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Introduction to Signat

Whatis a Signal?

1 A signal is formally defined as a function of one or more variables that conveys
information on the nature of a physical phenomenon.

1 When the function depends on a single variable,sigaal is said to be one
dimensional. E.g.; Speech signal (Amplitude varies with respect to time)

1 When the function depends on two or more variables, the signal is said to be
multidimensional. E.g.; Imagé 2D (Horizontal & vertical coordinates of the
images are two dimensional)

What is a Systerfd

1 A system is formally defined as an entity that manipulates one or more signals to
accomplish a function, thereby yielding new signals.

i/p signal——| System ——  o/psignal

e.g.; In a communication system the input signal could be a speech signal or
computer data. The system itself is made up of the combination of a transmitter,
channel and a receiver. The output signal is an estimate of the information
contan in the original message.

Message signr™ ) Transmitted sign Received § ) Estimate of message
Transmitte Channel Receiver

signal— | — >

The examples of other systems are control systems, biomedical signal processing
system, audio system, remote sensing system, microelectro mechanical system etc.

General signal characteristics

(@) Multichannel & multidimensional signals:
1 A signal isdescribed by a function of one or more independent variables.
1 The value of the function (dependent variable) camdal valued scalar quantity,
a complex valued quantity or perhaps a vector.
Real valued signay (A)=A si n3 t
Complex valued signab(A) =Ae’ > =A c osj3Asti n3 "t
1 In some applications, signals are generated by multiple sources or multiple
sensors. Such signals can be represented in vector form and we refer such a
vector of signal as a multichannel signal.

E.g.; In electrocardiogrdnyy, 3lead & 12lead electrocardiograms (ECG) are
often used, which result inéannel & 12channel signals.

One dimensionallf the signal is a function of a single

independent varlde, the signal is called-ID signal. Amp

e.g.; Speech signal

Time



Multidimensional signalSignalscan be functions
of more than onevariable, e.g.,imagesignals (2D),
Colour image (3D), etc.

Classification of signals

Broadly we classify signals as:

1. Continuoustime signal: A signal x(t), is
said to becontinuoustime signal if it is
defined for all time,t wheret is a |
realvaluedvariable denotingtime tA
Ex: x(t) = €3'u(t)

Discrete-time signal A signal x(n), is said

to bediscretetime signalif it is defined only il | e

at discrete instant dfime, where n is an b
integervaluedvariable denoting thediscrete

samplesof time. We use square brekets[:] to

denote adiscretetime signal. I
Ex: x[n] = €3"u[n]

2. Even and odd signal

A continuoustime signal x(t) is even, if x(—t) = x(t)
and it is odd if x(—t) = —x(t).
A disaetetime signalx[n] is even if X{—n] = x[n]
and B odd if X—n] = —x[n|.
Example 1: x(t) = t? — 40is even.

Example 2: x(t) = 0.1t3is odd.
Example 3: x(t) = € is neither even nor odd.

J 17
| ! ’/
] o
| S| S

0
R T )

(@) (b) (c)

Figure: lllustrationsof odd and even functions. (a) Even; (b) Odd; (c) Neither.
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DeconpositionTheorem
Every continuoustime signal x(t) can be expres®d as:
Xt)=wo +qQ o
where w O is even,and & O is odd.
WO +w 0O
2

0o« O
2

wWo =
and

aom=
3. Periodic & nonperiodic signals

A continuous timesignal x(t) is periodic if there is a constant T > 0, suchthat
X(t) = x(t+ T), for allt
A disaete timesignal x[n| is periodic if there is an integer constantN > 0, suchthat

X[n] =x[n+ N], foralln

Signalsdo not satisfy the periodicity conditions are called non-periodic signals.
Note: The smallest value @f(N) that satisfies the above equations is called fundamental period

Example Determine the fundamal period of the following signals:
(a) ei3' t/5
(b) ei3’ n/5
Solution:
(@) Letx(t) = &% Y5, If x(t) is a periodic signal, then thereexistsT > 0
such that x(t) = x(t+ T). Therefore,

X(t) = x(t+T)

I3US _ i3T5

e

3" TI5
1=¢
j2k’ j3°T/s
e — e

10
T=2 k=1

(b) L etx[n] =& ™5 If x[n] is a periodic signal, then there existsan integerN > 0
such that x[n] = x{n + N]. So,

XN =xn+ N]

j¥nm _ i3 (eN)/S

e
1 ol 37N/S
ei2k,:e1'3'N/5

T=10 (k=3)



4. Energysignalsand power signals

In electrical systems,a signal may representa voltage or a current. Consider a voltage
v(t)developedacross a resistor R, producing a current i(t). The instantaneous power
dissipaedin this resistoris defined by

Define thetotalenergyof thecontinuoustime signd x(t) as

2
O= lim o O
Y .y
H
= lim o O
O H Ho
and itstime-averagedor average,power as
3 1 Y2
0= lim = o O
PHY oy,

From aboveequation we readily seethat the time-averaged power of a periodic signal
X(t) of fundamental period T is given by

The squareroot of the average power P is called the root meansquare(rms) value of the
periodic signal x(t).

Inthe caseof a discretetime signal x[n], the integrals inabove equationare replaced by
corresponding sums. Thus, thetotal energyof X[ n] is defined by
H

0= GPlE]

andits averagepower is defined by

0 = lim
£0 Hb

=

20 +

A signal is referred to an energy signal if and only if the total energy is finite .i.e.,
0O < E < D

A signal is referred to an power signal if and only if the average power is.fiaite
0O < P < b

Note Energy signal has zero time average power and power signal has infinite energy.



Example x(n) = (- 0.5)"u[n]

Solution:

' 218 : 1 4

O= B2 w0f[e] = B{2(0.25° = o = 3 <P

> 1 ob aoreq o L. L ‘

0 = limgop =B § 6P[8] =limgo =7 BE-00.25° = =B ,025° =0

We gotpower zero and finitenergy. Hence it is an energy signal

5. Deterministicsignalsand random signals:

The deterministic signal is a signal about which there is no uncertainty with respect to
its valueat any time. The deterministic signals may be modeled as completely specified
function of time.

Example: x(t) =cos( 2 " t )

A random signal is a signal about which there is uncertainty before it occurs.
Example: The electrical noise generated in the amplifier of a radio or television
receiver.

Basic Operations of Signals

Operation performed on independent vaegab

Time Shift
For any t,and n,, time shift is an operation definedas
X(t) X(t-t,)
X[n] X[n n].
If t,> 0, the time shift is known asfi dag b If t; < 0, the time shift is known
asi av@nceo.
Example.n Fig.given below, the left image shows a continuoustime signal
X(t). A time- shifted versionx(t — 2) is shown in the right image.

~V

Figure: An example oftime shift.

Time Reversal

Time reversalis definedas x(t) x(—t)
x[n] X[—n],

which can be interpretedasthe i f lovergghey-a X i s O .



Example

Figure An exampleof time reversal.

Time Scaling

Time scalingis the operation wherehe time variable t is multiplied by a constat a:
X(t) X(at), a=>0

If a > 1, the time scale othe resultant signalis fidecinatedd péesup).

fOo<a<]l,
the time scaleof the resultant signalis fiexpanded (slowed down).

x(2t)

N

t 4.2|024

Figure : An example oftime scaling.

Decimationand Expansion

Decimation andexpansionare standardliscretetime signalprocessingoperations.

Decimationis definedas
Vpl[n] = x/Mn], for someintegersM

Where, M is the decimationfactor.

Expansionis defined as

X[ %] , N = integer multiple of L

ye[n] =
0, otherwis.

Where,L is the expansionfactor.
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Figure 1.8: Examples ofdecimationand expansiorfor M = 2
and L =2.

Combination of Operations
Generally linear operation (in time) on a signalx(t) canbe expresseas

y(t)= x(at-b). The recommended method is AShift

Example The signal x(t) shown in Figureof sketch x(3t — 5).

Figure: An exampleof Shift, then Scale

Operation performed on dependent variable

Amplitude scaling
Let x(t) denote a continuous time signal
By amplitude scaling, we get y(t) = cx(t)
Where c is the scaling factor.
Example: An electronic amplifier, a device that performs amplitude scaling.
For discrete time signadn/ = cx/n]
Amplitude addition
Let x;(t) andxx(t) is a pair of continuous time signal
By adding these two signals, we ggt) = x 1(1) + x2(t)
Example: An audio mixture

For discrete time signayy/n] = x i1/n] + x z[n]



Amplitude multiplication:
Let x1(t) andxx(t) is a pair of continuous time signal
By multiplying these two signals, we ggft) = x 1(t) xz(t)
Example: An AM radio signal, in which
X1(t) is an audio signal
X2(t) is ansinusoidal carrier wave
For discrete time signal, y[n] =pa] x2[Nn]
Differentiation:

Q .,
1Y 5 &
Example: Voltage across an inductoAL v(?) % )

Integration:

Y= ib(b’r Of
1 0

Example: Voltage across a capacitohQ/) ==~ "Qf ‘O

(o]

Elementary Signals

Severaklementarysignalsfeature prominentlyin the study of signalsand systemsThese are
exponential and sinusoidal signals,the step function, the impulse function, andthe ramp
function, all of which serveasbuilding blocksfor the constructionof more complexsignals

Exponential Signals

A realexponentialsignal,in its mostgeneralform, is written as
x(t) = Be",

whereboth B and a are real parametersThe parameteB is the amplitudeof the exponential
signalmeasuredat time t = 0. Dependingon whetherthe other parametera is positive or

negativeywe mayidentify two speciakases:

=] 6
s} - 1 sl |
4F ] aF
<] ¢ - 1 3t
p-q ] 2L
1} s | | 1l
03 2 oo 1 2 3 %2 -1 o 1
Fig: Growing exponential,for a > 0 Decayingexponentialfora < 0

In discrete time, its commonpracticeto write a real exponentialsignalasx[n] = Br"



x10* growing exponential decaying exp
T T T T T

amplitude
amplitude
=)
o

il

10 1} 1 2 ) 5 b 7. B“ g 10
n N
Fig: Growing exponential forr > 1 Decayingexponential for 0 <r <1
Impulsefunctions
The discretetime versionof the unit impulses defined by o
- 1, n=0
u no,] no
A 7 6 -5 4 -3 -2 -l I 2 3 4 5 6 7 &

Fig: Discrete time form of unit impulse

The continuoustime versionof the unit impulseis definedby the following pair of relations:

) i |(t)
a (t) = 0 for t |
o s 14
and | .1 0od=1
0 t

Fig: Continuoudime form of unit impulse

Above equation saysthat the impulsed (t) is zero everywhereexceptat the origin. Equationsaysthat

the total areaunderthe unit impulseis unity. The impulse (t) is also referredo asthe Dirac delta
function.

Stepfunction:
The discretdime version of the unitstep function is defined by:

_Jl ,nZO=

uinl ——]_(') n <0

uln]

LN




The continuoudgime version of the unitstep function is defined byu(?) = é :Zg

u(?)

Rampfunction:
The integral of the step function u(t) is a ramp function of unit slope.

r(f)

o JO for f<0
r(r}_h‘ for =0

t

Ramp function
Fig: Ramp function of unit slope

The discretdime version of the unitamp function is defined by/n/ = 0 2<8

rfn]

Lt

8

71

Introduction toSystems

f Systems are used to process signals to allow modification or extraction of

additional information from the signal.
1 A system may consist of physical components (hardware realization) or an

algorithm(operator)that computes the output signal from the input signal.
1 A physical system consists of inteonnected components which are characterized

by their inputoutput relationships.

Figure 2.1: Continuoustime and discretetime systems: Here H & T are operators.

Continuous-time Discrete-time 5

z(t) H System y(t) = HX(®) z[n] T System yln] = (1)

\ - \ \

Input signal Output signal Input signal Output signal




Properties of systems: (Classification of systems)

1 Static(Memoryles$ & Dynamic (with memory)

Static A systemis static if the output at time t (or n) dependsonly on the input at time t (or

n).

Examples

1. y(t) = (2x(t) — x?(t))? is memoryless pecausey(t) dependson x(t) only. Thereis no x(t —
1), or x(t+ 1) terms, for example.

2. y[n] = xn] is memoryless.In fact, this systemis passingthe input to outputdirectly,
without any processing.

3. Current flowing through a resistor i.e., i(t)ézv(t)

Dynamic A system is said to possess memory if its output signal depends on past or future values of
input.

Example:

1.1 nductor and capacitor, since the current f

past values of the voltage v(t) i.g%) = Ui OFbU(T)’QT and ) = Oi bkb"S(l’r)’Qf

2. The moving average system given by y(r%)@[n]+x[n-l]+x[n-2])

2 Stable & unstable system:

1 A system is said to be boundatgbut, boundeeutput(BIBO) stable if and only

if every bounded input results in a bounded ouytptiterwise it is said to be
unstable.

91 f for x4 (ftor] ad I t ) || <o OB WFyavhereas] & My t
are some finite positive number.

Example: 1. y(t) = x (+3) is a stable system.
2. y(t) =t x(t) is an unstable system.
3. y[n] = & s a stable sstem

Assumethat x ( n}Yq4 BD, M or al | 6t 6
y[n] = € = % = finite A Stable

4. y[n]=r"x[n], wherer>1

Assumethat x ( n}Yq B, M or al | 6t 6
ly[n]l = [P x[n]| = || [x[n]|
as MBDO"APT

so YinAhb hence unstabl e.

3 Causal and nonCausal system:

Causal A system is said to bsausal if the present value of output signal depends
only on the present or past values of the input signal. A causal system is also known
physical or noranticipative system.

Examplel. Themoving average system given by y(n§#x[n]+x[n-1]+x[n-2])
2. y(t) = x(t)cos 6t



Note i) Any practical system that operates in rig@le must necessarily be causal.
i) All static systems are causal.

Non-Causal A system is said to bheon-causal if the present value of output
signal depends oone or more futureralues of the input signal.

Example:1l. Thenoving average system given by y(rézéx[n]+x[n-l]+x[n+2])

4 Time invariant and time variant system:
Timeinvariant: A systemis time-invariantif a time-shift of the input signal resultsin
the sametime-shift of the output signal.

That is, if
x(@®) oy,

then the systemis time-invariantif

x(t—-1t)) y(t-tp),for anyto.

v[n] _ . y[n] x[n — ng _ 4 y[n — ng)
TlmZ-Invarlant T1m§—1r?'arlant
x(t) ylem y(t) xz(t — to) yslem y(t — to)

Figure 2.2: lllustration of a time-invariant system.

Examplel.
The systemy (t) = sin[x(t)] is time-invariant

Proof. Let us considera time-shifted signalx4 (t) = x(t — tg). Correpondingly, we lety, (t) be
the outputof x4 (t). Therefore,

ya(t) = sin[x4 (t)] = sin(x(t — to)].
Now, we hawe to check whethery4 (t) = y(t —ty). To show this, we note that
y(t —to) = sin[x(t — to)],
which is the sameasy, (t). Therefore,the systemis time-invariant. m

Timevariant. A systemis time-variantif its inputi output characteristic changes with time.

Example?2:
The systemy[n] = nx[n] is time-variant.

Proof. Output for a time shifted input is

yIn] | x(n-ky = Nx(r+k)
then the same time shifted output is
y(n-k) = (n-k)x(n-k)
the above two equations are not same. Hence it is time variant.



4 Linear and nonlinear system:

Linear systemA system is said to be linear if it satisfies two properties i.e.; superposition &
homogeneity.

Superposition:lt states that the response of the system to a weighted sum of signals
be equal to the corresponding weighted sum of responsé&sui® of the system to

each of the individual input signal.

For an input x(t) = xt), the output y(t) = K(t)
andinput x(t) = »%(t), the output y(t) = »(t)
then, the system is linear if & only if
T [axa(t) + ax2()] = aT [xa(1)] + &T [X2(1)]
Homogeneity: I f the input x(t) is scaled by a

exactly the same constant factor 6éad.

For an input x(t)A output y(t)
andinput x(t) = ax (A output y(t) = ay(t)

Examplel:
The systemy/(t) = 2" x(t) is linear. To seethis, | e tobssdera signal

X(1) = axa (t) + bxy(t),
whereyq (t) = 2" x4 (t) and y,(t) = 2" x5(t). Then

ay, (t) + by,(f) = a(2" x2.(t)) + b (2" x(1))
=2 Taxa (1) + bx()] = 2" x(t) = y(1).

Example?2.
The systemy[n] = (x[2n])2 is not linear. To seethis, | e todssderthe signal

X[n] = axa[n] + bx,[N],

where y4[n] = (x1[2n])2 and y,[n] = (x2[2n])2. We want to seewhether y[n] =
ay[n] + bys[n]. It holdsthat

aya [n] + by,[n] = a(xa[2n)? + b (xz[2n])% .
However,

y[n] = (x[2n])? = (axa[2n] + bxp[2n])* = &(x[2n])? + b(xz[2n])* + 2abxa [n]x[N].

5 Invertible and noninvertible system:

A system is said to be invertible if the input of the system can be recovered from th
output.

Let the set of operations needed to recover the input represents the second syst
which is connected in cascade with the given system such that the output signal of tt
second system is equal to the input applied to the given system.



Let H A the ®ntinuous time system
x(t) A input signal to the system
y(t) A output signal of the system

H™ A the second continuous time system

X (t) H y(t) > H inv X(t)

The output signal of the second system is given by
H™{y(t)} = H™{Hx(t)}
= H™H{x(t)}

For the output signal to equal to the original input, we require that

HH™=|

Whernée denotes the identity operator.

The system whose output is equal to the input is an identity syStenaperatoH™ must satisfy the
above condition foH to be an invertible systerascading a system, with its inverse system, result in an
identity system.

Example:
An inductor is described by the relation

Y = 3 bbdiT)'QT is an invertiblesystem

0]

because, by rearranging terms, we get

X =L g0,

which is the inversion formula
Note:i) A system is not invertible unless distinct inputs applied to the system produce distinct outputs.
i) There must be a one to one mapping betwepuat and output signal for system to be invertible.

Non-invertible System: When severabfferent inputs results in the same output, it is impossible to
obtain the input from output. Such system is called aineertible system.

Example A squarelaw system described by the input output relation
y(t) = X4(t), is noninvertible,
becausadlistinct inputs x(t) &x(t) produce the same output y(t) [not distinct oufput

Lineari time convolution syster(LTI)

Linear time invariant (LTI) systemsare good models for many reatlife systems,andthey hawe
properties that leado a very powerful and effective theory for analyzing their behavior. The LTI
systems can be studigtirough its charaderistic function, calledthe impulse regponse.Further, any
arbitrary input signal can be decomposed and represented as a weighted sum of unit sample sequenc
As a consequence of the linearity and time invariance properties of the system, the response of th



system to any arbitrary input signal cha expressed in terms of the unit sample response of the
system. The general form of the expression that relates the unit sample response of the system and t
arbitrary input signal to the output signal, called the convolution sum, is also derived.

Resoution of a Discretetime signal into impulses:
Any arbitrary sequence x(n) can be represent et
Let x(n) is an infinite sequence as shown in figuew.

z[=3]d[n + 3]

4 2 0 2 4

[ z[—2]8[n + 2]

4 2 0 2 4

z[n]

A

z[3]0[n — 3]

—l—H—I—H—l—LI—l—)

4 2 0 2 4
z[4]0[n — 4]

4 2 0 2 4

N

Figure 1.13: Represating of a signal x[n] using a train of impulses d[n — K.

The sample ¢0) can be obtained by multiplying x(0), the magnitude, with unit impulse
a(n)

: o «(0), ¢€=0
e, xinfu [ &] 0, 0
Similarly, the sample xB) canbe obtained as shown in the figure.
. ~of 3), €= 3
Le., x[-o )/ g ¢ 3

In the same way we can get the sequegiegby summing all the shifted and scaled
impulse function

e, x[ n] =1é.0[xn[RF] G nx+[2] + é.. ++ XK[[401¢ G[ n] +
=B p0 QI (¢ 9

Impulse response and convolution sum

Impulse response\ discretetime system performs an operation an input signal
based on predefined critetiaproduce a modified output signal. The input signal in]



the system excitation, and y[n] is the system response. The transform operation is shown
in the figure below.

x[n] I yIn]=TIx[n]]
|l f the input to the syst em thesutputlofeaheuni t
system is known as impulse response represented by h[n] where

hin] = T [4[n]]

Response of LTI system to arbitrary inpufShe convolution sum

From the above discussion, we get the response of an LTI system to an unit impulse as
theimpulse response h[n] i.e.,

U [ AfF— h[n]
U [-kh ——— h[n-K], by time invariant property
x(k)a [-kh — > x(k)h[n-K], by homogeneity principle

BE Lo Q¢ Q@ —BE .a(QQt "Q, by super position

As weknow the arbitrary input signal is a weighted sunmggulse, the LHS = x[n]
having a response in RHSyn] known as convolution summation.

l.e., X[n] —_— % Y[n]

In other words, igen a signal x[n] and the impulseregonse of an LTI system
h[n], the convolution between x[n] and h[n] is defined as

H
0= WYk Q

T B
We denoteconvolution asy[n] = x[n] h[n].

Equivalent form: Letting m= n — k, we can show that
H H b

Qe TQ=’ e a)@al= o 9QRQ

T b d= x b

Properties of convolution:

The followingfi s t a npdo@ertied aanbe proved easily:
1. Commutative: x[n] h[n] = h[n] X[n]
2. Associative: x[n]  (h4[n] ho[n]) = (X[n] h4[n]) hy[n]
3. Distributive: x[n] (hq[n] +hy[n]) = (x(t) h4[n]) + (X[n] hy[n])



How to Evaluate Convolution?

To evaluate cavolution, there are four basicsteps:
1. Fold 3. Multiply
2. Shift 4. Summation

Exampld. Consider the signak[n] and the impulseregponseh[n] shown below.

2 hln] 11

z[n] 4 ZI 1 I

2 0 2 4 -2 0 2 4

L e tcomputethe outputy[n] oneby one. First, considery[O]:

H H
weé = Q0 0O= »QQ Q=1

< b > b

Note that h[—K] is the flipped versionof h[k], and B ,®QQ Q= 1 is the multiply-
add between x[k] and h[—K].

To calculatey[l], weflip h[k] to get h[—K], shift h[—Kk] goget h[l—k], and multiply-add
to get B ,®QQL Q. Therefore

H H
wl = Q1L O= Q01 Q= 1x1+2x1=3

xF b F b

The calculation isshown in the figure below.

SystemPrgperties

With the notion of convolution, we can now proceedto discussthe system
propertiesin terms of impulseregponses.



Memoryless

A systemis memorylessf the outputdependsonthe current input only. An
equivalent statemaet usingthe impulseregponseh[n] is that:

An LTI systemis memorylessf and only if
h[n] = al[n], for somea.
Invertible
An LTI systemis invertible if and only if there exist g[n] suchthat

h[n] g[n] = U[n].

Causal

An LTI systemis causalif and only if

hinf =0, foraln<DO.

Stable

An LTI systemis stableif and only if

H
$QQs< b
= b

Proof: Suppose thaB®. 5$Q0s< H. Forany bounded signdlx [ n] | O B, the

|we | 0w QP Q
(¢SS

= WwQs|QE  Q
0. Qe Q|

Thereforey[n] is bounded.



Continuous-time Convolution

The continuoustime cases analogouso the discrete-time case In continuous
time signals,the signaldeconpositionis

H
o= @t o tor

Hb

and consequetly, the continuous time convolution is definedas

H
o= ot tof
H

Example The continuoudime convolution also follows the three step rule: flip, shift,
multiply- add. Let us consider the signe(t) = e2'u(t) for a> 0, andimpulse response

h(t) = u(t). The outputy(t) is

CaseA: t > 0: o
Wo = wt Qo tTaf
b
D [
= QYoe(hoo f
D\
0 oy
= Q4
1o
— -at
=—[1-€e7]
CaseB: t O:
y(t)= 0.
Therefore,

“o =z [1 Q®u(

Prgpertiesof CT Convolution
The following properties canbe proved easily:
1. Conmutative:x(t) h(t) = h(t) x(t)
2. Associative: x(t) (h4(t) ha(t)) = (x(t) h4(t)) hy(t)
3. Distributive: x(t) [h4(t) +hy ()] = [x(t) h1(D)]+ [x(t) hy(1)]

Continuoustime SystemProperties

The following results are analogousto the discretetime case.

Memoryless.
An LTI systemis memorylessf and only if



h(t) = al(t), for somea
Invertible.
An LTI systemis invertible if and only if there exist g(t) such that

h(t) g(t) = a().
Causal.
A systemis causalif and only if

h(t)=0, forallt<O
Stable.

A systemis stableif and only if "

'Qt | Q< Hb
H

Interconnection of LTI systems:

1. Parallel connection of LTI System: Consider two LTI systems with impulse
responses;(t)andhy(t) connected in parallel as shown in the figure below. The output

of this connections of systemgt), is the sum of the outputs of the two systems i.e.,

y(O)= ya()+ y2()= x(t)  ha()+ x(t) ha(t)

=x()  [ha(D)+ ha(1)]

Identical result$old for the discrete time case.

x(n) hi(n)+ x(n) hz(n) =x(n)  [ha(n)+ hz(n)]

= hi(t)

x(t)

v)  Xt—slhaft)}+hoftf—>Ylt)

| h2(t)

Fig: Parallel nterconnection of two LTI system & its equivalent systems

2. Cascadeconnection of LTI System:Considerthe cascade connectiontafo LTI
systems as shown in the figure. The output of this connection of systems

yO={x(@®) ha(t) ha(t)}
Using associative property of convolution, we get

y()=x() {ha(t) h2(D)}



LU

w»

haft) f=—e-y(t) K“]—}hu:t]t hg[t]—ﬂﬂ]

Fig: Cascadeénterconnection of two LTI system &s equivalent systems

Step responseStep inputesponse are often used to characterize the response of an
LTI system to sudden changes in the input. It is defined as the output due to a unit step
input signal.

Let h[n] be the impulse response of a detetime LTI system and[n] be the step

response.

Then, gn]=h[n] u[n]
= By ,QQo[¢ Q
Now, as u[rk] = 0 for k > n and u[¥k ] = 1,for k O n
ikl=  QQ
™ b

i.e., the step response is the running sum ointipellse response. Similarly, the
step response s(t) of a continudimse system is expressed as the running
integral of the impulse response:

Note: These relationshipmay be inverted to express the impulse response in terms of
the step response as

h[n] =9n] 7 gn-1]

and, h(t) = i (9



Fourier Representations for Signals

In this chapter, the signal is represented as a wesighuperposition of complex sinusoids.

If such a signal is applied to an LTI system, then the system output is a weighted
superposition of the system response to each complex sinusoid. Representing signal as
superposition of complex sinusoids not onlydedo a useful expression for the system
output, but also provides an insightful characterization of the signals and systems. The
study of signals and systems using sinusoidal representation is kndvoniréer analysis

named after Joseph Fourier.

Basingon the periodicity properties of the signal and whether the signal is discrete or
continuous in time, there are four different types of Fourier representations, each
applicable ¢ a different class of signals.

Complex sinusoids and frequency respondeltfsystems:

The response of an LTI system to a sinusoidal input leads to a characterization of system
behavior termed asequency responsaf the systemThis characterization is obtained in
terms of the impulse response by using convolution and a complex sinusoidal input signal.
Let us consider the output of a discrétee LTI system with impulse responkg] and

unit amplitude complex sinusoidal inp(!bn] = e’ 1" This output is given by:

we = QOwe Q
@

= FQRE 9
KeS™S

We factore! %ftom the sum to get

H
OE = ¢ QQQ Q0
> b
= H(? )¢
Where we have defined
H
”Q'dQ) = QQQ 00
= B

Hence, theoutput of the system is a complex sinusoid of the same frequency as the input,
multiplied by the complex numbé&)('Q?) . The relationship is shown in figure below:

e —hln] —> H(e'")e'"”

The complex scaling factd®((?) is not a function of timen, but only is a funtion of
frequencyq and is termed thizequency responsa the discretdime system.
The results obtained for continuetine LTI system is similar to the above.



Let the impulse response of such a system be h(t) and the input beex{tj Ehen the
convolution integral gives the output as

y(2) = / h(1)e™" ) dr

= e""’/ h(r)e ™" dr
= H(jo)e",

Where we define,

H(jw) = / :h(r)e"“” dr.

The above equation is referred tofi@giuency respons# the continuous time system.
Writing the complex valued frequency respohigg ¥in polar form

H(j¥) =7 H(j¥) |
Where,
[HG ) => magnitude response
And, G4 => phad+f§ Yresponse = ar g{

Example: The impulse response of the system given the figure below is

ht) = %e_R_tCu(t)

x(t) C == y()

Find an expression for the frequency response and plot the magnitude and phase response.

Solution: Substitutindp(t) in equation ofH(j X we get



The magnitude response is:

NV w? + \ze)”

While the phase response is
arg{H(j ¥ =-arctanf RC

arg{ H(jw)}

P

| " w
_ 170l N
R RC
(@) (®)
Fig: (a) Magnitudeesponse (b) Phaseesponse

Eigenvalue and Eigenfunctions o&n LTI System

Definition: For an LTI system,if the output is a scaled version of its input, thenthe
input function is called an eigenfunctionof the system. The scaling factor is called the
eigenvalueof the system. _

Wet ake t he ¢ ompl &% angigenunctorof ihed Tl systerm Hi
associated with theigenvalueas =] )YHdecausey satisfies an eigenvalue problem

described by
Hly ( t p} (=t )



The effect of the system on an eigenfunction input signatadar multiplication. The
output is given by the product of the input and a complex number. This eigen
representation is shown in the figure below.

P(t) AY(t)
—_— H —
(WYAn) Agin])

e—s H —> H(jw)e™ e —> H —> H(e®)e™?

Fourier representation of four classes of signals:

1 There are four distinct Fourier representationshegaplicable to a different class of
signals.

1 The Fourier seried applies to continuous time periodic signal, and the diserete
time Fourier seriedTFS applies to discrete time periodic signal.

1 The Fourier transform (FT) applies to a signal thatcéstinuous in time and
nonperiodic.

1 The discretegime Fourier transform (DTFT) applies to a signal that is discrete in
time and nonperiodic.

Relationship between time properties of a signal and the appropriate Fourier representation

is given below:

Time
Property Periodic Nonperiodic
Continuous Fourier Series Fourier Transform
(1) (FS) (FT)
. Discrete-Time Discrete-Time
Discrete . . .
(7] Fourier Series Fourier Transform
(DTFS) (DTFT)

Continuous-time periodic signals: The Fourier series

Continuoustime periodic signalsre represented by the Fourier series (FS). We may write
the FS of a signal x(t) with fungamBentTal

x() = 3 X[klehor,
k=—00

Where X[k] =—;: Drx(t)e'f'mnr dt
are the FS coefficient of the signal x(Y)/e say thax(t) and X[k]are an FS pair and denote

this relationship as
FS;w,

x(2) X[k].
The Fourier series coefficients are known as fileguencydomain representation of
X(t),because each FS coefficient issiated with a complex sinusoid of different
frequency.
In the representation of the periodic sigrél) by the Fourier series, the issue arigss,
whether or nothe series converges x@) for each value of, i.e., whether the signalt)
and its FS representation are equal at each valiue of

aser i



The Dirichlet conditions guarantee that the FS will be equa{tjpexcept at the value of t
for which x(t) is discontinuous. At these values of t, FS convergeletaridpoint of the
discontinuity. The Dirichlet conditions are

1. The signak(t) has a finite number of discontinuities in any period.
2. The signal contains a finite number of maxima and minima during any period.
3. The signak(t) is absolutely intggible (bounded) i.e.,

WO DH< b

.,Y
If x(t) is periodic and satisfies the Dirichlet conditidrgan be represented in FS.
Direct calculation of FS coefficients:

Example Determine the FS coefficient for signdt)

Solution: Time period T =2Henceyo= 2"/ 2 = ~. On the interval
x(t) is expressed agt) = e*. So,
2
X[k] = f e e gy
2
e
0

—(2+jkm)t dt

N N =

We evaluate the integral to get

2

X[k] = g (2vikax

-1
2(2 + jkw)
_ 1

T 4+ jk2mw
1—¢*

T 4+ jR2%°

(1]

(1 — e—qe—;‘ur)



mi]”]im
-
B —” 1111

Fig: Magnitude and phase responsexjK]

Calculation of FS coefficients by inspection:

Example Determinethe FS representation of the signal
X(t)=3cos( /R +"/4)

Solution: Time periodT =4, Sox¥o=2  E£4 [/ 2. We may write FS of a

x(1) = 3 X[kl

k

Using Eulerds formula to expand the cosine, ¢

e}(wtﬂ_+w’4) + e*;i(rrt/lﬂrm)
x()=3
(9 5

3

) , 3 . ;
= Zgim/pimtj2 4 = g-iml4p—imt/2
2 2

Equating each term in this expansion to teems in equation of x(t) gives the FS
coefficient:

3 _

= it = —

2€ , k 1
X[k] = %ef"“, k=1

0, otherwise

The magnitude and phase spectra are shown below.



| Xkl arg{X[k}}

:rm-—l

k k

2 102 _zl 0 2
1-mi4

Figure: Magnitude and phase spectrum

Example Find the time domain signal x@prresponding to the FS coefficient

X[k] = (1/2)Me"/20
Assume that fundamental pedi T = 2.

Solution. Substituting the ova2uk?3 givennfored&f&fi
x(t) = i(ljz)kefhrﬂoefkﬂ + § (1/2)—kejk1r;zoeﬂmx
=0 k=1
= ;(I/Z)keikwjznejkm + E(IIZ)JB—i!rr,'zOe—i!m.
=0 I=1

The second geometric series is evaluated by summingl fradrto | = B, and subtracting
thel = 0 term The result of summing both infinitirometric series is

1 1
x(t) = 1 - (1/2)eitm+#i20) + 1 - (1/2)gHmt+af20) -

1

Putting the fractions over a common denominator results in

(1 = ;
T S dcos(mt + 7)20)

Discrete-time periodic signals: Thediscrete-time Fourier series

Discretetime periodic signalsire represented by the discratee Fourier series (DTFS).
We may writethe DTFS of a signal x[n] with fundamental period N and fundamental
frequemczy” /qN, as

N-1
x{n] = 3, X[kle*"
k=0
Where
X[k] =

N-1
S prjeso
n=0

Z[=

Are the DTFS coefficient of the signal x[n].We say thaf and X[k] are a DTFS pair and

denote this relationship as
DTFS;Q,

x[n] X[k]



The DTFScoefficients are known as tifiequencydomain representation afn], because
eachDTFS coefficient is associated with a complex sinusoid of different frequency.

Direct calculation of DTFS coefficients:

Example Determine the DTFS coefficient for signdn] shown

x[n]
1
"I]1¢¢Tla'*¢i]§¢¢‘r]""n
-6 ! -2 wm{-“l 2 1 !
Solution: The signalhasapericd= 5, so qO0 = 2°/5. As the

it can be sum ovar =-2 ton =2 intheequation and we get,
2
X[k] = % S anjeriaems

n=-2

= %{x[—l]e’“'ls + x[-l]g""l”ff + x[o]efo +x[1] ks 4 x[l}e"“””}

Using the values of{ n], we get
1 1 ikzays _ 1, uos,
X[k]=g 1+3¢"&2 /5 ze ‘2,5}
- %{1 + jsin(k27/5)}.

From the above equation, we identify one period of DTFS coefficlkjsk=2 tok=-2, in
rectangular and polar coordinates as

X[-2] = % - .-'—Sin(?/ 5) _ o232 05
X[-1] = % - Sin(z;r/ 5) _ 02766076
X[0] = §= 0.2¢%

x[1] = % + ;—Si“(‘?r/ 2) _ 0.2760760
B e

XTI

LU

-8 —- -4 ol

ISRRREEN

a
a
00
s

arg {X[k})} (radians)

Fig: Magnitude and Phase Respons&|d



The above figurshows the magnitudend phase oX[Kk] as functions of the frequency
indexk.

Now suppose we calcula¥k] usingn = 0 ton =4 for the limits on the sum iegnof X[K]
to obtain

X[k] = %{x[O]e’“ + x[1]e7 + x[2]e ™75 + x[3]eS + x[4]e7 5}

1 1, 1 _
== 2 fk2n/S 4 = —jkBu/S
5 {1 3¢ + 3¢ }

Calculation ofDTFS coefficients by inspection:
Example: Determine thTFS coefficientsof the signal
x[n] = cos (/3 + ()

Solution: Time periodN=6. We expand the cosine by wusing Eul

x["] = ei(gnh") + e_'(%'”d’)
2

. .
e*e 3" + %e"e’iu.

B |

Now comparing withtheD TFS e q u a = o2n” /wairittéiby8gumming from
k=-2to 3

] = k}‘, O
= X[-2)e ™™ + X[-1]e7™" + X[0] + X[1]e™" + X[2]e>™> + X[3]e™.

Equating the termsye get

DTFS;E e—!¢/2, k=-1
x[n] ———— X[k] = { ei¥/2, k=1 :
0, otherwiseon-2=<k=<3

The magnitude and phase spectrum is given below

Ixtkll




The Inverse DTFS

Example Determine the time signal x[n] from the DTFS coefficients given in figure below

Solution: The DTFS <coefficientos2 hla% eonvenentto od =
evaluatex[n] over the intervak = -4 tok = 4 to obtain

Continuous-time nonperiodic signals: The Fourier transform

The Fourier transform is used to represantontinuoustime nonperiodic signal as a
superposition of complex sinusoids. We knthat the continuous nonperiodic nature of a

time signal implies that the superposition of complex sinusoids used in the Fourier
representation of the signal involves a continuum of frequencies rangingBront o D . So
the FT representation of a continudgime signal involves an intyegral over the entire
frequency interval; i.e.,

Where,

Examplel. FT of a real decaying exponential

Find the FT of(t) = €®u(t) shown in the figure below.



