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Multirate Digital Signal 

Processing 
 

  



INTRODUCTION 

The process of converting a signal from a given rate to a different rate is called sampling rate 
conversion. Systems that employ multiple sampling rates in the processing of digital signals are 
called multirate digital signal processing systems. The two basic operations in a multirate system 
are decreasing (decimation) and increasing (interpolation) the sampling-rate of a signal. 

DECIMATION 

It is also called as down sampling. In this,the sampling rate of a discrete-time signal x(n) with 
sampling frequency Fs is reduced to a discrete-time signal y(n) of sampling frequency Fs/D, D is 
down sampling factor .The simplest way of doing so is to discard (D-1) samples for every D 
samples in original sequence. 

Mathematically: 

If x(n) is the original discrete-time signal 

Then           y(n) = x(nD) 

So, in z domain, 

Y(z) = ∑ x(nD) z∞
௡ୀି∞

-n 

Let   nD = p => n= p/D 

So Y(z) = ∑ x(p)(zଵ/ୈ)୮∞
௡ୀି∞  

=>Y(z) = X(z1/D) 

On unit circle, Y(ω) = X(ω/D) 

It seems hence that spectrum of original signal gets stretched as an effect of down sampling. 
Hence, an anti-aliasing digital filter is used before down-sampling to prevent aliasing. 

The input sequence x(n)  is passed through a lowpass filter, characterized by the impulse 
response h(n) and a frequency response HD(ω), which ideally satisfies the condition  

 

               HD(ω) = ൜1, |ω| ≤ π/D
0, otherwise 

 

 



                  

            x(n)                                      v(n)                                                  y(m) 

                                                                                                                              

     Fx = 1/Tx                                                                                              Fy = Fx/D   

Decimation by a factor D 

 

Time domain expression: 

v(n) = x(n) * h(n) 

        = ∑ ℎ(݇)ݔ(݊ − ݇)∞ 
௡ୀି∞     

y(m) = v(mD) 

         =∑ ℎ(݇)ܦ݉)ݔ − ݇)∞
௡ୀି∞  
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Spectra of signals during decimation by factor D 

 

INTERPOLATION 

It is also called as up sampling. In this,the sampling rate of a discrete-time signal x(n) with 
sampling frequency Fs is increased to a discrete-time signal y(n) of sampling frequency IFs, I is 
up sampling factor .The simplest way of doing so is to insert (I - 1) samples for every I samples 
in original sequence. 

Mathematically: 

If x(n) is the original discrete-time signal 

Then           y(n) = x(n/I) 

So, in z domain, 

Y(z) = ∑ x(n/I) z∞
௡ୀି∞

-n 

Let   n/I= p => n= pI 

So Y(z) = ∑ x(p)(z୍)୮∞
௡ୀି∞  

=>Y(z) = X(zI) 

On unit circle, Y(ω) = X(ωI) 

So interpolation causes the original spectrum to get compressed by I-folds. It yields undesirable 
replicas in the signal’s frequency spectrum. Hence, it is necessary to remove these replicas from 
the frequency spectrum. So the expansion process is followed by a unique digital low-pass filter 
called an anti-imaging filter. 
 



               HI(ω) = ൜     C        ,0 ≤  |ω| ≤ π/I
0          , otherwise  

 

              Y(߱) = ൜CX(ωI)               ,0 ≤  |ω| ≤ π/I
0                   , otherwise  

 

                                                                                                                                              

   x(n)                                                     v(m)                                               y(m) 

 

Fx = 1/Tx                                                                                                  Fy = IFx 

Interpolation of signal by a factor I 

Time domain expression: 

v(m) =ቊݔ ቀ
௠
ூ
ቁ           ,݉ = 0, ,ܫ± ,ܫ±2 … .

0                          , ݁ݏ݅ݓݎℎ݁ݐ݋
 

y(m) = v(m) * h(m) 

        = ∑ ℎ(݉−  ∞(݇)ݒ(݇
௠ୀି∞     

Since v(k)=0  except at multiples of  I, where v(kI)=x(k) , therefore 

(݉)ݕ         = ∑ ℎ(݉  ∞(݇)ݔ(ܫ݇−
௠ୀି∞     

                                |ܺ(߱௫)| 
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Sampling Rate Conversion by a Rational Factor I/D 

We can achieve sampling rate conversion by a rational factor I/D by first performing 
interpolation by a factor I and then decimating the output of the interpolator by the factor D. The 
importance of performing interpolation first and decimation second , is to preserve the desired 
spectral characteristics of x(n). Since the two filters are operated at the same sampling  rate IFx ,  

the two filters can be replaced by a single lowpass filter  with impulse response h(l) .The 
frequency response H(ωv) of the combined filter  is given as  

H(ωv) = ቊ0,       ܫ ≤ |߱௩| ≤ min (గ
஽

, గ
ூ
)

݁ݏ݅ݓݎℎ݁ݐܱ,                          0
 

 

       x(n)                                                                                                       y(m) 

                                                                                                                                              

  Rate Fx                                                                                                                                                                                Rate = ூ
஽
௫ܨ  =Fy    

 

 

 

                                                                                   Rate = IFx                                                                                                                                                                                       

                   Method of sampling rate conversion by factor I/D 

Upsampler 

↑I 

     

Filter 

hu(l) 

Filter 

hd(l) 

Downsampler 

↓D 



                                        

          x(n)                                          v(k)                                w(l)                                           y(m)                               

 

       Rate = Fx                                                                                                                                                                                            Rate = ூ
஽
 ௫=Fyܨ

 

            

                                                            Rate = IFx   =FV                  

Method of sampling rate conversion by factor I/D 

                                                                                                                                                                    

Where ωv= 2ߨF/Fv= 2ߨF/IFx= ωx / I 

v(l) = ቊݔ ቀ
௟
ூ
ቁ        , ݈ = 0, ,ܫ± ,ܫ±2 …

݁ݏ݅ݓݎℎ݁ݐ݋,                 0
 

 

w(l) = ∑ ℎ(݈ − ∞(݇)ݒ(݇
௞ୀି∞  

       = ∑ ℎ(݈ − ∞(݇)ݔ(ܫ݇
௞ୀି∞  

y(m) = w(mD) 

        =∑ ℎ(݉ܦ − ∞(݇)ݔ(ܫ݇
௞ୀି∞  

              

Filter Design and Implementation for Sampling-rate Conversion 

It includes various structures like: 

 Direct form FIR filter 
 Polyphase filter 
 Time-variant filter 

Direct Form FIR Filter Structure 

This is the simplest realization with system function 

Upsampler 

↑I 

 

Low pass 
filter 

h(l) 

Downsampler 

↓D 

 



H(z) = ∑ ℎ(݇)ିݖ௞ெିଵ
௞ୀ଴  

where h(k) is the unit sample response of the FIR filter. 

                                                        h(0)                                                                      
y(m)                         

     x(n)              Upsampler  

                                                                                              h(1) 

                                                                                                

                                                                                 

 

                                                                                            h(2) 

 

 

                                                                                         h(M-2) 

 

                                                                                              

                                                                                           h(M-1)    

 

Although  the direct form FIR realization is simple ,it is also very inefficient. The inefficiency results 
from the fact that the upsampling introduces  I-1 samples between successive points of the input signal. If 
I is large, most of the signal components in the FIR filter are zero. Consequently, most of the 
multiplications and additions result in zeros. Furthermore, the downsampling process at the output of the 
filter implies that only one out of every D output samples is required at the output of the filter. 

Polyphase Filter Structure 

The polyphase structure is based on the fact that any system function can be split as 

H(z) = .......+ h(0)                     + h(M) z-M +………… 

Downsampler 

↓D 

z-1 

z-1 

z-1 



           ……+ h(1)z-1                  + h(M+1) z-(M+1) +…… 

                                          . 

                                          . 

                                          . 

           ……+ h(M-1) z-(M-1) + h(2M-1) z-(2M-1) +……… 

If we next factor out the term z-(i-1) at the ith row, we obtain 

H(z) = [……+ h(0)                  + h(M) z-M + ……] 

            + z-1[…..+ h(1)            + h(M+1) z-M +…….]                                     

                                          . 

                                          . 

          + z-(M-1) […..+ h(M-1) + h(2M-1) z-M +………..] 

 

This implies                                                                    

 

   where             Pi(z) = ∑ ℎ(݊ܯ + ∞௡ିݖ(݅
௡ୀି∞  

           

            x(n)                                                                                                                y(n) 

 

 

 

 

 

 

 

Block diagram of polyphase filter structure for M = 3 

H(z) =∑ ݖ ௜ ௜ܲ(ݖெ)ெିଵ
௜ୀ଴  

P0(z3) 

P2(z3) 

z-1 

P1(z3) 

z-1 



The output sequence for M = 3 will be: 

                                       Y(z) = H(z)X(z) 

           =P0(z3) X(z) + z-1 P1(z3) X(z) + z-2 P2(z3) X(z) 

 

Implementation of a decimation system using a polyphase structure 

                                                      

                       x(n)                                                                                                           y(m) 

 

 

 

 

 

 

Implementation of a interpolation system using a polyphase structure 
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↓3 
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P1(z3) 

P2(z3) ↓3 

↓3 

↑3 

↑3 
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P0(z3) 
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P2(z3) 
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Multistage Implementation of Sampling-rate Conversion 

Let us consider  interpolation by a factor I>>1 and let us assume that I can be factored into a 
product of positive integers as 

I = ∏ ௜௅ܫ
௜ୀଵ  

                                                                                                                                                                                                                                                          

x(n)                                       I1Fx                                       I1l2Fx                                               y(m)                   

Fx                                                                                                                                        Fy = IFx     

                Stage 1                                   Stage 2                                        Stage L                                  

Multistage implementation of interpolation by a factor I 

Interpolation by a factor I can be accomplished by cascading L stages of interpolation and 
filtering. The filter in each of the interpolators eliminates the images introduced by the 
upsampling process in the corresponding interpolator. 

       

 

In a similar manner, decimation by a factor D , where D may be factored into a product of 
positive integers as 

D = ∏ ௜ܦ
௃
௜ୀଵ  

can be implemented as a cascade of J stages of filtering and decimation. 
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Multistage implementation of decimation by a factor D 

 

Sampling Rate Conversion of Bandpass Signals 

↑I1 ↑I2 h2(n) ↑lL h1(n) hL(n) 

h1(n) h2(n) hJ(n) ↓D1 ↓D2 ↓DJ 



Any band pass signal has an equivalent low pass representation , obtained by a simple frequency 
translation of the band pass signal. 

An analog band pass signal can be represented as 

x(t) = A(t)cos[2ܨߨ௖ݐ +  [(ݐ)ߠ

      = A(t) cos(ݐ)ߠ cos(2ܨߨ௖ݐ) −A(t) sin(ݐ)ߠ sin (2ܨߨ௖ݐ) 

      = uc(t) cos(2ܨߨ௖ݐ) − us(t) sin(2ܨߨ௖ݐ) 

      = Re[xl(t) ݁ି௝ଶగி೎௧] 

 

where  uc(t) = A(t) cos(ݐ)ߠ 

            us(t) = A(t) sin(ݐ)ߠ 

            xl(t) = uc(t) + j us(t) 

A(t) is called the amplitude or envelope of the signal , (ݐ)ߠ is the phase , uc(t) and us(t) are called 
the quadrature components of the signal. 

Physically the translation of x(t) to low pass involves multiplying x(t) by the quadrature carriers 
cos(2ܨߨ௖ݐ) and sin (2ܨߨ௖ݐ) and then low pass filtering the two products to eliminate the 
frequency components generated around the frequency 2ܨ௖ . 

 

                                                                                                                                           uc(n) 

                                                                cos (2ܨߨ௖݊) 

   x(n) 

Band pass signal 

                                                                sin (2ܨߨ௖݊) 

                                                                                                                                        us(n) 

 

(Conversion of a band pass signal to low pass) 

 

Oscillator 

Low pass 
Filter 

Low pass 
Filter 



The mathematical equivalence between the band pass signal and its low pass representation 
provides one method for altering the sampling rate of the signal . 

 

                                                                                                                                                            

x(n)                                                uc(n)                                                                                                       

Band pass signal                            us(n)                                                                              

Sampling rate conversion of a band pass signal 

 

The filter in the above diagram has the frequency response characteristics : 

H(ω) = ቊ   0,        ܫ ≤ |߱| ≤ min (ఠಳ
ଶ஽

, ఠಳ
ଶூ

)
0                            , ݁ݏ݅ݓݎℎ݁ݐ݋

 

where  ߱஻ is the bandwidth of the discrete – time band pass signal (߱஻ ≤  . (ߨ

 

Applications of Multirate Signal Processing 

1. Design of Phase Shifters: 
A delay of (k/I)Tx can be achieved by sample rate conversion method without introducing 
any significant distortion in the signal. The sampling rate is increased by a factor I using 
standard interpolator. The lowpass filter eliminates the images in the spectrum of the 
interpolated signal , and its output is delayed by k samples at the sampling rate IFx . The 
delayed signal is decimated by a factor D = I. Thus we have achieved the desired delay of 
(k/I)Tx. 
 
   
 x(n)                                                                                                                         y(n)            
 
Fx                              IFx                             IFx                                  IFx                      Fx                
 
x(n)   upsampled= x(n/I) 
x(n/I)  delayed by k samples= x((n-k)/I) 
x((n-k)/I) downsampled = x(n-(k/I))  
 
If  [(݊)ݔ]ܨ = ܺ(߱)   ,Then  ݔ]ܨ(݊ − ݇)] = ݁ି௝ఠ௞ܺ(߱)  

Frequency 
Translation 

Filter ↓D ↑I 

↑I Lowpass 
filter 

Delay by k 
samples 

↓I 



So ݔ]ܨ(݊ − [(ܫ/݇ = ݁ି௝ఠ௞/ூܺ(߱) 
Hence the original spectrum of  X(ω) gets a phase shift of ϕ = ିఠ௞

ூ
 

 
2. Interfacing of Digital Systems with Different Sampling Rates :    

Let us consider interfacing the two systems with independent clocks. The output of the 
system A at rate Fx is fed to an interpolator which increases the sampling rate by I. The 
output of the interpolator is fed at the rate lFx to a digital sample-and-hold which serves 
as the interface to system B at the high sampling rate IFx . Signals from the digital 
sample-and-hold are read out into system B at the clock rate DFy of system B . Thus the 
output rate from the sample-and-hold is not synchronized with the input rate. 
 
 
                       x(n)                               IFx                             IFy                            x(m)                     
 
 
 
            Fx                                                                                                 DFy                    Fy             
 
 
                                           IFx 
                                                                                                                                                        
 
 

3. Implementation of Narrowband Lowpass Filters: 
A lowpass , linear-phase FIR filter may be more efficiently implemented in a multistage  
decimator-interpolator configuration. To be more specific , we can employ a multistage 
implementation of a decimator of size D , followed by a multistage implementation of an 
interpolator of size I , where I = D. 
 

4. Implementation of Digital Filter Banks: 
Filter banks are generally categorized as two types , analysis filter banks and synthesis 
filter banks . An analysis filter bank consists of a set of filters , with system function 
{Hk(z)} , arranged in parallel. The frequency response characteristics of this filter bank 
split the signal into a corresponding number of subbands. On the other hand, a synthesis 
filter consists of a set of filters with system function {Gk(z)}, with corresponding inputs 
{yk(n)}. The outputs of filters are summed to form the synthesized signal {x(n)}. 
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(Frequency response characteristics of N filters) 

 

5. Subband Filters : 
Subband coding is a method where the signal is subdivided into several frequency bands 
and each band is digitally encoded separately. 
          Let us assume a signal with sampling rate Fs . The first frequency subdivision splits 
the signal spectrum into two equal-width segments , a lowpass signal (0≤F≤Fs/4) and a 
highpass signal (Fs/4 ≤ ܨ ≤ Fs/2). . The second frequency subdivision splits the 
lowpass signal from the first stage into two equal bands , a lowpass signal (0≤ F≤ Fs/8) 
and a highpass signal (Fs/8 ≤ ܨ ≤ Fs/4). Finally, the third subdivision splits the 
lowpass signal from the second stage into two equal-bandwidth signals. Thus the signal is 
subdivided into four frequency bands , covering three octaves. 

  



Module 2. 
Linear Prediction and 

Optimum Linear Filters 



Innovations Representation of a stationary random process: 

A wide-sense stationary random process can be represented as the output of a causal and casually 
invertible linear system excited by a white noise process. Let the wide-sense stationary random 
process be {x(n)} with autocorrelation function γxx(m), and power spectral density Γxx(f), 
│f│ < ଵ

ଶ
. Then it can be shown that : 

(ݖ)௫௫߁ =  (ଵିݖ)ܪ(ݖ)ܪ௪ଶߪ

Or on the unit circle, 

(݂)௫௫߁ = │(݂)ܪ│௪ଶߪ
ଶ
 

H(f) hence represents a filter which when excited by white noise w(n) of power spectral density 
σw

2
, gives an output {x(n)} with power spectral density σw

2
│H(f)│

2
. The random process x(n) is 

generated by passing white noise input sequence w(n) through a linear causal filter H(z) : 

H(z) = ஻(௭)
஺(௭)

 =  
∑ ௕ೖ
೜
ೖసబ ௭షೖ

ଵ ା ∑ ௔ೖ
೛
ೖసభ ௭షೖ

|ݖ|       > > ଵݎ 1 

 

where the polynomials B(z) and A(z) have roots that fall inside the unit circle in the z-plane. 
{bk} and {ak} are filter coefficients that determine the location of the zeros and poles of H(z) , 
respectively. Thus the output x(n) is related to the input w(n) by the difference equation  

x(n) + ∑ ܽ௞ݔ(݊ − ݇)௣
௞ୀଵ  = ∑ ܾ௞ݓ(݊ − ݇)௤

௞ୀ଴  

 

The representation of the stationary random process be {x(n)}, as the output of an IIR filter with 
transfer function H(z) and excited by a white noise process {w(n)} is called as Wold 
representation. The stationary random process {x(n)} can be transformed into white noise 
process by passing {x(n)} through a linear filter with system function 1/H(z) . This filter is called 
a noise whitening filter. Its output, denoted as {w(n)} is called the innovations process 
associated with the stationary random process {x(n)}. 

 

                                              w(n)                                      x(n) = ∑ ℎ(݇)ݓ(݊ − ݇)∞
௞ୀ଴  

                                     White noise                                                                                                              

Filter for generating the random process x(n) from white noise 

Linear 
causal filter 

H(z) 



 

 

                                                   x(n)                                      w(n)                      

                                                                                                white noise 

Noise Whitening Filter 

 

Rational Power Spectra 

 When the power spectral density of a stationary random process is a rational function given by: 

(ݖ)௫௫߁  = σ୵ଶ  
B(z)B(zିଵ)
A(z)A(zିଵ) 

and  B(z) and A(z) have roots that fall inside the unit circle, then the filter H(z) for generation of 
{x(n)}  is also rational expressed as :  

H(z) = ஻(௭)
஺(௭)

 =  
∑ ௕ೖ
೜
ೖసబ ௭షೖ

ଵ ା ∑ ௔ೖ
೛
ೖసభ ௭షೖ

|ݖ|       > > ଵݎ 1 

The H(z) is causal, stable and minimum phase linear filter. The noise whitening filter 1/H(z) is 
also causal, stable and minimum phase linear filter. We can have three special cases on the basis 
of coesfficients ak’s and bk’s. 

Autoregressive (AR) process: 

b0 = 1 , bk = 0 , k > 0. In this case , the linear filter H(z) = 1/A(z) is an all-pole filter and the 
difference equation for the input-output relationship is 

x(n) + ∑ ܽ௞ݔ(݊ − ݇)௣
௞ୀଵ  = w(n) 

The noise-whitening filter for generating the innovations process is an all-zero filter. 

 

Moving average (MA) process: 

ak = 0 , k ≥ 1 . In this case , the linear filter H(z) = B(z) is an all-zero filter and the difference 
equation for the input-output relationship is 

x(n) = ∑ ܾ௞ݓ(݊ − ݇)௤
௞ୀ଴  

Linear 
causal filter 

1/H(z) 



The noise-whitening filter for the MA process is an all-pole filter. 

 

Autoregressive, moving average (ARMA) process: 

In this case , the linear filter H(z) = B(z)/A(z) has both finite poles and zeros in the z-plane and 
the corresponding difference equation for the input-output relationship is 

x(n) + ∑ ܽ௞ݔ(݊ − ݇)௣
௞ୀଵ  = ∑ ܾ௞ݓ(݊ − ݇)௤

௞ୀ଴  

The inverse system for generating the innovations process from x(n) is a pole-zero system of the 
form  1/H(z) = A(z)/B(z). 

 

Forward and Backward Linear Prediction : 

Forward Linear Prediction: 

In forward linear prediction , a future value of stationary random process is predicted from 
observation of past values of the process . The one-step forward linear predictor forms the 
prediction of the value x(n) by weighted linear combination of the past values x(n-1) , x(n-2) , . . 
. . , x(n-p) . Hence the linearly predicted value of x(n) is 

(݊)ොݔ =  −෍ܽ௣

௣

௞ୀଵ

݊)ݔ (݇) − ݇) 

where the {-ܽ௣(݇)} represent the weights in the linear combination . These weights are called 
the prediction coefficients of the one-step forward linear predictor of order p .  

            The difference between the value x(n) and the predicted value x(n) is called the forward 
prediction error , denoted as fp(n): 

fp(n) = ݔ(݊) −  (݊)ොݔ

(݊)ݔ =                                     +  ∑ ܽ௣
௣
௞ୀଵ ݊)ݔ (݇) − ݇) 

The direct form FIR filter realization to find the forward prediction error can hence be written as: 

(ݖ)௣ܣ = ෍ܽ௣(݇)ିݖ௞
௣

௞ୀ଴

 

where by definition ap(0)=1. The equivalent direct for FIR filter realization structure is drawn 
below : 



 

 

 

 

 

 

Direct Form Structure Of Prediction Error Filter 

               

 

 

    

                                                                                                                

                                                                                                                     

 

 

Forward linear prediction 

 

Backward Linear Prediction 

Suppose we have the data sequence x(n) , x(n-1) , . . . . , x(n - p + 1) from a stationary random 
process and we wish to predict the value x(n-p) of the process . In this case a one-step backward 
linear predictor of order p is employed. Hence 

݊)ොݔ − (݌ =  − ∑ ܾ௣
௣ିଵ
௞ୀ଴ ݊)ݔ (݇) − ݇) 

The difference between the value x(n-p) and the estimate ݔො(݊ −  is called the backward (݌
prediction error , denoted as gp(n) : 

gp(n) = x(n - p) + ∑ ܾ௣
௣ିଵ
௞ୀ଴ ݊)ݔ (݇) − ݇) 

                  = ∑ ܾ௣
௣
௞ୀ଴ ݊)ݔ (݇) − ݇) ,         bp(p) = 1 

+ 

z-1 z-1 z-1 z-1 

fp(n) 

z-1 
Forward 

linear 
predictor 

x(n)                                                                                       

     fp(n)           

x(n-1) ݔො(݊) 



 

 

 

 

 

 

   

 

 

  

 

 

p-stage Lattice filter for forward and backward prediction 

 

Normal Equations : 

The forward prediction error is given as 

fp(n) = ∑ ܽ௣
௣
௞ୀ଴ ݊)ݔ (݇) − ݇) 

The corresponding  z-transform  relationship is 

Fp(z) = Ap(z) X(z) 

=> Ap(z) = ୊୮(୸) 
௑(௭)

 = ୊୮(୸) 
୊଴(୸)

 

The mean square value of forward linear prediction error fp(n)  is 

௣ߝ          
௙ = ห]ܧ ௣݂(݊)ห

ଶ
] 

∑]௫௫(0) + 2ℜߛ =                ܽ௣∗(݇)௣
௞ୀଵ ∑ + [௫௫(k)ߛ ∑ ܽ௣∗ (݈)ܽ௣(݇)௣

௟ୀଵ
௣
௞ୀଵ −௫௫(lߛ k) 

 

    gp(n)     

First Stage Pth Stage Second Stage     fp(n)       
   x(n)       

+ 

+ gm(n)
 g (n)     

fm(n)     

Km 

Km
* 

fm-1(n)      

gm-1(n)
 z-1 



௣ߝ 
௙ is a quadratic function of the predictor coefficients and its minimum leads to the set of linear 

equations 

                                                                                ,      l=1, 2, . . . , p 

 

 

These are called the normal equations for the coefficients of the linear predictor.  

The minimum mean-square prediction error  is simply 

min[ߝ௣
௙] ≡ ௣ܧ 

௙ = ∑ + ௫௫(0)ߛ  ܽ௣(݇)௣
௞ୀଵ −௫௫(lߛ k) 

 

Solutions of the Normal Equations: 

The normal equations may be expressed in the compact form 

෍ܽ௣(݇)
௣

௞ୀ଴

−௫௫(lߛ k) =  0              l = 1, 2, … . , p 

                                                                                           ܽ௣(0) = 1 

If we augment the minimum  MSE  expression with the above  equation , we get 

෍ܽ௣(݇)
௣

௞ୀ଴

−௫௫(lߛ k) =  ቊ ௣ܧ
௙           , ݈ = 0

          0       , ݈ = 1, 2, … . , p
 

 

The Levinson-Durbin Algorithm: 

This algorithm exploits the symmetry in the autocorrelation matrix 

Γ௣ = ൦

∗௫௫ߛ        ௫௫(0)ߛ (1)
…     ௫௫(0)ߛ     ௫௫(1)ߛ ∗௫௫ߛ ݌) − 1)

… ∗௫௫ߛ ݌) − 2)
⋮ ⋮

−௫௫(pߛ 1) −௫௫(pߛ 2)    
… ⋮
… ௫௫(0)ߛ

൪ 

The solution to the first-order predictor is 

              ܽଵ(1) =  − ఊೣ ೣ(ଵ)
ఊೣ ೣ(଴)

 

∑− = ௫௫(l)ߛ ܽ௣(݇)௣
௞ୀଵ −௫௫(lߛ k) 



The next step is to solve for the coefficients {ܽଶ(1) ,ܽଶ(2)} of the second order predictor. The 
two equations obtained from the normal equation  are: 

ܽଶ(1)ߛ௫௫(0) +  ܽଶ(2) ߛ௫௫∗ (1) =  ௫௫(1)ߛ− 

ܽଶ(1)ߛ௫௫(1) +  ܽଶ(2)ߛ௫௫(0) =  ௫௫(2)ߛ− 

By using above equation and  the expression for ܽଵ(1) , we obtain the solution 

ܽଶ(2) =  −  
௫௫(2)ߛ +  ܽଵ(1)ߛ௫௫(1)
−௫௫(0)[1ߛ |ܽଵ(1)|ଶ]

 

 

Properties of the linear prediction-error filters : 
 
1. Minimum-phase property of the forward prediction-error filter: 

If a random process consists of a mixture of a continuous power spectral density and 
a discrete spectrum , the prediction-error filter must have all its roots inside the unit 
circle. 
 

2. Maximum-phase property of the backward prediction-error filter: 
The system function for the backward prediction-error filter of order p is 

Bp(z) = z-p ܣ௣∗ (z-1) 
where Ap(z) is the system function for the forward prediction filter. 
Consequently, the roots of Bp(z) are the reciprocals of the roots of the forward 
prediction-error filter with system function Ap(z). Hence if Ap(z) is minimum phase , 
then Bp(z) is maximum phase. 
 

3. Orthogonality of the backward prediction errors: 
The backward prediction errors {gm(k)} from different stages in the FIR lattice filter 
are orthogonal. That is , 

[(݊)∗௠(݊) ݃௟݃]ܧ = ൜ 
0         , 0 ≤ ݈ ≤ ݉ − 1
௠௕ܧ            , ݈ = ݉  

4. Whitening property: 
The prediction-error filter attempts to remove the correlation among the signal 
samples of the input process. The response of the prediction-error filter is a white 
noise sequence . Thus it whitens the input random process and is called a whitening 
filter.                                                                                                                                             
 
 



AR  Lattice Structure: 

The difference equation for AR process is given by: 

             y(n) = x(n) + ∑ ܽ௞ݔ(݊ − ݇)௣
௞ୀଵ  

If  fp(n) is the forward prediction error , gp(n) is the backward prediction error and {Km} are the 
reflection coefficients then we have: 

x(n) = fp(n) 
fm-1(n) = fm(n) – Km gm-1(n-1) ,     m = p, p-1, . . . , 1 
gm(n) = ܭ௠∗  ௠݂ିଵ(݊) + gm-1(n-1) 
y(n) = f0(n) = g0(n) 

 

 

x(n)=fp(n)                  fp-1(n)         f2(n)                                f1(n)                       f0(n)=y(n) 

Input                                                                                                                                  output 

                   -Kp             ܭ௣∗                        -K2        ܭଶ∗                      -K1            ܭଵ∗ 

 

 

 

gp(n)                                             g2(n)                              g1(n)                              g0(n) 

Lattice structure of an all pole system 

 

 

ARMA  Lattice-Ladder Filters: 

We consider an all-pole lattice filter with coefficients Km , 1≤ m ≤ p , and we add a ladder part 
by taking as the output a weighted linear combination of {gm(n)}.The result is a pole-zero filter 
that has the lattice-ladder structure. Its output is 

y(n) = ∑ ௞ߚ
௤
௞ୀ଴ ݃௞(݊) 

where {ߚ௞} are the parameters that determine the zeros of the system. 

z-1 z-1 z-1 



 

 

x(n) = fp(n)                  fp-1(n)                    fp-2(n)                      f1(n)                      f0(n) 

gp(n)                            gp-1(n)                    gp-2(n)                     g1(n)                     g0(n) 

 ଴ߚ                                ଵߚ                          ௣ିଶߚ                   ௣ିଵߚ                           ௣ߚ            

                                                                                                                                              output 

 

Pole-zero system 

 

 

     fm(n)                                                                             fm-1(n) 

                             - Km                                             ܭ௠∗  

 

 

    gm(n)                                                                            gm-1(n) 

                                                                                                   

mth  stage lattice 

 

 

 

Wiener filter for filtering and prediction: 

It deals with the problem of  estimating a desired signal {s(n)} in the presence of an undesired 
additive noise disturbance {w(n)}. The estimator is constrained to be a linear filter with impulse 
response {h(n)}, designed so that the output approximates some specified desired signal 
sequence {d(n)}. 

 

Stage 
p 

Stage 
p-1 

Stage 
1 

z-1 



                                                                                                     d(n) 

                                                                                                         + 

s(n)                                 x(n)                              y(n)                                         e(n) 

                                                                               − 
 

           Noise w(n) 

Weiner Filter 

The criterion selected for optimizing the filter impulse response {h(n)} is the minimization of the 
mean-square error. The optimum linear filter, in the sense of minimum mean-square error 
(MMSE), is called a Wiener filter. 

 

Orthogonality Principle in Linear Mean-square Estimation 
 
The mean-square error εM  is a minimum if the filter coefficients {h(k)} are selected such that the 
error is orthogonal to each of the data points in estimate, 
 

E[e(n) x*(n-l)] = 0,   l = 0, 1, . . . , M-1 
where 

e(n) = d(n) –∑ ℎ(݇)ݔ(݊ − ݇)ெିଵ
௞ୀ଴  

 
Since the MSE is minimized by selecting the filter coefficients to satisfy the orthogonality 
principle, the residual minimum MSE is simply 

MMSEM = E[e(n) d*(n)] 

 

  

Optimum 
linear filter 



Module 3.  
Power spectrum estimation 

  



Power Spectrum Estimation 
The power spectrum estimation deals with the estimation of the spectral characteristics of signals 
characterized as random processes. Many of the phenomena that occur in nature are best 
characterized statistically in terms of averages. For example, meteorological phenomena such as 
the fluctuations in air temperature and pressure are best characterized statistically as random 
processes. 

    Due to random fluctuations in such signals, we must adopt a statistical view point, which deals 
with the average characteristics of random signals. In particular, the autocorrelation function of 
random process is the appropriate statistical average that we will use for characterizing random 
signals in the time domain, and the Fourier transform of the autocorrelation function, which 
yields the power density spectrum, provides the transform from the time domain to frequency 
domain. 

Estimation of Spectra from Finite-Duration Observation of Signals: 

Computation of the Energy Density Spectrum: 

Let ݔ(݊) be a finite-duration sequence obtained by sampling a continuous-time signal ݔ௔(ݐ) at 
some uniform sampling rate ܨ௦. 

If x(t) is a finite-energy signal, that is 

ܧ = න ݐଶ݀|(ݐ)௔ݔ| < ∞
∞

ି∞
 

then its Fourier transform exists and is given as 

ܺ௔(ܨ) = න ௝ଶగி௧ି݁(ݐ)௔ݔ
∞

ି∞
 ݐ݀

From Parseval’s theorem we have 

ܧ                                       = න ݐଶ݀|(ݐ)௔ݔ| =
∞

ି∞
න |ܺ௔(ܨ)|ଶ݀ܨ

∞

ି∞
                  

The quantity |(ࡲ)ࢇࢄ|૛ represents the distribution of signal energy as a function of frequency, 
and hence it is called the energy density spectrum of the signal, that is, 

 

                                              ܵ௫௫(ܨ) = |ܺ௔(ܨ)|ଶ                                    



Thus the total energy in the signal is simply the integral of ܵ௫௫(ܨ) over all ܨ [i.e., the total area 
under  ܵ௫௫(ܨ)]. 

ܵ௫௫(ܨ)  can be viewed as the Fourier transform of another function, ܴ௫௫(߬) , called the 
autocorrelation function of the finite-energy signal ݔ௔(ݐ) , defined as 

                                                    ܴ௫௫(߬) = න (ݐ)∗௔ݔ
∞

ି∞
ݐ)௔ݔ +                            ݐ݀(߬

It follows that 

                                               න ܴ௫௫(߬)
∞

ି∞
݁ି௝ଶగிఛ݀߬ =  ܵ௫௫(ܨ) = |ܺ௔(ܨ)|ଶ         

Hence ܴ ௫௫(߬) and  ܵ௫௫(ܨ) are a Fourier transform pair. 

Now the Fourier transform (voltage spectrum) of  ݔ(݊) : 

ܺ(߱) = ෍ ௝ఠ௡ି݁(݊)ݔ
∞

௡ୀି∞

 

or, equivalently, 

                                                                     ܺ(݂) = ෍ ௝ଶగ௙௡ି݁(݊)ݔ
∞

௡ୀି∞

                       

ܺ                                                       ,ݎ݋ ൬
ܨ

൰(ܨ)ܺ = ௦ܨ ෍ ܺ௔(ܨ − (௦ܨ݇
∞

௞ୀି∞

               

where ݂ = ி
ிೞ

 is the normalized frequency variable. 

In absence of aliasing, within the fundamental range |ܨ| ≤ ிೞ
ଶ

 , we have 

 

                                                   ܺ ൬
ܨ

൰(ܨ)ܺ = ,  (ܨ)௦ܺ௔ܨ |ܨ| ≤
௦ܨ
2                              

 

Hence the voltage spectrum of the sampled signal is identical to the voltage spectrum of the 
analog signal. As a consequence, the energy density spectrum of the sampled signal is 



                                    ܵ௫௫ ൬
ܨ

ܵ௫௫(ܨ)൰ = ฬܺ ൬
ܨ

൰ฬ(ܨ)ܺ
ଶ

=                           ଶ|(ܨ)௦ଶ|ܺ௔ܨ

The autocorrelation of the sampled signal ݔ(݊) is defined as: 

(݇)௫௫ݎ                                                   = ෍ ݊)ݔ(݊)∗ݔ + ݇)
∞

௡ୀି∞

                                     

its Fourier transform (Wiener-Khintchine theorem): 

                                               ܵ௫௫(݂) = ෍ (݇)௫௫ݎ
∞

௡ୀି∞

݁ି௝ଶగ௞௙                            

Hence the energy density spectrum can be obtained by the Fourier transform of the 
autocorrelation of the sequence {(࢔)࢞} , that is, 

ܵ௫௫(݂) = |ܺ(݂)|ଶ 

                                           = อ ෍ ௝ଶగ௙௡ି݁(݊)ݔ
∞

௡ୀି∞

อ
ଶ

        

 

Estimation of the Autocorrelation and Power Spectrum of Random Signals: 
The Periodogram: 

The finite-energy signals possess a Fourier transform and are characterized in the spectral 
domain by their energy density spectrum. On the other hand, the important class of signals 
characterized as stationary random processes do not have finite energy and hence do not posses a 
Fourier transform. Such signals have finite average power and hence are characterized by a 
power density spectrum. 

If (ݐ)ݔ is a stationary random process, its autocorrelation function is 

 

(߬)௫௫ߛ                                                               = ݐ)ݔ(ݐ)∗ݔ]ܧ + ߬)]                

 

where ܧ[. ]  denotes the statistical average. Then by Wiener-Khintchine theorem, the power 
density spectrum of the stationary random process is the Fourier transform of the autocorrelation 
function: 



                                                       Γ௫௫(ܨ) = න ݐ௫௫(߬)݁ି௝ଶగிఛ݀ߛ
∞

ି∞
                

But we do not know the true autocorrelation function ߛ௫௫(߬) and as a consequence, we cannot 
compute the Fourier transform in (1.13) to obtain  Γ௫௫(ܨ). On the other hand, from a single 
realization of the random process we can compute the time-average autocorrelation function: 

                                                        ܴ௫௫(߬) =
1

2 ଴ܶ
න ݐ)ݔ(ݐ)∗ݔ + ߬)݀߬

బ்

ି బ்

           

where 2 ଴ܶ is the observation interval.  

The Fourier transform of ܴ௫௫(߬) provides an estimate ௫ܲ௫(ܨ) of the power density spectrum, that 
is, 

௫ܲ௫(ܨ) = න ܴ௫௫(߬)݁ି௝ଶగிఛ݀߬
బ்

ି బ்

                                                                     

                                     =
1

2 ଴ܶ
න ቈන ݐ)ݔ(ݐ)∗ݔ + ߬)݀߬

బ்

ି బ்

቉
బ்

ି బ்

݁ି௝ଶగிఛ݀߬                          

=
1

2 ଴ܶ
ቤන ݐ௝ଶగி௧݀ି݁(ݐ)ݔ

బ்

ି బ்

ቤ
ଶ

                                                

The actual power density spectrum is the expected value of (ࡲ)࢞࢞ࡼ in the limit as ࢀ૙ → ∞, 

 Γ௫௫(ܨ) = lim
బ்→∞

]ܧ ௫ܲ௫(ܨ)]                                                                   

                                          = lim
బ்→∞

ܧ ൥
1

2 ଴ܶ
ቤන ݐ௝ଶగி௧݀ି݁(ݐ)ݔ

బ்

ି బ்

ቤ
ଶ

൩                           

The estimate ௫ܲ௫(ܨ) can also be expressed as 

                                     ௫ܲ௫(ܨ) =
1
ܰ
อ෍ ௝ଶగ௙௡ି݁(݊)ݔ
ேିଵ

௡ୀ଴

อ

ଶ

=
1
ܰ

|ܺ(݂)|ଶ               

where ܺ(݂) is the Fourier transform of the finite duration sequence ݔ(݊)  , 0 ≤ ݊ ≤ ܰ − 1.  This 
form of the power density spectrum estimate is called the periodogram. 

 

 



Nonparametric Methods for Power Spectrum Estimation: 
 
The nonparametric methods make no assumption about how the data were generated. 
 
The Bartlett Method: Averaging Periodograms: 
 
It reduces the variance in the periodogram. The ܰ -point sequence is subdivided into ܭ 
nonoverlapping segments, where each segment has length ܯ. This results in the ܭ data segments 
 

(݊)௜ݔ                                  = ݊)ݔ + ݅            ,(ܯ݅ = 0, 1, … ܭ, − 1
݊ = 0, 1, … −ܯ, 1                         

 
For each segment, we compute the periodogram 

              ௫ܲ௫
(௜)(݂) =

1
ܯ
อ෍ ௜(݊)݁ି௝ଶగ௙௡ݔ
ெିଵ

௡ୀ଴

อ

ଶ

 ,       ݅ = 0, 1, … ܭ, − 1              

 
The Bartlett power spectrum estimate obtained by averaging the periodograms for the ܭ 
segments is 

                                     ௫ܲ௫
஻ (݂) =

1
෍ܭ ௫ܲ௫

(௜)(݂)
௄ିଵ

௜ୀ଴

                                      

The mean value: 

]ܧ                                           ௫ܲ௫
஻ (݂)] =

1
]ܧ෍ܭ ௫ܲ௫

(௜)(݂)
௄ିଵ

௜ୀ଴

]                             

                                                                       = ቂܧ ௫ܲ௫
(௜)(݂)ቃ                      

The expected value of single periodogram: 
 

ቂܧ ௫ܲ௫
(௜)(݂)ቃ = ෍ ቆ1 −

|݉|
ܯ ቇ

ெିଵ

௠ୀି(ெିଵ)

                           ௫௫(݉)݁ି௝ଶగ௙௠ߛ

 

                                      =
1
නܯ Γ௫௫(ߙ)

ଵ
ଶ

ିଵଶ

ቆ
sinߨ(݂ − ܯ(ߙ

sinߨ(݂ − (ߙ ቇ
ଶ

             ߙ݀

where 

                                   ஻ܹ(݂) =
1
ܯ ൬

sinܯ݂ߨ
sin݂ߨ ൰

ଶ

                                    

 
is the frequency characteristic of the Bartlett window 
 



(݊)஻ݓ                         = ൝1 −
|݉|
ܯ  ,                |݉| ≤ ܯ − 1  

      ݁ݏ݅ݓݎℎ݁ݐ݋                             , 0
                   

 
The variance of the Bartlett estimate: 
 

]ݎܽݒ  ௫ܲ௫
஻ (݂)] =

1
ଶܭ ෍ݎܽݒ[ ௫ܲ௫

(௜)(݂)
௄ିଵ

௜ୀ଴

]                                                     

 

                                       =
1
ݎܽݒܭ

ቂ ௫ܲ௫
(௜)(݂)ቃ                                           

 
But   

]ݎܽݒ          ௫ܲ௫(݂)] = Γ௫௫ଶ (݂) ቈ1 + ൬
sin ݂ܰߨ2
ܰ sin ൰݂ߨ2

ଶ

቉                           

 
Putting the above value in (2.8), we get 
 

]ݎܽݒ        ௫ܲ௫
஻ (݂)] =

1
ଶܭ Γ௫௫ଶ (݂) ቈ1 + ൬

sin ݂ܰߨ2
ܰ sin ൰݂ߨ2

ଶ

቉                          

 
Therefore, the variance of the Bartlett power spectrum estimate has been reduced by the factor 
 .ܭ
 
 
The Blackman and Tukey Method: Smoothing the Periodogram: 
 
In this method the sample autocorrelation sequence is windowed first and then Fourier 
transformed to yield the estimate of the power spectrum. 
 
The Blackman-Tukey estimate is 
 

                              ௫ܲ௫
஻்(݂) = ෍ ௝ଶగ௙௠ି݁(݉)ݓ(݉)௫௫ݎ

ெିଵ

௠ୀି(ெିଵ)

           

 
where the window function ݓ(݊) has length 2ܯ− 1 and is zero for |݉| ≥   .ܯ
 
The frequency domain equivalent expression: 
 



                            ௫ܲ௫
஻்(݂) = න ௫ܲ௫(ߙ)ܹ(݂ − ߙ݀(ߙ

ଵ/ଶ

ିଵ/ଶ
                      

 
where ௫ܲ௫(݂) is the periodogram. 
 
The expected value of the Blackman-Tukey power spectrum estimate: 
 

]ܧ                          ௫ܲ௫
஻்(݂)] = න ]ܧ ௫ܲ௫(ߙ)]ܹ(݂ − ߙ݀(ߙ

ଵ/ଶ

ିଵ/ଶ
                

 
 
where  

]ܧ                         ௫ܲ௫(ߙ)] = න Γ௫௫(ߠ) ஻ܹ(ߙ − ߠ݀(ߠ
ଵ/ଶ

ିଵ/ଶ
                       

 
and ஻ܹ(݂) is the Fourier transform of the Bartlett window. Substitution of (2.14) into (2.13) 
yields  
 

]ܧ ௫ܲ௫
஻்(݂)] = න න Γ௫௫(ߠ) ஻ܹ(ߙ − (ߠ

ଵ/ଶ

ିଵ/ଶ
ܹ(݂ − ߠ݀ߙ݀(ߙ

ଵ/ଶ

ିଵ/ଶ
                  

 
In time domain we have: 
 

]ܧ             ௫ܲ௫
஻்(݂)] = ෍ (݉)ݓ[(݉)௫௫ݎ]ܧ

ெିଵ

௠ୀି(ெିଵ)

݁ି௝ଶగ௙௠                          

 

                                   = ෍ (݉)ݓ(݉)஻ݓ(݉)௫௫ߛ
ெିଵ

௠ୀି(ெିଵ)

݁ି௝ଶగ௙௠                     

 
where the Bartlett window is, 
 

(݉)஻ݓ                             = ൝1 −
|݉|
ܰ   ,        |݉| < ܰ    
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The variance of the Blackman-Tukey power spectrum estimate is 
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Assuming ܹ (݂) is narrow compared to the true power spectrum Γ௫௫(݂) 
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Parametric Methods for Power Spectrum Estimation: 
 
Parametric methods avoid the problem of spectral leakage and provide better frequency 
resolution than do the nonparametric methods. Parametric methods also eliminate the need for 
window functions.  
 
The Yuke-Walker Method for the AR Model Parameters: 
 
This method is used to estimate the autocorrelation from the data and use the estimates to solve 
for the AR model parameters. 
The autocorrelation estimate is given by 
 

(݉)௫௫ݎ                                   =
1
ܰ ෍ ݊)ݔ(݊)∗ݔ + ݉),            ݉ ≥ 0               

ேି௠ିଵ

௡ୀ଴

 

 
The corresponding power spectrum estimate is 
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where ොܽ௣(݇) are estimates of the AR parameters and 
 

ො௪௣ଶߪ                                       = ෠௣ܧ
௙ = ௫௫(0)ෑ[1ݎ − | ොܽ௞(݇)|ଶ]

௣

௞ୀଵ

                   

 
is the estimated minimum mean-square value for the pth-order predictor. 
 
 



The Burg method for the AR Model Parameters: 
 
Suppose that we are given the data  ݔ(݊), ݊ = 0,1, … ,ܰ − 1. The forward and backward linear 
prediction estimates of order ݉ are given as: 
 

(݊)ොݔ = −෍ܽ௠(݇)ݔ(݊ − ݇)
௠

௞ୀଵ

                

 

݊)ොݔ                                    −݉) = −෍ܽ௠∗ +݊)ݔ(݇) ݇ −݉)
௠

௞ୀଵ

                      

 
and the corresponding forward and backward errors ௠݂(݊) and ݃௠(݊) defined as  
 ௠݂(݊) = −(݊)ݔ (݊)ොݔ  and ݃௠(݊) = ݊)ݔ −݉) − ݊)ොݔ −݉)  where ܽ௠(݇), 0 ≤ ݇ ≤ ݉ − 1,
݉ = 1, 2, … ,  .are prediction coefficients ,݌
 
The least-squares error is 

௠ߝ                                           = ෍ [| ௠݂(݊)|ଶ + |݃௠(݊)|ଶ]
ேିଵ

௡ୀ௠

                       

The power spectrum estimate is 
 

                                ௫ܲ௫
஻௎(݂) =

෠௣ܧ
ห1 + ∑ ⏞ܽ௣ (݇)݁ି௝ଶగ௙௞௣
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where ܧ෠௣ is the total least-squares error. 
 
 
Advantages of the Burg method: 

 results in high frequency resolution 
 yields a stable AR model 
 computationally efficient 

 
Disadvantages of the Burg method: 

 exhibits spectral line splitting at high signal-to-noise ratios 
 exhibits a sensitivity to the initial phase of sinusoid for sinusoidal signals in noise 

resulting in a phase-dependent frequency bias. 
 
 



The MA Model for Power Spectrum Estimation : 
 
The parameters of MA model are related to the statistical autocorrelation ߛ௫௫(݉) by 
 

(݉)௫௫ߛ                       =

⎩
⎪
⎨

⎪
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However, 
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where coefficients {݀௠} are related to the MA parameters by the expression 
 

                                      ݀௠ = ෍ ܾ௞ܾ௞ା௠ ,              |݉| ≤                  ݍ
௤ି|௠|

௞ୀ଴

 

 
Clearly, then, 

(݉)௫௫ߛ                                      = ൜ ௪ߪ
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0 ,                       |݉| >                     ݍ

 
and the power spectrum for MA process is 
 

                                   Γ௫௫ெ஺(݂) = ෍ ௫௫(݉)݁ି௝ଶగ௙௡ߛ
௤

௠ୀି௤

                           

 
It is apparent from these expressions that we do not have to solve for the MA parameters {ܾ௞} 
to estimate the power spectrum. The estimates of the autocorrelation ߛ௫௫(݉) for |݉| ≤  .suffice ݍ
From such estimates we compute the estimated MA power spectrum , given as 
 

                                P௫௫ெ஺(݂) = ෍ ௫௫(݉)݁ି௝ଶగ௙௠ݎ
௤

௠ୀି௤

                           

 
 
 
 



The ARMA Model for Power Spectrum Estimation : 
 
An ARMA model provides us with an opportunity to improve on the AR spectrum estimate by 
using few model parameters. The ARMA model is particularly appropriate when the signal has 
been corrupted by noise.  
 
The sequence ݔ(݊) can be filtered by an FIR filter to yield the sequence 
 

(݊)ݒ                             = (݊)ݔ + ෍ ොܽ௞ݔ(݊ − ݇)
௣

௞ୀଵ

 ,                    ݊ = 0, 1, … ,ܰ − 1         

 
The filtered sequence ݒ(݊)  for ݌ ≤ ݊ ≤ ܰ − 1  is used to form the estimated correlation 
sequences ݎ௩௩(݉) , from which we obtain the MA spectrum 
 

                                     P௩௩ெ஺(݂) = ෍ ௩௩(݉)݁ି௝ଶగ௙௠ݎ
௤

௠ୀି௤

                                      

 
Finally, the estimated ARMA power spectrum  is 
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Module 4.  
Adaptive Signal Processing 



ADAPTIVE NOISE CANCELLATION 
In speech communication from a noisy acoustic environment such as a moving car or train, 
or over a noisy telephone channel, the speech signal is observed in an additive random noise. 

In signal measurement systems the information-bearing signal is often contaminated by noise 
from its surrounding environment. The noisy observation, y(m), can be modelled as 
y(m) = x(m)+n(m) 
where x(m) and n(m) are the signal and the noise, and m is the discrete-time index. In 
some situations, for example when using a mobile telephone in a moving car, or when using 
a radio communication device in an aircraft cockpit, it may be possible to measure and 
estimate the instantaneous amplitude of the ambient noise using a directional microphone. 
The signal, x(m), may then be recovered by subtraction of an estimate of the noise from the 
noisy signal. 

 
(Configuration of a two-microphone adaptive noise canceller.) 

 
Figure  shows a two-input adaptive noise cancellation system for enhancement of noisy speech. 
In this system a directional microphone takes as input the noisy signal x(m)+n(m), and a second 
directional microphone, positioned some distance away, measures the noise αn(m+ζ). The 
attenuation factor α and the time delay ζ provide a rather over-simplified model of the effects of 
propagation of the noise to different positions in the space where the microphones are placed. 
The noise from the second microphone is processed by an adaptive digital filter to make it equal 
to the noise contaminating the speech signal, and then subtracted from the noisy signal to cancel 
out the noise. The adaptive noise canceller is more effective in cancelling out the low-frequency 
part of the noise, but generally suffers from the non-stationary character of the signals, and from 
the over-simplified assumption that a linear filter can model the diffusion and propagation of the 
noise sound in the space. 
 



ADAPTIVE NOISE REDUCTION 
In many applications, for example at the receiver of a telecommunication system, there is no 
access to the instantaneous value of the contaminating noise, and only the noisy signal is 
available. In such cases the noise cannot be cancelled out, but it may be reduced, in an average 
sense, using the statistics of the signal and the noise process.  

 
A frequency-domain Wiener filter for reducing additive noise 

 
Figure  shows a bank of Wiener filters for reducing additive noise when only the noisy signal is 
available. The filter bank coefficients attenuate each noisy signal frequency in inverse proportion 
to 
the signal-to-noise ratio at that frequency. The Wiener filter bank coefficients, are calculated 
from estimates of the power spectra of the signal and the noise processes. 
BLIND CHANNEL EQUALISATION 
Channel equalisation is the recovery of a signal distorted in transmission through a 
communication channel with a nonflat magnitude or a nonlinear phase response. When the 
channel response is unknown, the process of signal recovery is called ‘blind equalisation’. Blind 
equalisation has a wide range of applications, for example in digital telecommunications for 
removal of inter-symbol interference due to nonideal channel and multipath propagation, in 
speech recognition for removal of the effects of the microphones and communication channels, 
in correction of distorted images, in analysis of seismic data and in de-reverberation of acoustic 
gramophone recordings. In practice, blind equalisation is feasible only if some useful statistics of 
the channel input are available. The success of a blind equalisation method depends on how 
much is known about the characteristics of the input signal and how useful this knowledge can 



be in the channel identification and equalisation process. Figure 1.6 illustrates the configuration 
of a decision-directed equaliser. This blind channel equaliser is composed of two distinct 
sections: an adaptive equaliser that removes a large part of the channel distortion, followed by a 
nonlinear decision device for an improved estimate of the channel input. The output of the 
decision device is the final estimate of the channel input, and it is used as the desired signal to 
direct the equaliser adaptation process. 

 
Configuration of a decision-directed blind channel equaliser. 

Adaptive Linear Combiner 

Adaptive linear combiner showing the combiner and the adaption process. k = sample number, 
n=input variable index, x = reference inputs, d = desired input, W = set of filter coefficients, ε = 
error output, Σ = summation, upper box=linear combiner, lower box=adaption algorithm. 

 
Adaptive linear combiner, compact representation. k = sample number, n=input variable 
index, x = reference inputs, d = desired input, ε = error output, Σ = summation. 

The adaptive linear combiner (ALC) resembles the adaptive tapped delay line FIR filter except 
that there is no assumed relationship between the X values. If the X values were from the outputs 
of a tapped delay line, then the combination of tapped delay line and ALC would comprise an 
adaptive filter. However, the X values could be the values of an array of pixels. Or they could be 
the outputs of multiple tapped delay lines. The ALC finds use as an adaptive beam former for 
arrays of hydrophones or antennas. 



 
where refers to the 'th weight at k'th time. 

LMS algorithm 

Main article: Least mean squares filter 

If the variable filter has a tapped delay line FIR structure, then the LMS update algorithm is 
especially simple. Typically, after each sample, the coefficients of the FIR filter are adjusted as 
follows:[5](Widrow) 

for  

 
μ is called the convergence factor. 

The LMS algorithm does not require that the X values have any particular relationship; therefor 
it can be used to adapt a linear combiner as well as an FIR filter. In this case the update formula 
is written as: 

 

The effect of the LMS algorithm is at each time, k, to make a small change in each weight. The 
direction of the change is such that it would decrease the error if it had been applied at time k. 
The magnitude of the change in each weight depends on μ, the associated X value and the error 
at time k. The weights making the largest contribution to the output, , are changed the most. If 
the error is zero, then there should be no change in the weights. If the associated value of X is 
zero, then changing the weight makes no difference, so it is not changed. 

Convergence 

μ controls how fast and how well the algorithm converges to the optimum filter coefficients. If μ 
is too large, the algorithm will not converge. If μ is too small the algorithm converges slowly and 
may not be able to track changing conditions. If μ is large but not too large to prevent 
convergence, the algorithm reaches steady state rapidly but continuously overshoots the optimum 
weight vector. Sometimes, μ is made large at first for rapid convergence and then decreased to 
minimize overshoot. 

Widrow and Stearns state in 1985 that they have no knowledge of a proof that the LMS 
algorithm will converge in all cases.  



However under certain assumptions about stationarity and independence it can be shown that the 
algorithm will converge if 

 
where  

= sum of all input power 
is the RMS value of the 'th input 

In the case of the tapped delay line filter, each input has the same RMS value because they are 
simply the same values delayed. In this case the total power is 

 
where  

is the RMS value of , the input stream.  

This leads to a normalized LMS algorithm: 

in which case the convergence criteria becomes: 
. 

Least mean squares filter 

Least mean squares (LMS) algorithms are a class of adaptive filter used to mimic a desired 
filter by finding the filter coefficients that relate to producing the least mean squares of the error 
signal (difference between the desired and the actual signal). It is a stochastic gradient descent 
method in that the filter is only adapted based on the error at the current time. It was invented in 
1960 by Stanford University professor Bernard Widrow and his first Ph.D. student, Ted Hoff. 



Problem formulation 

 

Relationship to the least mean squares filter 

The realization of the causal Wiener filter looks a lot like the solution to the least squares 
estimate, except in the signal processing domain. The least squares solution, for input matrix 
and output vector is 

 

The FIR least mean squares filter is related to the Wiener filter, but minimizing the error 
criterion of the former does not rely on cross-correlations or auto-correlations. Its solution 
converges to the Wiener filter solution. Most linear adaptive filtering problems can be 

formulated using the block diagram above. That is, an unknown system is to be identified 

and the adaptive filter attempts to adapt the filter to make it as close as possible to , 

while using only observable signals , and ; but , and are not 
directly observable. Its solution is closely related to the Wiener filter. 

Definition of symbols 

is the number of the current input sample 

is the number of filter taps 

(Hermitian transpose or conjugate transpose) 

 



 

 

 

estimated filter; interpret as the estimation of the filter coefficients after n samples 

 

Idea 

The basic idea behind LMS filter is to approach the optimum filter weights , by 
updating the filter weights in a manner to converge to the optimum filter weight. The algorithm 
starts by assuming a small weights (zero in most cases), and at each step, by finding the gradient 
of the mean square error, the weights are updated. That is, if the MSE-gradient is positive, it 
implies, the error would keep increasing positively, if the same weight is used for further 
iterations, which means we need to reduce the weights. In the same way, if the gradient is 
negative, we need to increase the weights. So, the basic weight update equation is : 

, 

where represents the mean-square error. The negative sign indicates that, we need to change 
the weights in a direction opposite to that of the gradient slope. 

The mean-square error, as a function of filter weights is a quadratic function which means it has 
only one extrema, that minimises the mean-square error, which is the optimal weight. The LMS 
thus, approaches towards this optimal weights by ascending/descending down the mean-square-
error vs filter weight curve. 

Derivation 

The idea behind LMS filters is to use steepest descent to find filter weights which 
minimize a cost function. We start by defining the cost function as 

 

where is the error at the current sample n and denotes the expected value. 



This cost function ( ) is the mean square error, and it is minimized by the LMS. This is 
where the LMS gets its name. Applying steepest descent means to take the partial derivatives 
with respect to the individual entries of the filter coefficient (weight) vector 

 

where is the gradient operator 

 

 

Now, is a vector which points towards the steepest ascent of the cost function. To find 

the minimum of the cost function we need to take a step in the opposite direction of . 
To express that in mathematical terms 

 

where is the step size(adaptation constant). That means we have found a sequential update 
algorithm which minimizes the cost function. Unfortunately, this algorithm is not realizable until 

we know . 

Generally, the expectation above is not computed. Instead, to run the LMS in an online (updating 
after each new sample is received) environment, we use an instantaneous estimate of that 
expectation. See below. 

Simplifications 

For most systems the expectation function must be approximated. This can 
be done with the following unbiased estimator 

 

where indicates the number of samples we use for that estimate. The simplest case is  

 



For that simple case the update algorithm follows as 

 

Indeed this constitutes the update algorithm for the LMS filter. 

LMS algorithm summary 

The LMS algorithm for a th order algorithm can be summarized as 

Parameters: filter order 

 
step size 

Initialisation: 
 

Computation: For  

  

  

  

Convergence and stability in the mean 

As the LMS algorithm does not use the exact values of the expectations, the weights would never 
reach the optimal weights in the absolute sense, but a convergence is possible in mean. That is, 
even though the weights may change by small amounts, it changes about the optimal weights. 
However, if the variance with which the weights change, is large, convergence in mean would be 
misleading. This problem may occur, if the value of step-size is not chosen properly. 

If is chosen to be large, the amount with which the weights change depends heavily on the 
gradient estimate, and so the weights may change by a large value so that gradient which was 
negative at the first instant may now become positive. And at the second instant, the weight may 
change in the opposite direction by a large amount because of the negative gradient and would 
thus keep oscillating with a large variance about the optimal weights. On the other hand if is 
chosen to be too small, time to converge to the optimal weights will be too large. 

Thus, an upper bound on is needed which is given as  



where is the greatest eigenvalue of the autocorrelation matrix . 

If this condition is not fulfilled, the algorithm becomes unstable and diverges. 

Maximum convergence speed is achieved when 

 

where is the smallest eigenvalue of R. Given that is less than or equal to this optimum, 
the convergence speed is determined by , with a larger value yielding faster convergence. 
This means that faster convergence can be achieved when is close to , that is, the 
maximum achievable convergence speed depends on the eigenvalue spread of . 

A white noise signal has autocorrelation matrix where is the variance of the 
signal. In this case all eigenvalues are equal, and the eigenvalue spread is the minimum over all 
possible matrices. The common interpretation of this result is therefore that the LMS converges 
quickly for white input signals, and slowly for colored input signals, such as processes with low-
pass or high-pass characteristics. 

It is important to note that the above upperbound on only enforces stability in the mean, but the 

coefficients of can still grow infinitely large, i.e. divergence of the coefficients is still 
possible. A more practical bound is 

 

where denotes the trace of . This bound guarantees that the coefficients of do not 
diverge (in practice, the value of should not be chosen close to this upper bound, since it is 
somewhat optimistic due to approximations and assumptions made in the derivation of the 
bound). 

Normalised least mean squares filter (NLMS) 

The main drawback of the "pure" LMS algorithm is that it is sensitive to the scaling of its input 

. This makes it very hard (if not impossible) to choose a learning rate that guarantees 
stability of the algorithm (Haykin 2002). The Normalised least mean squares filter (NLMS) is a 
variant of the LMS algorithm that solves this problem by normalising with the power of the 
input. The NLMS algorithm can be summarised as: 



Parameters: filter order 

 
step size 

Initialization: 
 

Computation: For  

  

  

 
 

Optimal learning rate 

It can be shown that if there is no interference ( ), then the optimal learning rate for 
the NLMS algorithm is 

 

and is independent of the input and the real (unknown) impulse response . In the 

general case with interference ( ), the optimal learning rate is 

 

The results above assume that the signals and are uncorrelated to each other, which is 
generally the case in practice. 

Proof 

Let the filter misalignment be defined as , we can derive the 
expected misalignment for the next sample as: 



 

 

Let and  

 

Assuming independence, we have: 

 

The optimal learning rate is found at , which leads to: 

 

 

Wiener filter 

In signal processing, the Wiener filter is a filter used to produce an estimate of a desired or 
target random process by linear time-invariant filtering of an observed noisy process, assuming 
known stationary signal and noise spectra, and additive noise. The Wiener filter minimizes the 
mean square error between the estimated random process and the desired process.. 



Description 

The goal of the Wiener filter is to compute a statistical estimate of an unknown signal using a 
related signal as an input and filtering that known signal to produce the estimate as an output. For 
example, the known signal might consist of an unknown signal of interest that has been 
corrupted by additive noise. The Wiener filter can be used to filter out the noise from the 
corrupted signal to provide an estimate of the underlying signal of interest. The Wiener filter is 
based on a statistical approach, and a more statistical account of the theory is given in the 
minimum mean-square error (MMSE) article. 

Typical deterministic filters are designed for a desired frequency response. However, the design 
of the Wiener filter takes a different approach. One is assumed to have knowledge of the spectral 
properties of the original signal and the noise, and one seeks the linear time-invariant filter 
whose output would come as close to the original signal as possible. Wiener filters are 
characterized by the following:[1] 

1. Assumption: signal and (additive) noise are stationary linear stochastic processes with 
known spectral characteristics or known autocorrelation and cross-correlation 

2. Requirement: the filter must be physically realizable/causal (this requirement can be 
dropped, resulting in a non-causal solution) 

3. Performance criterion: minimum mean-square error (MMSE) 

This filter is frequently used in the process of deconvolution; for this application, see Wiener 
deconvolution. 

Wiener filter solutions 

The Wiener filter problem has solutions for three possible cases: one where a noncausal filter is 
acceptable (requiring an infinite amount of both past and future data), the case where a causal 
filter is desired (using an infinite amount of past data), and the finite impulse response (FIR) case 
where a finite amount of past data is used. The first case is simple to solve but is not suited for 
real-time applications. Wiener's main accomplishment was solving the case where the causality 
requirement is in effect, and in an appendix of Wiener's book Levinson gave the FIR solution. 

Noncausal solution 

 

Where are spectra. Provided that is optimal, then the minimum mean-square error 
equation reduces to 



 

and the solution is the inverse two-sided Laplace transform of . 

Causal solution 

 

where 

 consists of the causal part of (that is, that part of this fraction having a 
positive time solution under the inverse Laplace transform) 

 is the causal component of (i.e., the inverse Laplace transform of is 
non-zero only for ) 

 is the anti-causal component of (i.e., the inverse Laplace transform of 

is non-zero only for ) 

This general formula is complicated and deserves a more detailed explanation. To write down 

the solution in a specific case, one should follow these steps:[2] 

1. Start with the spectrum in rational form and factor it into causal and anti-causal 
components:  

 

where contains all the zeros and poles in the left half plane (LHP) and contains the zeroes 
and poles in the right half plane (RHP). This is called the Wiener–Hopf factorization. 

2. Divide by and write out the result as a partial fraction expansion. 
3. Select only those terms in this expansion having poles in the LHP. Call these terms 

. 

4. Divide by . The result is the desired filter transfer function . 

Finite impulse response Wiener filter for discrete series 



 

Block diagram view of the FIR Wiener filter for discrete series. An input signal w[n] is 
convolved with the Wiener filter g[n] and the result is compared to a reference signal s[n] to 
obtain the filtering error e[n]. 

The causal finite impulse response (FIR) Wiener filter, instead of using some given data matrix 
X and output vector Y, finds optimal tap weights by using the statistics of the input and output 
signals. It populates the input matrix X with estimates of the auto-correlation of the input signal 
(T) and populates the output vector Y with estimates of the cross-correlation between the output 
and input signals (V). 

In order to derive the coefficients of the Wiener filter, consider the signal w[n] being fed to a 
Wiener filter of order N and with coefficients , . The output of the filter 
is denoted x[n] which is given by the expression 

 

The residual error is denoted e[n] and is defined as e[n] = x[n] − s[n] (see the corresponding 
block diagram). The Wiener filter is designed so as to minimize the mean square error (MMSE 
criteria) which can be stated concisely as follows: 

 

where denotes the expectation operator. In the general case, the coefficients may be 
complex and may be derived for the case where w[n] and s[n] are complex as well. With a 
complex signal, the matrix to be solved is a Hermitian Toeplitz matrix, rather than symmetric 
Toeplitz matrix. For simplicity, the following considers only the case where all these quantities 
are real. The mean square error (MSE) may be rewritten as: 

 



To find the vector which minimizes the expression above, calculate its derivative 
with respect to  

Assuming that w[n] and s[n] are each stationary and jointly stationary, the sequences 
and known respectively as the autocorrelation of w[n] and the cross-correlation 
between w[n] and s[n] can be defined as follows: 

 

The derivative of the MSE may therefore be rewritten as (notice that ) 

 

Letting the derivative be equal to zero results in 

 

which can be rewritten in matrix form 

 

These equations are known as the Wiener–Hopf equations. The matrix T appearing in the 
equation is a symmetric Toeplitz matrix. Under suitable conditions on , these matrices are 
known to be positive definite and therefore non-singular yielding a unique solution to the 
determination of the Wiener filter coefficient vector, . Furthermore, there exists an 
efficient algorithm to solve such Wiener–Hopf equations known as the Levinson-Durbin 
algorithm so an explicit inversion of is not required. 



Relationship to the least squares filter 

The realization of the causal Wiener filter looks a lot like the solution to the least squares 
estimate, except in the signal processing domain. The least squares solution, for input matrix 
and output vector is 

 

The FIR Wiener filter is related to the least mean squares filter, but minimizing the error 
criterion of the latter does not rely on cross-correlations or auto-correlations. Its solution 
converges to the Wiener filter solution. 

Recursive least squares filter 

The Recursive least squares (RLS) adaptive is an algorithm which recursively finds the filter 
coefficients that minimize a weighted linear least squares cost function relating to the input 
signals. This is in contrast to other algorithms such as the least mean squares (LMS) that aim to 
reduce the mean square error. In the derivation of the RLS, the input signals are considered 
deterministic, while for the LMS and similar algorithm they are considered stochastic. Compared 
to most of its competitors, the RLS exhibits extremely fast convergence. However, this benefit 
comes at the cost of high computational complexity. 

Motivation 

RLS was discovered by Gauss but lay unused or ignored until 1950 when Plackett rediscovered 
the original work of Gauss from 1821. In general, the RLS can be used to solve any problem that 
can be solved by adaptive filters. For example, suppose that a signal d(n) is transmitted over an 
echoey, noisy channel that causes it to be received as 

 

where represents additive noise. We will attempt to recover the desired signal by use 
of a -tap FIR filter, : 

 



where is the vector containing the 

most recent samples of . Our goal is to estimate the parameters of the filter , and at each 
time n we refer to the new least squares estimate by . As time evolves, we would like to 
avoid completely redoing the least squares algorithm to find the new estimate for , in 
terms of . 

The benefit of the RLS algorithm is that there is no need to invert matrices, thereby saving 
computational power. Another advantage is that it provides intuition behind such results as the 
Kalman filter. 

Discussion 

The idea behind RLS filters is to minimize a cost function by appropriately selecting the filter 

coefficients , updating the filter as new data arrives. The error signal and desired signal 

are defined in the negative feedback diagram below: 

 

The error implicitly depends on the filter coefficients through the estimate : 

 

The weighted least squares error function —the cost function we desire to minimize—being a 
function of e(n) is therefore also dependent on the filter coefficients: 

 

where is the "forgetting factor" which gives exponentially less weight to older error 
samples. 



The cost function is minimized by taking the partial derivatives for all entries of the coefficient 
vector and setting the results to zero 

Next, replace with the definition of the error signal 

 

Rearranging the equation yields 

 

This form can be expressed in terms of matrices 

 

where is the weighted sample covariance matrix for , and is the equivalent 

estimate for the cross-covariance between and . Based on this expression we find the 
coefficients which minimize the cost function as 

 

This is the main result of the discussion. 

Choosing  

The smaller is, the smaller contribution of previous samples. This makes the filter more 
sensitive to recent samples, which means more fluctuations in the filter co-efficients. The 
case is referred to as the growing window RLS algorithm. In practice, is usually chosen 
between 0.98 and 1.  

Recursive algorithm 

The discussion resulted in a single equation to determine a coefficient vector which minimizes 
the cost function. In this section we want to derive a recursive solution of the form 



 

where is a correction factor at time . We start the derivation of the recursive 

algorithm by expressing the cross covariance in terms of  

 

 

 
 

  

where is the dimensional data vector 

 

Similarly we express in terms of by 

 

 

  

In order to generate the coefficient vector we are interested in the inverse of the deterministic 
auto-covariance matrix. For that task the Woodbury matrix identity comes in handy. With 

 
is -by-  

 
is -by-1 

 is 1-by-  

 

is the 1-by-1 identity matrix 

The Woodbury matrix identity follows 



 

 

 

 
 

 

   

   

To come in line with the standard literature, we define 

 

 

  

where the gain vector is 

 

 

  

Before we move on, it is necessary to bring into another form 

 
 

  

Subtracting the second term on the left side yields 

 

 

  

With the recursive definition of the desired form follows 

 



Now we are ready to complete the recursion. As discussed 

 

 

  

The second step follows from the recursive definition of . Next we incorporate the 

recursive definition of together with the alternate form of and get 

 

  

With we arrive at the update equation 

 

 

  

where is the a priori error. Compare this with the a posteriori 
error; the error calculated after the filter is updated: 

 

That means we found the correction factor 

 

This intuitively satisfying result indicates that the correction factor is directly proportional to 
both the error and the gain vector, which controls how much sensitivity is desired, through the 
weighting factor, . 

RLS algorithm summary 

The RLS algorithm for a p-th order RLS filter can be summarized as 



Parameters: filter order 

 
forgetting factor 

 
value to initialize  

Initialization: , 

 
, 

  

 
where is the identity matrix of rank  

Computation: For  

 

 

  

  

  

 
. 

Note that the recursion for follows an Algebraic Riccati equation and thus draws parallels to 
the Kalman filter.  

Lattice recursive least squares filter (LRLS) 

The Lattice Recursive Least Squares adaptive filter is related to the standard RLS except that it 
requires fewer arithmetic operations (order N). It offers additional advantages over conventional 
LMS algorithms such as faster convergence rates, modular structure, and insensitivity to 
variations in eigenvalue spread of the input correlation matrix. The LRLS algorithm described is 
based on a posteriori errors and includes the normalized form. The derivation is similar to the 



standard RLS algorithm and is based on the definition of . In the forward prediction case, 

we have with the input signal as the most up to date sample. The 

backward prediction case is , where i is the index of the sample in the 

past we want to predict, and the input signal is the most recent sample.  

Parameter Summary 

is the forward reflection coefficient 

is the backward reflection coefficient 

represents the instantaneous a posteriori forward prediction error 

represents the instantaneous a posteriori backward prediction error 

is the minimum least-squares backward prediction error 

is the minimum least-squares forward prediction error 

is a conversion factor between a priori and a posteriori errors 

are the feedforward multiplier coefficients. 

is a small positive constant that can be 0.01 

LRLS Algorithm Summary 

The algorithm for a LRLS filter can be summarized as 

Initialization: 

 
For i = 0,1,...,N 

 
  (if x(k) = 0 for k < 0) 

 
  

 
  



 
  

 
End 

Computation: 
 

 
For k ≥ 0 

 
  

 
  

 
  

 
  

 
 For i = 0,1,...,N 

   

   

   

   

 
  

 
  

 
  



 
  

 
 Feedforward Filtering 

   

   

 
  

 
 End 

 
End 

Normalized lattice recursive least squares filter (NLRLS) 

The normalized form of the LRLS has fewer recursions and variables. It can be calculated by 
applying a normalization to the internal variables of the algorithm which will keep their 
magnitude bounded by one. This is generally not used in real-time applications because of the 
number of division and square-root operations which comes with a high computational load. 

NLRLS algorithm summary 

The algorithm for a NLRLS filter can be summarized as 

Initializatio
n: 

 
For i = 0,1,...,N 

 
  (if x(k) = d(k) = 0 for k < 0) 

 
  

 
  



 
End 

 
  

Computatio
n:  

 
For k ≥ 0 

 
  (Input signal energy) 

 
  (Reference signal energy) 

   

   

 
 For i = 0,1,...,N 

 

 

   

   

 
 Feedforward Filter 

 

 

  



 
 End 

 
End 

 

 
 


