from direct shear tests 

It may be observed from Fig. 2.32 (a) that the greater the effective normal pressure during shear, 

the greater is the shearing stress at failure or shearing strength. The shear strength plotted against 

effective normal pressure gives the Coulomb strength envelope as a straight line, passing through 

the origin and inclined at the angle of internal friction to the normal stress axis. It is shown in 

Fig.2.32 (b). The failure envelope obtained from ultimate shear strength values is assumed to 

pass through the origin for dry cohesionless soils. The same is true even for saturated sands if the 

plot is made in terms of effective stresses. In the case of dense sands, the values of φ obtained by 

plotting peak strength values will be somewhat greater than those from ultimate strength values. 

Ultimate values of φ may range from 29 to 35° and peak values from 32 to 45° for sands. The 

values of φ selected for use in practical problems should be related to soil strains expected. If soil 

deformation is limited, using the peak value for φ would be justified. If the deformation is 

relatively large, ultimate value of φ should be used 

If the sand is moist, the failure envelope does not pass through the origin as shown in Fig. 2.33. 

The intercept on the shear stress axis is referred to as the ‘apparent cohesion’, attributed to 

factors such as surface tension of the moisture films on the grains. The extra strength would be 

lost if the soil were to dry out or to become saturated or submerged. For this reason the extra 

shear strength attributed to apparent cohesion is neglected in practice. 

 

 

 

 

 

 

Fig. 2.33: Failure envelope for moist sand indicating apparent cohesion 
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In the case of triaxial compression tests, different tests with different cell pressure are to be 

conducted to evaluate the shearing strength and the angle of internal friction. In each test, the 

axial normal stress is gradually increased keeping the cell pressure constant, until failure occurs. 

The value of φ is obtained by plotting the Mohr Circles and the corresponding Mohr’s envelope. 

The failure envelope obtained from a series of drained triaxial compression tests on saturated 

sand specimens initially at the same density index is approximately a straight line passing 

through the origin, as shown in Fig. 2.34. 

 

 

 

 

 

 

 

Fig. 2.34: Drained triaxial compression tests on saturated sand 

Similar results are obtained when undrained triaxial compression tests are conducted with pore 

pressure measurements on saturated sand samples and Mohr’s circles are plotted in terms of 

effective stresses. However, if Mohr’s circles are plotted in terms of total stresses, the shape of 

envelopes will be similar to those for a purely cohesive soil. The failure envelope will be 

approximately horizontal with an intercept on the shearing stress axis, indicating the so called 

‘apparent cohesion’, as shown in Fig. 2.35. 

 

 

 

 

 

 

Fig. 2.35: Undrained triaxial compression tests on saturated sands (total stresses) 
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2.5 SHEARING CHARACTERISTICS OF CLAYS 

The understanding of the fundamentals of shearing strength is much more important in the case 

of cohesive soils or clays in view of their troublesome nature with regard to stability. In fact, the 

most complex physical property of clays is the shearing strength, as it is dependent on a 

multitude of inter-related factors. One of the most difficult tasks is to interpret results of 

laboratory shearing strength tests to the shearing strength of natural clay deposits. 

2.5.1 Source and Nature of Shearing Strength of Clays 

i) Cohesion 

This is a characteristic of true clay. This is sometimes referred to as no-load shear strength and is 

responsible for the strength of unconfined specimens. Cohesion in clays is a property which 

varies considerably with consistency. Cohesion therefore varies with both the type of clay and 

condition of clay. It is a kind of surface attraction among particles. 

ii) Adhesion 

Whereas cohesion is the mutual attraction of two different parts of a clay mass to each other, clay 

often also exhibits the property of ‘adhesion’, which is a propensity to adhere to other materials 

at a common surface. This has no relation to normal pressure. This is of particular interest in 

relation to the supporting capacity of friction piling in clays and to the lateral pressures on 

retaining walls. 

iii) Viscous Friction 

Solid friction effects are of relatively minor importance and the effects of viscous friction are 

quite pronounced. The laws of viscous friction are, in general, opposite to those of solid friction. 

The total frictional resistance is independent of normal force, but varies directly with the contact 

area. It varies with some power of the relative velocity of adjacent layers of fluid or with the rate 

of shearing. The well-established fact that the strength of saturated clays varies with consistency 

also is in accord with the concept that strength is due to viscous rather than solid friction. 

iv) Tensile Strength 

In varying degrees and for different periods of time, many clays are capable of developing a 

certain amount of tensile strength. This may affect the magnitude of normal stresses on failure 

planes. 

2.5.2 Shearing Strength of Clays 

Shear behaviour of clays is influenced by the fact whether the clay is normally consolidated or 

over consolidated, by the fact whether it is undisturbed or remoulded, by the drainage conditions 

during testing, consistency of the clay, by certain structural effects, by the type of test and by the 
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type and rate of strain. The following discussion relates to the shearing strength of saturated 

clays which are in a normally consolidated state; the modifications that may be expected in case 

the clay is in an over consolidated state are indicated at the appropriate places. 

2.5.3 Unconsolidated Undrained Tests 

It is difficult, if not impossible, to utilise the concept of effective stress in connection with the 

shearing strength of saturated clays. It is difficult to imagine that any substantial part of the 

normal stress is transmitted through particle contacts when grain-to-grain contacts are relatively 

infrequent or when the solid phase is weak in itself. For this reason, it is common practice to 

consider only total stresses in the case of saturated clays. The results of unconsolidated 

undrained tests in direct shear are indicated in Fig.2.36. 

 

 

 

 

 

Fig. 2.36: Unconsolidated undrained tests in direct shear on saturated clays 

It is seen that the total normal pressure does not influence the shearing strength of saturated clay 

from undrained tests; the intercept of the horizontal plot on the shear strength axis gives the 

cohesion cu. The strength of clay is often reported simply in terms of unit cohesion, regardless of 

the overburden pressure. The results of such tests in triaxial compression are indicated in Fig. 

2.37. 

 

 

 

 

 

 

Fig. 2.36: Unconsolidated undrained tests in triaxial compression on saturated clays 

Since drainage is not permitted both during the application of cell pressure and during the 

application of deviator stress (or additional axial stress), the increase in cell pressure or axial 

stress automatically increases the pore water pressure by an equal magnitude, the effective stress 
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remaining constant. In view of this, the diameter of the effective stress circle will be the same as 

that of the total stress circles with mere lateral shifts. The total stress envelope is thus a 

horizontal line, the intercept on the shearing strength axis being cohesion 𝐶𝑢 and 𝑄𝑢 being zero. 

It may also be easily understood that the effective stress envelope cannot be obtained from these 

tests since only one circle will be obtained for all tests. Consolidated undrained or drained tests 

may be used for this purpose. Pore pressure measurements are not usually made in the 

unconsolidated undrained tests as they are not useful. It is common knowledge that the shear 

strength of clay varies widely with its consistency, the shear strength being negligible when the 

water content is at liquid limit. This is reflected in Fig. 2.36. 

 

 

 

 

 

Fig.2.36: Variation of shearing strength with consistency of saturated clays 

The shearing strength of partially saturated clays is a more complex phenomenon and, hence, is 

considered outside the scope of the present work. 

 

2.5.4 Consolidated Undrained Tests 

If consolidated undrained tests are conducted in direct shear on remoulded, saturated and 

normally consolidated clay specimens with the same initial void ratio, but consolidated under 

different normal pressures, and sheared under the normal pressure of consolidation, without 

permitting drainage during shear, results as indicated in Fig. 2.37 are obtained. 

 

 

 

 

 

 

 

Fig. 2.37 Consolidated undrained tests in direct shear on remoulded, saturated, and normally consolidated 

clay (consolidated and sheared under normal pressures σ1, σ2, and σ3) 
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It is observed that the shear strength is proportional to the normal pressure. The strength 

envelope passes through the origin, giving an angle of shearing resistance φcu. However, it is 

fallacious to assume that the shear strength is related to the normal pressure during the 

application of shear. This may be demonstrated by consolidating all the samples under one 

particular pressure and testing them in shear under a different pressure. In such a case the results 

will appear somewhat as shown in Fig.2.38. 

 

 

 

 

 

 

Fig. 2.38: Consolidated undrained tests in direct shear on remoulded, saturated, and normally 

consolidated clay (consolidated under normal pressures σ1, σ2, and σ3, and sheared under different normal 

pressures) 

 

It is observed that the shearing strength is independent of the normal pressure during shear but is 

dependent only on the normal pressure during consolidation or consolidation pressure. The 

process of pre consolidation may thus be viewed simply as a method of changing the consistency 

of the clay, the strength at a given consistency being practically independent of normal pressure 

during shear. 

Similarly, consolidated undrained tests may be conducted in triaxial compression by either of the 

following procedures: 

(i) The specimens of saturated, remoulded, and normally consolidated clay are consolidated 

under different cell pressures and sheared, without permitting drainage, under a cell pressure 

equal to the consolidation pressure. This approach is more commonly used. 

(ii) The specimens are consolidated under the same cell pressure σc, and then sheared under 

undrained conditions with different cell pressures by increasing the axial stress; different series 

of these tests may be performed with different values of cell pressure for consolidation, which 

will be constant for any one series, as stated above. 

The results from the first method appear somewhat as shown in Fig. 6; total stress envelopes as 

well as effective stress envelopes are shown. 

The failure envelopes pass through the origin, giving ccu = ccu′ = 0, and values of φcu and φcu′ 

such that φcu′ > φcu. If the tests are conducted starting with a very low consolidation pressure, the 

initial portion of the envelope is usually curved and shows a cohesion intercept. The straight 

portion when extended passes through the origin. 
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Fig.2.39: Consolidated undrained tests in triaxial compression on remoulded, saturated, and normally 

consolidated clay (consolidated under different cell pressures and sheared undrained under the same cell 

pressures) 

 

An over consolidated clay shows an apparent cohesion; the equation for shear strength Here, σc 

is the consolidation pressure and σ is the applied normal pressure. The envelope is generally 

curved up to the pre consolidation pressure and shows a cohesion intercept. The corresponding 

equations for shear strength in terms of effective stresses are written with primes. 

 

 

 

 

 

 

 

 

 

 

 

Fig.2.40: Consolidated undrained tests in triaxial compression on remoulded, saturated, and normally 

consolidated clay consolidated under a particular cell pressure and sheared undrained under cell pressures 

different from consolidated pressures 

The effect of pre consolidation is to reduce the value of A-parameter and thus cause higher 

strength. At higher values of over-consolidation ratio, A-factor may be even negative; the 

effective stress circles will then get shifted to the right of the total stress circles instead of to the 
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left. This gives lower value of effective apparent cohesion and higher value of effective angle of 

shearing resistance than those of total stress values. 

The results from the second method appear somewhat as shown in Fig.2.40. The results indicate 

that, for a particular series, the deviator stress at failure is independent of the cell pressure. The 

failure envelope will be horizontal for each series, the apparent cohesion cu being different for 

different series; the angle φu is zero, as indicated by Fig. 2.40 (a), (b) and (c). The greater the 

effective consolidation pressure, the greater is the apparent cohesion. This is indicated in Fig. 

2.40 (d). If the clay is over-consolidated, the consolidation pressure versus apparent cohesion 

curve will show a discontinuity at the pressure corresponding to the pre consolidation pressure; 

below this pressure, the relationship is non-linear and will show an intercept at zero pressure and, 

above this pressure, it is linear. If the clay is normally consolidated for all the consolidation 

pressures used in the tests, this relationship will be a straight line, which, when produced 

backwards, will pass through the-origin. 

2.5.5 Drained Tests 

The specimen is first consolidated under a certain cell pressure and is then sheared sufficiently 

slowly so that no pore pressures are allowed to develop at any stage. The effective stresses will 

be the same as the total stresses. The results will be similar to those obtained from the 

consolidated undrained tests, with the same modifications as for a clay in an over consolidated 

condition, as shown in Fig. 2.41. 

 

 

 

 

 

 

 

Fig.2.41: Drained tests in triaxial compression on a remoulded saturated clay sheared under cell pressure 

equal to the consolidation pressure 

2.5.6 Stress-strain Behaviour of Clays 

The stress-strain behaviour of clays is primarily dependent upon whether the clay is in a 

normally consolidated state or in an over consolidated state. The stress-strain relationships for a 

normally consolidated clay and those for an over consolidated clay are shown in Figs. 2.42 and 

2.43 respectively. 
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Fig. 2.42: Stress-strain relationships for normally consolidated clay 

 

 

 

 

 

 

Fig.2.43: Stress-strain relationships for an over consolidated clay 

The behaviour of a normally consolidated clay is somewhat similar to that of a loose sand and 

that of an over consolidated clay is similar to that of a dense sand. In the case of plastic nature of 

stress-strain relationship with no specific failure point, an arbitrary strain of 15 to 20% is 

considered to be representative of failure condition. 

2.5.7 Effect of Rate and Nature of Shear Strain 

Clays are often sensitive to the rate and manner of shearing. Usually standard rates of shearing 

are adopted for proper comparison. A strain of about 0.10 to 0.15 cm/min., is considered 

standard in strain-controlled direct shear. However, it is not common that strain is controlled in 

nature or in construction operations. 

It is observed that shear strength increases somewhat with increased rates of strain. If the loading 

is not at a uniform rate but is effected in increments, much greater shearing resistance is 

developed; however, the failure in such a case is observed to occur rather suddenly. The increase 

in shear strength could be as much as 25% with increase in rate of strain from a very slow rate; 

this increase would be as high as 100% or more if the loading is by increments. 
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If there is interruption of strain, the shear stress could decrease steadily by a creep in saturated 

clays; but in the case of sands, this will not have any significant effect on shearing stress. Also, 

greater shearing displacements are associated with smaller rates of shearing strain and vice versa. 

This is also in contrast to the behaviour of sand for which these factor do not appear to materially 

affect the results. 

Example 1: The stresses at failure on the failure plane in a cohesionless soil mass were: 

Shear stress = 4 kN/m2; normal stress = 10 kN/m2. Determine the resultant stress on the failure plane, the 

angle of internal friction of the soil and the angle of inclination of the failure plane to the major principal 

plane. 

Sol: Resultant stress =   √𝜎2 + 𝜏2       

= √100 + 16= 10.77 kN/m
2 

tan∅= 4/10 = 0.4 

∅= 21° 48’

𝜃 = 45° +21048’/2 

= 55°54’ 

Graphical solution (Fig. 1): 

The procedure is first to draw the σ-and τ-axes from an origin O and then, to a suitable scale,set-off point 

D with coordinates (10,4), Joining O to D, the strength envelope is got. The MohrCircle should be 

tangential to OD to D. DC is drawn perpendicular to OD to cut OX in C, which is the centre of the circle. 

With C as the centre and CD as radius, the circle is completed to cut OX in A and B. 

 

 

 

 

 

 

 

 

 

 

 

Fig.1 
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3.0 STRESS PATH 

 

Results of triaxial tests can be represented by diagrams called stress paths. A stress path is a line 

connecting a series of points, each point representing a successive stress state experienced by a 

soil specimen during the progress of a test. There are several ways in which the stress path can 

be drawn, two of which are discussed below. 

Rendulic plot 

A Rendulic plot is a plot representing the stress path for triaxial tests originally suggested by 

Rendulic (1937) and later developed by Henkel (1960). It is a plot of the state of stress during 

triaxial tests on a plane Oabc, as shown in Figure 3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3.1: Rendulic plot 

 

Along Oa, we plot  √2𝜎𝑟
′, and along Oc, we plot 𝜎𝑎

′  ( 𝜎𝑟
′is the effective radial stress and  𝜎𝑎

′  the 

effective axial stress). Line Od in Figure 3 2 represents the isotropic stress line.  

The direction cosines of this line are 1/√3, 1/√3,
1

 √3
. Line Od in Figure 3.2 will have a slope of 1 

vertical to √2 horizontal. Note that the trace of the octahedral plane 𝜎1
′ + 𝜎2

′ + 𝜎3
′  = constant 

will be at right angles to the line Od. 

In triaxial equipment, if a soil specimen is hydrostatically consolidated (i.e.,  𝜎𝑎
′ = 𝜎𝑟

′), it may be 

represented by point 1 on the line Od. If this specimen is subjected to a drained axial 

compression test by increasing  𝜎𝑎
′  and keeping  𝜎𝑟

′ constant, the stress path can be represented 

by the line 1–2. 

Point 2 represents the state of stress at failure. Similarly,  
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Fig.3.2: Rendulic diagram with Isotropic line 

 

Line 1–3 will represent a drained axial compression test conducted by keeping  𝜎𝑎
′  constant and 

reducing 𝜎𝑟
′.  

Line 1–4 will represent a drained axial compression test where the mean principal stress (or J 

=𝜎1
′ + 𝜎2

′ + 𝜎3
′  ) is kept constant. 

Line 1–5 will represent a drained axial extension test conducted by keeping   𝜎𝑟
′  constant and 

reducing 𝜎𝑎
′ . 

Line 1–6 will represent a drained axial extension test conducted by keeping  𝜎𝑎
′   constant and 

increasing 𝜎𝑟
′.  

Line 1–7 will represent a drained axial extension test with J = 𝜎1
′ + 𝜎2

′ + 𝜎3
′ constant 

 (i.e., J =   𝜎𝑎
′ + 2 𝜎𝑟

′  constant). 

Curve 1–8 will represent an undrained compression test. 

Curve 1–9 will represent an undrained extension test. 

Curves 1–8 and 1–9 are independent of the total stress combination, since the pore water 

pressure is adjusted to follow the stress path shown. 

If we are given the effective stress path from a triaxial test in which failure of the specimen was 

caused by loading in an undrained condition, the pore water pressure at a given state during the 

loading can be easily determined. 

This can be explained with the aid of Figure 3.3.  
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Fig.3.3: Determination of pore water pressure in a Rendulic plot 

 

Consider a soil specimen consolidated with an encompassing pressure  𝜎𝑟
′   and with failure 

caused in the undrained condition by increasing the axial stress  𝜎𝑎
′ . Let acb be the effective 

stress path for this test. We are required to find the excess pore water pressures that were 

generated at points c and b (i.e., at failure). For this type of triaxial test, we know that the total 

stress path will follow a vertical line such as ae. To find the excess pore water pressure at c, we 

draw a line cf parallel to the isotropic stress line. Line cf intersects line ae at d. The pore water 

pressure ud at c is the vertical distance between points c and d. The pore water pressure udfailure at 

b can similarly be found by drawing bg parallel to the isotropic stress line and measuring the 

vertical distance between points b and g. 

 

3.1 LAMBE’S STRESS PATH 

 

Lambe (1964) suggested another type of stress path in which are plotted the successive effective 

normal and shear stresses on a plane making an angle of 450 to the major principal plane. To 

understand what a stress path is, consider a normally consolidated clay specimen subjected to a 

consolidated drained triaxial test (Figure 3.4a).  

At any time during the test, the stress condition in the specimen can be represented by Mohr’s 

circle (Figure 4b). Note here that, in a drained test, total stress is equal to effective stress. So 

𝜎3 = 𝜎3
′(minor principal stress)-------------------------    Eq.3.1 
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 𝜎1 = 𝜎3 + ∆𝜎 = 𝜎1
′ (Major Principal Stress)--------------    Eq.3.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

    

Fig.3.4: Definition of stress path 

 

At failure, Mohr’s circle will touch a line that is the Mohr–Coulomb failure envelope; this makes 

an angle ∅ with the normal stress axis (∅ is the soil friction angle). 

We now consider the effective normal and shear stresses on a plane making an angle of 450 with 

the major principal plane. Thus 

Effective normal stress, 𝑝′ =
𝜎1

′+𝜎3
′

2
-------------------------    Eq.3.3 

Shear stress, 𝑞′ =
𝜎1

′−𝜎3
′

2
-------------------      Eq.3.4 

The points on Mohr’s circle having coordinates p and q are shown in Figure 4 b. If the points 

with 𝑝′ and 𝑞′ coordinates of all Mohr’s circles are joined, this will result in the line AB. This 

line is called a stress path. 

The straight line joining the origin and point B will be defined here as the Kf line. The Kf line 

makes an angle α with the normal stress axis. Now 

𝑡𝑎𝑛𝛼 =
𝐵𝐶

𝑂𝐶
=

𝜎1𝑓
′ −𝜎3𝑓

′

𝜎1𝑓
′ +𝜎3𝑓

′ --------------------      Eq.3.5 

Where,  𝜎1𝑓
′  and 𝜎3𝑓

′  are the effective major and minor principal stress at failure. 

Similarly  

𝑠𝑖𝑛∅ =
𝐷𝐶

𝑂𝐶
=

𝜎1𝑓
′ −𝜎3𝑓

′

𝜎1𝑓
′ +𝜎3𝑓

′ -----------------       Eq.3.6 

Thus, 𝑡𝑎𝑛𝛼 =  𝑠𝑖𝑛∅------------------       Eq.3.7 
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For a consolidated un-drained test, consider a clay specimen consolidated under an isotropic 

stress 𝜎3 = 𝜎3
′  in a triaxial test. When a deviator stress ∆𝜎  is applied on the specimen and 

drainage is not permitted, there will be an increase in the pore water pressure, ∆𝑢 (Figure 3.5 a) 

∆𝑢 =A∆𝜎, where A is the pore water pressure parameter. 

At this time the effective major and nimor principal stresses can be given as 

Major effective principal stress, 𝜎1
′ = 𝜎1 − ∆𝑢-------------------   Eq.3.8 

Minor effective principal stress, 𝜎3
′ = 𝜎3 − ∆𝑢-------------------   Eq.3.9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3.5: Stress Path for Consolidated Un-drained Triaxial Test 

Mohr’s circles for the total and effective stress at any time of deviator stress application are 

shown in Figure 3.5 b. (Mohr’s circle no. 1 is for total stress and no. 2 for effective stress.) Point 

B on the effective-stress Mohr’s circle has the coordinates p’ and q’. If the deviator stress is 

increased until failure occurs, the effective-stress Mohr’s circle at failure will be represented by 

circle no. 3, as shown in Figure 3.5 b, and the effective-stress path will be represented by the 

curve ABC. 

 
Fig.3.6: Stress Path for Lagunilla Clay (after Lambe, 1964) 
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The general nature of effective-stress path will depend on the value of A. Figure 3.6 shows the 

stress path in p’ versus q’ plot for Lagunilla clay (Lambe, 1964). In any particular problem, if a 

stress path is given in   𝑝′ versus 𝑞′ plot, we should be able to determine the values of the major 

and minor effective principal stresses for any given point on the stress path. This is demonstrated 

in Figure 3.7, in which ABC is an effective stress path. 

 

 

 

 

 

 

 

 

 

 

 

Fig.3.7: Determination of major and minor principal stresses for a point on a stress path 

 

From the Figure 3.6, two important aspects of effective stress path can be summarized as 

follows: 

1. The stress paths for a given normally consolidated soil are geometrically similar. 

2. The axial strain in a CU test may be defined as ∈1= L/L as shown in Figure 3.5a. For a given 

soil, if the points representing equal strain in a number of stress paths are joined, they will be 

approximately straight lines passing through the origin. This is also shown in Figure 3.6. 

Example 1 

 

 
 



87 
 

 

 

 

 

 

 

 

 

  
Figure 3.8 Plot of 𝑞′ versus 𝑝′

 

Example: 2 

 

Solution: 
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Example: 3 

Stress path in (p,q)and  (s,t) space for soil element next to an excavation 

 

 

 

 

        

Figure: 2 
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Solution: 
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Figure: 3 
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4.0 YIELD CRITERION 

 

A condition that defines the limit of elasticity and the beginning of plastic deformation under any 

possible combination of stresses is known as the yield condition or yield criterion. In the elastic 

region, all the deformation will be recovered once the applied stress is removed (i.e. unloading of 

stress to zero). However once the yield condition is reached, some of the deformation will be 

permanent in the sense that it cannot be recovered even after the stress is removed completely. 

This part of the deformation is known as plastic deformation and the remaining deformation is 

recoverable upon removal of the stress and is known as elastic deformation. For the simple case 

of one-dimensional loading, the yield criterion is defined by a stress value beyond which plastic 

deformation will occur. In other words, the criterion of yield is graphically represented by a 

point. For the case of two dimensional loading, the yielding will occur when the combination of 

stresses applied in the two loading directions touches a curve. In the same way, for the case of 

three dimensional loading, plastic deformation will occur once the combination of the stresses 

applied in the three directions touches a surface (often known as a yield surface). In short, the 

yield criterion is generally represented by a surface in stress space. When the stress state is 

within the yield surface, material behavior is said to be elastic. 

Once the stress state is on the yield surface, plastic deformation will be produced. 

Mathematically, a general form of yield criterion (or surface) can be expressed in terms of either 

the stress tensor or the three stress invariants as follows: 

𝑓(𝜎𝑖𝑗 ) = 𝑓(𝐼1, 𝐼2, 𝐼3)=k----------        Eq.4.1 

 

4.1 YIELD SURFACES FOR METALS 

The first yield criterion for metal was suggested by the French engineer H. Tresca in 1864. His 

experiments suggested that plastic behaviour would commence when the maximum shear stress 

reached a critical value. Recalling Mohr’s circle, we see that the maximum shear stress will 

always be half the difference between the major and minor principal stresses. One can easily 

discover the critical stress by performing a simple tension test on a bar of the metal. If we denote 

the tensile stress at failure (i.e. the onset of plastic behaviour) by  𝜎𝑇 , then the maximum shear 

stress is exactly half of   𝜎𝑇 . Therefore if we consider the case where  𝜎1 ≥ 𝜎2 ≥ 𝜎3 the yield 

function f in (Eq.1) becomes ( 𝜎1− 𝜎3)/2 and the constant k is  𝜎𝑇 /2. The yield criterion can be 

written as: 

 𝜎1− 𝜎3)=  𝜎𝑇  ------------------------        Eq. 4.2 

Note that the surface defined by (Eq.2) does not depend on the mean stress p. The function f 

depends only on the diameter of the Mohr circle. This implies that the yield surface image in the 

π-plane will be independent of the position on the space diagonal.  

When we consider the various possibilities, such as  

σ1 ≥ σ3 ≥ σ2,  



94 
 

σ2 ≥ σ1 ≥ σ3, and so on. The complete yield surface has the shape of a regular hexagon. Its 

intersection with the π-plane is shown in Figure 4.1. 

In principal stress space we see an infinitely long prism. Its cross-section is a hexagon and its 

central axis is the space diagonal. 

 

 

 

 

 

 

 

 

Fig.4.1: The Tresca yield surface 

The volume enclosed, by definition, represents the set of all stress states for which the material 

will be elastic. If the stress point touches the surface, then yielding will occur. 

The second yield criterion of general interest for metals was suggested by R. von Mises in 1913. 

He suggested that yield will occur when the value of the deviatoric stress q reaches a critical 

value. We write the von Mises yield condition as q=k 

We see that yield will occur when, in the π-plane, the radial distance from the origin to the stress 

point reaches the value √2/3 k. As with Tresca’s criterion, we can determine the value of k from 

a simple tension test. If we set  𝜎1= 𝜎𝑇 , the tensile yield stress, and we let  𝜎2 = σ3 = 0, then we 

find that q is exactly  𝜎𝑇  and therefore so is k. The intersection of the von Mises surface with the 

π-plane is a circle passing through the vertices of the Tresca hexagon (Figure 4.2). The complete 

surface is an infinitely long cylinder whose central axis coincides with the space diagonal. 

 

 

 

 

 

 

 
 

 

 

 

Fig.4.2: The Von Mises yield surface 
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Both metals and soils often exhibit localisation of deformation within relatively narrow regions 

or bands when failure is imminent. On a microscopic level, dislocations in the atomic lattice of a 

metal bear at least a vague similarity to the fracture and rearrangement of particles in a yielding 

soil. Workers in geotechnical engineering have often attempted to adapt aspects of metal 

plasticity theories for use in soil mechanics. The reverse, however, is also true since the very first 

practical yield criterion was derived specifically for soil. It was the work of the great French 

engineer Charles Augustus Coulomb. 

 

4.2 THE COULOMB YIELD CRITERION 

He began by observing that all the materials derived strength from two sources: cohesion and 

friction. His observations of real soils suggested that failure will usually be associated with a 

surface of rupture within the soil mass. Restricting attention to this surface he wrote his failure 

criterion as 

𝜏 = 𝑐 + 𝜎𝑡𝑎𝑛𝜑-------------------        Eq.4.3 

Where, τ and σ represent the shearing stress and normal stress on the physical plane through 

which material failure occurs. The constant c is called the cohesion. It has dimensions of stress. 

The quantity 𝑡𝑎𝑛𝜑 is similar to a coefficient of friction. The angle 𝜑 is referred to as the angle of 

internal friction. Coulomb did not write the criterion exactly as we have done here, but his words 

clearly expressed the meaning we associate with the present equation form. 

The intersection of the yield surface with the π-plane will be a straight line of course the straight 

line will only apply over one of the 600 segments, exactly the same as for the Tresca yield 

surface. Here, however, there are two important differences with respect to the Tresca surface. 

 

 

 

 

 

 

 

 

Fig.4.3: The Coulomb failure criterion 

 

The first is that the relative slopes of the surface in the various 600 segments are different. We 

will see this more clearly in a moment. The second and more important difference is this: the size 

of the surface depends upon the mean stress p. 

Graphically the yield surface for all six of the 600 segments results in the irregular hexagonal 

shape is shown in Figure 4. 4. For the purposes of constructing this figure we have taken 𝜑 to be 

300. Each of the vertices of the hexagon has a particular physical meaning. All vertices occur on 

the lines of symmetry where two of the principal stresses are equal. The uppermost vertex 

corresponds to the condition where 𝜎1 > 𝜎2 = 𝜎3 
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Fig.4.4: Cross-section through the Coulomb yield surface 

 

The resemblance between the Coulomb and Tresca surfaces is more than a passing one. Note that 

if we set φ = 0 in (Eq. 3), Coulomb’s criterion is essentially the same as Tresca’s, namely that 

failure occurs when the greatest shear stress reaches a critical value. If we set φ = 0 in (Eq.4.3), 

provided we set 2c = 𝜎𝑇 . The difference between the yield surface shapes in the π-plane stems 

solely from φ. But this is not the most important difference. That distinction belongs to the 

dependence of Coulomb’s criterion on the mean stress p. Because of this, the size of the yield 

surface grows as the mean stress increases. Whereas Tresca’s surface was an infinitely long 

uniform hexagonal prism, Coulomb’s surface has an expanding pyramid shape as shown in 

Figure 4.5. 

 

 

 

 

 

 

 

 

 

 

Fig.4.5: Perspective view of the Coulomb yield surface 

 

4.3 MODIFICATIONS TO COULOMB’S CRITERION 

There are three modified forms of the Coulomb criterion that we will consider. The first was 

proposed in 1952 by two of the most prominent researchers from the field of both metal and soil 



97 
 

plasticity: D.C. Drucker and W. Prager. They suggested that the von Mises yield criterion could 

be modified easily by introducing a dependence on the mean stress p, 

𝑞 − 𝜉𝑝 = 𝑘---------------------         Eq.4.4 

Here the additional term ξ p will change the von Mises yield surface from an infinitely long 

cylinder to a cone. We can select the values of the constants ξ and k in such a way that the cone 

will agree with the Coulomb surface at the major vertices. First, recall that 

 

 

 

 

 

 

 

 

 

Fig.4.6: The Drucker–Prager and Coulomb yield surfaces 

The graph of Drucker and Prager’s yield surface in the π-plane is a circle that touches the 

Coulomb hexagon as shown in Figure 6. Thinking again about real soil response, tests show that 

the Drucker–Prager surface is not as accurate a representation as the Coulomb hexagon. Even the 

relatively common triaxial extension test gives results that lie far closer to the minor vertex of the 

hexagon than to the circle. Nevertheless, the Drucker–Prager criterion possesses the significant 

virtue of simplicity, and because of this it is an important addition to the repertoire of the soil 

plastician. 

The second modified form of Coulomb’s surface was developed in 1975 by P.V. Lade and J.M. 

Duncan. Their yield criterion was proposed expressly for cohesionless soils. It can be written in 

the form 

𝜎1𝜎2𝜎3 = 𝑘𝑝3--------------------        Eq.4.5 

where κ is a constant. On the left-hand side of this equation we see the product of all three 

principal stresses, which we know to be the third principal stress invariant. 

The third modification of the Coulomb criterion was derived by H. Matsuoka and T. Nakai in 

1974. Their yield equation can be written as 

𝜎1𝜎2𝜎3=ξ p (𝜎1𝜎2 + 𝜎2𝜎3+𝜎3𝜎1) ------------------      Eq.4.6  

Where,ξ is a constant. This equation is also restricted to cohesionless soils. Remarkably, it agrees 

with the Coulomb hexagon at both major and minor vertices, provided the appropriate value for ξ 

is used. Figure 4.7 shows the Lade–Duncan and Matsuoka–Nakai yield surfaces compared with 

the Coulomb yield surface. 
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The graph of the yield locus in the π-plane can be constructed in the same way as the Lade– 

Duncan surface was. Both the Lade–Duncan surface and the Matsuoka–Nakai surface provide 

good agreement with the available cubical triaxial test data. 

 

4.4 STRAIN HARDENING AND PERFECT PLASTICITY 

In contrast to perfect plasticity, ‘work hardening’ implies the yield surface may change in some 

way once initial yielding has occurred. Usually the way the yield surface changes is related to the 

amount of plastic strain or to the amount of plastic work that has accumulated. The response of a 

work hardening material in simple tension might look something like that shown in Figure 4.8 

 

 

 

 

 

 

 

 

 

Fig.4.7 Lade–Duncan and Matsuoka–Nakai yield surfaces compared with the Coulomb yield 

surface 

Here the stress and strain may have a one-to-one functional relationship both before and after 

yield. 

 

 

 

 

 

 

 

 

Fig. 4.8: Stress strain response for a work hardening plastic material 

 

Plastic deformation leads to the hardening of a material and the increase of its elastic limit (i.e. 

the stress limit under which only elastic deformation occurs). In other words, the yield surface 

will generally not be fixed in stress space; rather it will expand or contract depending on 

previous plastic deformation and loading history. 

Let us for the present consider the case when plastic deformation only changes the size of the 

yield surface equally in all directions but not its shape (which is known as isotropic hardening). 

If the yield surface is expanding in size, the material is said to be hardening (i.e. making it more 

difficult to yield). On the other hand, if the yield surface is contracting in size, then the material 
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is said to be undergoing softening (i.e. making it easier to yield). The change of the size of the 

yield surface is often related to some measure or integral of plastic strain rates. The most 

common measures include the total plastic work per unit volume, the accumulated plastic strain 

(Hill, 1950), the volumetric plastic strain rate (Schofield and Wroth, 1968; Yu, 1998), or a 

combination of volumetric and shear plastic strain rates (Wilde, 1977; Yu etal., 2005). The yield 

surface for a strain-hardening or softening material is also called the loading surface. 

Mathematically, the loading surface, which changes with plastic deformation, may be expressed 

by 

𝑓(𝜎𝑖𝑗 , 𝜀𝑖𝑗
𝑝

)=0------------------------        Eq.4.7 

Where, 𝜀𝑖𝑗
𝑝

 𝑑enotes the plastic strain tensor 

If the yield surface does not change with stress history (i.e. fixed), the material is known a 

perfectly plastic solid. This is a special case of strain-hardening materials. For a perfectly plastic 

material, the behaviour is elastic when the stress state lies inside the yield surface. Plastic strains 

will occur as long as the stress state lies on or travels along the yield surface. The complete stress 

conditions for plastic and elastic behaviour may be stated as 

Elastic if 𝑓(𝜎𝑖𝑗) < 0 or 𝑑𝑓 =
𝜕𝑓

𝜕𝜎𝑖𝑗
𝑑𝜎𝑖𝑗 < 0--------------------     Eq.4.8 

Plastic if 𝑓(𝜎𝑖𝑗) = 0 or 𝑑𝑓 =
𝜕𝑓

𝜕𝜎𝑖𝑗
𝑑𝜎𝑖𝑗 = 0--------------------     Eq.4.9 

The elastic behaviour of a strain-hardening solid is the same as that of a perfectly plastic one. 

Therefore the conditions for initial yield must be the same. Indeed, the difference between the 

two concerns only the mechanism for continuing plastic flow, plus the fact that the conditions for 

current yielding will depend on the plastic history of the material. The complete stress conditions 

for plastic and elastic behavior for a strain-hardening material are 

Elastic if 𝑓(𝜎𝑖𝑗 , 𝜀𝑖𝑗
𝑝

) < 0 or 𝑑𝑓 =
𝜕𝑓

𝜕𝜎𝑖𝑗
𝑑𝜎𝑖𝑗 ≤ 0------------------              Eq.4.10 

Plastic if 𝑓(𝜎𝑖𝑗 , 𝜀𝑖𝑗
𝑝 ) = 0 or 𝑑𝑓 =

𝜕𝑓

𝜕𝜎𝑖𝑗
𝑑𝜎𝑖𝑗 > 0------------------              Eq.4.11 

For solving boundary value problems involving elastic-plastic behaviour, it is essential to clearly 

determine what behaviour will result from a further stress increment when the stress state is 

already on the yield surface. Three possible conditions exist and they are 

Unloading, 𝑓(𝜎𝑖𝑗 , 𝜀𝑖𝑗
𝑝 ) = 0 or 𝑑𝑓 =

𝜕𝑓

𝜕𝜎𝑖𝑗
𝑑𝜎𝑖𝑗 < 0---------------              Eq.4.12 

Neutral loading, 𝑓(𝜎𝑖𝑗 , 𝜀𝑖𝑗
𝑝 ) = 0 or 𝑑𝑓 =

𝜕𝑓

𝜕𝜎𝑖𝑗
𝑑𝜎𝑖𝑗 = 0---------              Eq.4.13 

Loading, 𝑓(𝜎𝑖𝑗 , 𝜀𝑖𝑗
𝑝 ) = 0 or 𝑑𝑓 =

𝜕𝑓

𝜕𝜎𝑖𝑗
𝑑𝜎𝑖𝑗 > 0------------------              Eq.4.14 

It is commonly assumed that for both unloading and neutral loading, material behaviour is purely 

elastic. Plastic behaviour occurs only when the loading condition is satisfied. 

 

4.5 ISOTROPIC AND KINEMATIC HARDENING 
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Hardening in the theory of plasticity means that the yield surface changes in size or location or 

even in shape, along with the loading history (often measured by some form of plastic 

deformation). When the initial yield condition exists and is identified, the rule of hardening 

defines its modification during the process of plastic flow. Most plasticity models currently in 

use assume that the shape of the yield surface remains unchanged, although it may change in size 

or location. This restriction is largely based on mathematical convenience, rather than upon any 

physical principle or experimental evidence. The two most widely used rules of hardening are 

known as isotropic hardening and kinematic (or anisotropic) hardening. 

 

4.5.1 Isotropic hardening 

The rule of isotropic hardening assumes that the yield surface maintains its shape, centre and 

orientation, but expands or contracts uniformly about the centre of the yield surface. Isotropic 

hardening with uniform expansion of the yield surface is shown in Figure 4.9 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.9: Isotropic hardening with uniform expansion of the yield surface 

 

A yield surface with its centre at the origin may be generally described by the following function 

𝑓 = 𝑓(𝜎𝑖𝑗) − 𝑅(𝛼) = 0------------------                 Eq.4.15 

where R represents the size of the yield surface, depending on plastic strains through the 

hardening parameter a. As shown in Hill (1950), the two earliest and most widely used hardening 

parameters are the accumulated equivalent plastic strain, 

∝= ∫ √
2

3
(d𝜀𝑖𝑗

𝑝
)1/2-------------------------                Eq.4.16 

and the plastic work 

∝= ∫ 𝜎𝑖𝑗 𝑑𝜀𝑖𝑗
𝑝

-----------------------------                 Eq.4.17 

4.5.2 Kinematic hardening 

The term kinematic hardening was introduced by Prager (1955) to construct the first kinematic 

hardening model. In this first model, it was assumed that during plastic flow, the yield surface 
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translates in the stress space and its shape and size remain unchanged. This is consistent with the 

Bauschinger effect observed in the uniaxial tension-compression. 

Assume that the initial yield surface can be described by 

𝑓 = 𝑓(𝜎𝑖𝑗 − 𝛼𝑖𝑗) − 𝑅0 = 0------------                Eq.4.18 

where aij represents the coordinates of the centre of the yield surface, which is also known as the 

back stress. R0 is a material constant representing the size of the original yield surface. It can be 

seen that as the back stress 𝜎𝑖𝑗 changes due to plastic flow, the yield surface translates in the 

stress space while maintaining its initial shape and size. 

The first simple kinematic hardening model was proposed by Prager (1955). This classical model  

Assumes that the yield surface keeps its orginal shape and size and move in the direction of 

plastic strain rate tensor (see Figure 4.10).  

Mathematically it can be expressed by the following linear evolution rule 

𝑑𝛼𝑖𝑗=cd𝜀𝑖𝑗
𝑝

-----------------------                  Eq.4.19 

where c is a material constant. 

Whilst Prager's model is reasonable for one-dimensional problems, it does not seem to give 

consistent predictions for two- and three-dimensional cases (Ziegler, 1959). The reason is that 

the yield function takes different forms for one-, two- and three-dimensional cases. To overcome 

this limitation, Ziegler (1959) suggested that the yield surface should move in the direction as 

determined by the vector𝜎𝑖𝑗 − 𝛼𝑖𝑗, see Figure 4.10.  

Mathematically Ziegler's model can be expressed as follow 

𝑑𝛼𝑖𝑗 = 𝑑𝜇(𝜎𝑖𝑗 − 𝛼𝑖𝑗)----------------                  Eq.4.20 

where  𝑑𝜇 is a material constant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4.10: Pager’s and Ziegler’s Kinematic hardening 

 

Mathematically it can be expressed by the following linear evolution rule 

𝑑𝛼𝑖𝑗=cd𝜀𝑖𝑗
𝑝

-----------------------       Eq.4.21 

where c is a material constant. 
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Whilst Prager's model is reasonable for one-dimensional problems, it does not seem to give 

consistent predictions for two- and three-dimensional cases (Ziegler, 1959). The reason is that 

the yield function takes different forms for one-, two- and three-dimensional cases. To overcome 

this limitation, Ziegler (1959) suggested that the yield surface should move in the direction as 

determined by the vector 𝜎𝑖𝑗 − 𝛼𝑖𝑗 , see Figure 3. Mathematically Ziegler's model can be 

expressed as follow 

𝑑𝛼𝑖𝑗 = 𝑑𝜇(𝜎𝑖𝑗 − 𝛼𝑖𝑗)----------------                  Eq.4.22 

where  𝑑𝜇 is a material constant. 

 

4.6 PLASTIC FLOW 

 

It is important to explore what may happen if the stress point arrives at the yield surface. We 

intuitively expect that yielding will be accompanied by some form of increased deformation, 

over and above the elastic deformation that has gone on while the stress point has been inside the 

yield surface. We expect plastic behaviour to be softer than elastic behaviour, with the result that 

strains will accumulate more quickly. The term plastic flow is used to describe the deformation 

following yield.  

One of the main differences between plastic response and elastic response is that plastic flow 

will be irreversible. While the material is elastic we can increase the stress with a consequent 

increase in strain, and then completely recover those strains by simply returning the stress state 

to its initial value.  However this will not be possible if yield occurs. Plastic deformation will not 

be recoverable from simple unloading. If we do reduce the stress to its initial value we will 

recover whatever elastic strain that has occurred in getting to the yield state, but the plastic strain 

will be locked within the body. In order to describe plastic flow we might attempt to derive a 

constitutive relationship linking plastic strain to the current stress state. But this will immediately 

lead to difficulties owing precisely to the irreversibility mentioned above. There can clearly be 

no unique one-to-one relationship between plastic strain and stress since there may be an 

unknown amount of plastic deformation already locked within the body at the start of any 

loading episode. As a result we choose to seek a relationship between stress and plastic strain 

rate. By looking at the rate of change of plastic strain rather than the total amount we avoid the 

problem of irreversibility. Of course, if the plastic strain rate is known throughout some loading 

process, then a simple integration will give the total amount of plastic strain that has accumulated 

during that process. Obviously, it may be convenient to differentiate between plastic and elastic 

strain. We do this by using superscripts. The superscript e denotes elastic strain while p denotes 

plastic strain. The total strain is the sum of the elastic and plastic parts. 

𝜀𝑥𝑥 = 𝜀𝑥𝑥
𝑒 + 𝜀𝑥𝑥

𝑝
----------------                   Eq.4.23 

 

4.7 NORMALITY 

 

Our ultimate aim will be to formulate a functional relationship between the components of the 

plastic strain rate and the components of stress. It is reasonable to assume that the components of 
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the plastic strain rate can be arranged into a square matrix exactly as for the elastic strains. We 

will denote this matrix by �̇�𝑝. We expect �̇�𝑝 to be symmetric and to have the principal values. 

An important assumption concerning plastic strains relates to Saint-Venant’s hypothesis. This 

assumes that the principal directions of both the stress matrix 𝝈 ̇ and the plastic strain rate matrix 

𝜀�̇�  are aligned. If the material is isotropic, and if 𝜀�̇�  depends only on σ, then Saint-Venant’s 

hypothesis is no longer an assumption but is required by the rules of linear algebra. In many 

cases we may be happy to assume that our material is isotropic, but it may be that  𝜀�̇�   possesses 

a functional dependence on more than just the components of the stress matrix. 

A consequence of Saint-Venant’s hypothesis is that we can relate stresses and plastic strain rates 

spatially by plotting them on the same graph. For example, in the π-plane we can plot both the 

principal stresses and the principal components of the plastic strain rate matrix on the same 

graph. The axes for 𝜎1  and 𝜀1
𝑝

 fall on the same line, and a similar result applies for the 

intermediate and minor principal values of both matrices. Of course, the scales of the respective 

axes are different and we are not directly comparing stresses with strain rates, but the ability to 

plot both together will be useful in visualising some parts of our development. 

 

4.8 THE YIELD CONDITION AND THE FLOW RULE 

 

The Mohr-Coulomb yield condition: The methods described in this chapter may be applied to 

any perfectly plastic model soil. For such models, the yield and failure conditions are identical. 

The methods cannot however be applied to those soil models, such as the critical state model, 

which take account of strain hardening or strain softening. The Mohr-Coulomb model is most 

commonly used. The yield (and failure) condition may be stated in the form in terms of total 

stress as 

𝜏𝑓 = 𝑐 + 𝜎𝑛𝑡𝑎𝑛∅------------------------                 Eq.4.24 

in terms of effective stress.  

𝜏𝑓 = 𝑐′ + (𝜎𝑛 − 𝑢)𝑡𝑎𝑛∅----------------                 Eq.4.25 

Both the equilibrium and yield conditions may be expressed in similar forms in terms of either 

total or effective stress. In the remainder of this chapter, the primes denoting effective stress 

have, for convenience, been omitted, but the methods used and the expressions derived are 

equally applicable to analysis in terms of total or effective stress. 

4.8.1Strain rate and velocity 

A consequence of our assumption of perfect plasticity is that any stress state satisfying the yield 

condition will, if maintained, because unlimited plastic strain. There is, therefore, no direct 

relationship between yield stress and plastic strain. We therefore need to define, not the strain, 

but the strain rate-that is, the rate at which the strain is increasing with respect to time. The 

absolute value of the strain rate is not determinate, since, in designing the soil models, we have 

not specified any property (such as viscosity) which would control it. This turns out to be not 

very important as we are concerned only with the relative magnitudes of the strain rate 
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components. These define the directions of the strain rate vectors, and the shape of the deformed 

body. 

Knowing the strains everywhere within a body, we may determine the relative displacements of 

different points within it. 'In a similar way, knowing the strain rates, we may determine the 

velocities-that is, the rates of displacement. As in the case of the strain rates, the absolute 

magnitudes of the velocities are not determinate. Our concern is with the relative magnitudes of 

the velocity components, since these define the directions of the velocity vectors and hence the 

directions of motion. A pattern of velocity vectors, defining the motion everywhere within the 

plastic zone is called a velocity field. 

4.8.2 The Flow Rule and the Plastic Potential 

 In a linearly elastic body, Hooke's law defines the relation between the components of stress and 

strain. Similarly, in a perfectly plastic body, the flow rule defines the relation between the 

components of the yield stress (for example,𝜎𝑛 , 𝜏𝑓) and the corresponding plastic strain rates (e.g. 

𝜖𝑛
�̇�

, 𝛾�̇� , normal strain and shear strain rates) 

Von Mises, suggested that the flow rule might be expressed in terms of a plastic potential 

function (f) which may be defined, for a Mohr-Coulomb material, by the equation 

�̇�𝑝

�̇�𝑛
𝑝 =

𝜕𝑓/𝜕𝜏

𝜕𝑓/𝜕𝜎𝑛
--------------------------                 Eq.4.26 

Von Mises also suggested that it may often be useful to assume that the potential function is 

identical with the yield condition. For a Mohr-Coulomb material, where yield and failure 

conditions are identical 

𝑓 = 𝜏 − 𝑐 − 𝜎𝑛𝑡𝑎𝑛𝜑 ≤ 0----------                  Eq.4.27 

For all stress states on the yield locus, 𝜏 = 𝜏𝑓 and f = 0. A flow rule defined in this way by the 

yield condition is said to be associated. 

An associated flow rule makes sense in studies of metal plasticity, since it implies that (a) for 

isotropic materials, the directions of principal stress and principal strain rate coincide, and (b) for 

frictionless materials, there is no volumetric strain during plastic yield. Certain problems arise if 

an associated flow rule is applied to a frictional material. These are discussed in below. 

4.8.3 Normality of the Strain Rate Vector 
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Fig.4.11Normality of strain rate vector 

 

The Mohr-Coulomb yield condition may be expressed as 

𝜏𝑓 = 𝑐 + 𝜎𝑛𝑡𝑎𝑛∅-----------------                  Eq.4.28 

The associated flow rule is defined by 
�̇�𝑝

�̇�𝑛
𝑝 =

𝜕𝑓/𝜕𝜏

𝜕𝑓/𝜕𝜎𝑛
------------------------                  Eq.4.29 

Where 

𝑓 = 𝜏 − 𝑐 − 𝜎𝑛𝑡𝑎𝑛𝜑-------------                  Eq.4.30 

So that 
�̇�𝑝

�̇�𝑛
𝑝 = −

1

𝑡𝑎𝑛∅
------------------------                  Eq.4.31 

Thus, if the yield stress components are plotted, and are superimposed on a similar plot of the 

corresponding strain rate components (as shown in Fig. 4.11(a)), it will be seen that the strain 

rate vector is normal to the yield locus. 

Similarly, the yield condition may be expressed in the form 

𝜎1(1 − 𝑠𝑖𝑛∅) = 𝜎3(1 + 𝑠𝑖𝑛∅) + 2𝑐𝑐𝑜𝑠∅-----------               Eq.4.32 

The associated flow rule is defined by 

𝜖3
�̇�

�̇�1
𝑝 =

𝜕𝑓/𝜕𝜎3

𝜕𝑓/𝜕𝜎1
------------------------------------------------               Eq.4.33 

Where 

𝑓 = 𝜎3(1 + 𝑠𝑖𝑛∅) − 𝜎1(1 − 𝑠𝑖𝑛∅) + 2𝑐𝑐𝑜𝑠∅-------               Eq.4.34 

Then 

𝜖3
�̇�

�̇�1
𝑝 =

1+𝑠𝑖𝑛∅

1−𝑠𝑖𝑛∅
-------------------------------------------------                Eq.4.35 

But the slope of the yield locus is given by 
𝑑𝜎3

𝑑𝜎1
=

1−𝑠𝑖𝑛∅

1+𝑠𝑖𝑛∅
---------------------                  Eq.4.36 

Showing again (Fig. 4.11(b) that the strain rate vector is normal to the yield locus. This 

normality condition can be shown to be a general consequence of adopting an associated flow 

rule. 

4.8.4 Associated flow rules 

An easy way to introduce the normality condition is to define a flow rule of the form 

𝜖𝑝 = 𝜆
𝜕𝑓

𝜕𝜎
------------------------                  Eq.4.37 

Here f denotes the yield condition as a general function of the components of the stress matrix σ. 

The partial derivative ∂f /∂σ imply the derivative with respect to any stress component from 

which an expression for the corresponding component of the plastic strain rate matrix 𝜖𝑝   is 

obtained. The magnitudes of the components of the strain rate will be undetermined to within λ, 

which can be regarded as being similar to the Lagrange multiplier. The only constraint we place 

on λ is that it must be positive. Equation (4.37) ensures that 𝜖𝑝  will be normal to the yield 
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surface f. If our coordinate system aligns with the principal directions of σ, then (Eq.4.37) can be 

written as 

𝜖𝑝 = 𝜆
𝜕𝑓

𝜕𝜎𝑘
 , k=1,2,3-----------------                 Eq.4.38 

where, k are the principal plastic strain rates and 𝜎𝑘 denote the corresponding principal stresses. 

Equations 4.37 & 38 are called associated flow rules. The adjective refers to the fact the plastic 

strains are associated directly with the yield surface. 

It is possible to introduce non-associated flow rules where f in either of the equations is replaced 

by some other function, say g. Non-associated flow rules will generally negate many of the 

advantages of the normality condition, but they may be desirable for certain types of materials or 

more advanced theories. 

Note that, because of the undetermined nature of λ, equations (15) and (16) do not specify 

directly the magnitude of the plastic strain rates. This is a deliberate move. In many cases the 

magnitude of the plastic strain rate will not be known unless more information can be supplied. 

In a general sense we can consider two cases. 

Case 1: Perfect Plasticity 

We say that a material is ‘perfectly plastic’ if, on yielding, the plastic strains can grow without 

bound given that no further change in stress occurs and no outside constraints are present. The 

stress–strain response in simple tension for a perfectly plastic material is illustrated in Figure 

4.12.  

 

 

 

 

 

 

 

Fig.4.12 Stress–strain response for a perfectly plastic material 

We see linear elastic behaviour until the stress reaches its yield value. After yielding there is no 

further change in stress as plastic strains continue to accumulate. The flat response characterises 

perfect plasticity. The functional relationship between plastic strain and stress is multiple-valued, 

and knowledge of the stress does not imply that we know the magnitude of the strain. If the 

strain is specified, then the stress is known, but not vice versa. 

Case 2: Work Hardening Plasticity 

In contrast to perfect plasticity, ‘work hardening’ implies the yield surface may change in some 

way once initial yielding has occurred. Usually the way the yield surface changes is related to the 

amount of plastic strain or to the amount of plastic work that has accumulated. This introduces 

an extra parameter into the description of the yield surface. The response of a work hardening 
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material in simple tension might look something like that shown in Figure 4.13. Here the stress 

and strain may have a one-to-one functional relationship both before and after yield. 

 

 

 

 

 

 

 

 

Fig.4.13: Stress–strain response for a work hardening plastic material 

In case 2 it will generally be possible to say how large the plastic strains are at any time after 

yield has occurred, but the same cannot be said for case 1. Often, for a perfectly plastic material, 

we will not be able to calculate the amount of plastic straining (although in some problems 

geometric constraints may permit us to do so). Nevertheless perfect plasticity may be profitably 

used since it permits us to take advantage of certain powerful theorems. There is a place for both 

perfect plasticity and work hardening plasticity in the repertoire of any geotechnical engineer. 

We will spend the remainder of the book dealing with one or the other. We begin with a 

relatively simple example using perfect plasticity 

4.8.5 Non-associated flow 

For many soils, shearing is accompanied by compaction rather than dilation. For other soils no 

volumetric strain is evident during shearing. Even for dilating soils, the rate of dilation is usually 

not large enough. We can look for a solution to this problem in two places. First, we recognise 

that the pressure dependence of the Coulomb criterion is partly responsible. For compacting soils 

we would wish the yield surface to grow smaller with increasing mean stress rather than the 

opposite. For soils that exhibit no volumetric strain we would want the yield surface to neither 

grow nor shrink. 

For dilating soils we require an expanding yield surface. While this may appear to be an 

impossible wish-list, in fact all three types of behaviour can be accommodated with the Cam 

Clay and Modified Cam Clay yield surfaces. The resulting theory of critical state soil mechanics 

will be discussed in subsequent chapter. 

The second way to attempt to solve the problem of excessive dilation is to abandon the normality 

condition. We consider this possibility now. Non-associated flow rules are mathematically 

similar to Eq.4.37&4.38 with the essential difference being that the yield function f is replaced 

with another function, g =g(σ) for example. The function g is referred to as the plastic potential 

function. In one sense we can write in special cases of the more general flow rule as 

𝜖𝑝 = 𝜆
𝜕𝑔

𝜕𝜎
-------------                   Eq.4.39 

with g = f . Non-associated flow occurs when g is different from f. Then the flow rule (As 

expressed by Eq.4.39) gives plastic strain rates that will not be normal to the yield surface. There 
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are disadvantages to dropping the normality condition, especially with regard to application of 

certain important theorems, but the problems of excessive plastic dilation can be rectified. 

 

4.9 FAILURE THEORIES 

4.9.1 Coulomb’s Failure Criterion 

Soils, in particular granular soils, are endowed by nature with slip planes. Each contact of one 

soil particle with another is a potential micro slip plane. Loadings can cause a number of these 

micro slip planes to align in the direction of least resistance. Thus, we can speculate that a 

possible mode of soil failure is slip on a plane of least resistance. Recall from your courses in 

statics or physics that impending slip between two rigid bodies was the basis for Coulomb’s 

frictional law. For example, if a wooden block is pushed horizontally across a table (Figure 4.14 

a), the horizontal force (H) required to initiate movement, according to Coulomb’s frictional law, 

is 

𝐻 = 𝜇𝑊-----------------                  Eq.4.40 

where 𝜇 is the coefficient of static sliding friction between the block and the table and W is the 

weight of the block. The angle between the resultant force and the normal force is called the 

friction angle, 𝜑 = 𝑡𝑎𝑛−1𝜇 

 

 

 

 

 

 

 

 

 

Fig.4.14: (a) Slip of a wooden block (b) A slip plane in a soil mass 

Coulomb’s law requires the existence or the development of a critical sliding plane, also called 

slip plane. In the case of the wooden block on the table, the slip plane is the horizontal plane at 

the interface between the wooden block and the table. Unlike the wooden block, we do not know 

where the sliding plane is located in soils. 

In terms of stresses, Coulomb’s law is expressed as 

𝜏𝑓 = 𝜎𝑛𝑓
𝑡𝑎𝑛𝜑′--------------------                 Eq.4.41 

where  𝜏𝑓 =T/A, where T is the sheer force at impending slip and A is the area of the plane 

parallel to T) is the shear stress when slip is initiated, and 𝜎𝑛𝑓
 is the normal effective stress on 

the plane on which slip is initiated. The subscript f denotes failure, which, according to 

Coulomb’s law, occurs when rigid body movement of one body relative to another is initiated. 

Failure does not necessarily mean collapse, but is the impeding movement of one rigid body 

relative to another. 
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If we plot Coulomb’s equation (2) on a graph of shear stress, 𝜏𝑓 versus normal effective stress, 

𝜎𝑛𝑓
 we get a straight line similar to OA (Figure 4.15) if 𝜑′ = 𝜑𝑐𝑠

′ . Thus, Coulomb’s law may be 

used to model soil behavior at critical state.  

 

 

 

 

 

 

 

 

 

 

Fig.4.15: Effects of increasing normal effective stresses on the response of soils. 

The geometry of soil grains and their structural arrangements are much more complex than our 

loose and dense assembly. In real soils, the particles are randomly distributed and often irregular. 

Shearing of a given volume of soil would cause impending slip of some particles to occur up the 

plane while others occur down the plane. The general form of equation is then 

𝜏𝑓 = 𝜎𝑛𝑓
𝑡𝑎𝑛(𝜑′ ± 𝛼)-----------                  Eq.4.42 

where the positive sign refers to soils in which the net movement of the particles is initiated up 

the plane and the negative sign refers to net particle movement down the plane. 

 

 

 

 

 

 

 

 

 

 

Fig.4.16 Effects of dilation on Coulomb’s failure envelope 

We will call the angle, as the dilation angle. It is a measure of the change in volumetric strain 

with respect to the change in shear strain. Soils that have positive values of expand during 

shearing, while soils with negative values of a contract during shearing. In Mohr’s circle of strain 

(Figure 4.17), the dilation angle is 

𝛼 = 𝑠𝑖𝑛−1 (
∆𝜖1+∆𝜖3

∆𝜖1−∆𝜖3
) = 𝑠𝑖𝑛−1 ⌊

∆𝜖1+∆𝜖3

∆𝛾𝑐𝑠
⌋--------                Eq.4.43 

where ∆ denotes change. The negative sign is used because we want α to be positive when the 

soil is expanding. We should recall that compression is taken as positive in soil mechanics. If a 

soil mass is constrained in the lateral directions, the dilation angle is represented (Figure 4.16) as 



110 
 

𝛼 = 𝑡𝑎𝑛−1(
∆𝑧

∆𝑥
)-------------                   Eq.4.44 

 
Fig. 4.17 Mohr’s circle of strain and dilation angle 

Dilation is not a peculiarity of soils, but occurs in many other materials, for example, rice and 

wheat. Dilation can be seen in action at a beach. If you place your foot on beach sand just 

following a receding wave, you will notice that the initially wet, saturated sand around your foot 

momentarily appears to be dry (whitish color). This occurs because the sand mass around your 

foot dilates, sucking water up into the voids. This water is released, showing up as surface water, 

when you lift up your foot. 

Coulomb’s model applies strictly to soil failures that occur along a slip plane, such as a joint or 

the interface of two soils or the interface between a structure and a soil. Stratified soil deposits 

such as the over consolidated varved clays (regular layered soils that depict seasonal variations in 

deposition) and fissured clays are likely candidates for failure following Coulomb’s model, 

especially if the direction of shearing is parallel to the direction of the bedding plane. 

4.9.2 Taylor’s Failure Criterion 

Taylor (1948) used an energy method to derive a simple soil model. He assumed that the shear 

strength of soil is due to sliding friction from shearing and the interlocking of soil particles. 

Consider a rectangular soil element that is sheared by a shear stress t under a constant vertical 

effective stress 𝜎𝑧
′ (Figure 4.18). Let us assume that the increment of shear strain is 𝑑𝛾 and the 

increment of vertical strain is 𝑑𝜖𝑧 
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Fig.4.18: Simple shear deformation of soil 

The external energy (force x distance moved in the direction of the force or stress x compatible 

strain) is 𝜏𝑑𝛾. The internal energy is the work done by friction, 𝜇𝑓𝜎𝑧
′𝑑𝛾. Where 𝜇𝑓  is the static, 

sliding friction coefficient and the work done by the movement of the soil against the vertical 

effective stress,  ±𝜎𝑧
′𝑑𝜖𝑧 

The negative sign indicates the vertical strain is in the opposite direction (expansion) to the 

direction of the vertical effective stress. The energy ±𝜎𝑧
′𝑑𝜖𝑧 is the interlocking energy due to the 

arrangement of the soil particles or soil fabric. 

For equilibrium, 

𝜏𝑑𝛾 = 𝜇𝑓𝜎𝑧
′𝑑𝛾 ± 𝜎𝑧

′𝑑𝜖𝑧------------------                 Eq.4.45 

Dividing by 𝜎𝑧
′𝑑𝛾, we get 

𝜏

𝜎𝑧
′ = 𝜇𝑓 ±

𝑑𝜖𝑧

𝑑𝛾
-------------------------------                 Eq.4.46 

At critical state,𝜇𝑓 = 𝑡𝑎𝑛∅𝑐𝑠
′  and 𝜆 =

𝑑𝜖𝑧

𝑑𝛾
= 0 

 Therefore, (
𝜏

𝜎𝑧
′)𝑐𝑠 = 𝑡𝑎𝑛∅𝑐𝑠

′ --------------                 Eq.4.47 

At peak shear strength, 
𝑑𝜖𝑧

𝑑𝛾
= 𝑡𝑎𝑛𝜆𝑝----                 Eq.4.48 

Therefore, 

 (
𝜏

𝜎𝑧
′)𝑝 = 𝑡𝑎𝑛∅𝑐𝑠

′ + 𝑡𝑎𝑛𝜆𝑝------------------                 Eq.4.49 

Where, the subscripts, 𝑐𝑠  and p, denote critical state and peak, respectively. Unlike Coulomb 

failure criterion, Taylor failure criterion does not require the assumption of any physical 

mechanism of failure, such as a plane of sliding. It can be applied at every stage of loading for 

soils that are homogeneous and deform under plane strain conditions similar to simple shear. 

This failure criterion would not apply to soils that fail along a joint or an interface between two 

soils. Taylor failure criterion gives a higher peak dilation angle than Coulomb failure criterion. 

Equation (4.47) applies to two-dimensional stress systems. Neither Taylor nor Coulomb failure 

criterion explicitly considers the rotation of the soil particles during shearing. 

4.9.3 Mohr–Coulomb Failure Criterion 

Coulomb’s frictional law for finding the shear strength of soils requires that we know the friction 

angle and the normal effective stress on the slip plane. Both of these are not readily known 

because soils are usually subjected to a variety of stresses. We know that Mohr’s circle can be 

used to determine the stress state within a soil mass. By combining Mohr’s circle for finding 

stress states with Coulomb’s frictional law, we can develop a generalized failure criterion. 

Let us draw a Coulomb frictional failure line, as illustrated by AB in Figure 4.19, and subject a 

cylindrical sample of soil to principal effective stresses so that Mohr’s circle touches the 

Coulomb failure line. Of course, several circles can share AB as the common tangent, but we will 

show only one for simplicity. 

The point of tangency is at B [𝜏𝑓, 𝜎𝑛
′

𝑓
] and the center of the circle is at O. We are going to 

discuss mostly the top half of the circle; the bottom half is a reflection of the top half. The major 
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and minor principal effective stresses at failure are 𝜎1
′
𝑓

 and𝜎3
′
𝑓

. Our objective is to find a 

relationship between the principal effective stresses and ∅′ at failure.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4.19: Coulomb frictional failure line 

From the geometry of Mohr’s circle, 

𝑠𝑖𝑛∅′ =
(𝜎1

′
𝑓

−𝜎3
′

𝑓
)/2

(𝜎1
′

𝑓
+𝜎3

′
𝑓

)/2
----------------------------------                Eq.4.50 

This reduces to 

𝑠𝑖𝑛∅′ =
(𝜎1

′
𝑓

−𝜎3
′

𝑓
)

(𝜎1
′

𝑓
+𝜎3

′
𝑓

)
------------------------------------                Eq.4.51 

Rearranging Equation (12) gives 

𝜎1
′

𝑓

𝜎3
′

𝑓

=
1+𝑠𝑖𝑛∅′

1−𝑠𝑖𝑛∅′ = 𝑡𝑎𝑛2 (450 +
∅

2
) = 𝐾𝑝------------                Eq.4.52 

Or 

𝜎3
′

𝑓

𝜎1
′

𝑓

=
1−𝑠𝑖𝑛∅′

1+𝑠𝑖𝑛∅′ = 𝑡𝑎𝑛2 (450 −
∅

2
) = 𝐾𝑎------------                Eq.4.53 

Where, Kp and Ka are called the passive and active earth pressure coefficients. Kp and Ka and use 

them in connection with the analysis of earth-retaining walls. The angle BCO=θ represents the 

inclination of the failure plane (BC) or slip plane to the plane on which the major principal 

effective stress acts in Mohr’s circle. Let us find a relationship between θ and ∅ . From the 

geometry of Mohr’s circle (Figure 4.19), 

< 𝐵𝑂𝐶 = 90 − ∅′ and< 𝐵𝑂𝐷 = 2𝜃 = 90 + ∅′ 

𝜃 = 450 +
∅′

2
---------------------------------------               Eq.4.54 

The failure stresses (the stresses on the plane BC) are 

𝜎𝑛
′

𝑓
=

𝜎1
′ +𝜎3

′

2
=

𝜎1
′ −𝜎3

′

2
𝑠𝑖𝑛∅′ ----------------------               Eq.4.55 

𝜏𝑓 =
𝜎1

′ −𝜎3
′

2
𝑐𝑜𝑠∅′----------------------------------               Eq.4.56 

The Mohr–Coulomb (MC) failure criterion is a limiting stress criterion, which requires that 

stresses in the soil mass cannot lie within the shaded region shown in Figure 4.19. That is, the 
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soil cannot have stress states greater than the failure stress state. The shaded areas are called 

regions of impossible stress states. For dilating soils, the bounding curve for possible stress states 

is the failure envelope, AEFB. For non-dilating soils, the bounding curve is the linear line AFB. 

The MC failure criterion derived here is independent of the intermediate principal effective 

stress𝜎2
′, and does not consider the strains at which failure occurs. Because MC is a limiting 

stress criterion, the failure lines AG and AH (Figure 4.17) are fixed lines in [𝜏, 𝜎𝑛] space. The line 

AG is the failure line for compression, while the line AH is the failure line for extension (soil 

elongates; the lateral effective stress is greater than the vertical effective stress). The shear 

strength in compression and in extension from interpreting soil strength using the MC failure 

criterion is identical. In reality, this is not so. 

When the stresses on a plane within the soil mass reach the failure line (plane), they must remain  

there under further loading. For example, point B (Figure 4.17) is on the MC failure line, AG, but 

point X is not on the failure line, AH. When additional loading is applied, point B must remain on 

the failure line, AG. The Mohr circle must then gradually rotate clockwise until point X lies on 

the failure line, AH. In this way, stresses on more planes reach failure. We could have the 

reverse, whereby point X is on the failure line, AH, and point B is not on the failure line, AG. For 

certain geotechnical projects, such as in open excavations in soft soils this may be the case. In 

practice, our main concern is when failure is first achieved, point B in Figure 6, rather than with 

the post failure behavior. 

Traditionally, failure criteria are defined in terms of stresses. Strains are considered at working 

stresses (stresses below the failure stresses) using stress–strain relationships (also called 

constitutive relationships) such as Hooke’s law. Strains are important because although the stress 

or load imposed on a soil may not cause it to fail, the resulting strains or displacements may be 

intolerable.  

If we normalize (make the quantity a number, i.e., no units) Equation (4.51) by dividing the 

numerator and denominator by 𝜎3
′, we get 

𝑠𝑖𝑛∅′ =
(

𝜎1
′

𝜎3
′ )𝑓−1

(
𝜎1

′

𝜎3
′ )𝑓+1

--------------                   Eq.4.57 

The implication of this equation is that the MC failure criterion defines failure when the 

maximum principal effective stress ratio, called maximum effective stress obliquity,  
𝜎1

′

𝜎3
′ , is 

achieved and not when the maximum shear stress, [(𝜎1
′ − 𝜎3

′)/2]max, is achieved. The failure 

shear stress is then less than the maximum shear stress. 

 

4.9.4 Tresca Failure Criterion 

The shear strength of a fine-grained soil under un-drained condition is called the un-drained 

shear strength, su. We use the Tresca failure criterion—shear stress at failure is one-half the 

principal stress difference—to interpret the un-drained shear strength. The un-drained shear 

strength, su, is the radius of the Mohr total stress circle; that is, 

𝑠𝑢 =
𝜎1𝑓−𝜎3𝑓

2
------------                  Eq.4.58 
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as shown in Figure 4.20 a.  

The shear strength under un-drained loading depends only on the initial void ratio or the initial 

water content. An increase in initial normal effective stress, sometimes called confining pressure, 

causes a decrease in initial void ratio and a larger change in excess porewater pressure when a 

soil is sheared under un-drained condition. The result is that the Mohr’s circle of total stress 

expands and the un-drained shear strength increases (Figure 4.20 b). Thus, su is not a 

fundamental soil property. The value of su depends on the magnitude of the initial confining 

pressure or the initial void ratio. Analyses of soil strength and soil stability problems using su are 

called total stress analyses (TSA). 

 

4.10 PRACTICAL IMPLICATIONS OF THE FAILURE CRITERIA 

 

When we interpret soil failure using Coulomb, Mohr–Coulomb, Tresca, or Taylor failure criteria, 

we are using a particular mechanical model. For example, Coulomb’s failure criterion is based 

on a sliding block model. For this and the Mohr–Coulomb failure criterion, we assume that: 

 
Fig.4.20 Tresca Failure Criteria 

 

1.  There is a slip plane upon which one part of the soil mass slides relative to the other. 

Each part of the soil above and below the slip plane is a rigid mass. However, soils generally do 

not fail on a slip plane. Rather, in dense soils, there are pockets or bands of soil that have reached 

critical state while other pockets are still dense. As the soil approaches peak shear stress and 

beyond, more dense pockets become loose as the soil strain-softens. At the critical state, the 

whole soil mass becomes loose and behaves like a viscous fluid. Loose soils do not normally 

show slip planes or shear bands, and strain-harden to the critical state. 

2.  No deformation of the soil mass occurs prior to failure. In reality, significant soil 

deformation (shear strains ~2%) is required to mobilize the peak shear stress and much more 

(shear strains >10%) for the critical state shear stress. 

3.  Failure occurs according to Coulomb by impending, frictional sliding along a slip plane, 

and according to Mohr–Coulomb when the maximum stress obliquity on a plane is mobilized. 

The Coulomb and Mohr–Coulomb failure criteria are based on limiting stress. Stresses within the 

soil must either be on the slip plane or be below it. Taylor failure criterion considers not only the 

forces acting on the soil mass, but also the deformation that occurs from these forces. That is, 

failure is a combination of the forces and the resulting deformation. Tresca’s criterion, originally 
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proposed as a yield criterion in solid mechanics, has been adopted in soil mechanics as a failure 

(limiting stress) criterion. It is not the same as the Mohr–Coulomb failure criterion. 

With the exception of Taylor’s criterion, none of the failure criteria provide information on the 

shear strains required to initiate failure. Strains (shear and volumetric) are important in the 

evaluation of shear strength and deformation of soils for design of safe foundations, slopes, and 

other geotechnical systems. Also, these criteria do not consider the initial state (e.g., the initial 

stresses, over consolidation ratio, and initial void ratio) of the soil. In reality, failure is infl- 

uenced by the initial state of the soil.  

 A summary of the key differences among the four soil failure criteria is given in Table 1. 

 
Example: 

 
Solution: 
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5.0 THE CONCEPT OF CRITICAL STATES 

The critical state model (CSM) is a simplification and an idealization of soil behavior. However, 

the CSM captures the behavior of soils that are of greatest importance to geotechnical engineers. 

The central idea in the CSM is that all soils will fail on a unique failure surface in (p’, q, e) space. 

Thus, the CSM incorporates volume changes in its failure criterion, unlike the Mohr–Coulomb 

failure criterion, which defines failure only as the attainment of the maximum stress obliquity. 

According to the CSM, the failure stress state is insufficient to guarantee failure; the soil 

structure must also be loose enough. 

The CSM is a tool to make estimates of soil responses when you cannot conduct sufficient soil 

tests to completely characterize a soil at a site or when you have to predict the soil’s response 

from changes in loading during and after construction. Although there is a debate about the 

application of the CSM to real soils, the ideas behind the CSM are simple. It is a very powerful 

tool to get insights into soil behavior, especially in the case of the “what-if” situation. There is 

also an overabundance of soil models in the literature that have critical state as their core.  

5.1 DEFINITIONS OF KEY TERMS 

i) Pre-consolidation ratio (Ro) is the ratio by which the current mean effective stress in the 

soil was exceeded in the past (𝑅0 =
𝑝𝑐

′

𝑝0
′ ), where 𝑝𝑐

′  is the pre-consolidation mean effective stress, 

or, simply, pre-consolidation stress, and 𝑝0
′  is the current mean effective stress). 

ii) Compression index (λ) is the slope of the normal consolidation line in a plot of void ratio 

versus the natural logarithm of mean effective stress. 

iii) Unloading/reloading index, or recompression index (k), is the average slope of the 

unloading/reloading curves in a plot of void ratio versus the natural logarithm of mean effective 

stress. 

iv) Critical state line (CSL) is a line that represents the failure state of soils. In (p’, q) space, 

the critical state line has a slope M, which is related to the friction angle of the soil at the critical 

state. In (e, lnp’) space, the critical state line has a slope l, which is parallel to the normal 

consolidation line. In three dimensional (p’, q, e) space, the critical state line becomes a critical 

state surface. 

5.2 RELATION BETWEEN PARAMETERS 

In order to develop the basic concepts on critical state, we are going to establish relation between 

certain plots using stress and strain invariants and concentrate on a saturated soil under axi-

symmetric loading. However, the concepts and method hold for any loading condition. Rather 

than plotting 𝜎𝑛
′  versus τ, we will plot the data as p’ versus q (Figure 5.1 a). This means that we 

must know the principal stresses acting on the element. For axisymmetric (triaxial) condition, 

only we need to know two principal stresses. 
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The Coulomb failure line in (𝜎𝑛
′  versus τ) space of slope is now mapped in (p’, q) space as a line 

of slope 𝑀 =
𝑞𝑓

𝑝𝑓
′ , where the subscript f denotes failure. Instead of a plot of 𝜎𝑧

′ versus e we will 

plot the data as p’ versus e (Figure 1b), and instead of 𝜎𝑛
′  (log scale) versus e, we will plot p’ (ln 

scale) versus e (Figure 1.c). The p’ (ln scale) versus e plot will be referred to as the (ln p’, e) plot. 

We will denote the slope of the normal consolidation line (NCL) in the plot of p’ (ln scale) versus 

e as λ and the unloading/reloading (URL) line as k. The NCL is a generic normal consolidation 

line. In the initial development, the NCL is the same as the isotropic consolidation line (ICL). 

Later, we will differentiate ICL from the one-dimensional consolidation line (K0CL). All these 

consolidation lines have the same slope. There are now relationships between ∅𝑐𝑠
′ and M, Cc and 

λ,Cr and k. The relationships for the slopes of the normal consolidation line, λ, and the 

unloading/ reloading line, k, are 

𝜆 =
𝑐𝑐

ln (10)
=

𝑐𝑐

2.303
= 0.434𝑐𝑐----------------------      Eq.5.1 

𝑘 =
𝑐𝑟

ln (10)
=

𝑐𝑟

2.303
= 0.434𝑐𝑟----------------------      Eq.5.2 

Both λ and k are positive for compression. For many soils, k/λ has values within the range 10 to 

15. We will formulate the relationship between  ∅𝑐𝑠
′ and M later. The over-consolidation ratio 

using stress invariants, called pre-consolidation ratio, is 

𝑅0 =
𝑝𝑐

′

𝑝0
′ ------------------------         Eq.5.3 
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Fig.5.1: Plot between effective stress and void ratio 

The concept of critical states can be defined in the following way: 

The concept that soil and other granular materials, if continuously distorted until they flow as a 

frictional fluid, will come in to a well-defined critical state determined by two equations 

q= Mp ------------------------------        Eq.5.4 

τ =υ+ λ lnp-------------------------        Eq.5.5 

As a result the critical states depend on the mean effective stress p, shear stress q and soil 

specific volume v and are shown graphically in Figure 5.2 as two straight lines (now known as 

the critical state lines CSL), where e denotes the void ratio. 

 

 

 

 

 

 

 

 

 

 

Fig.5.2: Graphical representation of specific volume with p and q 

 

It was further explained that at the critical state, soils behave as a frictional fluid so that yielding 

occurs at constant volume and constant stresses. In other words, the plastic volumetric strain 

increment is zero at the critical state, since elastic strain increments will be zero due to the 

constant stress condition at the critical state. Also it was assumed that the critical state lines are 

unique for a given soil regardless of stress paths used to bring them about from any initial 

conditions. 

In many ways, the critical states defined or assumed above may be regarded as the ultimate states 

anticipated by Drucker et al. (1957). It is also noted that the concept of steady states proposed 

later by Poulos (1981) is also similar to the concept of critical states. In addition, Desai and Toth 

(1996) and Desai (2001) proposed a concept of disturbed states for use in constitutive modeling. 

In effect, the critical states correspond to Desai's fully disturbed states. Given the uniqueness of 

the critical state lines, they are used as a convenient base of reference in formulating a strain 

hardening/softening plasticity model to describe the measured behaviour of soil and other 

granular materials (Yu, 1998). 

The concept of critical states was initially developed based on limited triaxial test data obtained 

on reconstituted clay (Roscoe et ah, 1958; Parry, 1958; Schofield and Wroth, 1968; Roscoe and 

Burland, 1968). However over the last forty years, a lot of additional experimental data for many 
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other types of soil and granular material (e.g. sand, rock, natural clay, unsaturated soil and sugar) 

have been obtained which seems to support, at least to a very large extent, the general concept of 

critical states (e.g. Atkinson and Bransby, 1978; Brown and Yu, 1988; Been et al., 1991; Muir 

Wood, 1990; Atkinson and Allman, 1992; Novello and Johnston, 1995). 

5.3 CRITICAL STATE PARAMETERS 

 

Failure Line in (p’, q) Space: The failure line in (𝑝′, q) space is 

𝑞𝑓 = 𝑀𝑝𝑓
′ -----------------------         Eq.5.6 

Where, 𝑞𝑓 is the deviatoric stress at failure, M is a frictional constant, and 𝑝𝑓
′  is the mean 

effective stress at failure. By default, the subscript f denotes failure and is synonymous with 

critical state. For compression, M=Mc, and for extension, M = Me. The critical state line 

intersects the yield surface at 
𝑝𝑐

′

2
.We can build a convenient relationship between M and ∅𝑐𝑠

′  for 

axisymmetric compression and extension and plane strain conditions as follows. 

 

5.3.1 Axisymmetric Compression 

𝑀𝑐 =
𝑞𝑓

𝑝𝑓
=

(𝜎1
′ −𝜎3

′ )𝑓

(
𝜎1

′ +2𝜎3
′

3
)𝑓

-----------------------       Eq.5.7 

But we know that (
𝜎1

′

𝜎3
′)𝑓 =

1+𝑠𝑖𝑛∅𝑐𝑠
′

1−𝑠𝑖𝑛∅𝑐𝑠
′ ----------       Eq.5.8 

Hence  

𝑀𝑐 =
6𝑠𝑖𝑛∅𝑐𝑠

′

3−𝑠𝑖𝑛∅𝑐𝑠
′ -----------------         Eq.5.9 

Or 𝑠𝑖𝑛∅𝑐𝑠
′ =

3𝑀𝑐

6+𝑀𝐶
-----------------                 Eq.5.10 

 

5.3.2 Axisymmetric Extension 

 

In an axisymmetric (triaxial) extension, the radial stress is the major principal stress. Since in 

axial symmetry the radial stress is equal to the circumferential stress, we get 

𝑝𝑓
′ = (

2𝜎1
′+𝜎3

′

3
)𝑓---------------------                   Eq.5.11 

𝑞𝑓 = (𝜎1
′ − 𝜎3

′)𝑓----------------------                  Eq.5.12 

𝑀𝑒 =
𝑞𝑓

𝑝𝑓
′ =

(2
𝜎1

′

𝜎3
′ +1)𝑓

(
𝜎1

′

𝜎3
′ −1)𝑓

---------------------                  Eq.5.13 

𝑀𝑒 =
6𝑠𝑖𝑛∅𝑐𝑠

′

3+𝑠𝑖𝑛∅𝑐𝑠
′ ---------------------                   Eq.5.14 

Hence 𝑠𝑖𝑛∅𝑐𝑠
′ =

3𝑀𝑒

6−𝑀𝑒
-----------                  Eq.5.15 

An important point to note is that while the friction angle, ∅𝑐𝑠
′ , is the same for compression and 

extension, the slope of the critical state line in (𝑝′ ,q)  space is not the same (Figure 5.3). 

Therefore, the failure deviatoric stresses in compression and extension are different. Since 𝑀𝑒 <
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𝑀𝑐  the failure deviatoric stress of a soil in extension is lower than that for the same soil in 

compression. 

 

 

 

 

 

 

 

 

 

 

Fig.5.3: Variation of the frictional constant M with critical state friction angle 

5.3.3 Plane Strain 

In plane strain, one of the strains is zero, we selected, 𝜀2 = 0; thus,  𝜎2
′ ≠ 0. In general, we do not 

know the value of 𝜎2
′unless we have special research equipment to measure it. If  

𝜎2
′ = 𝐶(𝜎1

′ + 𝜎3
′) --------------------------      Eq.5.16 

where C = 0.5, then 

𝑀 = 𝑀𝑝𝑠 = √3𝑠𝑖𝑛∅𝑐𝑠
′ -------------------      Eq.5.17 

Taking C = 0.5 presumes zero elastic compressibility. The subscript 𝑝𝑐𝑠 denotes plane strain. The 

constant, C, using a specially designed simple shear device (Budhu, 1984) on a sand, was shown 

to be approximately
1

2
𝑡𝑎𝑛∅𝑐𝑠

′ . 

 

5.4 FAILURE LINE IN (P’, e) SPACE 

 

 Let us now find the equation for the critical state line in (𝑝′, e) space. We will use the (ln 𝑝′, e) 

plot, as shown in Figure 5.4 c. The CSL is parallel to the normal consolidation line and is 

represented by 

𝑒𝑓 = 𝑒𝜏 − 𝜆𝑙𝑛𝑝𝑓
′ ---------------------------      Eq.5.18 

where 𝑒𝜏 is the void ratio on the critical state line when 𝑝′ =1.This value of void ratio serves as 

an anchor for the CSL in (𝑝′, e)  space and (ln 𝑝′, e)) space. The value of 𝑒𝜏 depends on the units 

chosen for the 𝑝′ scale. In this chapter, we will use kPa for the units of 𝑝′. 

We will now determine 𝑒𝜏 from the initial state of the soil. Let us isotropically consolidate a soil 

to a mean effective stress, 𝑝𝑐
′  , and then isotropically unload it to a mean effective stress 𝑝0

′  

(Figure 5.4 a, b). 

Let X be the intersection of the unloading/reloading line with the critical state line. The mean 

effective stress at X is 
𝑝𝑐

′

2
, and from the unloading/reloading line, 

𝑒𝑋 = 𝑒0 + 𝑘𝑙𝑛(
𝑝0

′

𝑝𝑐
′

2

)---------------------------       Eq.5.19 

where 𝑒0 is the initial void ratio. From the critical state line, 



122 
 

𝑒𝑓 = 𝑒𝜏 − 𝜆𝑙𝑛
𝑝𝑐

′

2
--------------------------------       Eq.5.20 

Therefore, combining Equations (5.19) and (5.20), we get 

𝑒𝜏 = 𝑒0 + (𝜆 − 𝑘)𝑙𝑛
𝑝𝑐

′

2
+ 𝑘𝑙𝑛𝑝0

′ -----------------      Eq.5.21 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.4: Void ratio 𝑒𝜏to anchor critical state line 

 
Solution: 
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Solution: 

Consider graph as shown below 
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5.5 SOIL YIELDING 

We that there is a yield surface in stress space that separates stress states that produce elastic 

responses from stress states that produce plastic responses. We are going to use the yield surface 

in ( 𝑝′ , q) space rather than ( 𝜎1
′, 𝜎3

′ ) space so that our interpretation of soil responses is 

independent of the axis system. 

The yield surface is assumed to be an ellipse, and its initial size or major axis is determined by 

the pre-consolidation stress 𝑝𝑐
′ . Experimental evidence (Wong and Mitchell, 1975) indicates that 

an elliptical yield surface is a reasonable approximation for soils.  Higher is the pre-consolidation 

stress, the larger the initial ellipse. We will consider the yield surface for compression, but the 

ideas are the same for extension except that the minor axis of the elliptical yield surface in 

extension is smaller than in compression. All combinations of q and 𝑝′ that are within the yield 

surface, for example, point A in Figure 5.5, will cause the soil to respond elastically. If a 

combination of q and 𝑝′ lies on the initial yield surface (point B, Figure 5.5), the soil yields in a 

similar fashion to the yielding of a steel bar. Any tendency of a stress combination to move 

outside the current yield surface is accompanied by an expansion of the current yield surface, 

such that during plastic loading the stress point (𝑝′, q) lies on the expanded yield surface and not 

outside, as depicted by C. Effective stress paths such as BC (Figure 5.5) cause the soil to behave 

elasto-plastically. 

If the soil is unloaded from any stress state below failure, the soil will respond like an elastic 

material. As the initial yield surface expands, the elastic region gets larger. Expansion of the 

initial yield surface simulates strain-hardening materials such as loose sands and normally and 

lightly over consolidated clays. The initial yield surface can also contract, simulating strain-

softening materials such as dense sands and heavily over consolidated clays. You can think of 

the yield surface as a balloon. Blowing up the balloon (applying pressure; loading) is analogous 

to the expansion of the yield surface. Releasing the air (gas) from the balloon (reducing pressure; 

unloading) is analogous to the contraction of the yield surface. The critical state line intersects 

every yield surface at its crest. Thus, the intersection of the initial yield surface and the critical 

state line is at a mean effective stress
𝑝𝑐

′

2
 , and for the expanded yield surface it is at 

𝑝𝐺
′

2
. 

 

 

 

 

 

 

 

 

 

 

 

Fig.5.5: Expansion of the yield surface 
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5.6 PREDICTION OF THE BEHAVIOR OF NORMALLY CONSOLIDATED AND 

LIGHTLY OVER CONSOLIDATED SOILS 

(Under Drained Condition) 

Let us consider a hypothetical situation to illustrate the ideas presented so far. We are going to 

try to predict how a sample of soil of initial void ratio eo will respond when tested under drained 

condition in a triaxial apparatus, that is, a standard CD test. You should recall that the soil 

sample in a CD test is isotropically consolidated and then axial loads or displacements are 

applied, keeping the cell pressure constant. We are going to consolidate our soil sample up to a 

maximum mean effective stress 𝑝𝑐
′ , and then unload it to a mean effective stress 𝑝0

′ , such that 

𝑅0 =
𝑝𝑐

′

𝑝0
′ < 2. the limits imposed on Ro are only for presenting the basic ideas on CSM. More 

details on delineating lightly over consolidated from heavily over consolidated soils will be 

discussed in latter on. 

On a plot of 𝑝′ versus e (Figure 5.6.b), the isotropic consolidation path is represented by AC. 

You should recall that the line AC maps as the normal consolidation line (NCL) of slope l. 

Because we are applying isotropic loading, the line AC is called the isotropic consolidation line 

(ICL). 

 
 

Fig.5.6: Illustrative predicted results from a triaxial CD test on a lightly over-consolidated soil 
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As we consolidate the soil gradually from A to C and unload it gradually to O, the stress paths 

followed in the (𝑝′, q) space are A → C and C → O, respectively (Figure 5.5.a). We can also 

sketch a curve (CO, Figure 5.5.b) to represent the unloading of the soil in (𝑝′, e) space. The line 

CO is then the unloading/ reloading line of slope, k, in (ln 𝑝′, e) space. The pre-consolidation 

mean effective stress, 𝑝𝑐
′ , determines the size of the initial yield surface. Since the maximum 

mean effective stress applied is the mean effective stress at C, then AC is the major principal axis 

of the ellipse representing the initial yield surface. A semi-ellipse is sketched in Figure 5.5.a to 

illustrate the initial yield surface for compression. We can draw a line, AS, of slope, Mc, from the 

origin to represent the critical-state line (CSL) in (𝑝′, q) space, as shown in Figure 5.5.a. In (𝑝′, 

e) space, the critical state line is parallel to the normal consolidation line (NCL), as shown in 

Figure 5.5 b. Of course, we do not know, as yet, the slope M = Mc, or the equations to draw the 

initial yield surface and the CSL in (𝑝′, e) space. We have simply selected arbitrary values. 

Later, we are going to develop equations to define the slope M, the shape of the yield surface, 

and the critical state line in (𝑝′, e) space or (ln 𝑝′, e) space. The CSL intersects the initial yield 

surface and all subsequent yield surfaces at 
𝑝𝑐

′

2
 , where 𝑝𝑐

′  is the (generic) current pre-

consolidation mean effective stress.  For example, when the yield surface expands with a major 

axis, say AG, the CSL will intersect it at 
𝑝𝐺

′

2
 

Let us now shear the soil sample at its current mean effective stress, 𝑝0
′  , by increasing the axial 

stress, keeping the cell pressure, 𝜎3, constant, and allowing the sample to drain. Because the soil 

is allowed to drain, the total stress is equal to the effective stress. That is, ∆𝜎1 = ∆𝜎1
′ > 0.But we 

know that the effective stress path for a standard triaxial CD test has a slope 
𝑞

𝑝′ = 3. The effective 

stress path (ESP) is shown by OF in Figure 5.6.a. The ESP is equal to the total stress path (TSP) 

because this is a drained test. The effective stress path intersects the initial yield surface at D. All 

stress states from O to D lie within the initial yield surface and, therefore, from O to D on the 

ESP the soil behaves elastically. 

Assuming linear elastic response of the soil, we can draw a line OD in (𝜀1, q) space (Figure 

5.6.c) to represent the elastic stress–strain response. At this stage we do not know the slope of 

OD, but later you will learn how to get this slope. Since the line CO in (𝑝′, e) space represents 

the unloading/reloading line (URL), the elastic response must lie along this line. The change in 

void ratio is ∆𝑒 = 𝑒𝐷 − 𝑒0 (Figure 5.6.b) and we can plot the axial strain (𝜀1) versus e response, 

as shown by OD in Figure 5.6.d. Further loading from D along the stress path OF causes the soil 

to yield. The initial yield surface expands (Figure 5.6.a) and the stress–strain is no longer elastic 

but elasto-plastic. At some arbitrarily chosen small increment of loading beyond initial yield, 

point E along the ESP, the size (major axis) of the yield surface is 𝑝𝐺
′ (G in Figure 5.6.a). There 

must be a corresponding point G on the NCL in (𝑝′, e) space, as shown in Figure 5.6.b. The 

increment of loading shown in Figure 5.6 is exaggerated. 

Normally, the stress increment should be very small because the soil behavior is no longer 

elastic. The stress is now not directly related to strain but is related to the plastic strain 

increment. The total change in void ratio as you load the sample from D to E is DE (Figure 
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5.6.b). Since E lies on the expanded yield surface with a past mean effective stress, 𝑝𝐺
′ , then E 

must be on the unloading line, 𝐺𝑂′, as illustrated in Figure 5.6.b. If you unload the soil sample 

from E back to O (Figure 5.6.a), the soil will follow an unloading path, 𝐸𝑂′, parallel to OC, as 

shown in Figure 1.b. In the stress–strain plot, the unloading path will be 𝐸𝑂′, (Figure 5.6.c). The 

length 𝑂𝑂′, on the axial strain axis is the plastic (permanent) axial strain, while the length 𝐸𝑂′ is 

the elastic axial strain. We can continue to add increments of loading along the ESP until the 

CSL is intersected. At this stage, the soil fails and cannot provide additional shearing resistance 

to further loading. The deviatoric stress, q, and the void ratio, e, remain constant. The failure 

stresses are 𝑝𝑓
′  and 𝑞𝑓 (Figure 5.6.a) and the failure void ratio is 𝑒𝑓 (Figure 5.6.b). In general, it is 

the ratio
𝑞𝑓

𝑝𝑓
′ = 𝑀and ef that are constants. For each increment of loading, we can determine ∆𝑒 

and plot 𝜀1 versus ∑ ∆𝑒, as shown in Figure 5.6.d. We can then sketch the stress–strain curve and 

the path followed in (𝑝′, e) space. Let us summarize the key elements so far about our model. 

1. During isotropic consolidation, the stress state must lie on the mean effective stress axis in (𝑝′, 

q) space and also on the NCL in (𝑝′, e) space. 

2. All stress states on an ESP within and on the yield surface must lie on the unloading/reloading 

line through the current pre consolidation mean effective stress. For example, any point on the 

semi ellipse, AEG, in Figure 5.6.a has a corresponding point on the unloading/reloading line, 

𝑂′𝐺. Similarly, any point on the ESP from, say, E will also lie on the unloading/reloading line 

𝑂′𝐺. In reality, we are projecting the mean effective stress component of the stress state onto the 

unloading/reloading line. 

3. All stress states on the unloading/reloading line result in elastic response. 

4. Consolidation (e.g., stress paths along the 𝑝′ axis) cannot lead to soil failure. Soils fail by the 

application of shearing stresses following ESP with slopes greater than the slope of the CSL for 

compression. 

5. Any stress state on an ESP directed outward from the current yield surface causes further 

yielding. The yield surface expands. 

6. Unloading from any expanded yield surface produces elastic response. 

7. Once yielding is initiated, the stress–stain curve becomes nonlinear, with an elastic strain 

component and a plastic strain component. 

8. The critical state line intersects each yield surface at its crest. The corresponding mean 

effective stress is one-half the mean effective stress of the major axis of the ellipse representing 

the yield surface. 

9. Failure occurs when the ESP intersects the CSL and the change in volume is zero. 

10. The soil must yield before it fails. 

11. Each point on one of the plots in Figure 5.5 has a corresponding point on another plot. Thus, 

each point on any plot can be obtained by projection, as illustrated in Figure 5.5 of course; the 

scale of the axis on one plot must match the scale of the corresponding axis on the other plot. For 

example, point F on the failure line, AS, in (𝑝′, q) space must have a corresponding point F on 

the failure line in (𝑝′, e) space. 
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Fig.5.7: Illustrative predicted results from a CD triaxial text on a normally consolidated soil 

In the case of a normally consolidated soil, the past mean effective stress is equal to the current 

mean effective stress (O in Figure 5.7 a, b). The point O is on the initial yield surface. So, upon 

loading, the soil will yield immediately. There is no initial elastic region. An increment of 

effective stress corresponding to C in Figure 5.7 will cause the initial yield surface to expand. 

The pre consolidation mean effective stress is now 𝑃𝐺
′  and must lie at the juncture of the normal 

consolidation line and the unloading/ reloading line. Since C is on the expanded yield surface, it 

must have a corresponding point on the unloading/reloading line through G. If you unload the 

soil from C, you will now get an elastic response (𝐶 → 𝑂′, Figure 5.6.b). The soil sample has 

become over consolidated. Continued incremental loading along the ESP will induce further 

incremental yielding until failure is attained. 

 

5.7 PREDICTION OF THE BEHAVIOR OF NORMALLY CONSOLIDATED AND 

LIGHTLY OVER-CONSOLIDATED SOILS 

(Under Un-drained Condition) 

Instead of a standard triaxial CD test, we could have conducted a standard triaxial CU test after 

consolidating the sample. The slope of the TSP is 3. We do not know the ESP as yet. Let us 

examine what would occur to a lightly over consolidated soil under un-drained condition 

according to our CSM. We will use the abscissa as a dual axis for both 𝑝 ′and p (Figure 5.8). We 

know that for un-drained condition the soil volume remains constant, that is, ∆𝑒 = 0. Constant 

volume does not mean that there is no induced volumetric strain in the soil sample as it is 

sheared. Rather, it means that the elastic volumetric strain is balanced by an equal and opposite 

amount of plastic volumetric strains. We also know that the ESP for a linear elastic soil is 
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vertical, that is, the change in mean effective stress, ∆𝑝′ is zero. Because the change in volume is 

zero, the mean effective stress at failure can be represented by drawing a horizontal line from the 

initial void ratio to intersect the critical state line in (𝑝 ′, e) space, as illustrated by OF in Figure 

3b. Projecting a vertical line from the mean effective stress at failure in (𝑝 ′, e) space to intersect 

the critical state line in (𝑝 ′ q) space gives the deviatoric stress at failure (Figure 5.8a). The initial 

yield stresses (𝑝𝑦
′ , 𝑞𝑦), point D in Figure 5.8a, are obtained from the intersection of the ESP and 

the initial yield surface. Points O and D are coincident in the (𝑝 ′, e) plot, as illustrated in Figure 

3b, because ∆𝑝′ = 0 . The ESP (OD in Figure 5.8 a) produces elastic response. Continued 

loading beyond initial yield will cause the initial yield surface to expand. For example, any point 

E between D and F on the constant void ratio line will be on an expanded yield surface (AEG) in 

(𝑝 ′, q) space. Also, point E must be on a URL line through G (Figure 5.8 b). The ESP from D 

curves left toward F on the critical state line as excess pore water pressure increases significantly 

after initial yield. The TSP has a slope of 3, as illustrated by OX in Figure 5.8 a. The difference 

in mean stress between the total stress path and the effective path gives the change in excess pore 

water pressure. The excess pore water pressures at initial yield and at failure are represented by 

the horizontal lines DW and FT, respectively. 

The un-drained shear response of a soil is independent of the TSP. The shearing response would 

be the same if we imposed a TSP OM (Figure 5.8 a), of slope, say, 2 (V): 1 (H) rather than 3 (V): 

1 (H), where V and H are vertical and horizontal values. The TSP is only important in finding the 

total excess pore water pressure under un-drained loading. The intersection of the TSP with the 

critical state line is not the failure point, because failure and deformation of a soil mass depend 

on effective stress, not total stress. By projection, we can sketch the stress–strain response and 

the excess pore water pressure versus axial strain, as illustrated in Figure 5.8 c, d. 

For normally consolidated soils, yielding begins as soon as the soil is loaded (Figure 5.9). The 

ESF curves toward F on the failure line. A point C on the constant volume line, OF, in Figure 

5.9b will be on an expanded yield surface and also on the corresponding URL (Figure 5.9 a, b). 

The excess pore water pressures at C and F are represented by the horizontal lines CT and FW, 

respectively. 
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Fig.5.8: Illustrative predicted results from a triaxial CU test on a lightly over consolidated soil using the CSM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5.9: Illustrative predicted results from a triaxial CU test on a normally consolidated soil using the CSM 
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Let us summarize the key elements for un-drained loading of lightly over consolidated and 

normally consolidated soils from our model. 

1. Under un-drained loading, also called constant-volume loading, the total volume remains 

constant. This is represented in (𝑝 ′, e) space by a horizontal line from the initial mean effective 

stress to the failure line. 

2. The portion of the ESP in (𝑝 ′, q) space that lies within the initial yield surface is represented 

by a vertical line from the initial mean effective stress to the initial yield surface. The soil 

behaves elastically, and the change in mean effective stress is zero. 

3. Normally consolidated soils do not show an initial elastic response. They yield as soon as the 

loading is applied. 

4. Loading beyond initial yield causes the soil to behave as a strain-hardening elasto-plastic 

material. The initial yield surface expands. 

5. The difference in mean total and mean effective stress at any stage of loading gives the excess 

pore water pressure at that stage of loading. 

6. The response of soils under un-drained condition is independent of the total stress path.  

 

5.8 PREDICTION OF THE BEHAVIOR OF HEAVILY OVER-CONSOLIDATED 

SOILS 

(Under Drained and Un-drained Condition) 

So far we have considered normally and lightly over consolidated soils (𝑅0 ≤2). What is the 

situation regarding heavily over-consolidated soils, that is, 𝑅0 >2? Whether a soil behaves in a 

normally consolidated or a lightly over-consolidated or a heavily over-consolidated manner 

depends not only on Ro but also on the effective stress path. We can model a heavily over-

consolidated soil by unloading it from its pre-consolidation stress so that, 
𝑝𝑐

′

𝑝0
′ > 2, as shown by 

point O in Figure 5.10.a, b. 

Heavily over-consolidated soils have initial stress states that lie to the left of the critical state line 

in (𝑝′ e) space. The ESP for a standard triaxial CD test has a slope of 3 and intersects the initial 

yield surface at D. Therefore, from O to D the soil behaves elastically, as shown by OD in Figure 

1.b, c. The intersection of the ESP with the critical state line is at F (Figure 5.10.a), so that the 

yield surface must contract as the soil is loaded to failure beyond initial yield. The initial yield 

shear stress is analogous to the peak shear stress for dilating soils. From D, the soil volume 

expands (Figure 5.10.b, d), and the soil strain softens (Figure 5.10.c) to failure at F. Remember 

that soil yielding must occur before failure. So, the soil must follow the path O→ S→ D→ S→ F 

and not O→ S →F→ S →D. 

The simulated volumetric response is shown in Figure 5.10.d. From O to D (the elastic phase), 

the soil contracts. After initial yielding, the soil expands (dilates) up to failure and remains at 

constant volume (constant void ratio) thereafter. 
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Fig.5.10: Illustrative predicted results from a triaxial CD test on a heavily over consolidated soil (Ro> 2) 

using the CSM. 

The CSM simulates the mechanical behavior of heavily over-consolidated soils as elastic 

materials up to the peak shear stress and thereafter elasto-plastically as the imposed loading 

causes the soil to strain-soften toward the critical state line. In reality, heavily over-consolidated 

soils may behave elasto plastically before the peak shear stress is achieved, but this behavior is 

not captured by the simple CSM described here. 

In the case of a standard triaxial CU test on heavily over consolidated soils, the path to failure in 

(𝑝′, e) Space is OF, as shown in Figure 5.11.b, because no change in volume occurs. In the (𝑝′, 

q) space (Figure 5.11.a), the soil will yield at D and then fail at F. So the path to failure is O→ 

S→ D→ S→ F. All stress states from O to D are within the initial yield surface, so the soil 

behaves like an elastic material. The ESP is then represented by a vertical line. Any stress state 

between D and F must have a corresponding point at the intersection of a URL line and the 

constant volume line, OF (Figure 5.11. b). The yield surface from D to F contracts. 

The tendency for the soil to contract from O to D induces positive excess pore water pressures, 

while the tendency to expand (D to F) induces negative excess pore water pressures (Figure 5.11. 

d). The excess pore water pressures at initial yield, ∆𝑢𝑦 and at failure, ∆𝑢𝑓  are shown in the 

inset of Figure 5.11. a. The excess pore water pressure at failure is negative (𝑝𝑓
′ > 𝑝𝑓). 
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Let us summarize the key elements for un-drained loading of heavily over-consolidated soils 

from the model. 

1. Under un-drained loading, the total volume remains constant. This is represented in (𝑝′, e) 

space by a horizontal line from the initial mean effective stress to the failure line. 

2. The portion of the ESP in (𝑝′, q) space that lies within the initial yield surface is represented 

by a vertical line from the initial mean effective stress to the initial yield surface. The soil 

behaves elastically, and the change in mean effective stress is zero. 

3. After initial yield, the soil may strain-soften (the initial yield surface contracts) or may strain-

harden (the initial yield surface expands) to the critical state. 

4. During elastic deformation under drained condition, the soil volume decreases (contracts), and 

after initial yield the soil volume increases (expands) to the critical state and does not change 

volume thereafter. 

5. During elastic deformation under un-drained condition, the soil develops positive excess pore 

water pressures, and after initial yield the soil develops negative excess pore water pressures up 

to the critical state. Thereafter, the excess pore water pressure remains constant. 

6. The response of the soil under un-drained condition is independent of the total stress path. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5.11: Illustrative predicted results from a triaxial CU test on a heavily over consolidated soil (Ro > 2) 

using the CSM. 
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5.9 ROSCOE AND HVORSLEV SURFACES FOR UNSATURATED SILTY SOIL 

 

In the 1950s and 1960s, a new approach to soil mechanics was formulated on the basis of critical 

state concepts at Cambridge University. It provides a framework where the shear distortion of a 

saturated soil during yielding can be related to its stress and volume state (Roscoe et al. 1958; 

Schofield and Worth 1968). In particular, the framework can explain the differences in shear 

behavior between an over consolidated and a normally consolidated soil in the space of 
𝑞

𝑝𝑒
′ : 

𝑝′

𝑝𝑒
′  to 

reach the critical state (Figure 5.12), where 𝑝′, q, and 𝑝𝑒
′  are the mean effective stress, deviator 

stress, and equivalent pressure, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5.12: State boundary surface for saturated soil 

 

A soil that is wetter (sometimes referred to as looser) than the critical state will contract in 

volume under shear to achieve the critical state, or if volume change is prevented (undrained 

condition) then increases in pore-water response will result so that the effective stress state 

moves toward the critical state. A soil that is drier (or denser) than the critical state will dilate, or 

if volume change is prevented then the result will decrease the pore-water pressure. The behavior 

of saturated soils is controlled by effective stress. The critical state theory is a three-dimensional 

(3D) approach for saturated soils and is defined in terms of three state variables: 𝑝′ ,q, and 

specific volume, υ. For axi-symmetric conditions, these variables are defined as 

𝑝′ =
𝜎1+2𝜎3

3
− 𝑢𝑤 = 𝑝 − 𝑢𝑤--------        Eq.5.22 

𝑞 = 𝜎1 − 𝜎3----------------------------        Eq.5.23 

𝜐 = 1 + 𝑒-------------------------------        Eq.5.24 

Where 𝜎1 and 𝜎3 major and minor principal stresses; and e void ratio. 

When the soil is under shearing, it will eventually reach a critical state condition, and these 

critical states are located on a unique line in the q: 𝑝′,: υ. space. For normally consolidated soil, 
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all drained and un-drained stress paths appear to lie on a 3D surface bounded by the critical state 

line (CSL) at the top and the normal consolidation line (NCL) at the bottom. Both sets of stress 

paths lie on this surface. This surface is called the Roscoe surface or state boundary surface. The 

Hvorslev surface is another state boundary surface and links up with the Roscoe surface at the 

CSL (Fig. 1). This surface is a straight line in the normalized space of  
𝑞

𝑝𝑒
′ : 

𝑝′

𝑝𝑒
′ , where 𝑝𝑒

′   is the 

equivalent pressure and is defined as 

𝑝𝑒
′ = 𝑒𝑥𝑝 [

𝑁(0)−𝜐

𝜆(0)
]---------------------        Eq.5.25 

Where 𝑁(0) and 𝜆(0) are the intercept (at 𝑝′ =1 kPa) and slope of the saturated virgin line, 

respectively; and υ  is specific volume. 

The Hvorslev surface cannot extent to the q=𝑝𝑒
′  axis because of the no tension line. The 

significant feature of this surface is that the shear strength of a sample is a function of the mean 

net stress (𝑝′) and specific volume. Therefore, the complete state boundary surface consists of 

the Roscoe and Hvorslev surfaces, which meet at the CSL. It limits the behavior of drained and 

undrained tests on normally consolidated and over consolidated samples and unifies a wide range 

of the behavior of soil samples. Researchers, such as Marto (1996) and Moradi (1998), showed 

the Roscoe and Hvorslev surfaces by conducting compression and extension triaxial tests on soil 

samples. Houlsby et al. (1982) presented the Roscoe-Hvorslev model based on elastic-perfectly 

plastic behavior. Tanaka et al. (1986) also adapted the Hvorslev surface for a supercritical state, 

which is defined as the portion of the 𝑝′-q plane on the right of the intersection between the CSL 

and the Cam-clay ellipse. The portion on its left is the subcritical region (de Souza Neto et al. 

2009). Mita et al. (2004) conducted compression and extension tests on over consolidated clay 

and found a 3D Hvorslev modified Cam-clay model for over consolidation clay. 

Cam Clay was originated by the Cambridge soil mechanics group in the 1960s. The problem to 

be considered is simple shearing, illustrated in Figure 5.13. A sample of soil is subjected to 

applied normal and shearing tractions, σ and τ, on its upper surface. If the sample happens to be 

saturated, we consider σ to be the effective stress.  

 

 

 

 

 

 

 

 

 

 

 

Fig.5.13: Schematic diagram showing a simple shear test. 
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The soil is laterally constrained so that no extensional deformation occurs in the horizontal 

direction. This can be accomplished using a sort of ‘pancake’ container consisting of layers of 

rigid material that may slide over each other, permitting shearing strain but no extensional strain. 

It is not a simple device, but that is not our concern. The essential thing is that the only 

extensional strain is the vertical strain, denoted by 𝜀𝑝.The only other non-zero strain is the shear 

strain, denoted by 𝛾𝑝. We denote both strains as plastic. The theory to be derived will overlook 

elastic strains for the moment, but they will be considered later. 

The originators of the Cam Clay model used the triaxial test as their example problem, and it also 

has only two stress and two strain components, but those components are derived from invariants 

and are slightly more complex than the simple stresses and strains considered here. 

First, we want to establish a yield surface. In the context of our example problem, this will be a 

function of the form f (𝜎, 𝜏). To begin, assume the soil sample is in a yield state and write down 

the rate of plastic work: 

�̇�𝑝 = 𝜎𝜀̇𝑝̇ + 𝜏�̇�𝑝----------------------        Eq.5.26 

Wp represents plastic, irrecoverable work done by the applied tractions. It postulates that 𝑊�̇�must 

equal a specified function called the dissipation function, �̇� . It can be shown that the dissipation 

function should be a homogeneous function of the plastic strain rates multiplied by coefficients 

that depend upon the stresses. If we consider the case where σ is constant then it is reasonable to 

assume that the plastic extensional strain  𝜀𝑝 is at most a function of the plastic shear strain  𝛾𝑝. 

Then the dissipation function �̇�  can be written as a function of 𝛾�̇� only. Also, for a frictional 

material, the rate of dissipation should depend on the normal stress σ. The Cambridge workers 

postulated a dissipation function with the form 

�̇� = 𝑘𝜎𝛾�̇�---------------------         Eq.5.27 

where k is a material parameter that is constant for any particular soil. Setting the right-hand 

sides of (4) and (5) equal and rearranging gives 
�̇�𝑝

�̇�𝑝 = 𝑘 −
𝜏

𝜎
------------------         Eq.5.28 

where we assume the shear strain rate 𝛾�̇�to be strictly positive. 

Suppose we alter both stresses by small amounts 𝛿𝜎 and 𝜏 . Then the rate of plastic work would 

also be altered by some amount 𝛿�̇�𝑝. Drucker’s postulate states that, so long as the body remains 

in equilibrium, 𝜕�̇�𝑝  should always be equal to or greater than zero. Therefore 

𝛿�̇�𝑝 = 𝛿𝜎𝜀̇𝑝 + 𝛿𝜏�̇�𝑝-----------------        Eq.5.29 

In the limiting case where the equality holds this expression embodies the normality condition. If 

we take the equality, we may write 
𝛿𝜏

𝛿𝜎
+

�̇�𝑝

�̇�𝑝 =
𝑑𝜏

𝑑𝜎
+ 𝑘 −

𝜏

𝜎
= 0---------------       Eq.5.30 

where (7) has been used and 𝛿𝑠 have been replaced by ds. We can integrate (9) to give 

𝜏 = 𝜎(𝐶1 − 𝑘𝑙𝑛𝜎)----------------        Eq.5.31 
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Where C1 is a constant of integration. This expression represents Cam Clay yield surface; 

however, an initial condition is still needed to find the constant C1. 

To establish C1, note that equation (5.28) says that when 𝜎 =
𝜏

𝑘
, we are at the critical state. 

Suppose we define a critical state stress, 𝜎𝑐, which is equal to 
𝜏

𝜎
. In general, σ will be different 

from 𝜎𝑐, but if they do coincide the particle packing will be at its critical state and there will be 

no further volume change. In that state, (5.31) would read as 

𝑘𝜎𝑐 = 𝜎𝑐(𝐶1 − 𝑘𝑙𝑛𝜎𝑐)----------------        Eq.5.32 

We can solve this equation for C1 and along with the Eq. (10) to find the following expression: 

𝜏 + 𝑘𝜎 [ln (
𝜎

𝜎𝑐
) − 1] = 0------------       Eq.5.33 

This equation relates the stresses σ and τ during yielding and hence represents our Cam Clay 

yield surface. A graph of (Eq.5.33) is shown in Figure 5.14. 

 

 

 

 

 

 

 

 

 

 

Fig. 5.14: Cam Clay yield surface in a simple shear test. 

 

The yield criterion can be written in terms of the invariants q and p as follows: 

𝑞 + 𝑀𝑝 (ln
𝑝

𝑝𝑐
− 1) = 0------------ Eq.5.34 

Here both M and pc are material parameters, while q and p are the deviatoric and the mean stress, 

respectively. In the π-plane the Cam Clay surface will be circular just as the Drucker–Prager 

surface was. If we plot (Eq.13) we find the situation depicted in Figure 5.15. 

 

 

 

 

 

 

 

 

Fig.5.15: Cam Clay yield surface in (q, p)-space. 

The pointed vertex at the tip of the Cam Clay surface was viewed by some researchers as being a 

weakness of the original Cam Clay model. The Modified Cam Clay  
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eliminated the point and introduced an elliptical surface with the form 

𝑞2 = 𝑀2𝑝(2𝑝𝑐 − 𝑝)--------------- Eq.5.35 

The shape of the yield surface is now as shown in Figure 5.16.  

 

 

 

 

 

 

 

 

 

Fig.5.16: Modified Cam Clay yield surface. 

The original Cam Clay surface is also shown as a dashed line. The two surfaces agree exactly 

when p = pc, but the modified surface closes on the mean stress axis at a value of 2pc rather than 

at 2.718pc for the original model. 
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Example 2: 
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Sol: 
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5.10 CRITICAL VOID RATIO, EFFECT OF DILATION IN SANDS 

 

5.10.1 Interpretation of the shear strength of soils: 

We will interpret the shear strength of soils based on their capacity to dilate. Dense sands and 

over consolidated clays (OCR >  2) tend to show peak shear stresses and expand (positive 

dilation angle), while loose sands and normally consolidated and lightly over consolidated clays 

do not show peak shear stresses except at very low normal effective stresses and tend to 

compress (negative dilation angle). In our interpretation of shear strength, we will describe soils 

as dilating soils when they exhibit peak shear stresses at α > 0, and non dilating soils when they 

exhibit no peak shear stress and attain a maximum shear stress at α=0. However, a non dilating 

soil does not mean that it does not change volume (expand or contract) during shearing. The 

terms dilating and nondilating refer only to particular stress states (peak and critical) during soil 

deformation. 

The peak shear strength of a soil is provided by a combination of the shearing resistance due to 

sliding (Coulomb’s frictional sliding), dilatancy effects, crushing, and rearrangement of particles 

At low normal effective stresses, rearrangement of soil particles and dilatancy are more readily 

facilitated than at high normal effective stresses. At high normal effective stresses, particle 

crushing significantly influences the shearing resistance. However, it is difficult to determine the 

amount of the shear strength contributed by crushing and the arrangement of particles from soil 

test results. 

We will refer to key soil shear strength parameters using the following notation. The peak shear 

strength, 𝜏𝑝, is the peak shear stress attained by a dilating soil (Figure 5.17). The dilation angle at 

peak shear stress will be denoted as 𝛼𝑝. The shear stress attained by all soils at large shear strains 

(𝜏𝑧𝑥 >10%), when the dilation angle is zero, is the critical state shear strength denoted by 𝜏𝑐𝑠. 

The void ratio corresponding to the critical state shear strength is the critical void ratio denoted 

by 𝑒𝑐𝑠 .The effective friction angle corresponding to the critical state shear strength and critical 

void ratio is ∅𝑐𝑠
′ . 

The peak effective friction angle for a dilating soil according to Coulomb’s model is 

∅𝑝
′ = ∅𝑐𝑠

′ + 𝛼𝑝---------------        Eq.5.35 
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Type I soils: loose sands, normally consolidated and lightly over consolidated clays (OCR ≤ 2) 

are observed to: 

Show gradual increase in shear stresses as the shear strain increases (strain-hardens) until an 

approximately constant shear stress, which we will call the critical state shear stress, 𝜏𝑐𝑠 , is 

attained (Figure 5.17.a). 

Type II soils: dense sands and heavily over consolidated clays (OCR > 2) are observed to: 

Show a rapid increase in shear stress reaching a peak value, tp, at low shear strains (compared to 

Type I soils) and then show a decrease in shear stress with increasing shear strain (strain-

softens), ultimately attaining a critical state shear stress (Figure 5.17.a). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5.17: Response of soils to shearing 

 

All soils, regardless of their initial state of stress, will reach a critical state characterized by 

continuous shearing at constant shear-to-normal-effective-stress ratio and constant volume. The 

initial void ratio of a soil and the normal effective stresses determine whether the soil will dilate 

or not. Dilating soils often exhibit (1) a peak shear stress and then strain-soften to a constant 
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shear stress, and (2) initial contraction followed by expansion toward a critical void ratio. Non 

dilating soils (1) show a gradual increase of shear stress, ultimately reaching a constant shear 

stress, and (2) contract toward a critical void ratio.  

 

5.11 EFFECT OF DILATION ON SANDS 

5.11.1 Effects of dilation on Coulomb’s failure envelope 

In real soils, the particles are randomly distributed and often irregular. Shearing of a given 

volume of soil would cause impending slip of some particles to occur up the failure plane while 

others occur down the plane. The general form of Equation of failure plane can be expressed as 

𝜏𝑓 = 𝜎𝑛
′

𝑓
tan (∅′ ± 𝛼)--------------        Eq.5.35 

Where the positive sign refers to soils in which the net movement of the particles is initiated up 

the plane and the negative sign refers to net particle movement down the plane. 

 

 

 

 

 

 

 

 

 

 

Fig.5.18: Effect of dilation on Coulomb’s failure envelope 

 

We will call the angle, α, the dilation angle. It is a measure of the change in volumetric strain 

with respect to the change in shear strain. Soils that have positive values of α expand during 

shearing, while soils with negative values of α contract during shearing. In Mohr’s circle of 

strain (Figure 5.19), the dilation angle is 

∝= 𝑠𝑖𝑛−1 (−
∆𝜀1+∆𝜀3

∆𝜀1−∆𝜀3
) = 𝑠𝑖𝑛−1 [−

∆𝜀1+∆𝜀3

(∆𝛾𝑐𝑠)𝑚𝑎𝑥
]---------      Eq.5.36 

Where,  ∆ denotes change. The negative sign is used because we want α to be positive when the 

soil is expanding. You should recall that compression is taken as positive in soil mechanics. 
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Fig.5.19: Mohr’s circle of strain and angle of dilation 

Dilation is not a peculiarity of soils, but occurs in many other materials, for example, rice and 

wheat. The ancient traders of grains were well aware of the phenomenon of volume expansion of 

grains. However, it was Osborne Reynolds (1885) who described the phenomenon of dilatancy 

and brought it to the attention of the scientific community. Dilation can be seen in action at a 

beach. If you place your foot on beach sand just following a receding wave, you will notice that 

the initially wet, saturated sand around your foot momentarily appears to be dry (whitish color). 

This occurs because the sand mass around your foot dilates, sucking water up into the voids. This 

water is released, showing up as surface water, when you lift up your foot. 

 

5.12 IMPORTANT POINTS 

1. Shear failure of soils may be modeled using Coulomb’s frictional law, 𝜏𝑓 = 𝜎𝑛
′

𝑓
tan (∅′ ± 𝛼), 

where 𝜏𝑓 is the shear stress when slip is initiated, 𝜎𝑛
′

𝑓
is the normal effective stress on the slip 

plane, ∅′is the friction angle, and α is the dilation angle. 

1. Shear failure of soils may be modeled using Coulomb’s frictional law, 𝜏𝑓 = 𝜎𝑛
′

𝑓
tan (∅′ ± 𝛼), 

where 𝜏𝑓 is the shear stress when slip is initiated, 𝜎𝑛
′

𝑓
is the normal effective stress on the slip 

plane, ∅′is the friction angle, and α is the dilation angle. 

2. The effect of dilation is to increase the shear strength of the soil and cause the Coulomb’s 

failure envelope to be curved. 

3. Large normal effective stresses tend to suppress dilation. 

4. At the critical state, the dilation angle is zero. 
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