
COPYRIGHT IS NOT RESERVED BY AUTHORS. 
AUTHORS ARE NOT RESPONSIBLE FOR ANY LEGAL 
ISSUES ARISING OUT OF ANY COPYRIGHT DEMANDS AND/OR REPRINT ISSUES 
CONTAINED IN THIS MATERIALS. THIS IS NOT MEANT FOR ANY COMMERCIAL 
PURPOSE. IT IS ONLY MEANT FOR PERSONAL USE OF STUDENTS FOLLOWING 
SYLLABUS PRINTED NEXT. 
 

Course Plan for SOFT COMPUTING (3-0-0) (BCS 422)   
 
 

Class-1: Basic tools of soft Computing – 

Fuzzy logic, Neural Networks and 

Evolutionary Computing , 

Class-18: Activation functions. Adaline: its 

training and capabilities, weights learning, 

Class-2: Approximations of Multivariate 

functions,  

Class-19 -22: MLP : error back propagation, 

generalized delta rule. 

Class-3 &4: Non – linear Error surface and 

optimization.  

Class-23: Radial basis function networks and least 

square training algorithm, 

Class-5: Fuzzy Logic Systems : Basics of 

fuzzy logic theory, 

Class-24: Kohenen self – organizing map and 

learning vector quantization networks. 

Class-6: Crisp and fuzzy sets.  Class_25, 26 & 27: Recurrent neural networks, 

Class-7, 8 & 9: Basic set operations.  Class-28: Simulated annealing neural networks. 

Class-10: Fuzzy relations and their 

Composition rules 

Class-29 & 30: Adaptive neuro-fuzzy information 

systems ( ANFIS), 

Class-11 &12: Fuzzy inference,  Class-31 & 32:  Applications to control and pattern 

recognition. 

Class-13: Zadeh’s compositional rule of 

inference.  

Class-33: Genetic algorithms : Basic concepts, 

fitness function 

Class-14: Defuzzificaiton.  Class-34-36: encoding , 

Class-15: Fuzzy logic control: Mamdani 

and Takagi and Sugeno architectures.  

Class-37: reproduction 

 

Class-16: Applications to pattern 

recognition. 

Class-38:Differences of GA and traditional 

optimization methods. 

Class-17: Neural networks : Single layer 

networks, Perceptron. 

Class-39 & 40:Basic genetic programming 

concepts Applications 



Soft Computing  
Soft computing differs from conventional or hard computing in that, unlike hard computing, it is 
tolerant of imprecision, uncertainty, partial truth, and approximate reasoning. Conventional or 
hard computing requires a precisely stated analytical model and a lot of mathematical and logical 
computation. 
Components of soft computing include: 
Neural networks (NN),  
Fuzzy logic (FL),  
Evolutionary computation (EC), (which includes Evolutionary algorithms, Genetic algorithms, 
Differential evolution),  
Meta-heuristics and Swarm Intelligence, (which includes Ant colony optimization, Particle 
swarm optimization, Firefly algorithm, Cuckoo search),  
Support Vector Machines (SVM),  
Probabilistic reasoning, (which includes Bayesian network), and Chaos theory. 
 
NOTE: 

 SC is evolving rapidly 

 New techniques and applications are constantly being proposed 
 

Generally speaking, soft computing techniques resemble biological processes more closely than 
traditional techniques, which are largely based on formal logical systems, such as sentential logic 
and predicate logic, or rely heavily on computer-aided numerical analysis (as in finite element 
analysis). Soft computing techniques are intended to complement each other. 
Unlike hard computing schemes, which strive for exactness and full truth, soft computing 
techniques exploit the given tolerance of imprecision, partial truth, and uncertainty for a 
particular problem. Another common contrast comes from the observation that inductive 
reasoning plays a larger role in soft computing than in hard computing. 
 
Hard Computing  Soft computing  
Precisely stated analytical model  Tolerant to imprecision, uncertainty, partial 

truth, approximation  
Based on binary logic, crisp systems, 
numerical analysis, crisp software  

Fuzzy logic, neural nets, probabilistic 
reasoning.  

Programs are to be written  Evolve their own programs  
Two values logic  Multi valued logic  
Exact input data  Ambiguous and noisy data  
Strictly sequential  Parallel computations  
Precise answers  Approximate answers  
 



 
Many contemporary problems do not lend themselves to precise solutions such as Recognition 
problems (handwriting, speech, objects, images), forecasting, combinatorial problems etc. 
Soft Computing became a formal Computer Science area of study in the early 1990's.Earlier 
computational approaches could model and precisely analyze only relatively simple systems. 
More complex systems arising in biology, medicine, the humanities, management sciences, and 
similar fields often remained intractable to conventional mathematical and analytical methods. 
That said, it should be pointed out that simplicity and complexity of systems are relative, and 
many conventional mathematical models have been both challenging and very productive. Soft 
computing deals with imprecision, uncertainty, partial truth, and approximation to achieve 
tractability, robustness and low solution cost. 
Implications of Soft Computing 
Soft computing employs NN, SVM, FL etc, in a complementary rather than a competitive way. 
One example of a particularly effective combination is what has come to be known as "neuro-
fuzzy systems.” Such systems are becoming increasingly visible as consumer products ranging 
from air conditioners and washing machines to photocopiers, camcorders and many industrial 
applications. 
 
Some Applications of Soft Computing 
• Application of soft computing to handwriting recognition 
• Application of soft computing to automotive systems and manufacturing 
• Application of soft computing to image processing and data compression 
• Application of soft computing to architecture 
• Application of soft computing to decision-suppor systems 
• Application of soft computing to power systems 
• Neurofuzzy systems 
• Fuzzy logic control 
 
Overview of Techniques in Soft Computing 
• Neural networks 
• Fuzzy Logic 
• Genetic Algorithms in Evolutionary Computation 
• Support Vector Machines 



Neural Networks: 
Neural Networks, which are simplified models of the biological neuron system, is a massively 
parallel distributed processing system made up of highly interconnected neural computing 
elements that have the ability to learn and thereby acquire knowledge and making it available for 
use. It resembles the brain in two respects: (1) Knowledge is acquired by the network through a 
learning process and (2) Interconnection strengths known as synaptic weights are used to store 
the knowledge 

 
 
Fig. 1: A biological neuron connected to another neuron. 
A neuron is composed of nucleus- a cell body known as soma. Attached to the soma are long 
irregularly shaped filaments called dendrites. The dendrites behave as input channels, all inputs 
from other neurons arrive through dendrites.  
Another link to soma called Axon is electrically active and serves as an output channel. If the 
cumulative inputs received by the soma raise internal electric potential of the cell known as 
membrane potential, then the neuron fires by propagating the action potential down the axon to 
excite or inhibit other neurons. The axon terminates in a specialized contact called synapse that 
connects the axon with the dendrite links of another neuron. An artificial neuron model bears 
direct analogy to the actual constituents of biological neuron. This model forms basis of 
Artificial Neural Networks 
 
Artificial Neural Networks (ANNs) 
The ANN provides a general practical method for real-valued, discrete-valued, and vector-valued 
functions from examples. The back propagation algorithm which is widely used in ANNs, uses 
gradient descent to tune network parameters to best fit a training set of input-output pairs. 



An artificial neural network (ANN) is a distributed computing scheme based on the structure of 
the nervous system of humans. The architecture of a neural network is formed by connecting 
multiple elementary processors, this being an adaptive system that has an algorithm to adjust 
their weights (free parameters) to achieve the performance requirements of the problem based on 
representative samples. 
Examinations of the human's central nervous system inspired the concept of neural networks. In 
an Artificial Neural Network, simple artificial nodes, known as "neurons", "neurodes", 
processing elements" or "units", are connected together to form a network which mimics a 
biological neural network. 
There is no single formal definition of what an artificial neural network is. However, a class of 
statistical models may commonly be called "Neural" if they possess the following characteristics: 

1. consist of sets of adaptive weights, i.e. numerical parameters that are tuned by a learning 
algorithm, and 

2. are capable of approximating non-linear functions of their inputs. 
The adaptive weights are conceptually connection strengths between neurons, which are 
activated during training and prediction. 
Neural networks are similar to biological neural networks in performing functions collectively 
and in parallel by the units, rather than there being a clear delineation of subtasks to which 
various units are assigned. The term "neural network" usually refers to models employed in 
statistics, cognitive psychology and artificial intelligence. Neural network models which emulate 
the central nervous system are part of theoretical neuroscience and computational neuroscience. 
In modern software implementations of artificial neural networks, the approach inspired by 
biology has been largely abandoned for a more practical approach based on statistics and signal 
processing. In some of these systems, neural networks or parts of neural networks (like artificial 
neurons) form components in larger systems that combine both adaptive and non-adaptive 
elements. While the more general approach of such systems is more suitable for real-world 
problem solving, it has little to do with the traditional artificial intelligence connectionist models. 
What they do have in common, however, is the principle of non-linear, distributed, parallel and 
local processing and adaptation. Historically, the use of neural networks models marked a 
paradigm shift in the late eighties from high-level (symbolic) artificial intelligence, characterized 
by expert systems with knowledge embodied in if-then rules, to low-level (sub-symbolic) 
machine learning, characterized by knowledge embodied in the parameters of a dynamical 
system. 
Biological Motivation 
 Human brain is a densely interconnected network of approximately 1011 neurons, each 

connected to, on average, 104 others.  
 Neuron activity is excited or inhibited through connections to other neurons.  
 The fastest neuron switching times are known to be on the order of 10-3 sec. 

 
 



Genetic Algorithm: 

Genetic algorithms (GAs) are search methods based on principles of natural selection and 
genetics. GAs were First described by John Holland in the 1960s and further developed by 
Holland and his students and colleagues at the University of Michigan in the 1960s and 1970s. 
Holland's goal was to understand the phenomenon of \adaptation" as it occurs in nature and to 
develop ways in which the mechanisms of natural adaptation might be imported into computer 
systems. Holland's 1975 book Adaptation in Natural and Artificial Systems (Holland, 
1975/1992) presented the GA as an abstraction of biological evolution and gave a theoretical 
framework for adaptation under the GA.  

The population size, which is usually a user-specified parameter, is one of the important 
factors affecting the scalability and performance of genetic algorithms. For example, small 
population sizes might lead to premature convergence and yield substandard solutions. On the 
other hand, large population sizes lead to unnecessary expenditure of valuable computational 
time. Once the problem is encoded in a chromosomal manner and a fitness measure for 
discriminating good solutions from bad ones has been chosen, we can start to evolve solutions to 
the search problem using the following steps: 
1. Initialization: The initial population of candidate solutions is usually generated randomly 
across the search space. However, domain-specific knowledge or other information can be easily 
incorporated. 
2. Evaluation: Once the population is initialized or an offspring population is created, the fitness 
values of the candidate solutions are evaluated. 
3. Selection: Selection allocates more copies of those solutions with higher fitness values and 
thus imposes the survival-of-the-fittest mechanism on the candidate solutions. The main idea of 
selection is to prefer better solutions to worse ones, and many selection procedures have been 
proposed to accomplish this idea, including roulette-wheel selection, stochastic universal 
selection, ranking selection and tournament selection, some of which are described in the next 
section. 
4. Recombination: Recombination combines parts of two or more parental solutions to create 
new, possibly better solutions (i.e. offspring). There are many ways of accomplishing this (some 
of which are discussed in the next section), and competent performance depends on a properly 
designed recombination mechanism. The offspring under recombination will not be identical to 
any particular parent and will instead combine parental traits in a novel manner  
5. Mutation: While recombination operates on two or more parental chromosomes, mutation 
locally but randomly modifies a solution. Again, there are many variations of mutation, but it 
usually involves one or more changes being made to an individual’s trait or traits. In other words, 
mutation performs a random walk in the vicinity of a candidate solution. 
6. Replacement. The offspring population created by selection, recombination, and mutation 
replaces the original parental population. Many replacement techniques such as elitist 
replacement, generation-wise replacement and steady-state replacement methods are used in 
GAs. 
7. Repeat steps 2–6 until a terminating condition is met. Goldberg has likened GAs to 
mechanistic versions of certain modes of human innovation and has shown that these operators 
when analyzed individually are ineffective, but when combined together they can work well.  
 



Introduction to Taylor's theorem for multivariable functions 

   

Remember one-variable calculus Taylor's theorem. Given a one variable function f(x), you can fit 
it with a polynomial around x=a. 

For example, the best linear approximation for f(x) is  

f(x)≈f(a)+f′(a)(x−a). 

This linear approximation fits f(x) (shown in green below) with a line (shown in blue) through 
x=a that matches the slope of f at a. 

 

We can add additional, higher-order terms, to approximate f(x) better near a. The best quadratic 
approximation is  

f(x)≈f(a)+f′(a)(x−a)+12f′′(a)(x−a)2 

We could add third-order or even higher-order terms:  

f(x)≈f(a)+f′(a)(x−a)+12f′′(a)(x−a)2+16f′′′(a)(x−a)3+⋯. 

The important point is that this Taylor polynomial approximates f(x) well for x near a. 

We want to generalize the Taylor polynomial to (scalar-valued) functions of multiple variables:  

f(x)=f(x1,x2,…,xn). 

We already know the best linear approximation to f. It involves the derivative,  

f(x)≈f(a)+Df(a)(x−a). 

where Df(a) is the matrix of partial derivatives. The linear approximation is the first-order Taylor 
polynomial. 



What about the second-order Taylor polynomial? To find a quadratic approximation, we need to 
add quadratic terms to our linear approximation. For a function of one-variable f(x), the quadratic 
term was  

12f′′(a)(x−a)2. 

For a function of multiple variables f(x), what is analogous to the second derivative? 

Since f(x) is scalar, the first derivative is Df(x), a 1×n matrix, which we can view as an n-
dimensional vector-valued function of the n-dimensional vector x. For the second derivative of 
f(x), we can take the matrix of partial derivatives of the function Df(x). We could write it as 
DDf(x) for the moment. This second derivative matrix is an n×n matrix called the Hessian 
matrix of f. We'll denote it by Hf(x),  

Hf(x)=DDf(x). 

When f is a function of multiple variables, the second derivative term in the Taylor series will 
use the Hessian Hf(a). For the single-variable case, we could rewrite the quadratic expression as  

12(x−a)f′′(a)(x−a). 

The analog of this expression for the multivariable case is  

12(x−a)THf(a)(x−a). 

We can add the above expression to our first-order Taylor polynomial to obtain the second-order 
Taylor polynomial for functions of multiple variables:  

f(x)≈f(a)+Df(a)(x−a)+12(x−a)THf(a)(x−a). 

The second-order Taylor polynomial is a better approximation of f(x) near x=a than is the linear 
approximation (which is the same as the first-order Taylor polynomial). We'll be able to use it 
for things such as finding a local minimum or local maximum of the function f(x). 



INTRODUCTION TO THE CONCEPT OF F FUZZY LOGIC 
In many cases in our day-to-day work we do not do exact measurements like washing a 

cloth, driving a vehicle, brushing  the teeth, adding salt or sugar to cooked food, etc. So also in 
many cases of our day-to-day conversation we use statements like more or less tall, too fat, very 
thin, slightly dwarf, etc which do not convey exact  information, but conveniently tackle the 
situations. In these situations it is not critical to be precise in data rather a rough answer solves 
the problem. Fuzzy logic is all about this relative importance of precision. Hence fuzzy logics are 
used in cases of imprecision and imprecise human reasoning and human perception. In cases of 
high precision problems where exact mathematical models are already developed there the fuzzy 
logics are not used. Still fuzzy logics are used to drill printed circuit boards under LASER to an 
appreciate precision with low cost Hence for cost effectiveness we may prefer fuzzy than exact 
mathematical model in many cases. 
Applications of Fuzzy Logic: 
 Some already developed areas of applications of Fuzzy Logic are given below. 

1) Fuzzy focusing and image stabilization. 
2) Fuzzy air conditioner that controls temperature according to comfort index. 
3) Fuzzy washing machine that washes clothes with help of smart sensors. 
4) Fuzzy controlled sub-way systems. 
5) Fuzzy controlled toasters, rice cookers, vacuum cleaners, etc. 

Advantages of Fuzzy Logic 
1) Fuzzy logic is conceptually easy to understand. 
2) Fuzzy logic is flexible that can add more functionality on top of it without starting afresh. 
3) Fuzzy logic is tolerant of imprecise data. 
4) Fuzzy logic can model non-linear functions of arbitrary complexity. 
5) Fuzzy logic can be added to conventional control system easily. 
6) Fuzzy logic can be built on the top of the experience of experts. 
7) Fuzzy logic is based on natural language. 

FUZZY SET THEORY 
Classical set: A classical or crisp set has a clear and unambiguous boundary that separates 

the members of a classical set from members not belonging to the set. For example a classical set 
of positive integers defined as: 
 Ac = { x | x < 5 } or Ac = {1, 2, 3, 4} 
Here the whole numbers less than 5 belongs to the set Ac and the number 5 and more than 5 do 
not belong to the set Ac. Hence number 5 is acting as a boundary. 
 These classical sets are suitable for various applications and have proven to be an 
important tool for mathematics and computer science, but they do not reflect the nature of human 
concepts and thoughts, which tends to be abstract and imprecise, as an example of a set of young 
men. 

Classical Set vs Fuzzy set with example of making a set of tall persons 
 



 
 What is fuzzy thinking 

 Experts rely on common sense when they solve the problems 
 How can we represent expert knowledge that uses vague and ambiguous terms in 

a computer 
 Fuzzy logic is not logic that is fuzzy but logic that is used to describe the 

fuzziness. Fuzzy logic is the theory of fuzzy sets, set that calibrate the vagueness.  
 Fuzzy logic is based on the idea that all things admit of degrees. Temperature, 

height, speed, distance, beauty – all come on a sliding scale. 
  Jim is tall guy 
   It is really very hot today 
 
Fuzzy Set: It is a set without crisp or sharp boundary. Here the transition from “belonging to a 
set” to “not belonging to a set” is gradual. This is done by assigning a membership function to 
the elements or members of the set. The members of a fuzzy set get a membership value within 0 
and 1. Here it is obvious that the membership value 0 indicates that the element is not a member 
of the fuzzy set. 
Definition: If X is a collection of objects denoted generically by x, then fuzzy set Af in X is 
defined as a set of ordered pairs: 
 Af = { ( x, µA(x) ) | x Є X } 
where µA(x) is called the membership function for the fuzzy set Af. 
The membership function (MF)maps each element of X to a membership grade or membership 
value between 0 and 1. 
 

No Name Height 
(cm) 

Degree of Membership 
of “tall men” 

Crisp Fuzzy 

1 Boy 206 1 1 

2 Martin 190 1 1 

3 Dewanto 175 0 0.8 

4 Joko 160 0 0.7 

5 Kom 155 0 0.4 



 
 
 

 
 
 Boolean logic 

 Uses sharp distinctions. It forces us to draw a line between a members of 
class and non members. 

 Fuzzy logic 
 Reflects how people think. It attempt to model our senses of words, our 

decision making and our common sense -> more human and intelligent 
systems 

 
 
Several types of Fuzzy sets and their notations 

(1) A Fuzzy set with discrete non-ordered Universe: Let X = {Kolkata, Delhi, Chennai, 
Mumbai, Bangalore} be the set of cities one may choose to live in. The fuzzy set  A = 
“desirable city to live in” may be defined as (using comma notation): 

A = { (Mumbai, 0.5), (Delhi, 0.6), (Chennai, 0.3), (Bangalore, 0.7), (Kolkata, 0.8) 
} 

(2) A Fuzzy set with discrete ordered Universe: Let ‘U’ be a number of children from 1 to 5, 
that is, U = {1,2, 3, 4, 5}.  Now the fuzzy set B = “number of children a couple will wish 
to have “ may be defined as (using summation notation): 

B = ( 0.5/1 + 0.9/2 + 0.4/3 + 0.2/4 + 0.1/5 ) 



(3) A Fuzzy set with continuous Universe: Let X = R+ be the set of possible age of human 
beings. Then  the fuzzy set C = “a 50 year old man” may be defined as: 

C = { ( x, µC (x) | x Є X } 
where µC (x) = 1/ ( 1 + ( x – 50/10 )10 ) 
 

 
 

 We observed that finding or designing an appropriate membership function has 
importance on solution, but there is neither a unique solution nor a unique membership function, 
to characterize a particular description. Once a fuzzy set is being defined by a membership 
function, then the membership function are not fuzzy, rather they are precise mathematical 
functions. Thus by having a fuzzy description with a membership function, we essentially 
defuzzify the fuzzy description. In other words, fuzzy set theory does not fuzzify the world rather 
they defuzzify the world by assigning a membership value to a fuzzy set elements. 
Relation to probability theory: When we devise a fuzzy set, then there must be a unique 
membership function associated with it, which expresses the abstract concept of the fuzzy 
problem. Thus the membership functions are non-random in nature. Hence fuzzy should not be 
compared with probability theory which mostly deals with random phenomena. Fuzziness 
describes the ambiguity of an event where as randomness describes the uncertainty in the 
occurrence of the event. 
Some nomenclature used in Fuzzy sets: 
Consider three fuzzy sets and their membership functions (MFs) corresponding to “young”, 
“middle aged”, and “old” peoples which are plotted aside. Now we will define some 
nomenclature used in fuzzy logic. 

(1) Support: The support of a fuzzy set A, denoted as support(A) or supp(A), is the crisp set 
of X whose elements all have non-zero membership values in A. Thus we can write 

Support(A) = { x | µA(x) > 0 } 



(2) Core: The core of a fuzzy set A is the set of all points x in X such that µA (x) = 1. Thus 
we can write  

Core(A) = {x | µA(x) = 1`} 
(3) Normal fuzzy set and Sub normal fuzzy set: A fuzzy set A is called normal if there 

exits an x Є X such that µA(x)= 1, that is, core(A) ≠ φ. Otherwise the set is called sub-
normal fuzzy set. 

(4) Crossover Points: A crossover point of a fuzzy set A is a point x Є X at which µA(x) = 
0.5. Thus we can write 

Crossover(A) = { x | µA(x) = 0.5 } 
(5) Fuzzy Singleton: A fuzzy set whose support is a single point in X with µA(x) = 1, is 

called a fuzzy singleton. 
(6) α- cut: The α- cut or α- level set of a fuzzy set A is a crisp set Aα or [A]α that contains all 

the elements x in X such that µA(x) ≥ α. Thus we can write 
Aα or [A]α  = { x | µA(x) ≥ α} 

(7) Strong α- cut: Strong α- cut or strong α- level set A’
α is defined as  

Aα
’ = { x | µA(x) ≥ α} 

Now we can write support(A) = A’
0 and core(A) = A1 

(8) Convex fuzzy set: A convex fuzzy set A is described by a membership function whose 
membership values are strictly monotonically increasing or whose membership values are 
strictly monotonically decreasing or whose membership values are strictly monotonically 
increasing and then strictly monotonically decreasing with increasing values of the 
elements in the Universe. Thus for any elements x1, x2 and x3 with relation x1 < x2 < x3 
implies that  

µA(x2) ≥ min { µA(x1), µA(x3) } 
(9) Fuzzy Numbers: If a is a convex continuous point normal fuzzy set defined on  the real 

line (R), then A is often termed a fuzzy number. 
(10) Quasi fuzzy number: A quasi fuzzy number A is a fuzzy set of real line with a 

normal fuzzy convex and continuous membership function satisfying the limit condition 
lim µA(x) =0 as x → ∞. 

(11) Bandwidth: Band width of a normal and convex fuzzy set is defined as the 
distance between two unique crossover points. That is 

Width(A) = |x2 – x1| where µA(x1) = µA(x2) =0.5 
(12) Symmetricity 
(13) Open left 
(14) Open Right 
(15) Closed 

 
 
 

 



 
 

Set-Theoretic Operations 
 
Subset: 
 
Complement: 
 
Union: 
 
Intersection: 
 

 

 
 
 
 
 
 

MF Formulation 
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Triangular MF: 

 
 
Trapezoidal MF: 

 
 
Gaussian MF: 

 
 
Generalized bell MF: 

 
 
 
 

 
 
 
 
 

Cylindrical Extension: 
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2D MFs: 
 

 
 
 
 
 
 
Fuzzy Complement: 



 
General requirements: 

• Boundary: N(0)=1 and N(1) = 0 
• Monotonicity: N(a) > N(b) if a < b 
• Involution: N(N(a) = a 

Two types of fuzzy complements: 
 
Sugeno’s complement:  
 
 
Yager’s complement:  
 

 
 
Fuzzy Intersection: T-norm 
 
Basic requirements: 

• Boundary: T(0, 0) = 0, T(a, 1) = T(1, a) = a 
• Monotonicity: T(a, b) < T(c, d) if a < c and b < d 
• Commutativity: T(a, b) = T(b, a) 
• Associativity: T(a, T(b, c)) = T(T(a, b), c) 

Four examples (page 37): 
• Minimum: Tm(a, b) 
• Algebraic product: Ta(a, b) 
• Bounded product: Tb(a, b) 
• Drastic product: Td(a, b) 
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Fuzzy Union: T-conorm or S-norm 
 



Basic requirements: 
• Boundary: S(1, 1) = 1, S(a, 0) = S(0, a) = a 
• Monotonicity: S(a, b) < S(c, d) if a < c and b < d 
• Commutativity: S(a, b) = S(b, a) 
• Associativity: S(a, S(b, c)) = S(S(a, b), c) 

Four examples (page 38): 
• Maximum: Sm(a, b) 
• Algebraic sum: Sa(a, b) 
• Bounded sum: Sb(a, b) 
• Drastic sum: Sd(a, b) 

 
 
 

 
 
 
 
 



 
 
 
 
Generalized DeMorgan’s Law: 
 
T-norms and T-conorms are duals which support the generalization of DeMorgan’s law: 

• T(a, b) = N(S(N(a), N(b))) 
• S(a, b) = N(T(N(a), N(b))) 

 
Parameterized T-norm and S-norm: 
Parameterized T-norms and dual T-conorms have been proposed by several researchers: 

• Yager  
• Schweizer and Sklar  
• Dubois and Prade  
• Hamacher  
• Frank 
• Sugeno  
• Dombi  

 
 
 
 
 
 
 
 
 



Fuzzy Rules and Fuzzy Reasoning 
 
It includes the followings. 

• Extension principle 
• Fuzzy relations 
• Fuzzy if-then rules 
• Compositional rule of inference 
• Fuzzy reasoning 

 
Extension Principle: 
A is a fuzzy set on X :   
 
 
The image of A under f(.) is a fuzzy set B:  
 
where yi = f(xi), for i = 1 to n. 
 
If f(.) is a many-to-one mapping, then 
 
Fuzzy Relations: 
A fuzzy relation R is a 2D MF: 
 
Examples: 

• x is close to y (x and y are numbers) 
• x depends on y (x and y are events) 
• x and y look alike (x and y are persons or objects) 
• If x is large, then y is small (x is an observed instrument reading and y is a 

corresponding control action which is inversely proportional to x.) 
X is close to y is plotted as shown below. 
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Max-Min Composition: 
The max-min composition of two fuzzy relations R1 (defined on X and Y) and R2 (defined on Y 
and Z): 
 
 

• Associativity: 
 

• Distributivity over union: 
 

• Weak distributivity over intersection: 
 

• Monotonicity: 
 
 
 
Max-Star Composition: 
 
Max-product composition: 
 
In general, we have max * compositions: 
 
where * is a T-norm operator. 
 
Example of – Max * Compositions: 
 
R1: x is relevant to y        R2: y is relevant to z 
 

 
 
 
 
 
 
 
 
 

 
 
How relevant is x=2 to z=a?  
 
µR1ᵒR2(2,a) = 0.7 (by max-min composition) 
 
µR1ᵒR2(2,a) = 0.63 (max-product composition) 
 
 
 

 y=  y=  y=  y=  

x=1  0.1  0.3  0.5  0.7  

x=2  0.4  0.2  0.8  0.9  

x=3  0.6  0.8  0.3  0.2  

 z=a  z=b  

y=  0.9  0.1  

y=  0.2  0.3  

y=  0.5  0.6  

y=  0.7  0.2  
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Linguistic Variables: 
 
A numerical variable takes numerical values:  Age = 65 
A linguistic variables takes linguistic values:  Age is old   
A linguistic value is a fuzzy set. 
All linguistic values form a term set (set of terms): 
T(age) = {young, not young, very young,  middle aged, not middle aged,  old, not old, very old, 
more or less old, not very young and not very old, etc.}  
 

 
 
Operations on Linguistic Values: 
Concentration operation like very is defined as  CON (A) = A2. 
Dilation operation like more or less is defined as  DIL (A) = A1/2. 
 
Contrast intensification is defined as  
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Fuzzy If-Then Rules: 
General format: If x is A then y is B 
This is interpreted as a fuzzy set 
Examples: 

• If pressure is high, then volume is small. 
• If the road is slippery, then driving is dangerous. 
• If a tomato is red, then it is ripe. 
• If the speed is high, then apply the brake a little. 

 
 
Fuzzy If-Then Rules: 
Two ways to interpret “If x is A then y is B” 
A is coupled with B: (x is A)  (y is B)   
A entails B: (x is not A)  (y is B) 
 
Example: 
if (profession is athlete) then (fitness is high) 
Coupling: Athletes, and only athletes, have high fitness.  
The “if” statement (antecedent) is a necessary and sufficient condition. 
Entailing: Athletes have high fitness, and non-athletes may or may not have high fitness. 
The “if” statement (antecedent) is a sufficient but not necessary condition. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Fuzzy Reasoning: 
Single rule with single antecedent Rule: if x is A then y is B 
Premise: x is A’, where A’ is close to A 
Conclusion: y is B’ 
Use max of intersection between A and A’ to get B’ 
 
Single rule with multiple antecedents 
Rule: if x is A and y is B then z is C 
Premise: x is A’ and y is B’ 
Conclusion: z is C’ 
Use min of (A  A’) and (B  B’) to get C’ 
 
Multiple rules with multiple antecedents 
Rule 1: if x is A1 and y is B1 then z is C1 
Rule 2: if x is A2 and y is B2 then z is C2 
Premise: x is A’ and y is B’ 
Conclusion: z is C’ 
Use previous slide to get C1’ and C2’  
Use max of C1’ and C2’ to get C’ (next slide) 
 
>> ruleview mam21 (Matlab Fuzzy Logic Toolbox) 
 

 
 
 



Neural Network Representation 
 An ANN is composed of processing elements called or neurons organized in different 

ways to form the network’s structure.  
Processing Elements  
An ANN consists of neurons. Each of the neurons receives inputs, processes inputs and delivers 
a single output. A simplest ANN is a single neuron perceptron which is shown in Fig.2. 

 
Fig. 2: A single neuron perceptron. 
 
The input can be raw input data or the output of other perceptrons. The output can be the final 
result (e.g. 1 means yes, 0 means no) or it can be inputs to other perceptrons. 
 
 
 
The network: 
 Each ANN is composed of a collection of perceptrons grouped in layers. A typical 

structure is shown in Fig.3.  
 Note the three layers of the shown ANN. They are input, intermediate (called the hidden 

layer) and output layers.  
 Several hidden layers can be placed between the input and output layers. 



 
Fig. 3: A three layer ANN. 
 
 
Perceptrons: 
 A perceptron takes a vector of real-valued inputs, calculates a linear combination of these 

inputs, then outputs  
 a 1 if the result is greater than some threshold   
 –1 otherwise.  

 Given real-valued inputs x1 through xn, the output o(x1, …, xn) computed by the 
perceptron is given as 

  
  o(x1, …, xn) = 1  if w0 + w1x1 + … + wnxn > 0 
            = -1 otherwise 
    where wi is a real-valued constant, or weight. 
Notice the quantity (-w0) is a threshold that the weighted combination of inputs w1x1 + … + wnxn 
must surpass in order for perceptron to output a 1. 
 To simplify notation, we imagine an additional constant input x0 = 1, allowing us to write 

the above inequality as  
             n  
           i=0 wixi >0 
 Learning a perceptron involves choosing values for the weights w0, w1,…, wn.  

 



 
 
Fig. 4: An n input percetron connected to a thresh-holding function for binary output. 
 
Representation Power of Perceptrons: 
 We can view the perceptron as representing a hyperplane decision surface in the n-

dimensional space of instances (i.e. points). The perceptron outputs a 1 for instances 
lying on one side of the hyperplane and  outputs a –1 for instances lying on the other  
side, as in Figure 4. The equation for this decision hyperplane is  

 
 
 
 Some sets of positive and negative examples cannot be separated by any hyperplane. 

Those that can be separated are called linearly separated set of examples.  
 
 

 
 
 
 
 
 
 
Fig.5: (a) Linearly separable classes (b) Not linearly separable classes 
 
A single perceptron can be used to represent many boolean functions. 
 AND function : 
A decision hyper-plane described by w0 + w1 x1 + w2 x2 = 0 with w0 = -0.8, w1 =0.5 and w2 = 
0.5, that is, the hyper-plane -0.8 + 0.5 x1 + 0.5 x2 = 0 can represent Boolean AND function. 
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OR function: 
Similarly a Decision hyper-plane w0 + w1 x1 + w2 x2 = 0 with w0 = -0.3, w1 =0.5 and w2 = 0.5, 
that is, the hyper-plane  -0.3 + 0.5 x1 + 0.5 x2 = 0 can represent an OR function. 

 

 
 
 
 
 
 
 
 
 
 
 
 
XOR function: 
It’s impossible to implement the XOR function by a single perception. So a two-layer network of 
perceptrons can represent XOR function as per the equation  
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Perceptron training rule: 

Although we are interested in learning networks of many interconnected units, let us begin 
by understanding how to learn the weights for a single perceptron. Here learning is to determine 
a weight vector that causes the perceptron to produce the correct +1 or –1 for each of the given 
training examples. Several algorithms are known to solve this learning problem. Here we 
consider two: the perceptron rule and the delta rule. One way to learn an acceptable weight 
vector is to begin with random weights, then iteratively apply the perceptron to each training 
example, modifying the perceptron weights whenever it misclassifies an example. This process is 
repeated, iterating through the training examples as many as times needed until the perceptron 
classifies all training examples correctly. Weights are modified at each step according to the 
perceptron training rule, which revises the weight wi associated with input xi according to the 
rule.  

            wi   wi + wi  
     where wi = (t – o) xi 

Here: t  is target output value for the current training example ‘o’ is perceptron output  
  is small constant (e.g., 0.1) called learning rate  
The role of the learning rate is to moderate the degree to which weights  are changed at each 
step. It is usually set to some small value (e.g. 0.1) and is sometimes made to decrease as the 
number of weight-tuning iterations increases. We can prove that the algorithm will converge If 
training data is linearly separable and  sufficiently small. 
If the data is not linearly separable, convergence is not assured. 
Gradient Descent and the Delta Rule: 
Although the perceptron rule finds a successful weight vector when the training examples are 
linearly separable, it can fail to converge if the examples are not linearly separately.  A second 
training rule, called the delta rule, is designed to overcome this difficulty. The key idea of delta 



rule: to use gradient descent to search the space of possible weight vector to find the weights that 
best fit the training examples. This rule is important because it provides the basis for the 
backpropagration algorithm, which can learn networks with many interconnected units. The delta 
training rule: considering the task of training an unthresholded perceptron, that is a linear unit, 
for which the output o is given by:  
                o = w0 + w1x1 +  ···  + wnxn                      (1)  
Thus, a linear unit corresponds to the first stage of a perceptron, without the threshold.  
In order to derive a weight learning rule for linear units, let specify a measure for the training 
error of a weight vector, relative to the training examples. The Training Error can be computed 
as the following squared error  

 
where D is set of training examples, td is the target output for the training example d and Od is 
the output of the linear unit for the training example d. Here we characterize E as a function of 
weight vector because the linear unit output O depends on this weight vector.  
Hypothesis Space: To understand the gradient descent algorithm, it is helpful to visualize the 
entire space of possible weight vectors and their associated E values, as illustrated in Figure 5. 

  

Here the axes wo, w1 represents possible values for the two weights of a simple linear unit. The 
wo,w1 plane represents the entire hypothesis space. The vertical axis indicates the error E relative 
to some fixed set of training examples. The error surface shown in the figure summarizes the 
desirability of every weight vector in the hypothesis space. For linear units, this error surface 
must be parabolic with a single global minimum. And we desire a weight vector with this 
minimum. 



Derivation of the Gradient Descent Rule: This vector derivative is called the gradient of E 
with respect to the vector <w0,…,wn>, written E .  

]                                                   (3) 

Notice E is itself a vector, whose components are the partial derivatives of E with respect to 
each of the wi. When interpreted as a vector in weight space, the gradient specifies the direction 
that produces the steepest increase in E. The negative of this vector therefore gives the direction 
of steepest decrease. Since the gradient specifies the direction of steepest increase of E, the 
training rule for gradient descent is 

  w w  + w    

where                                                      (4) 

Here  is a positive constant called the learning rate, which determines the step size in the 
gradient descent search. The negative sign is present because we want to move the weight vector 
in the direction that decreases E. This training rule can also be written in its component form 

  wi  wi + wi  

     where  

                           (5) 

which makes it clear that steepest descent is achieved by altering each component wi of weight 
vector in proportion to E/wi.  The vector of E/wi derivatives that form the gradient  can be 
obtained by differentiating E from Equation (2), as  

 

 

    =  

 



             (6) 

where xid denotes the single input component xi for the training example d. We now have an 
equation that gives E/wi in terms of the linear unit inputs xid, output od and the target value td 
associated with the training example. Substituting Equation (6) into Equation (5) yields the 
weight update rule for gradient descent.  

                (7) 

The gradient descent algorithm for training linear units is as follows: Pick an initial random 
weight vector. Apply the linear unit to all training examples, them compute wi for each weight 
according to Equation (7). Update each weight wi by adding wi , them repeat the process. The 
algorithm is given in Figure 6. 

Because the error surface contains only a single global minimum, this algorithm will converge 
to a weight vector with minimum error, regardless of whether the training examples are linearly 
separable, given a sufficiently small  is used. If  is too large, the gradient descent search runs 
the risk of overstepping the minimum in the error surface rather than settling into it. For this 
reason, one common modification to the algorithm is to gradually reduce the value of  as the 
number of gradient descent steps grows. 

Stochastic Approximation to Gradient Descent:The key practical difficulties in applying 
gradient descent are:Converging to a local minimum can sometimes be quite slow (i.e., it can 
require many thousands of steps).If there are multiple local minima in the error surface, then 
there is no guarantee that the procedure will find the global minimum.One common variation on 
gradient descent intended to alleviate these difficulties is called incremental gradient descent (or 
stochastic gradient descent). The key differences between standard gradient descent and 
stochastic gradient descent are:  

 In standard gradient descent, the error is summed over all examples before 
upgrading weights, whereas in stochastic gradient descent weights are updated 
upon examining each training example.  

 The modified training rule is like the training example we update the weight 
according to 

                    wi = (t – o) xi    (10)  

Summing over multiple examples in standard gradient descent requires more computation per 
weight update step. On the other hand, because it uses the true gradient, standard gradient 
descent is often used with a larger step size per weight update than stochastic gradient descent 



Stochastic gradient descent (i.e. incremental mode) can sometimes avoid falling into local 
minima because it uses the various gradient of E rather than overall gradient of E to guide its 
search. Both stochastic and standard gradient descent methods are commonly used in practice.  

 

 

MULTILAYER NETWORKS AND THE BACKPROPOGATION ALGORITHM: 

Single perceptrons can only express linear decision surfaces. In contrast, the kind of multilayer 
networks learned by the backpropagation algorithm are capaple of expressing a rich variety of 
nonlinear decision surfaces.This section discusses how to learn such multilayer networks using 
a gradient descent algorithm similar to that discussed in the previous section.  

 

Like the perceptron, the sigmoid unit first computes a linear combination of its inputs, then 
applies a threshold to the result. In the case of sigmoid unit, however, the threshold output is a 
continuous function of its input.The sigmoid function (x) is also called the logistic function. 
Interesting property:  

 

Output ranges between 0 and 1, increasing monotonically with its input.We can derive gradient 
decent rules to train  



 One sigmoid unit  

 Multilayer networks of sigmoid units  Backpropagation  

The Backpropagation (BP)Algorithm: 

The BP algorithm learns the weights for a multilayer network, given a network with a fixed set 
of units and interconnections. It employs a gradient descent to attempt to minimize the squared 
error between the network output values and the target values for these outputs.Because we are 
considering networks with multiple output units rather than single units as before, we begin by 
redefining E to sum the errors over all of the network output units 

E(w) = ½      (tkd – okd)2   (13) 

              d D  koutputs  

where outputs is the set of output units in the network, and tkd and okd are the target and output 
values associated with the kth output unit and training example d.  

The BP algorithm is presented in Figure 8. The algorithm applies to layered feedforward 
networks containing 2 layers of sigmoid units, with units at each layer connected to all units 
from the preceding layer. This is an incremental gradient descent version of Backpropagation. 
The notation is as follows:  

 xij denotes the input from node i to unit j, and wij denotes the corresponding weight.  

 n denotes the error term associated with unit n. It plays a role analogous to the quantity (t – o) 
in our earlier discussion of the delta training rule 

Initialize all weights to small random numbers. Until satisfied do 

1. Input the training example to the network and compute the network output. 
2. For each output unit k  
3. For each hidden unit h     

4. Update each network weight  

 
  

In the BP algorithm, step1 propagates the input forward through the network. And the steps 2, 3 
and 4 propagates the errors backward through the network.The main loop of BP repeatedly 
iterates over the training examples. For each training example, it applies the ANN to the 
example, calculates the error of the network output for this example, computes the gradient with 
respect to the error on the example, then updates all weights in the network. This gradient 



descent step is iterated until ANN performs acceptably well. A variety of termination conditions 
can be used to halt the procedure.  

One may choose to halt after a fixed number of iterations through the loop, or once the error on 
the training examples falls below some threshold, or once the error on a separate validation set of 
examples meets some criteria. 

Adding Momentum 

Because BP is a widely used algorithm, many variations have been developed. The most 
common is to alter the weight-update rule in Step 4 in the algorithm by making the weight 
update on the nth iteration depend partially on the update that occurred during the (n -1)th 
iteration, as follows 

                      + α  

Here wi,j(n) is the weight update performed during the n-th iteration through the main loop of 
the algorithm.  

- n-th iteration update depend on (n-1)th iteration 

- : constant between 0 and 1 is called the momentum. 

Role of momentum term: 

     - keep the ball rolling through small local minima in the error surface. 

     - Gradually increase the step size of the search in regions where the gradient is unchanging, 
thereby speeding convergence 

Expressive Capabilities of ANNs 

 Boolean functions: Every boolean function can be represented by network with two 
layers of units where the number of hidden units required grows exponentially.  

 Continuous functions: Every bounded continuous function can be approximated with 
arbitrarily small error, by network with two layers of units. 

 Arbitrary functions: Any function can be approximated to arbitrary accuracy by a 
network with three layers of units . 

Hidden layer representations 

 Hidden layer representations 

 This 8x3x8 network was trained to learn the identity function. 



 8 training examples are used. 

 After 5000 training iterations, the three hidden unit values encode the eight 
distinct inputs using the encoding shown on the right.  

 

 

 

Learning the 8x3x8 network 

Most of the interesting weight changes occurred during the first 2500 iterations. 

Figure 10.a  The plot shows the sum of squared errors for each of the eight output units as the 
number of iterations increases. The sum of square errors for each output decreases as the 
procedure proceeds, more quickly for some output units and less quickly for others. 



 

Fig-10.a 

Figure 10.b Learning the 8  3  8 network. The plot shows the evolving hidden layer 
representation for the input string “010000000”. The network passes through a number of 
different encodings before converging to the final encoding 

 
Fig 10.b 



Generalization, Overfitting and Stopping Criterion 

 Termination condition 

 Until the error E falls below some predetermined threshold 

 This is a poor strategy 

 Overfitting problem 

  Backpropagation is susceptible to overfitting the training examples at the cost of 
decreasing generalization accuracy over other unseen examples. 

 To see the danger of minimizing the error over the training data, consider how the 
error E varies with the number of weight iteration. 

 

 

 



    The 
generalization accuracy measured over the training examples first decreases, then increases, 
even as the error over training examples continues to decrease. This occurs because the weights 
are being tuned to fit idiosyncrasies of the training examples that are not representative of the 
general distribution of examples.  

Techniques to overcome overfitting problem 

Weight decay: Decrease each weight by some small factor during each iteration. The motivation 
for this approach is to keep weight values small. 

Cross-validation: a set of validation data in addition to the training data. The algorithm monitors 
the error w.r.t. this validation data while using the training set to drive the gradient descent 
search. 

How much weight-tuning iteration should the algorithm perform? It should use the number of 
iterations that produces the lowest error over the validation set. Two copies of the weights are 
kept: one copy for training and a separate copy of the best weights thus far measured by their 
error over the validation set. Once the trained weights reach a higher error over the validation set 
than the stored weights, training is terminated and the stored weights are returned. 

 

 

NEURAL NETWORK APPLICATION DEVELOPMENT 

The development process for an ANN application has eight steps.  



Step 1: (Data collection) The data to be used for the training and testing of the network are 
collected. Important considerations are that the particular problem is amenable to neural network 
solution and that adequate data exist and can be obtained.  

Step 2: (Training and testing data separation) Trainning data must be identified, and a plan must 
be made for testing the performance of the network. The available data are divided into training 
and testing data sets. For a moderately sized data set, 80% of the data are randomly selected for 
training, 10% for testing, and 10% secondary testing.  

Step 3: (Network architecture) A network architecture and a learning method are selected. 
Important considerations are the exact number of perceptrons and the number of layers.   

Step 4: (Parameter tuning and weight initialization) There are parameters for tuning the network 
to the desired learning performance level. Part of this step is initialization of the network weights 
and parameters, followed by modification of the parameters as training performance feedback is 
received. Often, the initial values are important in determining the effectiveness and length of 
training.  

Step 5: (Data transformation) Transforms the application data into the type and format required 
by the ANN.  

Step 6: (Training) Training is conducted iteratively by presenting input and desired or known 
output data to the ANN. The ANN computes the outputs and adjusts the weights until the 
computed outputs are within an acceptable tolerance of the known outputs for the input cases.  

Step 7: (Testing) Once the training has been completed, it is necessary to test the network. The 
testing examines the performance of the network using the derived weights by measuring the 
ability of the network to classify the testing data correctly. Black-box testing (comparing test 
results to historical results) is the primary approach for verifying that inputs produce the 
appropriate outputs.  

Step 8: (Implementation) Now a stable set of weights are obtained.  

Then the network can reproduce the desired output given inputs like those in the training set. The 
network is ready to use as a stand-alone system or as part of another software system where new 
input data will be presented to it and its output will be a recommended decision.  

 

BENEFITS AND LIMITATIONS OF NEURAL NETWORKS 

 Benefits of ANNs  



-Usefulness for pattern recognition, classification, generalization, abstraction and interpretation 
of incomplete and noisy inputs.  (e.g. handwriting recognition, image recognition, voice and 
speech recognition, weather forecasting).  

-Robustness. ANNs tend to be more robust than their conventional counterparts. They have the 
ability to cope with incomplete or fuzzy data. ANNs can be very tolerant of faults if properly 
implemented.  

-Fast processing speed.  Because they consist of a large number of massively interconnected 
processing units, all operating in parallel on the same problem, ANNs can potentially operate at 
considerable speed (when implemented on parallel processors).  

- Flexibility and ease of maintenance. ANNs are very flexible in adapting their behavior to new 
and changing environments. They are also easier to maintain, with some having the ability to 
learn from experience to improve their own performance. 

 

 

 

 

 

 

 Limitations of ANNs  

 ANNs do not produce an explicit model even though new cases can be fed into it and new 
results obtained.  

  ANNs lack explanation capabilities. Justifications for results is difficult to obtain 
because the connection weights usually do not have obvious interpretations.  

 Providing some human characteristics to problem solving that are difficult to simulate 
using the logical, analytical techniques of expert systems and standard software 
technologies. (e.g. financial applications).  

SOME ANN APPLICATIONS 

 Tax form processing to identify tax fraud  
 Enhancing auditing by finding irregularities  
 Bankruptcy prediction 
 Customer credit scoring 



 Loan approvals 
 Credit card approval and fraud detection 
 Financial prediction 
 Energy forecasting 
 Computer access security (intrusion detection and classification of attacks) 
 Fraud detection in mobile telecommunication networks 

 

 

 

  

 

 
 

Recent improvements 
Computational devices have been created in CMOS, for both biophysical simulation and 
neuromorphic computing. More recent efforts show promise for creating nano-devices for very 
large scale principal components analyses and convolution. If successful, these efforts could 
usher in a new era of neural computing that is a step beyond digital computing, because it 
depends on learning rather than programming and because it is fundamentally analog rather than 
digital even though the first instantiations may in fact be with CMOS digital devices. 
Between 2009 and 2012, the recurrent neural networks and deep feedforward neural networks 
developed in the research group of Jürgen Schmidhuber at the Swiss AI Lab IDSIA have won 
eight international competitions in pattern recognition and machine learning. For example, multi-
dimensional long short term memory (LSTM) won three competitions in connected handwriting 
recognition at the 2009 International Conference on Document Analysis and Recognition 
(ICDAR), without any prior knowledge about the three different languages to be learned. 
Variants of the back-propagation algorithm as well as unsupervised methods by Geoff Hinton 
and colleagues at the University of Toront can be used to train deep, highly nonlinear neural 
architectures similar to the 1980 Neocognitron by Kunihiko Fukushima,[17] and the "standard 
architecture of vision",[18] inspired by the simple and complex cells identified by David H. Hubel 
and Torsten Wiesel in the primary visual cortex. 
Deep learning feedforward networks, such as convolutional neural networks, alternate 
convolutional layers and max-pooling layers, topped by several pure classification layers. Fast 
GPU-based implementations of this approach have won several pattern recognition contests, 
including the IJCNN 2011 Traffic Sign Recognition Competition and the ISBI 2012 
Segmentation of Neuronal Structures in Electron Microscopy Stacks challenge. Such neural 



networks also were the first artificial pattern recognizers to achieve human-competitive or even 
superhuman performance on benchmarks such as traffic sign recognition (IJCNN 2012), or the 
MNIST handwritten digits problem of Yann LeCun and colleagues at NYU. 
Successes in pattern recognition contests since 2009 
Between 2009 and 2012, the recurrent neural networks and deep feedforward neural networks 
developed in the research group of Jürgen Schmidhuber at the Swiss AI Lab IDSIA have won 
eight international competitions in pattern recognition and machine learning. For example, the 
bi-directional and multi-dimensional long short term memory (LSTM) of Alex Graves et al. won 
three competitions in connected handwriting recognition at the 2009 International Conference on 
Document Analysis and Recognition (ICDAR), without any prior knowledge about the three 
different languages to be learned. Fast GPU-based implementations of this approach by Dan 
Ciresan and colleagues at IDSIA have won several pattern recognition contests, including the 
IJCNN 2011 Traffic Sign Recognition Competition, the ISBI 2012 Segmentation of Neuronal 
Structures in Electron Microscopy Stacks challenge, and others. Their neural networks also were 
the first artificial pattern recognizers to achieve human-competitive or even superhuman 
performance on important benchmarks such as traffic sign recognition (IJCNN 2012), or the 
MNIST handwritten digits problem of Yann LeCun at NYU. Deep, highly nonlinear neural 
architectures similar to the 1980 neocognitron by Kunihiko Fukushima and the "standard 
architecture of vision" can also be pre-trained by unsupervised methods of Geoff Hinton's lab at 
University of Toronto. A team from this lab won a 2012 contest sponsored by Merck to design 
software to help find molecules that might lead to new drugs. 
Models 
Neural network models in artificial intelligence are usually referred to as artificial neural 
networks (ANNs); these are essentially simple mathematical models defining a function 

or a distribution over or both and , but sometimes models are also intimately 
associated with a particular learning algorithm or learning rule. A common use of the phrase 
ANN model really means the definition of a class of such functions (where members of the class 
are obtained by varying parameters, connection weights, or specifics of the architecture such as 
the number of neurons or their connectivity). 
Network function 
The word network in the term 'artificial neural network' refers to the inter–connections between 
the neurons in the different layers of each system. An example system has three layers. The first 
layer has input neurons which send data via synapses to the second layer of neurons, and then via 
more synapses to the third layer of output neurons. More complex systems will have more layers 
of neurons with some having increased layers of input neurons and output neurons. The synapses 
store parameters called "weights" that manipulate the data in the calculations. 
An ANN is typically defined by three types of parameters: 

1. The interconnection pattern between the different layers of neurons 
2. The learning process for updating the weights of the interconnections 
3. The activation function that converts a neuron's weighted input to its output activation. 



Mathematically, a neuron's network function is defined as a composition of other functions 
, which can further be defined as a composition of other functions. This can be conveniently 

represented as a network structure, with arrows depicting the dependencies between variables. A 

widely used type of composition is the nonlinear weighted sum, where , 
where (commonly referred to as the activation function) is some predefined function, such as 
the hyperbolic tangent. It will be convenient for the following to refer to a collection of functions 

as simply a vector . 

 
ANN dependency graph 
This figure depicts such a decomposition of , with dependencies between variables indicated by 
arrows. These can be interpreted in two ways. 
The first view is the functional view: the input is transformed into a 3-dimensional vector , 
which is then transformed into a 2-dimensional vector , which is finally transformed into . This 
view is most commonly encountered in the context of optimization. 
The second view is the probabilistic view: the random variable depends upon the random 
variable , which depends upon , which depends upon the random variable . 
This view is most commonly encountered in the context of graphical models. 
The two views are largely equivalent. In either case, for this particular network architecture, the 
components of individual layers are independent of each other (e.g., the components of are 
independent of each other given their input ). This naturally enables a degree of parallelism in 
the implementation. 

 
Two separate depictions of the recurrent ANN dependency graph 
Networks such as the previous one are commonly called feedforward, because their graph is a 
directed acyclic graph. Networks with cycles are commonly called recurrent. Such networks are 
commonly depicted in the manner shown at the top of the figure, where is shown as being 
dependent upon itself. However, an implied temporal dependence is not shown. 
Learning 
What has attracted the most interest in neural networks is the possibility of learning. Given a 
specific task to solve, and a class of functions , learning means using a set of observations to 
find which solves the task in some optimal sense. 



This entails defining a cost function such that, for the optimal solution , 
– i.e., no solution has a cost less than the cost of the optimal solution (see 

Mathematical optimization). 
The cost function is an important concept in learning, as it is a measure of how far away a 
particular solution is from an optimal solution to the problem to be solved. Learning algorithms 
search through the solution space to find a function that has the smallest possible cost. 
For applications where the solution is dependent on some data, the cost must necessarily be a 
function of the observations, otherwise we would not be modelling anything related to the data. It 
is frequently defined as a statistic to which only approximations can be made. As a simple 
example, consider the problem of finding the model , which minimizes , for 
data pairs drawn from some distribution . In practical situations we would only have 

samples from and thus, for the above example, we would only minimize 

. Thus, the cost is minimized over a sample of the data rather than the 
entire data set. 
When some form of online machine learning must be used, where the cost is partially 
minimized as each new example is seen. While online machine learning is often used when is 
fixed, it is most useful in the case where the distribution changes slowly over time. In neural 
network methods, some form of online machine learning is frequently used for finite datasets. 
See also: Mathematical optimization, Estimation theory and Machine learning 
Choosing a cost function 
While it is possible to define some arbitrary ad hoc cost function, frequently a particular cost will 
be used, either because it has desirable properties (such as convexity) or because it arises 
naturally from a particular formulation of the problem (e.g., in a probabilistic formulation the 
posterior probability of the model can be used as an inverse cost). Ultimately, the cost function 
will depend on the desired task. An overview of the three main categories of learning tasks is 
provided below: 
Learning paradigms 
There are three major learning paradigms, each corresponding to a particular abstract learning 
task. These are supervised learning, unsupervised learning and reinforcement learning. 
Supervised learning 
In supervised learning, we are given a set of example pairs and the aim is to find a 
function in the allowed class of functions that matches the examples. In other words, we 
wish to infer the mapping implied by the data; the cost function is related to the mismatch 
between our mapping and the data and it implicitly contains prior knowledge about the problem 
domain. 
A commonly used cost is the mean-squared error, which tries to minimize the average squared 
error between the network's output, f(x), and the target value y over all the example pairs. When 
one tries to minimize this cost using gradient descent for the class of neural networks called 
multilayer perceptrons, one obtains the common and well-known backpropagation algorithm for 
training neural networks. 



Tasks that fall within the paradigm of supervised learning are pattern recognition (also known as 
classification) and regression (also known as function approximation). The supervised learning 
paradigm is also applicable to sequential data (e.g., for speech and gesture recognition). This can 
be thought of as learning with a "teacher," in the form of a function that provides continuous 
feedback on the quality of solutions obtained thus far. 
Unsupervised learning 
In unsupervised learning, some data is given and the cost function to be minimized, that can be 
any function of the data and the network's output, . 
The cost function is dependent on the task (what we are trying to model) and our a priori 
assumptions (the implicit properties of our model, its parameters and the observed variables). 
As a trivial example, consider the model where is a constant and the cost 

. Minimizing this cost will give us a value of that is equal to the mean of the 
data. The cost function can be much more complicated. Its form depends on the application: for 
example, in compression it could be related to the mutual information between and , 
whereas in statistical modeling, it could be related to the posterior probability of the model given 
the data. (Note that in both of those examples those quantities would be maximized rather than 
minimized). 
Tasks that fall within the paradigm of unsupervised learning are in general estimation problems; 
the applications include clustering, the estimation of statistical distributions, compression and 
filtering. 
Reinforcement learning 
In reinforcement learning, data are usually not given, but generated by an agent's interactions 
with the environment. At each point in time , the agent performs an action and the 
environment generates an observation and an instantaneous cost , according to some (usually 
unknown) dynamics. The aim is to discover a policy for selecting actions that minimizes some 
measure of a long-term cost; i.e., the expected cumulative cost. The environment's dynamics and 
the long-term cost for each policy are usually unknown, but can be estimated. 
More formally the environment is modelled as a Markov decision process (MDP) with states 

and actions with the following probability distributions: the instantaneous 
cost distribution , the observation distribution and the transition , 
while a policy is defined as conditional distribution over actions given the observations. Taken 
together, the two then define a Markov chain (MC). The aim is to discover the policy that 
minimizes the cost; i.e., the MC for which the cost is minimal. 
ANNs are frequently used in reinforcement learning as part of the overall algorithm. Dynamic 
programming has been coupled with ANNs (Neuro dynamic programming) by Bertsekas and 
Tsitsiklis and applied to multi-dimensional nonlinear problems such as those involved in vehicle 
routing, natural resources management or medicine because of the ability of ANNs to mitigate 
losses of accuracy even when reducing the discretization grid density for numerically 
approximating the solution of the original control problems. 



Tasks that fall within the paradigm of reinforcement learning are control problems, games and 
other sequential decision making tasks. 
See also: dynamic programming and stochastic control 
Learning algorithms 
Training a neural network model essentially means selecting one model from the set of allowed 
models (or, in a Bayesian framework, determining a distribution over the set of allowed models) 
that minimizes the cost criterion. There are numerous algorithms available for training neural 
network models; most of them can be viewed as a straightforward application of optimization 
theory and statistical estimation. 
Most of the algorithms used in training artificial neural networks employ some form of gradient 
descent, using backpropagation to compute the actual gradients. This is done by simply taking 
the derivative of the cost function with respect to the network parameters and then changing 
those parameters in a gradient-related direction. 
Evolutionary methods, gene expression programming, simulated annealing, expectation-
maximization, non-parametric methods and particle swarm optimization are some commonly 
used methods for training neural networks. 
Employing artificial neural networks 
Perhaps the greatest advantage of ANNs is their ability to be used as an arbitrary function 
approximation mechanism that 'learns' from observed data. However, using them is not so 
straightforward, and a relatively good understanding of the underlying theory is essential. 

 Choice of model: This will depend on the data representation and the application. Overly 
complex models tend to lead to problems with learning. 

 Learning algorithm: There are numerous trade-offs between learning algorithms. Almost 
any algorithm will work well with the correct hyperparameters for training on a 
particular fixed data set. However, selecting and tuning an algorithm for training on 
unseen data requires a significant amount of experimentation. 

 Robustness: If the model, cost function and learning algorithm are selected appropriately 
the resulting ANN can be extremely robust. 

With the correct implementation, ANNs can be used naturally in online learning and large data 
set applications. Their simple implementation and the existence of mostly local dependencies 
exhibited in the structure allows for fast, parallel implementations in hardware. 
Applications 
The utility of artificial neural network models lies in the fact that they can be used to infer a 
function from observations. This is particularly useful in applications where the complexity of 
the data or task makes the design of such a function by hand impractical. 
Real-life applications 
The tasks artificial neural networks are applied to tend to fall within the following broad 
categories: 

 Function approximation, or regression analysis, including time series prediction, fitness 
approximation and modeling. 



 Classification, including pattern and sequence recognition, novelty detection and 
sequential decision making. 

 Data processing, including filtering, clustering, blind source separation and compression. 
 Robotics, including directing manipulators, prosthesis. 
 Control, including Computer numerical control. 

Application areas include the system identification and control (vehicle control, process control, 
natural resources management), quantum chemistry, game-playing and decision making 
(backgammon, chess, poker), pattern recognition (radar systems, face identification, object 
recognition and more), sequence recognition (gesture, speech, handwritten text recognition), 
medical diagnosis, financial applications (e.g. automated trading systems), data mining (or 
knowledge discovery in databases, "KDD"), visualization and e-mail spam filtering. 
Artificial neural networks have also been used to diagnose several cancers. An ANN based 
hybrid lung cancer detection system named HLND improves the accuracy of diagnosis and the 
speed of lung cancer radiology. These networks have also been used to diagnose prostate cancer. 
The diagnoses can be used to make specific models taken from a large group of patients 
compared to information of one given patient. The models do not depend on assumptions about 
correlations of different variables. Colorectal cancer has also been predicted using the neural 
networks. Neural networks could predict the outcome for a patient with colorectal cancer with 
more accuracy than the current clinical methods. After training, the networks could predict 
multiple patient outcomes from unrelated institutions. 
Neural networks and neuroscience 
Theoretical and computational neuroscience is the field concerned with the theoretical analysis 
and the computational modeling of biological neural systems. Since neural systems are 
intimately related to cognitive processes and behavior, the field is closely related to cognitive 
and behavioral modeling. 
The aim of the field is to create models of biological neural systems in order to understand how 
biological systems work. To gain this understanding, neuroscientists strive to make a link 
between observed biological processes (data), biologically plausible mechanisms for neural 
processing and learning (biological neural network models) and theory (statistical learning 
theory and information theory). 
Types of models 
Many models are used in the field, defined at different levels of abstraction and modeling 
different aspects of neural systems. They range from models of the short-term behavior of 
individual neurons, models of how the dynamics of neural circuitry arise from interactions 
between individual neurons and finally to models of how behavior can arise from abstract neural 
modules that represent complete subsystems. These include models of the long-term, and short-
term plasticity, of neural systems and their relations to learning and memory from the individual 
neuron to the system level. 
Neural network software 
Main article: Neural network software 



Neural network software is used to simulate, research, develop and apply artificial neural 
networks, biological neural networks and, in some cases, a wider array of adaptive systems. 
Types of artificial neural networks 
Main article: Types of artificial neural networks 
Artificial neural network types vary from those with only one or two layers of single direction 
logic, to complicated multi–input many directional feedback loops and layers. On the whole, 
these systems use algorithms in their programming to determine control and organization of their 
functions. Most systems use "weights" to change the parameters of the throughput and the 
varying connections to the neurons. Artificial neural networks can be autonomous and learn by 
input from outside "teachers" or even self-teaching from written-in rules. 
Theoretical properties 
Computational power 
The multi-layer perceptron (MLP) is a universal function approximator, as proven by the 
universal approximation theorem. However, the proof is not constructive regarding the number 
of neurons required or the settings of the weights. 
Work by Hava Siegelmann and Eduardo D. Sontag has provided a proof that a specific recurrent 
architecture with rational valued weights (as opposed to full precision real number-valued 
weights) has the full power of a Universal Turing Machine using a finite number of neurons and 
standard linear connections. They have further shown that the use of irrational values for weights 
results in a machine with super-Turing power. 
Capacity 
Artificial neural network models have a property called 'capacity', which roughly corresponds to 
their ability to model any given function. It is related to the amount of information that can be 
stored in the network and to the notion of complexity. 
Convergence 
Nothing can be said in general about convergence since it depends on a number of factors. 
Firstly, there may exist many local minima. This depends on the cost function and the model. 
Secondly, the optimization method used might not be guaranteed to converge when far away 
from a local minimum. Thirdly, for a very large amount of data or parameters, some methods 
become impractical. In general, it has been found that theoretical guarantees regarding 
convergence are an unreliable guide to practical application. 
Generalization and statistics 
In applications where the goal is to create a system that generalizes well in unseen examples, the 
problem of over-training has emerged. This arises in convoluted or over-specified systems when 
the capacity of the network significantly exceeds the needed free parameters. There are two 
schools of thought for avoiding this problem: The first is to use cross-validation and similar 
techniques to check for the presence of overtraining and optimally select hyperparameters such 
as to minimize the generalization error. The second is to use some form of regularization. This is 
a concept that emerges naturally in a probabilistic (Bayesian) framework, where the 
regularization can be performed by selecting a larger prior probability over simpler models; but 



also in statistical learning theory, where the goal is to minimize over two quantities: the 
'empirical risk' and the 'structural risk', which roughly corresponds to the error over the training 
set and the predicted error in unseen data due to over-fitting. 

 
Confidence analysis of a neural network 
Supervised neural networks that use an MSE cost function can use formal statistical methods to 
determine the confidence of the trained model. The MSE on a validation set can be used as an 
estimate for variance. This value can then be used to calculate the confidence interval of the 
output of the network, assuming a normal distribution. A confidence analysis made this way is 
statistically valid as long as the output probability distribution stays the same and the network is 
not modified. 
By assigning a softmax activation function, a generalization of the logistic function, on the 
output layer of the neural network (or a softmax component in a component-based neural 
network) for categorical target variables, the outputs can be interpreted as posterior probabilities. 
This is very useful in classification as it gives a certainty measure on classifications. 
The softmax activation function is: 

 
 
Controversies 
Training issues 
A common criticism of neural networks, particularly in robotics, is that they require a large 
diversity of training for real-world operation. This is not surprising, since any learning machine 
needs sufficient representative examples in order to capture the underlying structure that allows 
it to generalize to new cases. Dean Pomerleau, in his research presented in the paper 
"Knowledge-based Training of Artificial Neural Networks for Autonomous Robot Driving," uses 
a neural network to train a robotic vehicle to drive on multiple types of roads (single lane, multi-
lane, dirt, etc.). A large amount of his research is devoted to (1) extrapolating multiple training 
scenarios from a single training experience, and (2) preserving past training diversity so that the 
system does not become over-trained (if, for example, it is presented with a series of right turns – 
it should not learn to always turn right). These issues are common in neural networks that must 
decide from amongst a wide variety of responses, but can be dealt with in several ways, for 
example by randomly shuffling the training examples, by using a numerical optimization 



algorithm that does not take too large steps when changing the network connections following an 
example, or by grouping examples in so-called mini-batches. 
Hardware issues 
To implement large and effective software neural networks, considerable processing and storage 
resources need to be committed. While the brain has hardware tailored to the task of processing 
signals through a graph of neurons, simulating even a most simplified form on Von Neumann 
technology may compel a neural network designer to fill many millions of database rows for its 
connections – which can consume vast amounts of computer memory and hard disk space. 
Furthermore, the designer of neural network systems will often need to simulate the transmission 
of signals through many of these connections and their associated neurons – which must often be 
matched with incredible amounts of CPU processing power and time. While neural networks 
often yield effective programs, they too often do so at the cost of efficiency (they tend to consume 
considerable amounts of time and money). 
Computing power continues to grow roughly according to Moore's Law, which may provide 
sufficient resources to accomplish new tasks. Neuromorphic engineering addresses the hardware 
difficulty directly, by constructing non-Von-Neumann chips with circuits designed to implement 
neural nets from the ground up. 
Practical counterexamples to criticisms 
Arguments against Dewdney's position are that neural nets have been successfully used to solve 
many complex and diverse tasks, ranging from autonomously flying aircraft to detecting credit 
card fraud . 
Technology writer Roger Bridgman commented on Dewdney's statements about neural nets: 
Neural networks, for instance, are in the dock not only because they have been hyped to high 
heaven, (what hasn't?) but also because you could create a successful net without understanding 
how it worked: the bunch of numbers that captures its behaviour would in all probability be "an 
opaque, unreadable table...valueless as a scientific resource". 
In spite of his emphatic declaration that science is not technology, Dewdney seems here to 
pillory neural nets as bad science when most of those devising them are just trying to be good 
engineers. An unreadable table that a useful machine could read would still be well worth 
having. 
Although it is true that analyzing what has been learned by an artificial neural network is 
difficult, it is much easier to do so than to analyze what has been learned by a biological neural 
network. Furthermore, researchers involved in exploring learning algorithms for neural networks 
are gradually uncovering generic principles which allow a learning machine to be successful. For 
example, Bengio and LeCun (2007) wrote an article regarding local vs non-local learning, as 
well as shallow vs deep architecture. 
Hybrid approaches 
Some other criticisms came from believers of hybrid models (combining neural networks and 
symbolic approaches). They advocate intermix of these two approaches and believe that hybrid 
models can better capture the mechanisms of the human mind. 



 
 
 
Gallery 

  
A single-layer feedforward artificial neural network. Arrows originating from are 
omitted for clarity. There are p inputs to this network and q outputs. In this system, the 
value of the qth output, would be calculated as  

  
A two-layer feedforward artificial neural network. 

 
 
Bee Algorithm (BA) 
The Bees Algorithm [9] or BA is a bio-inspired metaheuristic behavior of honey bees and how 
they searching for plant to obtain the necessary pollen for honey production. 
A colony of bees search in a large territory looking for new sources of food and begins to thrive 
on discovering new food sources. When these sources have much pollen are visited by large 
numbers of bees and when the pollen decreases the number of bees collected from these sources 
decreases too. 
When season for recollecting pollen start, the colony sent so many bees, which are called scouts 
bees to reconnoiter randomly the territory to inform at the colony where are the best food 
sources. Once the harvesting season starts the colony maintains a certain percentage of their 
scout bees in order to detect new and better sources of food. When scout bees have returned to 
the colony and found a better food source than the currently is using the colony, makes the 
Dance by means of which transmits the exact position of the source food and then the colony 
began to send more bees to the food source. 
An application of the Bee Swarm Optimization BSO to the Knapsack Problem is given below. 
Require: population size (ps), neighborhood (n). 
Initialize population with random solutions. 
Evaluate fitness of the population.  
While stopping criterion not met do  



select the sites for neighborhood search  
recruit bees for n selected sites and evaluate their fitness  
select the fittest bee from each site  
assign remaining bees to search randomly and evaluate their fitness  
end while 
Particle Swarm Optimization (PSO) 
The Particle Swarm Optimization [4][7] or PSO is a Bio-inspired metaheuristic in flocks of birds 
or schools of fish. It was developed by J. Kennedy and R. Eberthart based on a concept called 
social metaphor, this metaheuristics simulates a society where all individuals contribute their 
knowledge to obtain a better solution, there are three factors that influence for change in status or 
behavior of an individual: 
• The Knowledge of the environment or adaptation which speaks of the importance given to the 
experience of the individual. 
• His Experience or local memory is the importance given to the best result found by the 
individual. 
• The Experience of their neighbors or Global memory referred to how important it is the best 
result I have obtained their neighbors or other individuals. 
In this metaheuristic each individual is called particle and moves through a multidimensional 
space that represents the social space or search space depends on the dimension of space which 
depends on the variables used to represent the problem.  
For the update of each particle using something called velocity vector which tells them how fast 
it will move the particle in each of the dimensions, the method for updating the speed of PSO is 
given by equation (10), and it is updating by the equation (11). 
where: 
• is the velocity of the i-th particle 
• is adjustment factor to the environment. 
• is the memory coefficient in the neighborhood. 
• is the coefficient memory. 
• is the position of the i-th particle. 
• is the best position found so far by all particles. 
• is the best position found by the i-th particle 
The Algorithm of the PSO applied to the Knapsack Problem is given below. 
Require: adaptation to environment coefficient, local memory coefficient, neighborhood memory 
coefficient, swarm size 
Start the swarm particles. 
Start the velocity vector for each particle in the swarm. 
While stopping criterion not met do 
for i=1 to n do 
if the i-particle's fitness is better than the local best then replace the local best with the iparticle 



if the i-particle's fitness is better than the global best then replace the global best with the 
iparticle. 
Update the velocity vector 
Update the particle's position with the velocity vector 
end for 
end while 
Bee Swarm Optimization (BSO) 
The Bee Swarm Optimization or BSO is a hybrid metaheuristic population between the PSO and 
the BA. The main idea of BSO is based on taking the best of each metaheuristics to obtain better 
results than they would obtain. 
The BSO use the velocity vector and the way to updating it, equation (10), and applies the social 
metaphor to get better results from the PSO and use the exploration and a search radius from the 
BA to indicate which is where they look for a better result. 
The first thing that the BSO do is update the position of the particles through the velocity vector 
and then select a specified number of particles, in this case it is proposed to select the best as 
being the new food supply that the scout bees discovered, 
and conducted a search of the area enclosed by the radius search and if there are a better solution 
in this area than the same particle around which are looking for then the particle is replaced with 
the position of the best solution found in the area. 
For this metaheuristic to work properly you need a way to determine what the next and earlier 
particle position, if we cannot determine this then it is impossible to apply this meta-heuristic 
because you would not know what the next and previous particle to search in that area. 
We defined the next and before elements like binary operations, adding and subtracting one 
number to the solution vector. For example if we have a Knapsack Problem with 5 elements the 
solution vector will have 5 spaces and in each space can be 0 or 1, we can see the example of the 
next and before solution vector in the Figure 1. 
 
 
Fig. 1. Example of the previous and next solution vector 
The algorithm of the BSO applied to the Knapsack Problem implemented in the present paper is 
the following. 
Require: adaptation to environment coefficient, local memory coefficient, neighborhood memory 
coefficient, swarm size, scout bees, search radio 
Start the swarm particles. 
Start the velocity vector for each. 
While stopping criterion not met do 
for i=1 to n do 
if the i-particle's fitness is better than the local best then replace the local best with the iparticle 
if the i-particle's fitness is better than the global best then replace the global best with the 
iparticle. 



Update the velocity vector 
Update the particle's position with the velocity vector 
Choose the best particles for all best particle 
Search if there are some better particle in the search radio and if exist it replace the particle 
with the best particle in the search radio 
end for all 
end for 
end while 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
GENETIC ALGORITHM 
 
BASIC CONCEPT: 
 

 
GA encodes the decision variables of a search problem into finite-length strings of 

alphabets of certain cardinality. The strings which are candidate solutions to the search problem 
are referred to as chromosomes, the alphabets are referred to as genes and the values of genes are 
called alleles. For example, in a problem such as the traveling salesman problem, a chromosome 
represents a route, and a gene may represent a city. In contrast to traditional optimization 
techniques, GAs work with coding of parameters, rather than the parameters themselves. To 
evolve good solutions and to implement natural selection, we need a measure for distinguishing 
good solutions from bad solutions. The measure could be an objective function that is a 
mathematical model or a computer simulation, or it can be a subjective function where humans 
choose better solutions over worse ones. In essence, the fitness measure must determine a 
candidate solution’s relative fitness, which will subsequently be used by the GA to guide the 
evolution of good solutions. Another important concept of GAs is the notion of population. 
Unlike traditional search methods, genetic algorithms rely on a population of candidate solutions. 



The population size, which is usually a user-specified parameter, is one of the important factors 
affecting the scalability and performance of genetic algorithms. For example, small population 
sizes might lead to premature convergence and yield substandard solutions. On the other hand, 
large population sizes lead to unnecessary expenditure of valuable computational time. Once the 
problem is encoded in a chromosomal manner and a fitness measure for discriminating good 
solutions from bad ones has been chosen, we can start to evolve solutions to the search problem 
using the following steps: 
1. Initialization: The initial population of candidate solutions is usually generated randomly 
across the search space. However, domain-specific knowledge or other information can be easily 
incorporated. 
2. Evaluation: Once the population is initialized or an offspring population is created, the fitness 
values of the candidate solutions are evaluated. 
3. Selection: Selection allocates more copies of those solutions with higher fitness values and 
thus imposes the survival-of-the-fittest mechanism on the candidate solutions. The main idea of 
selection is to prefer better solutions to worse ones, and many selection procedures have been 
proposed to accomplish this idea, including roulette-wheel selection, stochastic universal 
selection, ranking selection and tournament selection, some of which are described in the next 
section. 
4. Recombination: Recombination combines parts of two or more parental solutions to create 
new, possibly better solutions (i.e. offspring). There are many ways of accomplishing this (some 
of which are discussed in the next section), and competent performance depends on a properly 
designed recombination mechanism. The offspring under recombination will not be identical to 
any particular parent and will instead combine parental traits in a novel manner  
5. Mutation: While recombination operates on two or more parental chromosomes, mutation 
locally but randomly modifies a solution. Again, there are many variations of mutation, but it 
usually involves one or more changes being made to an individual’s trait or traits. In other words, 
mutation performs a random walk in the vicinity of a candidate solution. 
6. Replacement. The offspring population created by selection, recombination, and mutation 
replaces the original parental population. Many replacement techniques such as elitist 
replacement, generation-wise replacement and steady-state replacement methods are used in 
GAs. 
7. Repeat steps 2–6 until a terminating condition is met. Goldberg has likened GAs to 
mechanistic versions of certain modes of human innovation and has shown that these operators 
when analyzed individually are ineffective, but when combined together they can work well.  
 
ENCODING: 
As for any search and learning method, the way in which candidate solutions are encoded is a 
central, if not the central, factor in the success of a genetic algorithm. Most GA applications use 
fixed−length, fixed−order bit strings to encode candidate solutions. However, in recent years, 
there have been many experiments with other kinds of encodings,Common approaches used are: 

Binary Encoding: Every chromosome is a string of 0 or 1.Suppose we have a knapsack 
of capacity C and N items, then we can encode this problem as follows Chromosome, in this case 
is a string of 0s and 1s with N bits Represent item i of problem with bit in the chromosome 

 bit is 1 iff item has been selected, 0 otherwise. The set of all such chromosomes ( ) is 
the solution space of the problem. 
 



Chromosome 1: 1 0 1 1 0 0 1 0 1 1 0 0 1 0 1 0 1 1 1 0 0 1 0 1 
Chromosome 2: 1 1 1 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 1 
 
The example shown above has 24 items (and therefore 24 bits) with item1 selected in both 
chromosome 1 and 2 whereas item2 is selected in chromosome 2 but not in chromosome 1. 

Permutation Encoding (Travelling Salesman Problem): Every chromosome is a string 
of numbers that represent position in a  sequence.Problem description: There are cities and given 
distances between them. Travelling salesman has to visit all of them, but he doesn't want to 
travel more than necessary. Find a sequence of cities with a minimal travelled distance. 
 
Chromosome A: 1 5 3 2 6 4 7 9 8 
Chromosome B: 8 5 6 7 2 3 1 4 9 
 
Encoding: Here, encoded chromosomes describe the order of cities the salesman visits. For 
example, in chromosome A, the salesman visits city-1 followed by city-5 followed by city-3 and 
so on. 

Tree Encoding : (Genetic Programming) In tree encoding, every chromosome is a tree of 
some objects, such as functions or commands in programming language. Tree encoding is useful 
for evolving programs or any other structures that can be encoded in trees. 

 
Value Encoding: Every chromosome is a sequence of some values (real numbers, characters 

or objects).Direct value encoding can be used in problems, where some complicated values, such 
as real numbers, are used. Use of binary encoding for this type of problems would be very 
difficult. In value encoding, every chromosome is a string of some values. Values can be 
anything connected to problem, form numbers, real numbers or chars to some complicated 
objects. 

Chromosome A 1.2324 5.3243 0.4556 2.3293 2.4545 
Chromosome B ABDJEIFJDHDIERJFDLDFLFEGT 
Chromosome C (back), (back), (right), (forward), (left) 
 

Example of Problem: Finding weights for neural network 
The problem: There is some neural network with given architecture. Find weights for inputs 
of neurons to train the network for wanted output. 
Encoding: Real values in chromosomes represent corresponding weights for inputs.  



FITNESS FUNCTION: 
A fitness function is a particular type of objective function that is used to summaries, as a 

single figure of merit, how close a given design solution is to achieving the set aims. In 
particular, in the fields of genetic programming and genetic algorithms, each design solution is 
represented as a string of numbers (referred to as a chromosome). After each round of testing, or 
simulation, the idea is to delete the 'n' worst design solutions, and to breed 'n' new ones from the 
best design solutions. Each design solution, therefore, needs to be awarded a figure of merit, to 
indicate how close it came to meeting the overall specification, and this is generated by applying 
the fitness function to the test, or simulation, results obtained from that solution. The reason that 
genetic algorithms cannot be considered to be a lazy way of performing design work is precisely 
because of the effort involved in designing a workable fitness function. Even though it is no 
longer the human designer, but the computer, that comes up with the final design, it is the human 
designer who has to design the fitness function. If this is designed badly, the algorithm will either 
converge on an inappropriate solution, or will have difficulty converging at all. Moreover, the 
fitness function must not only correlate closely with the designer's goal, it must also be computed 
quickly. Speed of execution is very important, as a typical genetic algorithm must be iterated 
many times in order to produce a usable result for a non-trivial problem. Fitness approximation 
may be appropriate, especially in the following cases: 

 Fitness computation time of a single solution is extremely high 
 Precise model for fitness computation is missing 
 The fitness function is uncertain or noisy. 

Two main classes of fitness functions exist: one where the fitness function does not change, as in 
optimizing a fixed function or testing with a fixed set of test cases; and one where the fitness 
function is mutable, as in niche differentiation or co-evolving the set of test cases. Another way 
of looking at fitness functions is in terms of a fitness landscape, which shows the fitness for each 
possible chromosome. Definition of the fitness function is not straightforward in many cases and 
often is performed iteratively if the fittest solutions produced by GA are not what is desired. In 
some cases, it is very hard or impossible to come up even with a guess of what fitness function 
definition might be. Interactive genetic algorithms address this difficulty by outsourcing 
evaluation to external agents (normally humans).GAs are naturally suitable for solving 
maximization problems. Maximization problems are usually transformed into maximization 
problem by suitable transformation. In general, a fitness function F(i) is first derived from the 
objective function and used in successive genetic operations. Fitness in biological sense is a 
quality value which is a measure of the reproductive efficiency of chromosomes. In genetic 
algorithm, fitness is used to allocate reproductive traits to the individuals in the population and 
thus act as some measure of goodness to be maximized. This means that individuals with higher 
fitness value will have higher probability of being selected as candidates for further examination. 
Certain genetic operators require that the fitness function be non-negative, although certain 
operators need not have this requirement. For maximization problems, the fitness function can be 
considered to be the same as the objective function or F(i)=O(i). For minimization problems, to 
generate non-negative values in all the cases and to reflect the relative fitness of individual 
string, it is necessary to map the underlying natural objective function to fitness function form. A 
number of such transformations is possible. Two commonly adopted fitness mappings are 
presented below.  



                           F(x)  

This transformation does not alter the location of the minimum, but converts a minimization 
problem to an equivalent maximization problem. An alternate function to transform the objective 
function to get the fitness value  as below. 

 

where, O(i) is the objective function value of i th individual, P is the population size and V is a 
large value to ensure non-negative fitness values. The value of V adopted in this work is the 
maximum value of the second term of equation so that the fitness value corresponding to 
maximum value of the objective function is zero. This transformation also does not alter the 
location of the solution, but converts a minimization problem to an equivalent maximization 
problem. The fitness function value of a string is known as the string fitness. 

 
SELECTION: 
Chromosomes are selected from the population to be parents to crossover. The problem is how to 
select these chromosomes. According to Darwin's evolution theory the best ones should survive 
and create new offspring.  In principle, a population of individuals selected from the search space 
, often in a random manner, serves as candidate solutions to optimize the problem.The 
individuals in this population are evaluated through ( "fitness" ) adaptation function. A selection 
mechanism is then used to select individuals to be used as parents to those of the next generation. 
These individuals will then be crossed and mutated to form the new offspring. The next 
generation is finally formed by an alternative mechanism between parents and their offspring [4]. 
This process is repeated until a certain satisfaction condition.  There are many methods how to 
select the best chromosomes, for example roulette wheel selection, Boltzman selection, 
tournament selection, rank selection, steady state selection and some others. 
Roulette Wheel Selection : 
Parents are selected according to their fitness. The better the chromosomes are, the more chances 
to be selected they have. Imagine a roulette wheel where are placed all chromosomes in the 
population, every has its place big accordingly to its fitness function, like on the following 
picture.  



 

Then a marble is thrown there and selects the chromosome. Chromosome with bigger fitness will 
be selected more times.The conspicuous characteristic of this selection method is the fact that it 
gives to each individual i of the current population a probability of p(i) being selected, 
proportional to its fitness f(i). 

                                                  

 

                 
Where n denotes the population size in terms of the number of individuals. A well-known 
drawback of this technique is the risk of premature convergence of the GA to a local optimum, 
due to the possible presence of a dominant individual that always wins the competition and is 
selected as a parent. 
Linear Rank Selection (LRS): 
LRS is also a variant of RWS that tries to overcome the drawback of premature convergence of 
the GA to a local optimum. It is based on the rank of individuals rather than on their fitness. The 
rank n is accorded to the best individual whilst the worst individual gets the rank 1. Thus, based 
on its rank, each individual i has the probability of being selected given by the expression 

 
 
Exponential Rank Selection (ERS) : 
The ERS is based on the same principle as LRS, but it differs from LRS by the probability of 
selecting each individual. For ERS, this probability is given by the expression: 
 

 
                                      

                                         c  

 
Tournament Selection (TOS)  
Tournament selection is a variant of rank-based selection methods. Its principle consists in 
randomly selecting a set of k individuals. These individuals are then ranked according to their 
relative fitness and the fittest individual is selected for reproduction. The whole process is 



repeated n  times for the entire population. Hence, the probability of each individual to be 
selected is given by the expression:  

 
 

Steady-State Selection:  

This is not particular method of selecting parents. Main idea of this selection is that big part of 
chromosomes should survive to next generation. GA then works in a following way. In every 
generation are selected a few (good - with high fitness) chromosomes for creating a new 
offspring. Then some (bad - with low fitness) chromosomes are removed and the new offspring 
is placed in their place. The rest of population survives to new generation.  

Elitism  

Idea of elitism has been already introduced. When creating new population by crossover and 
mutation, we have a big chance, that we will loose the best chromosome. Elitism is name of 
method, which first copies the best chromosome (or a few best chromosomes) to new population. 
The rest is done in classical way. Elitism can very rapidly increase performance of GA, because 
it prevents losing the best found solution.  

 

 

 

REPRODUCTION:  
After selection, individuals from the mating pool are recombined (or crossed over) to 

create new, hopefully better, offspring. In the GA literature, many crossover methods have been 
designed and some of them are described in this section. In most recombination operators, two 
individuals are randomly selected and are recombined with a probability pc, called the crossover 
probability. That is, a uniform random number, r, is generated and if r ≤ pc, the two randomly 
selected individuals undergo recombination. Otherwise, that is, if r > pc, the two offspring are 
simply copies of their parents. The value of pc can either be set experimentally, or can be set 
based on schema-theorem principles. 
k-point Crossover One-point, and two-point crossovers are the simplest and most widely 
applied crossover methods. In one-point crossover, illustrated in Figure a crossover site is 
selected at random over the string length, and the alleles on one side of the site are exchanged 
between the individuals. In two-point crossover, two crossover sites are randomly selected. The 
alleles between the two sites are exchanged between the two randomly paired individuals. Two-
point crossover is also illustrated in Figure The concept of one-point crossover can be extended 
to k-point crossover, where k crossover points are used, rather than just one or two. 

 



 
 
 
Uniform Crossover Another common recombination operator is uniform crossover. In uniform 
crossover, illustrated in Figure every allele is exchanged between the a pair of randomly selected 
chromosomes with a certain probability, pe, known as the swapping probability. Usually the 
swapping probability value is taken to be 0.5. 
          Uniform Order-Based Crossover : The k-point and uniform crossover methods described 
above are not well suited for search problems with permutation codes such as the ones used in 
the traveling salesman problem. They often create offspring that represent invalid solutions for 
the search problem. Therefore, when solving search problems with permutation codes, a 
problem-specific repair mechanism is  often required (and used) in conjunction with the above 
recombination methods to always create valid candidate solutions. Another alternative is to use 
recombination methods developed specifically for permutation codes, which always generate 
valid candidate solutions. Several such crossover techniques are described in the following 
paragraphs starting with the uniform order-based crossover. In uniform order-based crossover, 
two parents (say P1 and P2) are randomly selected and a random binary template is generated 
.Some of the genes for offspring C1 are filled by taking the genes from parent P1 where there is a 
one in the template. At this point we have C1 partially filled, but it has some “gaps”. The genes 
of parent P1 in the positions corresponding to zeros in the template are taken and sorted in the 



same order as they appear in parent P2. The sorted list is used to fill the gaps in C1. Offspring C2 
is created by using a similar process  
 

 
              
  
Order-Based Crossover The order-based crossover operator (Davis, 1985) is a variation of the 
uniform order-based crossover in which two parents are randomly selected and two random 
crossover sites are generated. The genes between the cut points are copied to the children. 
Starting from the second crossover site copy the genes that are not already present in the 
offspring from the alternative parent (the parent other than the one whose genes are copied by the 
offspring in the initial phase) in the order they appear. For example, as shown in Figure, for 
offspring C1, since alleles C, D, and E are copied from the parent P1, we get alleles B, G, F, and 
A from the parent P2. Starting from the second crossover site, which is the sixth gene, we copy 
alleles B and G as the sixth and seventh genes respectively. We then wrap around and copy 
alleles F and A as the first and second genes.  
 



 
              
 
Partially Matched Crossover (PMX): Apart from always generating valid offspring, the PMX 
operator also preserves orderings within the chromosome. In PMX, two parents are randomly 
selected and two  random crossover sites are generated. Alleles within the two crossover sites of 
a parent are exchanged with the alleles corresponding to those mapped by the other parent. For 
example, as illustrated in Figure, looking at parent P1, the first gene within the two crossover 
sites, 5, maps to 2 in P2. Therefore, genes 5 and 2 are swapped in P1. Similarly we swap 6 and 3, 
and 10 and 7 to create the offspring C1. After all exchanges it can be seen that we have achieved 
a duplication of the ordering of one of the genes in between the crossover point within the 
opposite chromosome, and vice versa. 



 
                           
 
Cycle Crossover (CX): We describe cycle crossover with help of a simple illustration 
(reproduced from Goldberg (1989b) with permission). Consider two randomly selected parents 
P1 and P2 as shown in Figure  that are solutions to a traveling salesman problem. The offspring 
C1 receives the first variable representing city 9) from P1. We then choose the variable that maps 
onto the same position in P2. Since city 9 is chosen from P1 which maps to city 1 in P2, we 
choose city 1 and place it into C1 in the same position as it appears in P1 (fourth gene), as shown 
in Figure 4.5. City 1 in P1 now maps to city 4 in P2, so we place city 4 in C1 in the same 
position it occupies in P1 (sixth gene). We continue this process once more and copy city 6 to the 
ninth gene of C1 from P1. At this point, since city 6 in P1 maps to city 9 in P2, we should take 
city 9 and place it in C1, but this has already been done, so we have completed a cycle; which is 
where this operator gets its name. The missing cities in offspring C1 is filled from P2. Offspring 
C2 is created in the same way by starting with the first city of parent P2  



 
                                 

 

 

 

 

 

 

 

 

 



DIFFERENCES BETWEEN GA'S AND TRADITIONAL METHODS: 

The brief list, based on Goldberg (1989), of the essential differences between GAs and other 
forms of optimization is the following:. 

 Genetic algorithms a coded form of the function values (parameter set), rather than with 
the actual values them. So, for example, if we want to find the minimum of the function 
f(x) =x3+x2+5, the GA would not deal directly with x or y values, but with strings that 
encode these values. For this case, strings representing the binary x values should be 
used. 

 Genetic algorithms use a set, or population, of points to conduct a search, not just a single 
point on the problem space. This gives GAs the power to search noisy spaces littered with 
local optimum points. Instead of relying on a single point to search through the space, the 
GAs looks at many different areas of the problem space at once, and uses all of this 
information to guide it. 

 Genetic algorithms use only payoff information to guide themselves through the problem 
space. Many search techniques need a variety of information to guide themselves. Hill 
climbing methods require derivatives, for example. The only information a GA needs is 
some measure of fitness about a point in the space (sometimes known as an objective 
function value). Once the GA knows the current measure of "goodness" about a point, it 
can use this to continue searching for the optimum. 

 GAs are probabilistic in nature, not deterministic. This is a direct result of the 
randomization techniques used by GAs. 

 GAs are inherently parallel. Here lies one of the most powerful features of genetic 
algorithms. GAs, by their nature, are very parallel, dealing with a large number of points 
(strings) simultaneously. Holland has estimated that a GA processing n strings at each 
generation, the GA in reality processes n3 useful substrings. 

* GA's work with string coding of variables instead of variables  so that coding 
discrediting the search space even though the function is continuous. 
 
* GA's work with population of points instead of single point. 
 
* In GA's previously found good information is emphasized using reproduction operator 
and propagated adaptively through crossover and mutation operators. 
 
* GA does not require any auxiliary information except the objective function values. 
 * GA uses the probabilities in their operators. 
This nature of narrowing the search spaces the search progresses is adaptive and is the 
unique characteristic of Genetic Algorithms. 

 

 

SOME APPLICATIONS OF GENETIC ALGORITHMS: 



The algorithm described above is very simple, but variations on this basic theme have been 
used in a large number of scientific and engineering problems and models, including the 
following: 

 Optimization: GAs have been used in a wide variety of optimization tasks, including 
numerical optimization as well as combinatorial optimization problems such as circuit 
layout and job-shop scheduling. 

  Automatic Programming: GAs have been used to evolve computer programs for specific 
tasks, and to design other computational structures, such as cellular automata and sorting 
networks. 

  Machine learning: GAs have been used for many machine-learning applications, 
including classification and prediction tasks such as the prediction of weather or protein 
structure. GAs have also been used to evolve aspects of particular machine-learning 
systems, such as weights for neural networks, rules for learning classifier systems or 
symbolic production systems, and sensors for robots. 

 Economic models: GAs have been used to model processes of innovation, the 
development of bidding strategies, and the emergence of economic markets. 

  Immune system models: GAs have been used to model various aspects of the natural 
immune system including somatic mutation during an individual's lifetime and the 
discovery of multi-gene families during evolutionary time. 

 Ecological models: GAs have been used to model ecological phenomena such as 
biological arms races, host-parasite co-evolution, symbiosis, and resource flow in 
ecologies. 

Genetic Algorithm Application Areas: 

 Dynamic process control 
 Induction of rule optimization 
 Discovering new connectivity topologies 
 Simulating biological models of behavior and evolution 
 Complex design of engineering structures 
 Pattern recognition 
 Scheduling 
 Transportation 
 Layout and circuit design 
 Telecommunication 
 Graph-based problems 

 
 


