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Module I 8 hours

Sampling Theorem:

All pulse modulation scheme undergoes sampling process. Sampling of low
frequency(LF) signal is achieved using a pulse train. Sampling process provides samples
of the message signal. Sampling rate of sampling process must be proper to get original
signal back. Sampling theorem defines the sampling rate of sampling process in order to
recover the message signal. The solution to sampling rate was provided by Shannon.

Basically there are two types of message signal, such as-
(i) Low-pass (baseband) signal,
(i)  Band-pass (passband) signal.

» Sampling rate for Low-Pass Signal:--
Sampling theorem states that if g(t) being a lowpass signal of finite energy and is
band limited to W Hz, then the signal can be completely described by and
recovered from its sampled values taken at a rate of 2W samples or more per
second.
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Fig. 1.1 Representation of sampling process.

Thus the time period of sampled signal must be, Ts <1/(2W).
Considering a signal g(t) as shown be a low pass signal where fourier transform of g(t),
G(f) =0, forf>W
= finite, for f <W.

Ideally, we can get sampled values of g(t) at a regular time interval of time Ts if we
multiply a train of pulses &1 to g(t) as shown.



Fig.1.1a Spectrum of original

The product signal [gs(t)], ie, the sampled values can be written as,
g6(t) = 5(t) 51.(t) (11a)
go(t) = g(t) (1:1b)

If we denote g(nTs) as the weights of low pass signal at sampled interval, then we can
write,

gs(t) = (1.2)

G:(f) = G(f)
Or, Gr(f) =1/Ts
or, Gr(f) =1/Ts (1.3)

Now, we can draw graphically the frequency components of both the original signal and

the sampled signal as follows,
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Fig. 1.1b Spectrum of Sampled signal.

Note:- The process of uniformly sampling a baseband signal in time domain results in a
periodic spectrum in the frequency domain with a period, fs=1/Ts, where Ts is the
sampling period in time domain and <1/2W.
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Fig. 1.1c Spectrum of baseband, carrier and modulated carrier signal.

> Sampling of Bandpass Signal:

If the spectral range of a signal extends from 10 MHz to 10.1 MHz, the signal may

ne recovered from samples taken at a frequency fs=2{10.1 - 10} = 0.2 MHz.

The sampling signal dts(t) is periodic. So,

O1s = dt/ds + 2.dt/ds(cos2mt/Ts + cos(2.2 it/ Ts) + cos(3.2 mt/Ts) +

= fodt + 2fsdt(cos2mfs; + cos(2m.2fst) + cos2m.3fst + ...... )

| M (je)|
—3f; —2.5f; —2f; _f 0 i, 2f, 2.5f 3, f
—fM —f, (@) fL fu
S = (S(tym(t)] T
I I
I I
TN I Al
I WA
/\/V\/\/\/\/ /\/\/\/\/\/\/\

—af,

—2f,

I{b‘J

21,

Fig. 1.2 Spectrum of bandpass and its sampled version signal



In fig. 1.2 the spectrum of g(t) extends over the first half of the frequency interval
between harmonics of the sampling frequency, that is, from 2fs to 2.5fs. As a result,
there is no spectrum overlap, and signal recovery is possible. It may also be seen
from the figure that if the spectral range of g(t) extends over the second half of the
interval from 2.5 fs to 3f;, there would similarly be no overlap. Suppose, however
that the spectrum of g(t) were confined neither to the first half nor to the second
half of the interval between sampling frequency harmonics. In such a case, there
would be overlap between the spectrum patterns, and signal recovery would not
be possible. Hence the minimum sampling frequency allowable is fs=2(fu - fL)
provided that either fy or fi is a harmonic of fs.

If neither fm nor fL is a harmonic of fs, a more general analysis is required. In fig
1.3a, we have reproduced the spectral pattern of fig 1.2. The positive frequency
part and negative frequency part of the spectrum are called PS and NS
respectively. Let us , for simplicity, consider separately PS and NS and the manner
in which they are shifted due to the sampling and let us consider initially what
constraints must be imposed so that we cause no overlay over, say, PS. The
product of g(t) and the dc component of the sampling waveform leaves PS
unmoved, which will be considered to reproduce the original signal. If we select
the minimum value of f=2(fm - f) = 2B, then the shifted Ps patterns will not
overlap
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Fig. 1.3 (a) Spectrum of the bandpass signal (b) Spectrum of NS shifted by the (N-1)st and
the Nth harmonic of the sampling waveform.

PS. The NS will also generate a series of shifted patterns to the left and to the right.
The left shiftings can not cause an overlap with unmoved PS. However, the right
shifting of NS might cause an overlap and these right shifting of NS are the only
possible source of such overlap over PS. Shown in fig. 1.3b, are the right shifted
patterns of NS due to the (N-1)th and Nth harmonics of the sampling waveform. It
is clear that to avoid overlap it is necessary that,

(N-D)fs - fL <fL (1.4a)
and, Nfs - fm = fm (1.4b)



So that, with B = fm - f1, we have
(N - Dfs <2(fm- B) (1.4¢)

and, Nfs > 2fum (1.4d)
If we let k = fm/B, eqn. (1.4c) & (1.4d) become

fs <2B(K-1)/(N-1) (1.4e)
and, fs <2B(K/N) (1.4f)

In which k > N, since fs > 2B. Eqn. (1.4e) and (1.4f) establish the constraint which
must be observed to avoid an overlap on PS. It is clear from the symmetry of the
initial spectrum and the symmetry of the shiftings required that this same
constraint assumes the there will be no overlap on NS. Eqn.(1.4e) and (1.4f) has
been plotted in fig. 1.4 for several values of N.

Let us take a case where f;=2.5 KHz and f\=3.5 KHz. So, B=1 KHz and K=fy/ =
3.5. On the plot of fig. 1.4 line for k=3.5 has been erected vertically. For this value
of k if f; = 2B, then overlapping occurs. If fs is increased in the range of 3.5 to 5
KHz, then no overlap occurs corresponding to N=2. If f; is 7B or more then no
overlap occurs.
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Fig. 1.4 The shaded region are the regions where the constraints eqn. (1.4e) and (1.4f) are
satisfied.

From this discussion, we can write bandpass sampling theorem as follows---A
bandpass signal with highest frequency fn and bandwidth B, can be recovered
from its samples through bandpasss filtering by sampling it with frequency fs=2
fr/k, where k is the largest integer not exceeding f11/B. All frequencies higher than
fs but below 2fp(lower limit from low pass sampling theorem) may or may not be
useful for bandpass sampling depending on overlap of shifted spectrums.

m(t) - low pass signal band limits to fu.
s(t) - impulse train



s(t) = At/Ts + 2. At/ Ts(cos2mt/Ts + cos(2.2 mt/Ts) + cos(3.2 mt/Ts) + ...... )
= At.fs + 2. At.fs(cos2m.fs.t + cos(2.2 m.fs.t) + cos(3.2 m.fs.t) + ...... ) (1.4g)

Product of m(t) and s(t) si the sampled m(t) ie, ms(t)

ms(t) = m(t).s(t)
= At/Ts.m(t) + At/Ts[2.m(t)cos2m.fs.t + 2.m(t).cos(2m.2.fs.t) + 2.m(t).cos(2
m.3.fs.t) + ...... ] (1.4h)

By using a low pass filter(ideal) with cut-off frequency at fi, then At/Ts.m(t) will
be passed so the m(t) can be recovered from the sample.

Band pass m(t) with lower frequency ‘f.” & upper frequency ‘fuy’, fn - fL = B. The
minimum sampling frequency allowable is fs = 2(fn - f) provided that either fy or
fL is a harmonic of fs.

A bandpass signal with highest frequency fn and bandwidth B, can be recovered
from its samples through bandpass filtering by sampling it with frequency fs =
2.fu/k, where k is the largest integer not exceeding fr/B. All frequencies higher
than fs but below 2.fy(lower limit from low pass sampling theorem) may or may
not be useful for bandpass sampling depending on overlap of shifted spectrum.

Eg. Let us say, fL.=2.5 KHz and f3=3.5 KHz.
So, B=1 KHz, k=fu / B =3.5.
Selecting fs = 2B = 2 KHz cause overlap.
If k is taken as 3 then fs= 2*3.5 kHz/3 = 7/3 kHz cause no overlap.
If k is taken as 2 then fs= 2*3.5 KHz/2 = 3.5 KHz cause no overlap.

e Aliasing Effect:-

From the spectrum of Gs(f) we can filter out one of the spectrum, say -W<f<W,
using a low pass filter and can reconstruct the time domain representation of it
after doing inverse fourier transform of the spectrum. This is possible only when fs
>=2W.

But when fs <2W, ie, Ts > 1/2W, then there will be overlap of adjacent spectrums.
Here high frequency part of 15t spectrum interfere with low frequency part of 2nd
spectrum. This phenomenon is the aliasing effect. In such a case the original signal
g(t) cannot be recovered exactly from its sampled values gs(t).

» Signal Reconstruction :

The process of reconstructing a continuous time signal g(t)[bandlimited to W Hz]
from its samples is also known as interpolation. This is done by passing the
sampled signal through an ideal low pass filter of bandwidth W Hz. As seen from
eqn. 1.4, the sampled signal contains a component 1/Ts G(f), and to recover G(f)[or
g(t)], the sampled signal must be passed through on ideal low-pass filter of
bandwidth W hz and gain Ts.



Thus the reconstruction(or interpolating) filter transfer function is,
H(f) = Ts rect(f/2W) (1.5)

The interpolation process here is expressed in the frequency domain as a filtering
operation.

Let the signal interpolating (reconstruction) filter impulse response be h(t). Thus, if we
were to pass the sampled signal g:(t) through this filter, its response would be g(t).

Let us now consider a very simple interpolating filter whose impulse response is
rect(t/Ts), as shown in fig. 1.5. This is a gate pulse of unit height, cantered at the origin,
and of width Ts(the sampling interval). Each sample in gs(t), being an impulse generates a
gate pulse of the height equal to the strength of the sample. For instance the kth sample is
an impulse of strength g(kTs) located at t=kTs, and can be expressed as g(kTs) &(t-kTs).
When this impulse passes thorugh the filter, it generates and ouput of g(kTs) rect(t/Ts).
This is a gate pulse of height g(kTs), centred at t=kTs(shown shaded in fig. 1.5).

Each sample in gs(t) will generate a corresponding gate pulse resulting in an output,

y(t) = X g(k..Ts) rect (%) (1.6)
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Fig. 1.5 Simple interpolation using zero-order hold circuit

The filter output is a staircase approximation of g(t), shown dotted in fig. 1.5b. This filter
thus provides a crude form of interpolation.

The transfer function of this filter H(f) is the fourier transform of the impulse response
rect(t/Ts). Assuming the Nyquist sampling rate, ie, Ts = 1/2W,

W(t) = rec(t/Ts) = rect(2Wt)
and, H(f) = Ts.sinc(m.f.Ts) = 1/ (2W).sinc(uzf /2W) (1.7)

The amplitude response |H(f)| for this filter shown in fig. 1.6, explains the reason for the
crudeness of this interpolation. This filter is also known as the zero order hold filter, is a
poor approximation of the ideal low pass filter(as shown double shaded in fig. 1.6).
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Fig. 1.6 Amplitude response of interpolation filter.

We can improve on the zero order hold filter by using the first order hold filter, which
results in a linear interpolation instead of the staircase interpolation. The linear
interpolator, whose impulse response is a triangular pulse A(t/2Ts), results in an
interpolation in which successive sample tops are connected by straight line segments.
The ideal interpolation filter transfer function found in eqn. 1.5 is shown in fig. 1.7a. The
impulse response of this filter, the inverse fourier transform of H(f) is,

h(t) = 2.W.Ts.sinc(Wt),
Assuming the Nyquist sampling rate, ie, 2WTs =1, then
h(t) = sinc(Wt) (1.8)

This h(t) is shown in fig. 1.7b.
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Fig. 1.7 Ideal interpolation.

The very interesting fact we observe is that, h(t) = 0 at all Nyquist sampling instants(t =
tn/2W) except at t=0. When the sampled signal gs(t) is applied at the input of this filter,
the output is g(t). Each sample in gs(t), being an impulse, generates a sine pulse of height
equal to the strength of the sample, as shown fig. 1.7c.



The process is identical to that shown in fig. 1.7b, except that h(t) is a sine pulse instead of
gate pulse. Addition of the sine pulses generated by all the samples results in g(t). The kth
sample of the input gs(t) is the impulse g(kTs)0(t-kTs); the filter output of this impulse is
g(kTs)h(t-kTs). Hence, the filter output to gs(t), which is g(t), can now be expressed as a
sum.

g() = Xk g(k.Ts) h(t — KTs)
= Yk g(k.Ts) sinc[W(t — KTs)] (1.9a)
= Y g(k.Ts) sinc[Wt — K/2] (1.9b)

Eqn. 1.9 is the interpolation formula, which yields values of g(t) between samples as a
weighted sum of all the sample values.

> Practical Difficulties:

If a signal is sampled at the Nyquist rate f; = 2W hz, the spectrum Gs(f) without
any gap between successive cycles.. To recover g(t) from gs(t), we need to pass the
sampled signal gs(t) through an ideal low pass filter. Such filter is unrealizable; it
can be closely approximated only with infinite time delay in the response. This
means that we can recover the signal g(t) from its samples with infinite time delay.
A practical solution to this problem is to sample the signal at a rate higher h=than
the Nyquist rate(fs > 2W). This yields Gs(f), consisting of repetition of G(t) with a
finite band gap between successive cycles. We can now recover G(g) from Gs(f)
from Gs(f) using a low pass filter with a gradual cut-off characteristics. But even in
this case, the filter gain is required to be zero beyond the first cycle of G(f). By
Paley-Wiener criterion, it is also impossible to realize even this filter. The only
advantage in this case is that the required filter can be closely approximated with a
smaller time delay.

This indicated that it is impossible in practice to recover a band limited signal gs(t)
exactly from its samples even if sampling rate is higher than the Nyquist rate.
However as the sampling rate increases, the recovered signal approaches the
desired signal more closely.

» The Treachery of Aliasing:

There is another fundamental practical difficulty in reconstructing a signal from its
samples. The sampling theorem was proved on the assumption that the signal g(t)
is bandlimited. All practical signals are time limited, ie, they are of finite duration
width. A signal cannot be time-limited and band-limited simultaneously. If a
signal is time limited, it cannot be band limited and vice-versa(but it can be
simultaneously non time limited and non band limited). This means that all
practical signals which are time limited are non band limited; they have infinite
bandwidth and the spectrum Gs(f) consists of overlapping cycles of G(f) repeating
every fs hz(the sampling frequency) as shown in fig. 1.8.
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Because of the overlapping tails, Gs(f) no longer has complete information about
G(f) and it is no longer possible even theoretically to recover g(t) from the sampled
signal gs(t). If the sampled signal is passed through and ideal low pass filter the
output is not G(f) but a version of G(f) distorted as a result of two separate causes:
1. The loss of the tail of G(f) beyond |f| >£s/2 Hz.

2. The reappearance of this tail inverted or folded onto the spectrum.

The spectra cross at frequency fs/2 =1/2Ts Hz, is called the folding frequency. The
spectrum, therefore, folds onto itself at the folding frequency. In fig. 1.8, the
components of frequencies above fs/2 reappear as components of frequencies
below fs/2. This tail inversion, known as spectral folding or aliasing is shown
shaded in fig. 1.8. In this process of aliasing, we are not only losing all the
components of frequencies above fs/2 Hz, but these very components
reappear(aliased) as lower frequency components also as in fig. 1.8.

A Solution: The Antialiasing Filter

The potential defectors are all the frequency components beyond fs/2 = 1/2Ts Hz.
We should eliminate (suppress) these components from g(t) before sampling g(t).
This way, we lose only the components beyond the folding frequency fs/2 Hz.
These components now cannot reappear to corrupt the components with
frequencies below the folding frequency. This suppression of higher frequencies
can be accomplished by an ideal low pass filtr of bandwidth fs/2 hz. This filter is
called the antialiasing filter. This antialiasing operation must be performed before
the signal is sampled.

The antialiasing filter, being an ideal filter, is unrealizable. In practice we use a
steep cut off filter which leaves a sharply attenuated residual spectrum beyond the
folding frequency fs/2.

Even using antialiasing filter, the original signal may not be recovered if Ts >
1/2W, ie, fs < 2W. For this case also aliasing will occur. To avoid this sampling
frequency fs should be always greater than or atleast equal to 2W, where W is the
highest frequency component available in information signal.




> Some Applications of the Sampling Theorem:

In the field of digital communication the transmission of a continuous time
message is replaced by the transmission of a sequence of numbers. These open
doors to many new techniques of communicating continuous time signals by pulse
trains. The continuous time signal g(t) is sampled, and samples values are used to
modify certain parameters of a periodic pulse train. As per these parameters, we
have pulse amplitude modulation (PAM), pulse width modulation (PWM) and
pulse position modulation (PPM). In all these cases instead of transmitting g(t), we
transmit the corresponding pulse modulated signal. One advantage of using pulse
modulation is that it permits the simultaneous transmission of several signals on a
time sharing basis-time division multiplexing (TDM) which is the dual of FDM.

> Pulse Amplitude Modulation(PAM) :

In PAM, the amplitude of regularly spaced rectangular pulses vary with the
instantaneous sample value of a continuous message signal in one to one fashion.

oo}

Veam(t) = 3, [1+Ka.g(n.Ts)]8(t — n. Ts)

Where g(nTs) represents the nth sample of the message signal g(t), Ts is the
sampling time, ka is a constant called the amplitude sensitivity(or modulation
index of PAM) and 0ts(t) demotes the pulse train. ‘ka” is chosen so as to maintain a
single polarity, ie, {1+kag(nTs)} > O for all values of g(nTs).

Different forms of pulse analog modulation (PAM, PWM & PPM) are illustrated
below:-
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Fig. 1.9 Pulse modulated signals.



Transmission BW in PAM

We know 1 << Ts<1/2W

Considering ‘ON’ and ‘OFF time of PAM it is velar the maximum
frequency of PAM is fmax = 1/21.

So transmission BW 2 fhax =1/21t>> W.

Noise performance of PAM is never better than the baseband signal
transmission.

However we need PAM for message processing for a TDM system, from
which PCM can be easily generated or other form of pulse modulation can be
generated.

Be it single or multi user system the detection should be done in
synchronism. So synchronization between transmitter and receiver is an important
requirement.

» Pusle Width Modulation(PWM):
In pulse width modulation, the instantaneous sample values of the message signal
are used to vary the duration of the individual pulses. This form of modulation is
also referred to as pulse duration modulation (PDM) or pulse length modulation
(PLM).
Here the modulating wave may vary the time of occurrence of leading edge, the
trailing edge or both edges of the pulse.

Disadvantage - In PWM, long pulses (more width) expand considerable power
during the pulse transmission while bearing no additional information.

Vewm =Pt -n.Ts) = 6(t —n.Ts) fornTs <t < (nTs + kn. g(nTs))
=0 for [nTs + kw.g(nTs)]< t £(n+1)Ts

> Generation of PWM and PPM waves:

The figure below depicts the generation of PWM and PPM waves. Hence for the
PWM wave the trailing edge is varied according to the sample value of the
message.
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The saw tooth generator generates the sawtooth signal of frequency fs (fs = 1/Ts). If
sawtooth waveform is reversed, then leading edge of the pulse will be varied with
samples of the signal and if the sawtooth waveform is replaced by a triangular
waveform then both the edged will vary according to samples.

PPM waveform is generated when PWM wave is used as the trigger input to a
monostable multivibrator. The monostable multivibrator is triggered on the falling
(trailing edge) of PWM. The output of monostable is then switches to positive
saturation value and remain there for a fixed period and then goes low. Thus a
pulse is generated which occurs at a time which occurs at a time which depends
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Fig.1.10 Principle of PWM and PPM generation.

upon the amplitude of the sampled value.

Demodulation of PWM waves
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Fig. 1.10a A PWM demodulator circuit.
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Here transistor T1 acts as an inverter. Hence when transfer is off capacitor C1 will chase
through R as when it is ‘on” C1 discharges quickly through T1 as the resistance in the
path is very small. This produces a sawtooth wave at the output of T2. This sawtooth
wave when passed through an op-amp with 2nd order LPF produces the desired wave at
the output.

Demodulation of PPM waves:

Since in PPM the gaps in between pulses contains information, so during the gaps, say
OA, BC and DE the transfer T remains off and capacitor the capacitor C gets charged. The
voltage across the capacitor depends on time of charging as the value of R and C. Rest of
the operation is same as above.

QtVee m)‘

Fig. 1.10b A PPM demodulator circuit.
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PCM is the most useful and widely used of all the pulse modulations mentioned. Basically, PCM is
a method of converting an analog signal into a digital signal (A/D conversion).An analog signal is
characterized by the fact that its amplitude can take on any value over a continuous range. This
means that it can take on an infinite number of values. On the other hand, digital signal amplitude
can take on only a finite number of values. An analog signal can be converted into a digital signal
by means of sampling and quantizing, that is, rounding off its value to one of the closest
permissible numbers (or quantized levels) as shown in fig 2.1.

Allowed quanization levels

Fig. 2.1 Quantization of a sampled analog signal.

Quantization is of two types:--uniform and non-uniform quantization.

» Uniform Quantization :--

Amplitude quantizing is the task of mapping samples of a continuous amplitude waveform
to a finite set of amplitudes. The hardware that performs the mapping is the analog-to-
digital converter (ADC or A-to-D). The amplitude quantizing occurs after the sample-and-
hold operation. The simplest quantizer to visualize performs an instantaneous mapping
from each continuous input sample level to one of the preassigned equally spaced output
levels. Quantizers that exhibit equally spaced increments between possible quantized
output levels are called uniform or linear quantizers.

Possible instantaneous input-output characteristics are easily visualized by a simple

staircase graph consisting of risers and treads of the types shown in Fig 2.2. Fig 2.2 a, b,
and d show quantizers with uniform quantizing steps, while fig 2.2¢ is a quantizer with
nonuniform quantizing steps.
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Fig. 2.2 Various quantizers transfer functions.

> Non Uniform Quantization:

For many classes of signals the uniform quantization is not efficient, for example,
in speech communication it is found(statistically) that smaller amplitudes
predominate in speech and that larger amplitudes are relatively rare. The uniform
quantizing scheme is thus wasteful for speech signals; many of the quantizing
levels are rarely used. An efficient scheme is to employ a non uniform quantizing
method in which smaller steps for small amplitudes are used.
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Fig. 2.3. Non-uniform quantization



The same result can be achieved by first compressing the signal samples and then
using a uniform quantizing. The input-output characteristics of a compressor are
shown in below fig. 2.4

The same result can be achieved by first compressing the signal samples and then
using a uniform quantizing. The input output characteristics of a compressor are
shown in fig. The horizontal axis is the normalized input signal (ie, g/gp), and the
vertical axis is the output signal y. The compressor maps input signal increment
Ag, into larger increment Ay for small signal input signals and small increments
for larger input signals. Hence, by applying the compressed signals to a uniform
quantizer a given interval Ag contains a larger no. of steps (or smaller step-size)
when g is small.
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Fig. 2.4 Characteristics of Compressor.

A particular form of compression law that is used in practice (in North America
and Japan) in the so called p law (u law compressor), defined by

y=In(1+p|g/gp|)/In(l + pn).sgn(g) for |g/gp|<1 where, u is a +ve constant
and sgn(g) is a signum function.

Another compression law popular in Europe is the so A-law, defined by,

y = A/(1+InA).(g/ gp) for0<g/gp<1/A
= (1+InA[g/gp|/(1+InA)).sgn(g)  for1/A<|g/gp|<1 (2.1)

The values of u & A are selected to obtain a nearby constant output signal to
quantizing noise ratio over an input signal power dynamic range of 40 dB.

To restore the signal samples to their correct relative level, an expander with a
characteristic complementary to that of compressor is used in the receiver. The
combination of compression and expansion is called companding.



> Encoding:-
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Fig. 2.5 Representation of each sample by its quantized value and binary representation.

A signal g(t) bandlimited to B hz is sampled by a periodic pulse train Prs(t) made up of a
rectangular pulse of width 1/8B seconds (cantered at origin), amplitude 1 unit repeating
at the Nyquist rate(2B pulses per second. Show that the sampled signal is given by,

o)

g(t) =Vag(t) + Z (nz_ﬂ sin (n1t/4)g(t)cosn. ws. t) (2.2)

n=1

» Quantizing Noise or Quantizing Error :
We assume that the amplitude of g(t) is confined to the range(-gp, gp). This range is
divided into L no. of equal segments. Each segment is having step size A, given by,

A=2g,/L (2.3)

A sample amplitude value is approximated by the mid-points of the interval in
which it lies. The input-output characteristic of a midrise uniform quantizer is

shown in fig.
The difference between the input and output signals of the quantizer becomes the

quantizing error or quantizing noise.
It is apparent that with a random input signal, the quantizing error ‘qe’ varies

randomly within the interval,

“AJ2<qeSA/2 (2.4)



Assuming that the error is equally likely to lie anywhere in the range (-A/2, A/2),
the mean square quantizing error <q2%> in given by,

A
<q2e> =1/A[% q2dq, = A2/12 (2.5)
2

Substituting eqn.(2.3) in eqn.(2.5) we get,

<q%> = g%/ (3L?)

Si=<g(t)> = [ g*(t).5.9.d5 = g%/3

» Transmission Bandwidth and the output SNR :

For binary PCM, we assign a distinct group of ‘n” binary digits(bits) to each of the
L quantization levels. Because a sequence of n binary digits can be arranged in 2»
distinct patterns,

L=2rorn=logL (2.6)

Each quantized sample is thus, encoded into ‘n’ bits. Because a signal g(t)
bandlimited to W Hz requires a minimum of 2W samples second, we require a
total of 2nW bits per second(bps), ie, 2nW pieces of information per second.
Because a unit bandwidth (1 Hz) can transmit a maximum of two pieces of
information per second, we require a minimum channel of bandwidth Br Hz,
given by,

Br=nW Hz (2.7)

This is the theoretical minimum transmission bandwidth required to transmit the
PCM signal. We shall see that for practical reasons we may use transmission
bandwidth higher than as in eqn.(2.7).

Quantizing Noise = N, = <qZ%> = g%,/ (3.L?) (2.8)

Assuming the pulse detection error at the receiver is negligible, the reconstructed
signal g (t) at the receiver output is,

g (t) = g(t) + ge(t) (2.9)

The desired signal at the output is g(t), and the (quantizing) noise is ge(t). Since the
power of the message signal g(t) is <g?(t)>, then

So = <g2(t)> (2.10)



So, SNR=S,/No=<g(t)>/(g%/(3.L?) =3L2 < g2(t)>/ g%
(2.11)

So/No(dB) =10.10og(3L?) < g2(t)>/ g%
Signal to noise ration can be written as,
So/No =3.20m < g2(t)>/ g2, (2.12)

= C(2)n (2.13)
Where,
C=3.<g?(t) >/ g% (uncompressed case, as in eqn.(2.12))
=3/[In(1+p)]2  (compressed case)

For a p-law compander, the output SNR is,
So/No = 3.2/ [In(1+p)]? W2 >> g2/ <g(t)>

Substituting eqn.(2.7) in eqn.(2.12), we find

From eqn.(2.14), it is observed that SNR increases almost exponentially with the
transmission bandwidth Br. This trade-off SNR with bandwidth is attractive and come
close to the upper theoretical limit. A small increase in bandwidth yields a large benefit in
terms of SNR. This trade relationship is clearly seen by rewriting eqn.(2.14) using decibel
scale as,

So/No (dB) = 10.log(So/ No)
= 10log(C2?")
=10logC + 20log2
= (a + 6n) dB (2.15)

Where, a = 10logC. This shows that increasing n by 1, quadruples the output SNR(6 dB
increase). Thus if we increase ‘n” from 8 to 9, the SNR quadruples, but the transmission
bandwidth increases only from 32 to 36 Khz(an increase of only 12.5%). This shows that
in PCM, SNR can be controlled by transmission bandwidth. We shall see later that
frequency and phase modulation also do this. But it requires a doubling of the bandwidth
to quadruple the SNR. In this respect, PCM is strikingly superior to FM or PM.

» Digital Multiplexer :--

This is a device which multiplexers or combines several low bit rate signals to form one
high bit rate signal to be transmitted over a high frequency medium. Because of the
medium is time shared by various incoming signals, this is a case of time-division



multiplexing (TDM. The signals from various incoming channels may be such diverse
nature as digitized voice signal (PCM), a computer output, telemetry data, a digital
facsimile and so on. The bit rates of the various tributaries (channels) need not be the
same.
Multiplexing can be done on a bit-by-bit basis(known as bit or digit interleaving) or on a
word-by-word basis(known as byte or word interleaving). The third category is
interleaving channel having different bit rate.
T1 carrier system:-- The input to the (fast) 13-bit ADC comes from an analog
multiplexer. The digital processor compresses the digital value according to p-law.
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Fig. 2.6 T-1 carrier system.

The 8-bit compressed voice values are sent consecutively, MSB first. The samples of all
24 inputs comprise a frame. Most serial communications transmits data LSB first
(“little endian”).



» Svynchronizing & Signalling :

Binary code words corresponding to samples of each of the 24 channels are
multiplexed in a sequence as shown in fig 2.7. A segment containing one
codeword (corresponding to one sample) from each of the 24 channels is called a
frame. Each frame has 24x8 = 192 information bits. Because the sampling rate is
8000 samples per second, each frame takes 125 ps. At the receiver it is necessary to
be sure where each frame begins in order to separate information bits separately.
For this purpose, s framing bit is added at the beginning of each frame. This makes
a total of 193 bits per frame. Framing bits are chosen so that a sequence of framing
bits, one at the beginning of each frame, forms a special pattern that is unlikely to
be formed in a speech channel.
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Fig. 2.7 T-1 frame.

The sequence formed by the first bit from each frame is examined by the logic of
the receiving terminal. If this sequence does not follow the given coded pattern
(framing bit pattern), then a synchronization lost is detected and the next position
is examined to determine whether it is actually the framing bit. It takes about 0.4 to
6 ms to detect and about 50 ms (in the worst possible case) to reframe.

In addition to information and framing bits we need to transmit signalling bits
corresponding to dialling pulses, as well as telephone on-hook/off-hook signals.
When channels developed by this system are used to transmit signals between
telephone switching systems, the switches must be able to communicate with each
other to use the channels effectively. Since all eight bits are now used for
transmission instead of the seven bits used in the earlier version, the signalling
channel provided by the eighth bit is no longer available. Since only a rather low
speed signalling channel is required, rather than create extra time slots for this
information we use one information bit(the least significant bit) of every sixth
sample of a signal to transmit this information. This means every sixth sample of
each voice signal will have a possible error corresponding to the least significant
digit. Every sixth frame, therefore, has 7x24 = 168 information bits, 24 signalling
bits and 1 framing bit. In all the remaining frames, there are 192 information bits



and 1 framing bit. This technique is called 75/6 bit encoding and the signalling
channel so derived is called robbed-bit signalling. The slight SNR degradation
suffered by impairing one out of six frame is considered to be an acceptable
penalty. The signalling bits for each signal occur at a rate of 8000/6 = 1333
bits/sec.

In such above case detection of boundary of frames is important. A new framing
structure called the super frame was developed to take care of this. The framing
bits are transmitted at the 8 kbps rate as before (earlier case) and occupy the first
bit of each frame. The framing bits form a special pattern which repeats in twelve
frames: 100011011100. The pattern thus allows the identification of frame
boundaries as before, but also allows the determination of the locations of the sixth
and twelfth frames within the superframe. Since two signalling frames are used so
two specific job can be initiated. The odd numbered frames are used for frame and
sample synchronization and the even numbered frames are used to identify the A
& B channel signalling frames(frames 6 & 12).

A new superframe structure called the extended superframe (ESF) format was
introduced during 1970s to take advantage of the reduced framing bandwidth
requirement. An ESG is 24 frames in length and carries signalling bits in the eighth
bit of each channel in frames 6, 12, 18 and 24. Sixteen state signalling is thus
possible. Out of 24 framing bits 4th, 8th, 12th, 16th, 20th and 24t™(2 kbps) are used for
frame synchronization and have a bit sequence 001011. Framing bits 1, 5, 9, 13, 17
and 21(2 kbps) are for error detection code. 12 remaining bits are for management
purpose and called as facility data link(FDL). The function of signalling is also the
common channel interoffice signalling (CCIS).

Differential Pulse Code Modulation :

In analog messages we can make a good guess about a sample value from a
knowledge of the past sample values. In other words, the sample values are not
independent and there is a great deal of redundancy in the Nyquist samples.
Proper exploitation of this redundancy leads to encoding a signal with a lesser
number of bits. Consider a simple scheme where instead of transmitting the
sample values, we transmit the difference between the successive sample values.

If g[k] is the kth sample instead of transmitting g[k], we transmit the difference
d[k] = g[k] - g[k-1]. At the receiver, knowing the d[k] and the sample value g[k-1],
we can construct g[k]. Thus form the knowledge of the difference d[k], we can
reconstruct g[k] iteratively at he receiver. Now the difference between successive
samples is generally much smaller than the sample values. Thus peak amplitude,
gp of the transmitted values is reduced considerably. Because the quantization
interval A = g, /L, for a given L(or n) this reduces the quantization interval A.
Thus, reducing the quantization noise which is given by A2/12.



This means that for a given n(or transmission bandwidth), we can increase the
SNR or for a given SNR we can reduce n(or transmission bandwidth).

We can improve upon scheme by estimating the value of the kth sample g[k] from
knowledge of the previous sample values. If this estimate is g[k], then we transmit
the difference (prediction error) d[k] = g[k] - g[k]. At the receiver also we
determine the estimate g[k] from the previous sample values and then generate
glk] by adding the received d[k] to the estimate g[k]. Thus we reconstruct the
samples at the receiver iteratively. If our prediction is worthful the predicted value
glk]will be close to g[k] and their difference (prediction error) d[k] will be even
smaller than the difference between the successive samples. Consequently this
scheme known as the differential PCM(DPCM) is superior to that described in the
previous paragraph which is a special case of DPCM, where the estimate of a
sample value is taken as the previous sample value, ie, g[k]=g[k-1].

Consider for example a signal g(t) which has derivative of all orders at ‘t". Using
Taylor series for this signal, we can express g(t+T5) s,

g(t+Ts) = g(t) + Ts.g(t) + T%/2! G(t) + ...... (2.16)
=g(t) + Ts.g(¢t) for small Ts. (2.17)

So from eqn.(2.16) it is clear a future signal can be predicted from the present
signal and its all derivatives. Even if we know the first derivative we can predict
the approximated signal.

Let us denote the kth sample of g(t0 by g[k], ie, g[kTs] =g[k] and g(kTs + Ts) = g[k £
1] and so on. Setting t=kT;s in eqn.(2.17) and recognizing g(kTs) ~ [g(kTs) - g(kTs -
Ts)]/ Ts.

We obtain,
glk+1] = g[k] + Ts[{g[k] - g[k-1}/Ts]]
= 2g[K] - glk-1] (2:18)

This shows that we can find a crude prediction of the (k+1)th sample from two
previous samples. The approximation in eqn.(2.17) improves as we add more
terms in the series on the right hand side. To determine the higher order
derivatives in the series, we require more samples in the past. The larger the
member of past samples we use, the better will be the prediction. Thus, in general
we can express the prediction formula as,

glk] ~ a1g[k-1] + axg[k-2]+.......... + ang[k-N] (2.19)
The right hand side of eqn.(2.19), is, g[k, the predicted value of g[k]. Thus,

GIK] = argk-1] + arg[k-2]+.......... + ang[k-N] (2.20)



This is the eqn. of an Nth order predictor. Larger n would result in better
prediction in general. The output of this filter (predictor) is g[k], the predicted
value of g[k]. the input is the previous samples g[k-1], g[k-2],...... ,glk-n], although
it is customary to say that the input is g[k] and the output is g[k].

Eqn.(2.20) reduces to g[k] = g[k-1] for the 1%t order predictor. This is similar to
eqn.(2.17). This means a; = 1 and the 1at order predictor is a simple time delay.

The predictor described in eqn.(2.20) is called a linear predictor. It is basically a
transversal filter(a tapped delay line), where the tap gains are set equal to the
prediction coefficients as shown in fig. 2.8.

Input m[k] Delay Delay Delay Delay Delay

———] Tx r, TS - see

Output m[k]

Fig. 2.8 Transversal filter(tapped delay line) used as a liner predictor

» Analysis of DPCM :

As mentioned earlier, in DPCM we transmit not the present sample g[k] but
d[k] (the difference between g[k] and its predicted value g[k]). At the receiver,
we generate g[k] from the past sample values to which the received d[k] is
added to generate g[k]. There is, however, one difficulty in this scheme. At the
receiver, instead of the past samples g[k-1], g[k-2],....... as well as d[k], we have
their quantized versions gp[k-1], gp[k-2],..... Hence, we cannot determine g[k].
We can only determine gp[k], the estimate of the quantized sample gq[k] in
terms of the quantized samples gq[k-1], gq[k-2],.......... This will increase the
error in reconstruction. In such a case, a better strategy is to determine gq[k],
the estimate of gq[k](instead of g[k]), at the transmitter also from the quantized
samples gq[k-1], gq[k-2],.......... The difference d[k] = g[k] - gq[k-2],....... is now
transmitted using PCM. At the receiver we can generate gq[k], and from the
received d[k], we can reconstruct gq[k].

Fig 2.9 shows a DPCM transmitter. We shall soon see that the predictor input is
gqlk]. Naturally its output is gq[k], the predicted value of gq[k]. The difference,

d[k] = g[k] - gq[K] (2.21)

is quantized to yield



dq[k] = d[k] + q[K] (2.22)
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Fig. 2.9 DPCM system — Tansmitter and Receriver

In eqn.(2.22) q[k] is the quantization error. The predictor output gq[k] is fed
back to its input so that the predictor input gq[k] is,

galk] = ga[K] + dq[K]
= g[k] - d[k] + dg[K]
= glk] + q[k] (2.23)

This shows that gq[k] is a quantized version of g[k]. The predictor input is
indeed gq[k] as assumed. The quantized signal dq[k] is now transmitted over
the channel. The receiver shown in fig 2.9 is identical to the shaded portion of
the transmitter. The input in both cases is also the same, viz., dq[k]. Therefore,
the predictor output must be gq[k] (the same as the predictor output at the
transmitter). Hence, the receiver output (which is the predictor input) is also
the same, viz., gq[k] = g[k] + q[k], as found in eqn.(2.23). This shows that we are
able to receive the desired signal g[k] plus the quantization noise q[k]. This is
the quantization noise associated with the difference signal d[k], which is much
smaller than g[k]. The received samples are decoded and passed through a low
pass filter of D/ A conversion.

SNR Improvement :

To determine the improvement in DPCM over PCM, let g, and dp, be the peak
amplitudes of g(t) and d(t). If we use the same value of ‘L’ in both cases, the
quantization step A in DPCM is reduced by the factor gp/dp. Because the
quantization noise power is A?/12, the quantization noise in DPCM reduced by
the factor (gp/dp)? and the SNR increases by the same factor. Moreover, the
signal power is proportional to its peak value squared (assuming other
statistical properties invariant). Therefore, Gp(SNR improvement due to
prediction) is

Gp = Py/Pq (2.24)



Where Pg and P4 are the powers of g(t) and d(t) respectively. In terms of dB
units, this means that the SNR increases by 10log(Pm/P4) dB.
For PCM,,

(So/No) = a + Gn where, a = 10logC (2.25)

In case of PCM the value of a is higher by 10log(Py/P4) dB. A second order
predictor processor for speech signals can provide the SNR improvement of
around 5.6 dB. In practice, the SNR improvement may be as high as 25 dB.
Alternately, for the same SNR, the bit rate for DPCM could be lower than that
for PCM by 3 to 4 bits per sample. Thus telephone systems using DPCM can
often operate at 32 kbits/s or even 24 kbits/s.

Delta Modulation:

Sample correlation used in DPCM is further exploited in delta modulation(DM)
by oversampling(typically 4 times the Nyquist rate) the baseband signal. This
increases the correlation between adjacent samples, which results in a small
prediction error that can be encoded using only one bit (L=2) for quantization
of the g[k] - gq[k]. In comparison to PCM even DPCM, it us very simple and
inexpensive method of A/D conversion. A 1-bit code word in DM makes word
framing unnecessary at the transmitter and the receiver. This strategy allows us
to use fewer bits per sample for encoding a baseband signal.
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Fig. 2.10 Delta Modulation is a special case of DPCM
In DM, we use a first order predictor which as seen earlier is just a time delay
of Ts(the sampling interval). Thus, the DM transmitter (modulator) and the
receiver (demodulator) are identical to those of the DPCM in fig2.9 with a time
delay for the predictor as shown in fig 2.10. From this figure, we obtain,
Galk] = gal[k-1] + dq[K] (2.26)
Hence, gaqlk-1] = gq[k-2] + dq[k-1] (2.27)

Substituting eqn.(2.27) into eqn.(2.26) yields



galk] = gqlk-2] + dq[k] + dq[k-1] (2.28)

Proceeding iteratively in this manner and assuming zero initial condition, ie,

gql0] =0, yields,

galk] = X0 dqlg] (2.29)

This shows that the receiver(demodulator) is just an accumulator(adder). If the
output dg-[k] is represented by an integrator because its output is the sum of
the strengths of the input impulses(sum of the areas under the impulses). We
may also replace the feedback portion of the modulator (which is identical to
the demodulator) by an integrator. The demodulator output is gp[k], which
when passed through a low pass filter yields the desired signal reconstructed
from the quantized samples.
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Fig 211 shows a practical implementation of the delta modulator and
demodulator. As discussed earlier, the first order predictor is replaced by a low
cost integrator circuit (such as and RC integrator). The modulator consists of a
comparator and a sampler in the direct path and an integrator amplifier n the
feedback path. Let us see how this delta modulator works.

The analog signal g(t) is compared with the feedback signal(which served as a
predicted signal) gg[k]. The error signal d(t) = g(t) - gq[k] is applied to a
comparator. If d(t) is +ve, the comparator output is a constant signal of
amplitude E, and if d(t) is -ve, the comparator output is -E. Thus, the
difference is a binary signal [L = 2] that is needed to generate a 1-bit DPCM.
The comparator output is sampled by a sampler at a rate of fs samples per
second. The sampler thus produces a train of narrow pulses dq[k] with a
positive pulse when g(t)> gq[k] and a negative pulse when g(t)< gq[k]. The
pulse train dq(t) is the delta modulated pulse train. The modulated signal dq(t)
is amplified and integrated in the feedback path to generate §q[k] which tries to
follow g(t).

To understand how this works we note that each pulse in dq[k] at the input of
the integrator gives rise to a step function (positive or negative depending on
pulse polarity) in gq[k]. If, eg, g(t) > Gq[k], a positive pulse is generated in dq[k],
which gives rise to a positive step in gq[k], trying to equalize gq[k] to g(t) in
small steps at every sampling instant as shown in fig 2.11. It can be seen that
Gqlk] is a kind of staircase approximation of g(t). The demodulator at the
receiver consists of an amplifier integrator (identical to that in the feedback
path of the modulator) followed by a low pass filter.

DM transmits the derivative of g(t)

In DM, the modulated signal carries information not about the signal samples
but about the difference between successive samples. If the difference is
positive or negative a positive or negative pulse (respectively) is generated in
the modulated signal dq[k]. Basically, therefore, DM carries the information
about the derivative of g(t) and , hence, the name delta modulation. This can
also be seen from the face that integration of the delta modulated signal yields
gq(t), which is an approximation of g(t).

Threshold of coding and overloading

Threshold and overloading effects can be clearly seen in fig 2.11c. Variation in
g(t) smaller than the step value(threshold coding) are lost in DM. Moreover, if
g(t) changes too fast ie, ggq[k] is too high, gq[k] cannot follow g(t), and
overloading occurs. This is the so called slope overload which gives rise to
slope overload noise. This noise is one of the basic limiting factors in the
performance of DM. We should expect slope overload rather than amplitude
overload in DM, because DM basically carries the information about gq[k]. The
granular nature of the output signal gives rise to the granular noise similar to
the quantization noise. The slope overload noise can be reduced by increasing
the step size A. This unfortunately increases granular noise. There is an



optimum value of A, which yields the best compromise giving the minimum
overall noise. This optimum value of A depends on the sampling frequency fs
and the nature of the signal.

The slope overload occurs when ggq[k] cannot follow g(t). During the sampling
interval Ts, §q[k] is capable of changing by A, where A is the height of the step
Hence, the maximum slope that gq[k] can follow is A/ Ts-, or Afs, where fs is the
sampling frequency. Hence, no overload occurs if

|g(®) | <Afs (2.30)
Consider the case of a single tone modulation,

ie, g(t) = A.cos(wt)

The condition for no overload is
| G(0) [ max= WA < Afs (2.31)

Hence, the maximum amplitude “Amax’ of this signal that can be tolerated
without overload is given by
Amax = Afs/W (232)

The overload amplitude of the modulating signal is inversely proportional to
the frequency W. For higher modulating frequencies, the overload occurs for
smaller amplitudes. For voice signals, which contain all frequency components
up to(say) 4 KHz, calculating Amax by using W = 2.pi.4000 in eqn.(2.32) will
give an overly conservative value. It has been shown by De Jager that ‘Amax” for
voice signals can be calculated by using W; = 2.pi.800 in eqn.(2.32),

[Amax]voice ~ Afs/VVr (233)

Thus, the maximum voice signal amplitude ‘Ama’ that can be used without
causing slope overload in DM is the same as the maximum amplitude of a
sinusoidal signal of reference frequency f.(f; = 800 Hz) that can be used without
causing slope overload in the same system.
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Fig. 2.12 Voice Signal Spectrum

Fortunately, the voice spectrum (as well as the TV video signal) also decays
with frequency and closely follows the overload characteristics (curve c, fig
2.11). For this reason, DM is well suited for voice (and TV) signals. Actually,
the voice signal spectrum (curve b) decrease as 1/W upto 2000 Hz, land
beyond this frequency, it decreases as 1/W2. Hence, a better match between the
voice spectrum and the overload characteristics is achieved by using a single
integration up to 2000 Hz and a double interaction beyond 2000 Hz. Such a
circuit (the double integration) is fast responding, but has a tendency to
instability, which can be reduced by using some lower order prediction along
with double integration. The double integrator can be built by placing in
cascade tow low pass RC integrators with the time constant R1C; = 1/2000.pi
and R>C> = 1/4000.pi, respectively. This result in single integration from 100 Hz
to 2000 Hz and double integration beyond 2000 Hz.

Adaptive Delta Modulation

The DM discussed so far suffers from one serious disadvantage. The dynamic
range of amplitudes is too small because of the threshold and overload effects
discussed earlier. To correct this problem, some type of signal compression is
necessary. In DM a suitable method appears to be the adaptation of the step
value ‘A’ according to the level of the input signal derivative. For example in
tig.2.11c when the signal g(t) is falling rapidly, slope overload occurs. If we can
increase the step size during this period, this could be avoided. On the other
hand, if the slope of g(t) is small, a reduction of step size will reduce the
threshold level as well as the granular noise. The slope overload causes dq[k] to
have several pulses of same polarity in succession. This call for increased step
size. Similarly, pulses in dq[k] alternating continuously in polarity indicates
small amplitude variations, requiring a reduction in step size. This results in a
much larger dynamic range for DM.




> Output SNR
The error d(t) caused by the granular noise in DM, (excluding slope overload),
lies in the range (-A,A) , where A is the step height in gq(t). The situation is
similar to that encountered in PCM, where the quantization error amplitude
was in the range from -A/2 to A/2. The quantization noise is,

A
2

<q2e> =1/A[%q2dq, = A2/12 (2.34)
2

Similarly the granular noise power <g2,> is
<gt>=1/(2A) [*, g3.dgy = 8% (2.35)

The granular noise PSD has continuous spectrum, with most of the power in
the frequency range extending well beyond the sampling frequency ‘fs’. At the
output, most of this will be suppressed by the baseband filter of bandwidth W.
Hence the granular noise power No will be well below that indicated in
equation (18). To compute No we shall assume that PSD of the quantization
noise is uniform and concentrated in the band of 0 to fs Hz. This assumption
has been verified experimentally. Because the total power A3/3 is uniformly
spread over the bandwidth fs the power within the baseband W is

No = (A3/3)W/fs = A2W / (3fs) (2.36)
The output signal power is Sp = <g?(t)>. Assuming no slope overload distortion
So/No = 3.fs<g?(t)>/ (A2.W) (2.37)
If g, is the peak signal amplitude, then eqn. (2.33) an be written as,

gp = Afs/ Wi
& So/No = 3.£3:<g2(t)>/ (W2.W.g%) (2.38)

Because we need to transmit fs pulses per second, the minimum transmission
bandwidth Br = f;/2. Also for voice signals, W=4000 and W, =2.pi.800 =1600.pi.
Hence,
So/No = [3.(2Bt)3<g?(t)>]/[1600x1600.112ZWg?p]
=150/ m2.(Br/ W)3.<g2(t)>/ g% (2.39)

Thus the output SNR varies as the cube of the bandwidth expansion ratio
Br/W. This result is derived for the single integration case. For double
integration DM, Greefkes and De Jager have shown that,

So/No = 5.34(Br/ W)5<g2(t)>/ g2 (2.40)



It should be remembered that these results are valid only for voice signals. In
all the preceding developments, we have ignored the pulse detection error at
the receiver.

Comparison With PCM

The SNR in DM varies as a power of Br/W, being proportional to (Br/W)3 for
single integration and (Br/W)> for double integration. In PCM on the other
hand the SNR varies exponentially with Br/W. Whatever the initial value, the
exponential will always outrun the power variation. Clearly for higher values
of Br/W, PCM is expected to be superior to DM. The output SNR for voice
signals as a function of the bandwidth expansion ratio Br/W is plotted in fig.
for tone modulation, for which <g?> /g,2 = 0.5. The transmission band is
assumed to be the theoretical minimum bandwidth for DM as well as PCM. It
is clear that DM with double integration has a performance superior to
companded PCM(which is the practical case) for lower valued of Br/W = 10. In
practice, the crossover value is lower than 10, usually between 6 & 7(fs = 50
kbits/s). This is true only for voice and TV signals, for which DM is ideally
suited. For other types of signals, DM does not comparable as well with PCM.
Because the DM signal is digital signal, it has all the advantages of digital
system, such as the use of regenerative repeaters and other advantages as
mentioned earlier. As far as detection of errors are concerned, DM is more
immune to this kind of error than PCM, where weight of the detection error
depends on the digit location; thus for n=8, the error in the first digit is 128
times as large as the error in the last digit.
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Fig. 2.21a Comparison of DM and PCM.

For DM, on the other hand, each digit has equal importance. Experiments have
shown that an error probability ‘Pe’ on the order of 10! does not affect the



intelligibility of voice signals in DM, where as ‘Pe” as low as 10+ can cause
serious error, leading to threshold in PCM. For multiplexing several channels,
however, DM suffers from the fact that each channel requires its own coder
and decoder, whereas for PCM, one coder and one decoder are shared by each
channel. But his very fact of an individual coder and decoder for each channel
also permits more flexibility in DM. On the route between terminals, it is easy
to drop one or more channels and insert other incoming channels. For PCM,
such operations can be performed at the terminals. This is particularly
attractive for rural areas with low population density and where population
grows progressively. The individual coder-decoder also avoids cross-talk, thus
alleviating the stringent design requirements in the multiplexing circuits in
PCM.

In conclusion, DM can outperform PCM at low SNR, but is inferior to PCM in
the high SNR case. One of the advantages of DM is its simplicity, which also
makes it less expensive. However, the cost of digital components, including
A/D converters, ie, coming down to the point that the cost advantage of DM
becomes insignificant.

> Noise in PCM and DM
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Fig. 2.13 A binary PCM encoder-decoder.

In the above figure m(t) is same as g(t). The baseband signal g(t) is quantized, giving
rise to quantized signal gq(t), where

gq(t) = g(t) + e(t) (2.41)
(e(t) is same as q.(t) as discussed earlier).
The sampling interval is T=1/2f, , where f;, is the frequency to which the signal g(t) is
bandlimited.



The sampling pulses considered here are narrow enough so that the sampling may be
considered as instantaneous. With such instantaneous sampling, the sampled signal may
be reconstructed exactly by passing the sequence of samples through a low pass filter
with cut off frequency of f;;,. Now as a matter of mathematical convenience, we shall
represent each sampling pulse as an impulse. The area of such an impulse is called its
strength, and an impulse of strength I is written as 13(t).

The sampling impulse train is therefore s(t), given by,

s() =132, 6(t — k) Ty (2.42)
Where, Ts=1/(2.ty)
From equation 1 and 2 , the quantized signal gq(t) after sampling becomes gq(t),
written as,

8as(t) = gOIXRE oo 6(t — kT) + e(OIXp=_o, 6(t — kT) (2.432)
= gs(t) tes(t) (2.43b)

The binary output of the A/D converter is transmitted over a communication channel
and arrives at the receiver contaminated as a result of the addition of white thermal
noise W(t). Transmission may be direct as indicated in fig.2.13, or the binary output
signal may be used to modulate a carrier as in PSK or FSK.

In any event the received signal is detected by a matched filter to minimize errors in
determining each binary bit and thereafter passed on to a D/A converter. The output of
a D/A converter is called gq(t). In the absence of thermal noise and assuming unity
gain from the input to the A/D converter to the output of the D/A converter, we should
have g~q(t) = gqs(t) . Finally the signal g~q(t) is passed through the low pass baseband
filter. At the output of the filter we find a signal gy(t) which aside from a possible
difference in amplitude has exactly the waveform of the original baseband signal g(t).
This output signal however in accompanied by a noise waveform W(t) due to thermal
noise.

> Calculation of Quantization Noise

Let us calculate the output power due to the quantization noise in the PCM system as in
fig.2.14 ignoring the effect of thermal noise.
The sampled quantization error waveform, as given by eq" (2.43b),

ei(t) = e(OITF% o0 g (¢ — KTy) (2.44)

It is to be noted that if the sampling rate is selected to be the nyquist rate for the
baseband signal g(t) the sampling rate will be inadequate to allow reconstruction of the
error signal e(t) from its sample e(t). In fi.2 the quantization levels are separated by
amount A. We observe that e(t) executes a complete cycle and exhibits an abrupt
discontinuity every time g(t) makes an excursion of amount A. Hence spectral range of
e(t) extends for beyond the band limit f,, of g(t).
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Fig. 2.14 Plot of my(t) and e(t) as a function of m(t).

To find the quantization noise output power Ny, we require the PSD of the sampled
quantization error eg(t) given in eq" (2.44).

Since o(t-kTs) = 0 except when t=kT; es(t) may be written as,
es(t) = LY p=_o e(kT)d(t — kTy) (2.45)

The waveform of eq" (2.45) consists of a sequence of impulses of area=A=e¢(kT;) 1
occurring at intervals Ts. The quantity e(kTs) is the quantization error at sampling time
and is a random variable.

The PSD G(f) of the sampled quantization error is,

et
T (2.46)

"

S

12

G‘u (f] =

e’ (1) = e* (kT,) =

and,
For a step size of A the quantization error is
e’(t) = A%/12 (2.47)

Equation 6 involves <e*(kTy)> rather than <e’(t)>. However since the probability
density of e(t) does not depend on time the variance of e(t) is equal to the variance of
e(t=kTy) .

Thus, <e’(t)> = <e*(kTy)> = AY/12 (2.48)
From eqn. (2.46) and eqn. (2.49) we have,

Ges(f) = PA*/(T,.12) (2.49)

Finally the quantization noise Ngis, from eqn. (2.50),

P s,
2f,
o127 (2.50)

N, = '["""" G, (f)df =
Yo ), eI =
s

L2120 [take 8" as ‘A ]




» The Output Signal Power
The sampled signal which appears at the input to the baseband filter shown in fig.2.14
is given by gy(t) in eq"(2.43) as.

gs(t) =g(t).1.Y = _ oo 6 (t — kT) (2.51)

Since the impulse train is periodic it can be represented by a fourier series. Because the
impulses have strength I and are separated by a time T the first term in Fourier series
is the dc component which is 1/Ts. Hence the signal go(t) at the output of the baseband
filter is

go(t) = UTs.g(t) (2.52)

Since T=1/21;, , other terms in the series of equation 11 lie outside the passband of the
filter. The normalised signal output power is from eq" (2.52),

g5 (t) =IT? .g%(v) (2.53)

We can now express g2(t) in terms of the number M of quantization levels and the step
size A. To do this we can say that the signal can vary from -mA/2 to mA/2, i.e we
assume that the instantaneous value of g(t) may fall anywhere in its allowable range of
‘mA’ volts with equal likelihood. Then the probability density of the instantaneous
value of g in f(g) given by,

f(g) = 1/(MA)

The variance o of g(t), ie, g2(t) is,

MA

2(0) = [ 3u g% f(g)dg = M*.AY/12 (2.54)

Hence from eqn. (2.53), the output signal power is

So = g2(t) = I/T> . M2.AY/12 (2.55)
From eqn.(2.50) and (2.55) we find the signal to quantization noise ratio is

S, /Ny =M? = (2" (2.56)

where, N is the number of binary digits needed to assign individual binary code
designations to the M quantization levels.

» The Effects of Thermal Noise
The effect of additive thermal noise is to calculate the matched filter detector of
fig.2.14 to make an occasional error in determining whether a binary 1 or binary 0 was
transmitted. If the thermal noise is white and Gaussian the probability of such an error
depends on the ratio Ey/n. Where E,, is signal energy transmitted during a bit and n/2 is
the two sided power spectral density of the noise. The probability depends also on the
type of modulation employed.




Rather typically, PCM system operate with error probabilities which are small enough
so that we may ignore the likelihood that more than a single bit error will occur with in
a single word. For example, if the error probability P.=10" and a word of 8 bits we
would expect on the average that 1 word would be in error for every 12500 word
transmitted. Indeed the probability of two words being transmitted in error in the same
8 bit word is 28*107"°.

Let us assume that a code word used to identify a quantization level has N bits. We
assume further that the assignment of code words to levels is in the order of numerical
significance of the word. Thus we assign 00.....00 to the most negative level to the next
higher level until the most positive level is assigned the codeword 1 1.....1 1.

An error which occurs in the least significant bit of the code word corresponds to an
incorrect determination by amount ‘A’ in the quantized value gy(t) of the sampled
signal. An error in the next higher significant bit corresponds to an error 2A; in the next
higher, 4A, etc.

Let us call the error dg;. Then assuming that an error may occur with equal likelihood
inany bit of the word, the variance of the error is,

<8g’>=1/N.[ A*+ QA) + (4A)* + ........... +2N'A)Y
= AN 1P+ QP+ @)+ . +2NY] (2.57)
The sum of the geometric progression in eqn.(2.57),

<8g’>= AYN2@Y/(22-1) = 22N AY(3N), forN>2 (2.58a)

The preceding discussion indicates that the effect of thermal noise errors may be taken
into account by adding at the input to the A/D converter in fig. 2.14, an error voltage
dgs , and by detecting the white noise source and the matched filter. We have assumed
unity gain from the input to the A/D converter to the output of the D.A converter. Thus
the same error voltage appears at the input to the lowpass baseband filter. The results of
a succession of errors is a train of impulses, each of strength 1(dgs). These impulses are
of random amplitude and of random time of occurrence.

A thermal noise error impulse occurs on each occasion when a word is in error.
With P, the probability of a bit error, the mean separation between bits which are in
errors is 1/ P..

With N bits per word , the mean separation between words which are in error is 1/N P,
words. Words are separated in time by the sampling interval T. Hence the mean time
between words which are in error is T, given by

T,
o

NP (2.58b)

The power spectral density of the thermal noise error impulses train is, using
eqn.(2.58a) and(2.58b),

Gu(f) = /T < 8.g> > = NP IY/T, <8.g>> (2.59)

using eqn.(2.58a), we have



Gu(f) = 22NA?PIY/(3T2) (2.60)
Finally, the output power due to the thermal error noise is,
N = f_f’}@m Gon (Fdf = 22N API(3.TS) (2.61)

» Output Signal To Noise Ratio in PCM
The output SNR including both quantization and thermal noise , is found by combining
equation 10,16 and 23. The result is

S, S, (I T? W (M*S§%/12)

No Ny +Ny (/T NS N2) + (12T ) (R 22N §7/3)
[replace ‘S’ by ‘A’; S is same as A]

~A2N

L +4p 22N (2.62)
In PSK(or for direct transmission) we have,

Eh
erfe, | —
V' n (2.63)

Where, E, is the signal energy of a bit and 1n/2 is the two sided thermal noise power
spectral density. Also, for coherent reception of FSK we have,

- . E.‘;
erfe, [0.6 —
Voo (2.64)

To calculate E, we note that if a sample is taken at intervals of T, and the code word of
N bit occupies the total interval between samples, then a bit has a duration T¢/N. If the
received signal power is S;, energy associated with a single bit is

(Popsk =

ba | —

(Porsk =

ta | —

T,
E,= S —=S§ 1

TN 2N (2.65)

Combining eqns. (2.62), (2.63) & (2.65), we find,

[%J 224
No Josc 14+22M*erfe J(2N)(S,/1fy;) (2.66)

using eqn.(2.64) in place of eqn.(2.63), we have

[ S, ) 22N
'Nru Feg 1+ EEN-H erfc \/(03?\') (S;/nfi) (267)



Note that for §/nf,, > 1 and N — 8

lS” _ e (A 10y — ;
: — 10 log (2'6) = 48 dR
No Josk rsk

o

(2.68)

From fig. we find both the PCM system exhibit threshold, FSK threshold occurring at a
Simfm which is 2.2 dB greater than that for PSK. Experimentally, the onset of threshold
in PCM is marked by an abrupt increase in a crackling noise analogous to the clicking
noise heard below threshold in analogue FM systems.

» Delta Modulation:

A delta modulation system including a thermal noise source is shown in fig.2.15. The
impulse generator applies the modulator a continuous sequence of impulses pi(t) of
time separation 1. The modulator output is a sequence of pulses Py(t) whose polarity
depends on the polarity of the difference signal d(t)=g(t) — g (t) , where g (t) is the
integrator output. We assume that the integrator has been adjusted so that its response
to an input impulse of strength I is a step size A; i.e. g7(t) = (A/I)[Po(t)dt.
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Fig. 2.15 A delta modulation system.

A typical impulse train Py(t) is shown in fig.2.16(a). Before transmission, the impulse
waveform will be converted to the two level waveform of fig.2.16(b). Since this latter
waveform has much greater power than a train of narrow pulses. This conversion is



accomplished by the block in fig.2.15 marked “transmitter”. The transmitter in
principle need be nothing more complicated than a bistable multivibrator. We may
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Fig.2.16 (a) A typical impulse train po(t)appearing at the modulator output in previous fig.
(b) The two-level signal transmitted over the communication channel.

arrange that two positive impulses set the flip-flop into one of its stable states, while the
negative impulses reset the flip-flop to its other stable state. The binary waveform of
fig.2.16(b) will be transmitted directly or used to modulate as a carrier in FSK or PSK.
After detection by the matched filter shown in fig.2.15, the binary waveform will be
reconverted to a sequence of impulses Py'(t). In the absence of thermal noise
Py'(t)=Py(t), and the signal g (t) is recovered at the receiver by passing Py’(t) through an
integrator. We assume that transmitter and receiver integrators are identical and that the
input to each consists of a train of impulses of strength +I or -1. Hence in the absence of
thermal noise , the output of both the integrators are identical.

> Quantization Noise in Delta Modulation

Here in fig. 2.17 g (t) in the delta modulator approximation to g(t). Fig 2.17 shows the
error waveform 9(t) given by,

S(t) = g(t) - g(v (2.69)
This error waveform is the source for quantization noise.
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Fig. 2.17 The estimate §(t) and error A(t) when g(t) is sinusoidal.

We observe that, as long as slope overloading is avoided, the error d(t) is always less than the
step size A. We shall assume that 5(t) takes on all values between -A and +A with equal
likelihood. So we can assume the probability d(t) is,

f(d) = 1/(27), SA<OH(H) <A (2.70)
The normalization power of the waveform d(t) is then,
<[3(t)]*> = f_“A £(8)8%ds = AY/3 (2.71)

Our interest is in estimating how much of this power will pass through a baseband
filter. For this purpose we need to know something about the PSD of 6(t) .

In fig. 2.17 the period of the sinusoidal waveform g(t) i.e. T has been selected so that T
is an integral multiple of step duration t. We then observe that the d(t) is periodic with
fundamental period T, and is of course, rich in harmonics. Suppose, however, that the
period T is charged very slightly by amount 6T. Then the fundamental period of d(t)
will not be T but will be instead T * t/8T corresponding to a fundamental frequency
near zero as OT tends to 0. And again, of course o(t) will be rich in harmonics. Hence,
in the general case, especially with g(t) a random signal, it is reasonable to assume that
d(t) has a spectrum which extends continuously over a frequency which begins near
Zero.

To get some idea of the upper frequency range of the spectrum of the waveform d(t).
Let us contemplate passing 6(t) through a LPF of adjustable cutoff frequency. Suppose



that initially the cutoff frequency is high enough so that 6(t) may pass with nominally
no distortion. As we lower the cutoff frequency, the first type of distortion we would
note is that the abrupt discontinuities in the waveform would exhibit finite rise and fall
times. Such is the case since it is the abrupt changes which contribute the high
frequency power content of the signal. To keep the distortion within reasonable limits,
let us arrange that the rise time be rather smaller than the interval t. To satisfy this
condition we require the filter cutoff frequency f. be of the order of f.=1/t, since the
transmitted bit rate f,=1/t, f.=f, as expected.

We now have made it appear reasonable, by a rather heuristic arguments that the
spectrum of d(t) extends rather continuously from nominally zero to f. = f,. We shall
assume further that over this range the spectrum is white. It has indeed been established
experimentally that the spectrum of o(t) is approximately white over the frequency
range indicated.

We may now finally calculate the quantization noise that will appear at the output of a
baseband filter of cutoff frequency f. Since the quantization noise power in a
frequency range fi, is A*/3 as given by equation 32, the output noise power in the
baseband frequency range fi, is

5 fu _ S fu

N, =
o I 2 .
3 1 3 Jp [replace ‘S’ with ‘A’ ] (2.72)

We may note also, in passing, that the two-sided power spectral density of d(t) is,

Go(f) = A%(3.2.£,) = A(6.£), f<f<f, (2.73)

> The Output Signal Power

In PCM, the signal power is determined by the step size and the number of quantization
levels. Thus, with step size A and M levels, the signal could make excursion only
between -MA/2 and MA/2. In delta modulation there is no similar restriction on the
amplitude of the signal waveform, because the number of levels is not fixed. On the
other hand, in delta modulation there is a limitation on the slope of the signal wave
form which must be observed if slope overload is to be avoided. If however, the signal
waveform changes slowly , there is normally no limit to the signal power which may be
transmitted.

Let us consider a worst case for delta modulation. We assume that the signal power is
concentrated at the upper end of the baseband. Specifically let the signal be,

g(t) = A.sin(wpt)

With ‘A’ the amplitude and o, =2xnf;,, where f,, is the upper limit of the baseband
frequency range. Then the output signal power

So(t) = g2(t) = A*2 (2.74a)



The maximum slope of g(t) is ®nA. The maximum average slope of the delta
modulator approximation g (t) is A/t = Afy, where A is step size and f;, the bit rate. The
limiting value of ‘A’ just before the onset of slope overload is, therefore given by the
condition,

wum . A = Afy, (2.74b)

From eqns.(2.74a) and (2.74b), we have that the maximum power which may be
transmitted in,

So = A’/ 2w y) (2.75)
The condition specified in equation 37 is unduly severe. A design procedure, more
often employed, is to select the Af, product to be equal to the rms value of the slope

g(t). In this case the output signal power can be increased above the value given in
equation 38.

> Output Signal to Quantization Noise Ratio for Delta Modulation

The output signal to quantization noise ratio for delta modulation is found by dividing
eqn.(2.75) by eqn.(2.72). The result is

o - D [.;f.' )3: 3 [L]g
N{f 872 \ fu 80\ fius (2.76)

It is of interest to note that when our heuristic analysis is replaced by a rigorous
analysis, it is found that eqn. 39 continues to apply, except with a factor 3/80 replaced
by 3/64, corresponding to a difference of less than 1dB.

The dependence of So/Ng on the product fi/fi, should be anticipated. For suppose that
the signal amplitude were adjusted to the point of slope overload, if now, say, f;,, were
increased by some order to continue to avoid overload.

Let us now make a comparison of the performance of PCM and DM in the matter of the
ratio So/Ng. We observe that the transmitted signals in DM and in PCM are of the same
waveform, a binary pulse train. In PCM a voltage level, corresponding to a single bit
persists for the time duration allocated to one bit of codeword. With sampling at the
Nyquist rate 1/2f;, s , and with N bits per code word , the PCM bit rate is f,=2f,N. In
DM, a voltage corresponding to a single bit is held for a duration T which is the interval
between samples. Thus the DM system operates at a bit rate f,=1/7.

If the communication channel is of limited bandwidth, then there is a possibility of
interference in either DM or PCM. Whether such inter-symbol interference occurs in
DM depends on the ratio of f, to the bandwidth of the channel and similarly in PCM on
the ratio of f, to the channel bandwidth. For a fixed channel bandwidth, if inter-symbol



interference is to be equal in the two cases, DM or PCM , we require that both systems
operate at the same bit rate or

fb:f’bZmeN (277)
Combining eq 17 and 40 for PCM yields

So/N=2"N=p >/ (2.78)
Combining eq 39 and 40 for delta modulation yields

So/Ngq = N* (3/n%) (2.79)
Comparing equation 41 with 42 , we observe that for a fixed channel bandwidth the
performance of DM is always poorer than PCM. For example if a channel is adequate
to accommodate code words in PCM with N=8, equation 41 gives So/Ny = 48dB. The
same channel used for DM would, from equation 42 yield So/Ny =22dB.

> Comparison of DM and PCM for Voice

when signal to be transmitted is the waveform generated by voice, the comparison
between DM and PCM is overly pessimistic against DM. For as appears in the
discussion leading to equation 37, in our concern to avoid slope overload under any
possible circumstances, we have allowed for the very worst possible case. We have
provided for the possibility that all the signal power might be concentrated at the
angular frequency o, which is the upper edge of the signal bandwidth. Such is
certainly not the case for voice. Actually for speech a bandwidth f,, = 3200Hz is
adequate and the voice spectrum has a pronounced peak at 800Hz = f,,/4. If we replace
Om by /4 in eqn. (2.74b) we have,

wym A4 = A,

The amplitude ‘A’ will now be four times larger than before and the allowed signal
power before slope overload will be increased by a factor of it(12dB). Correspondingly,
equation 39 now becomes,

So/Ng = 6/m°.(fi/fm)’ = 0.6(fp/fir)’ = 5SN° (2.80)

It may be readily verified that for (f,/f,,)<8 the signal to noise ratio for DM , SNR(9),
given by eqn.(2.80) is larger than SNR(PCM) given by eq" (2.78). At about (fy/fi,) = 4
the ratio SNR(DM)/ SNR(PCM) has maximum value 2.4 corresponding to 3.8db
advantage. Thus if we allow f,, = 4KHz for voice, then to avail ourselves of this
maximum advantage offered by DM we would take f,= 16KHz.

In our derivation of the SNR in PCM we assumed that at all times the signal is strong
enough to range widely through its allowable excursion. As a matter of fact, we
specifically assumed that the distribution function f(g) for the instantaneous signal
value g(t) was uniform throughout the allowable signal range. As a matter of practice,
such would hardly be the case. The commercial PCM systems using companding, are
designed so that the SNR remains at about 30dB over a 40dB range of signal power. In



short while eq" (2.78) predicts a continuous increase in SNR(PCM) with increase in
fp/fim, this result is for uncompanded PCM and in practice SNR(PCM) is approximately
constant at 30dB. The linear DM discussed above has a dynamic range of 15dB. In
order to widen this dynamic range to 40dB one employs adaptive DM(ADM), which
yields advantages similar to the companding of PCM. When adaptive DM is employed,
the SNR is comparable to the SNR of companded PCM. Today the satellite business
system employs ADM operating at 32kb/s rather than companded PCM which operates
at 64kb/s thereby providing twice as many voice channels in a given frequency band.

» The Effect of Thermal Noise in DM

When thermal noise is present, the matched filter in the receiver will occasionally make
an error in determining the polarity of the transmitted waveform. Whenever such an
error occurs , the received impulse stream Py'(t) will exhibit an impulse of incorrect
polarity. The received impulse stream is then

Py'(t)=Po(t) + Pu(t) (2.81)

In which Pg(t) is the error impulse stream due to thermal noise. If the strength of the
individual impulses is I, then each impulse in Py, is of strength 2I and occurs only at
each error. The factor of two results from the fact that an error reverses the polarity of
the impulse.

The thermal error noise appears as a stream of impulses of of random time of
occurrence and of strength +2I. The average time of separation between these impulses
is ©/P., where P, is the bit error probability and 7 is the time duration of a bit. The PSD
of thermal noise impulses is

Goulf) = = (21)? (2:82)

Now the integrators (assumed identical in both the DM transmitter and receiver) as
having the property that when the input is an impulse of strength the output is a step of
amplitude A is

F{Au(t)} = Aljo ; ©0F0
= And(®) ; ©=0 (2.83)

We may ignore the dc component in the transform since such dc components will not
be transmitted through the baseband filter. Hence we may take the transfer function of
the integrator to be H;(f) given by

H(H =21 : ©#0- (2.84)

Ijw

And | H( |*=(5)?= 10=0 (2.85)

From equation 46 and 49 we find that the PSD of the thermal noise at the input to the
baseband filter is G, (f) given by

4A?%pe

Tw?

Gu() = | Hi() |*Gpu(H) = (2.86)



It would now appear that to find the thermal noise output, we need not to integrate
Gu(f) over the passband of the baseband filter. During integration we have extended the
range of integration from —f, through f=0 to +f;,, even though we recognised that
baseband filter does not pass dc and eventually has a low frequency cutoff f;. However
in other cases the PSD of the noise near f=0 is not inordinately large in comparison
with the density throughout the baseband range generally. Hence, it as is normally the
case, fj<<f,, the procedure is certainly justified as a good approximation. We observe
however that in the

present case [eq" (2.86)], Gy (f) = ® at@ — 0, and more importantly that the integral

of Gu(f), over a range which include @ =0 is infinite. Let us then explicitly take
account of the low frequency cutoff f; of the baseband filter. The thermal noise output

1

is using eq" (2.86) with ¢ = 27f and since f, 7 ,

-/ 1,
Nth = Azpe i-l- j i
72_22_ o fZ b f2

(2.87)
20°F, (L_LJ

_ w2 N S (2.88)
2A’P, 2A°P,f,

_7kfy  2f (2.89)

If f; << f,, unlike the situation encountered in all other earlier cases, the thermal noise
output in delta modulation depends upon the low frequency cutoff rather than the
higher frequency limit of the baseband range. In many application such as voice
encoder where the voice signal is typically band limited from 300 to 3200 H,, the use of
band pass output filter(f;=300H,) is common place.

> Output Signal-to-Noise ratio in DM

The o/p SNR is obtained by combining eq" (2.72), (2.80) and (2.89), the result is
So S (A% 7)(£,/ £,,)*
No  Ng+Ny  (A%f, 13f,)+(A%P,5,/ 22 )

(2.90)
Which may be written as
So  0.6(f/£,)’°
No  1+0.6P,(f2/f,,f) (2.91)
If transmission is direct or by means of PSK,
1 —
fe=genedtaln (2.92)

Where E; is the signal energy is a bit, is related to the received signal power S;
By ES: Sin = Si/fb (293)
Combining eq" (2.91), (2.92) and (2.93), we have



Sy 0.6(f/f,)°
No  1+[0.3F2/1,,f;Jerfc [S; / n.f;, (2.94)

» Comparison of PCM and DM

We can now compare the output signal SNR I PCM and DM by comparing
eq'(2.66)and (2.94). To ensure that the communications channels bandwidth required is
same in the two cases, we use the condition, given in eq"(2.77), that 2N = f/f;, . Then
€q"(2.66) can be written as

J
So 2/
Ny A
14227 Yerfe [S; /0 f; 2.95)

Eq" (2.95) and (2.94) are compared in fig.2.18 for N=8(f,(DM)=48 Kb/s) : to obtain the
thermal performance of the delta modulator system, we assume voice transmission
where £,=300 H, and f; =300 H, .

Thus f/fn=16 (2.96)
And fu/fi= 10 (2.97)

Let us compare the ratios So/No for PCM and DM for case of voice transmission. We
assume that £,=3000 H,, f; = 2Nf,= 48 x 10° H,. Using these numbers and resulting

that the probability of an error in a bit as P, = %er fco/Si/nf, we have from eq” (2.94)
& (2.95) the result for DM is,

(&) _ 2457.6 _ 2457.6
No PM 11 768erfe S, Inf, 1+1536P, 258)
ﬁ») dE
- ¥ rowm
36 A
32 {_.r/
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Fig.2.18 A comparison of PCM & DM

And for PCM
Soy 65,536 65536
No "M 14 131,072er/cfS; 7S, 1+262144E,

(2.99)

When the probability of bit error is very small, the PCM system is seen to have higher
output SNR than the DM system. Indeed the o/p SNR for PCM system is 48 dB and
only about 33 dB for DM system. However, an o/p SNR of 30 dB is all that is required
in a communication system. Indeed if commanded PCM is employed the o/p SNR will
decrease by about 12 dB to 36 dB for PCM system. Thus eq" (2.99) indicates that the
output SNR is higher for PCM system, the output SNR. In practice, can we consider as
being comparable.

With regard to the threshold, we see that when P, ~ 10° the PCM system has
reached threshold with the DM system reaches threshold when P, ~ 10™*. In practice, we
find that our ear does not detect threshold P, is about 10™ for PCM and 107 for DM and
ADM. Some ADM systems can actually produce understandable speech at error rates
as high as 107", Fig.2.18 shows a comparison of PCM and DM for N=8 and f,,/f; = 10.
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Principles of Digital Data Transmission:
A Digital Communication System

Source Multiplexer Line coder Regenerative
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( - Repeater

. Digital Data Set Figure 3.0 A Simple Digital Communication System
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Computer output

Digital Voice Signal (PCM or DM)
Digital facsimile signal

Digital TV signal

Telemetry equipment signal

Etc.
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Line Coding
Digital data can be transmitted by various line codes
Desirable properties from a line code
1. Transmission bandwidth — It should be as small as possible
2. Transmitted power — It should be as small as possible
3. Error detection and correction capability — It must be good
4. Favorable PSD — It is desirable to have zero power spectral density (PSD) at o = 0, because
AC coupling and transformers are used at the repeaters. Significant powers in low frequency
components cause DC wander in the pulse stream when AC coupling is used.
5. Adequate timing content — It should be possible to extract timing and clock information from
the signal
6. Transparency — It should be possible to transmit a digital signal correctly regardless of the
pattern of 1’s and 0’s. If the data are so coded that for every possible sequence of data the
coded signal is received faithfully, the code is then transparent.

ot (22 ILI ﬁ |_1| 0 0 ﬁ 0 Iil I1_I 0o 0 o
/Unipolar RZ @ A
polar (RZ) l_l I_I n l_l l_] sl
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bipolar/AMI (RZ) [] [] [ [ [l [] —_

ic)

on-off (NRZ) | o I ; [1 | . |

/Unipolar NRZ ()

polar (NRZ) l — ' ! — |
/Bipolar NRZ o

t—
(Manchester) )

Figure 3.1 Binary signaling formats



Various line codes
Various line codes are as shown in Figure 3.1

Power Spectral Density (PSD) of Line Codes

1. The output distortion of a communication channel depends on the power spectral density of the
input signal

2. Input PSD depends on
1) pulse rate (spectrum widens with pulse rate)
i1) pulse shape (smoother pulses have narrower PSD)
ii1) pulse distribution

3. Distortion can result in smeared channel output; output pulses are (much) longer than input
pulses

4. Inter symbol interference (ISI): received pulse is affected by previous input symbols

Figure 3.2 /m

t f

Power Spectral Density (review)
For an energy signal g(t) the energy spectral density is the Fourier transform of the autocorrelation:

?l,ia,?g ':T) = Fl)g (T) = / f}(”)y(” 4 T) dn = ;(f} ‘2 — JT{ Ry(f’)}
o (3.1)
The autocorrelation of a periodic signal is periodic.
o1t o o
Rg(t,} = T [ 5)({{)5;(1L + t)du = L ‘(;??|~)EJ2W'RI’
& e (3.2)

For a power signal, autocorrelation and PSD are average over time. Defines

_ (t tl<T1T/2
91‘(f)=H(f/’T)g(f)={g ) =17

0 t| > 1/2 (3.3)
o Rylt) |G (F)
Then,  Rylt) = Jim 2 o) = i IIE (3.4)

PSD of Line Codes
The PSD of a line code depends on the shapes of the pulses that correspond to digital values. Assume

PAM.
ﬁ”\

| T, 1—

(a)

¥

ANERTNANEYNENAN
KT, (DT, \/ L -

(b)

[s.9]

y(t)= > applt —kT})
k=—o00 (3.5



The transmitted signal is the sum of weighted, shifted pulses. Where, T}, is spacing between pulses.
(Pulse may be wider than 73.) PSD depends on pulse shape, rate, and digital values {ax}. We can
simplify analysis by representing {ax} as impulse train as shown in figure 3.3(c).

- f ; tkll)ng* {j”;”* A T T

Ty

{——»

(c)

x(t) vt
3> fele) = plr) - = .
S, = |PUHIS()

(d)
Figure 3.3

PSD of y(2) is S,(f) = |P(H)]’Su(f).

»  P(f) depends only on the pulse, independent of digital values or rate.
= S« increases linearly with rate 1/7, and depends on distribution of values of { a, }. E.g., a,=1 for
all k has narrower PSD.

PSD of Impulse Train

The autocorrelation of x(t) = Z apd(t — k1) (3.6)

k=—oc

can be found as the limit of the autocorrelation of pulse trains:

B(t) = i a.kH((t_fTb)/f)

ke —oo (3.7)

The autocorrelation of this pulse train (a power signal) is

1 fT/2
R;(t) = lim i T(u)z(u+1t)du
Tooo dJ1/2 (3.8)

Therefore, R.(t) = lin%] R;:(t). (3.9)
E—
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kT, Ltk + DTy — o
- T = The autocorrelation is discrete.
Therefore PSD is periodic in frequency.

(c)
— Ro/eT) . .
The PSD of pulse signal is product
Ry/€Ty—, R/feTy R‘JET},
-,4/’:} —/h'\; \2} {h\ —e | ¢ /\ \7} 37, /4} Sy(f) = _|P(f}|2 ZR g2 T
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Figure 3.4
PSD of Polar Signaling

A/2
Polar signal: | j-D-D-ELD_D_ELD_D_D_D_DT
i Figure 3.5

o 1—4p(®),0——p@

e Since a; and ak+n (n # 0) are independent and equally likely,

Ry = hm TZUA = hm ;lzl

. Ty
R, = ,l,,h_l};o T E app4pn =0
k (3.12)

P(f)|? P(f)[?
sy = L, - U

(3.13)

o Example: NRZ (100% pulse) p(¢) = T1(#/T5)



P(f) = Tysinc(zTyf) = |P(f)* = T2 sinc®(z1,f) (3.14)

e Half-width: p(¢) = T1(¢#/(T}/2))
P(f)= %Tb SiIICZ(%Tbe) = |P(f)] = iThz sinczz(%?rbe)

(3.15)
Power spectral density of Polar Signaling (Half-Width Pulse)
ForNRZ, S !P("f} lz %‘02 SiL(’z(%ﬂ; E"f) .Tb . /ﬁ;{)f\ (3 16)
o ’ - = = —sinc )
y(f ) T, T, 1 S k 5 )
S5,0f)
Tp/4

Ny .

Br —6n -4m 2 0 2t 4w 68 8T o_»
T, T, T T, Ty T, T %
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(] | mas t t t t +
_41'?f1 =3Rp _ZRJJ _Rfr 0 R" ZR‘I;, 3R,l’; 4!\),[, f—;—
Figure 3.6 PSD of Polar Signaling (Half-Width Pulse)

The bandwidth 2R}, is 4% theoretical minimum of 2 bits/Hz/sec.

PSD of On-Off Signaling

e  On-off signaling is shifted polar signaling:
_ — 1 \
yon—off(t) - 2 (l + ypolar(“) (3.17)

e  The DC term results in impulses in the PSD:

Sy(f) = Pg:b' ( +ZO —n/Tb)

(3.18)
e  We can eliminate impulses by using a pulse p(¢) with
P( " ) 0, n=0+1,42, . ..
T (3.19)

e  Opverall, on-off is inferior to polar. For a given average power, noise immunity is less than for

bipolar signaling.



Alternate Mark Inversion (Bipolar) Signaling
AMI encodes 0 as 0 V and 1 as +V or —V, with alternating signs.

cock _[1[T[ LI LTI
Data | _|_

1, 01 0 0 1/ 1 1 0 0 1
| | 1
AMI |

Figure 3.7 AMI signaling

AMI was used in early PCM systems.
= Eliminates DC build up on cable.
= Reduces bandwidth compared to polar.
= Provides error detecting; every bit error results in bipolar violation.
= Quarantees transitions for timing recovery with long runs of ones.
AMI is also called bipolar and pseudo-ternary.

PSD of AMI Signaling
If the data sequence { a, } is equally likely and independent Os and 1s, then the autocorrelation
function of the sequence is

Ro i 750t =

Ry = lim —ZGAGA 1=
T—oo 1 +

T—oo

. T} ¢

R, = lim % Z apapyn =0, n > 2
k (3.20)

PO . s

Therefore, S,{f 5 ——(1 —cos 27T} f) = ———sin“ (71}

T T ) (3.21)

This PSD falls off faster than sinc (773f). Further, the PSD has a null at DC, which aids in
transformer coupling.
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Figure 3.8 PSD of bipolar, polar, and split phase signals normalized for equal power. (Half width
rectangular pulses are used)

Nyquist First Criterion

Reducing ISI: Pulse Shaping
e A time-limited pulse cannot be band-limited
e Linear channel distortion results in spread out, overlapping pulses
e Nyquist introduced three criteria for dealing with ISI.

The first criterion was that each pulse is zero at the sampling time of other pulses.

1 t=0
p(t) = |
0 t=+kTy, k=4+1,42,...

(3.22)

2%y ~Tx 0 Ty 0T, 3T, =
Figure 3.9

Pulse Shaping: Sinc Pulse
= Let Ry, = 1I/Ty. The sinc pulse, sinc(nRyt) satisfies Nyquist’s first crierion for zero ISI:

' 1 t=0
sinc(mRpt) =

= . = ] 2
0 t==xkTy, k==£1,£2,... (3.23)



® This pulse is band-limited. Its Fourier transformis () = LH (i) (3.24)

Ry \Ry
| 1
Ry,
[ —
5 51 1~32 3 =R oKy -
R, Ry, Ry R, Ry Ry

Figure 3.10 Sic pulse (minimum bandwidth pulse) and its Fourier transform.

= Unfortunately, this pulse has infinite width in time and decays slowly.

Nyquist Pulse
Nyquist increased the width of the spectrum in order to make the pulse fall off more rapidly.

The Nyquist pulse has spectrum width (1/2) (1 + )R, where 0 <r <1.

P(f)

/-
T } -

—Rb -Ry/2 0 R,/2 Rb f—sm
Figure 3.11 Proposed Nyquist pulse

If we sample the pulse p(f) at rate R, = 1/T, then  p(t) = p(t) 7, (¢) = p(t)d(t) = 6(¢)

The Fourier transform of the sampled signalis P(f) =1 = Z P(f—kRy) (3.26)
k=—occ

Since we are sampling below the Nyquist rate 2R;, the shifted transforms overlap.
Nyquist’s criterion requires pulses whose overlaps add to 1 for all .

><>C‘><

~Rb -R,/2
Figure 3.12 Sampled Nyquist pulse

For parameter 7 with 0 < r < 1, the resulting pulse has bandwidth B, = %(Rb + rRyp) (3.27)

The parameter r is called roll-off factor and controls how sharply the pulse spectrum declines above
(1/2)Rp.

There are many pulse spectra satisfying this condition. e.g., trapezoid:



1 [l <3(1—7r)Ry
P(f) = {1 L=k ufquQﬂ< (1+7r)Ry

A trapezoid is the difference of two triangles. Thus the pulse with trapezoidal Fourier transform is the
difference of two sinc” pulses.

Example: for r=1/2,
_aa( LY Zaa( L
Pf) = X( Bb) 2"\(5&,) (3.29)

So the pulse is, p(t) = %5111@2(31?51‘.) - %sinc?(%]?br) (3.30)
This pulse falls off as 1/
Nyquist chose a pulse with a “vestigial” raised cosine transform. This transform is smoother than a

trapezoid, so the pulse decays more rapidly.
The Nyquist pulse is parameterized by 7. Let fx = rRy/2.

[P(HI

-

M f—ie— f
Figure 3.13 Vestigial spectrum

Nyquist pulse spectrum is raised cosine pulse with flat porch.

1 [l < 3R = fa
(1-3n
P(f)=<3 (1 —sinm (%)) 1= 5P| < fa
0 |fl > 3Ry + fu (3.31)

The transform P(f) is differentiable, so the pulse decays as 1/¢.

Special case of Nyquist pulse is » = 1: full-cosine roll-off.
P(f) = 3(1 + cos 7Ty f)TI(f/Ry)

= cos”(3n Ty, f) ST f) (3.32)



This transform P(f) has a second derivative so the pulse decays as 1/
cos TRyt sin (27 Ryt )

p(l’L) = Rb—” Sill(_"(ﬁ}?bf) e D242
plr)
[ PiFI
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Figure 3.14 Pulses satisfying the Nyquist criterion

Controlled ISI (Partial Response Signaling)
We can reduce bandwidth by using an even wider pulse. This introduces ISI, which can be
canceled using knowledge of the pulse shape.

ity

e .
__w;,}“"""_‘"_y"_.rb‘\-/’—.]"; ------ ‘10 T, ETM?T, ““““ T ATy i
Figure 3.15 Duo-binary pulse
The value of y(¢) at time n7} is a,, + a,, . Decision rule:
1 y(nTy) >0
(p_1 =140 y(nTy) <0
(Gn—2)" y(rTy) =0 (3.34)

A related approach is decision feedback equalization: once a bit has been detected, its contribution
to the received signal is subtracted. The ideal duo-binary pulse is

p(t) = sin Ryt
w Ryt (1 — Rbf) (3.35)
The Fourier transform of p(¢) is
2 Hﬁf f —1 /R
P(f = —— (0S8 (_)H(—)E .]'Kfj b
) By R Ry (3.36)

The spectrum is confined to the theoretical minimum of R,/2.
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Figure 3.16 Minimum bandwidth pulse that satisfies the duo-binary pulse spectrum
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Zero-1S1, Duobinary, Modified Duobinary Pulses
Suppose p,(?) satisfies Nyquist’s first criterion (zero ISI). Then
Pu(t) = pa(t) + pa(t — T) (3.37)

is a duo-binary pulse with controlled ISI. By shift theorem,
Py(f) = Po(1 + 7271 (3.38)

Since Py(R»/2) = 0, most (or all) of the pulse energy is below R;/2. We can eliminate unwanted DC

component using modified duo-binary, where p.(—T3) = 1, pT3) = —1, and p.(nTs) = 0 for other
integers n.

Pt) =pa(t + Tp) — po(t — Tp) = P(f) = 2jP,(f) sin 2 2T,f (3.39)
The transform of p.(¢) has nulls at 0 and +R;/2.
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Figure 3.17 Zero-ISI, Duobinary, Modified Duobinary and other Pulses

Partial Response Signaling Detection

Suppose that sequence 0010110 is transmitted (first bit is startup digit).

Digit x; 0 0 1 0 1 1 0
Bipolar amplitude - -1 -1 1 -1 1 1 -1
Combined amplitude -2 0 0 0 2 0
Decoded values -2 0 2 0 0 2
Decode sequence 0 1 0 1 1 0

Partial response signaling is susceptible to error propagation. If a nonzero value is mis-detected,
zeros will be mis-detected until the next nonzero value.
Error propagation is eliminated by pre-coding the data: pi = x; @ py.1.

Precoder
Message bits Pk Polar | @ + /< b Zero-ISLY | y(7)
E— > - }—h
Iy + line code Z De];l;l:ﬁor
+ e
Delay _| Delay
Tb Tb - ;
Duobinary pulse generator

Figure 3.18 Duo-binary pulse generator

Scrambling

In general, a scrambler tends to make the data more random by removing long strings of 1’s or 0’s.
Scrambling can be helpful in timing extraction by removing long strings of 0’s in data. Scramblers,
however, are primarily used for preventing unauthorized access to the data, and are optimized for
that purpose. Such optimization may actually result in the generation of a long string of zeros in
the data. The digital network must be able to cope with these long zero strings using zero



suppression techniques as discussed in case of high density bipolar (HDB) signaling and binary
with 8 zeros substitution (B8ZS) signaling.

5 5
4 4
@«—— ©,
3 3
2 2
1 1
s (@) S NN W

(a) (b)

Figure 3.19 Scrambler and Descrambler

Above figure 3.19 shows a typical scrambler and descrambler. The scrambler consists of a
feedback shift register, and the matching descrambler has a feed-forward shift register as indicated.
Each stage in the shift register delays a bit by one unit. To analyze the scrambler and the matched
descrambler, consider the output sequence T of the scrambler [figure 3.19 (a)]. If S is the input
sequence to the scrambler, then

SOD'TODT=T (3.40)

Where, D represents the delay operator; i.e., D"T is the sequence T delayed by ‘n’ units. The
symbol @ indicates modulo 2 sum. Now recall that the modulo 2 sum of any sequence with itself
gives a sequence of all 0’s. Modulo 2 addition of (D* ® D’)T to both sides of the above equation,
we get

S=T® (D’®D")T
=[1® (D’ ® DT
=(1®F)T ;where, F=D’@®D’ (3.41)

To design the descrambler at the receiver side, we start with T, the sequence received at the
descrambler. Now we can see that received signal after descrambling i.e. R is same as S.

R=T® D’°®D)T=T® FT=(1®F)T=S (3.42)

Regenerative Repeater

Basically, a regenerative repeater performs three functions.
1. Reshaping incoming pulse by means of equalizer
2. The extraction of timing information required to sample incoming pulses at optimum instants.
3. Decision making based on the pulse samples.

The schematic of a repeater is shown in the following figure. A complete repeater also includes
provision for the separation of DC power from AC signals. This is normally accomplished using



transformer by coupling the signals and bypassing the DC around transformers to the power supply

circuitry.
/\./\n /\ Sampler \[I_I
/ | N4 . » and ¥ Regenerator —»
decision
A
T — Preamplifier
ransmission| and
Medium ;
T equalizer
Noise —>| Timing extraction

Figure 3.20 Regenerative Repeater

Preamplifier
Preamplifier, as the name suggests, is an electronic device to amplify very weak signal. The output

from it becomes the input for another amplifier.

A signal is modulated by superimposing a known frequency on it and the amplifier is set to detect
only those signals on which the selected frequency is superimposed. Such an amplifier is known as
lock-in-amplifier. Noise not modulated by the selected frequency will not be amplified. Therefore
it will be filtered off.

Equalization
As discussed in the Pulse Shaping, a properly shaped transmit pulse resembles a sinc function, and

direct superposition of these pulses results in no ISI at properly selected sample points.

In practice, however, the received pulse response is distorted in the transmission process and may
be combined with additive noise. Because the raised cosine pulses are distorted in the time
domain, you may find that the received signal exhibits ISI. If you can define the channel impulse
response, you can implement an inverse filter to counter its ill effect. This is the job of the
equalizer. See figure 9 below, which depicts the response to a single transmit pulse at various
points in the system.
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Figure 3.21 Transmission process with pulse responses example

The original rectangular pulse is shaped by the raised cosine filter before transmission. This
ensures that the sampled spectra do not alias and therefore there is no ISI. This third waveform



portrays the distorted impulse response received at the input of the equalizer. This distortion can be
caused by spectral shaping due to a non-flat frequency response or multipath reception of the
channel. This distortion can be removed by applying a filter that is the exact inverse (multiplicative
inverse in spectral domain) of the channel frequency response.

Equalizers

bit)

Te ‘ Ty —— —r-‘ Th > Th

. -
. \& "D

T~
@ﬁ

Coefficient
calculation

Figure 3.22 Block diagram of a tap delay equalizer

Zero Forcing Equalizer

(1) = 1 ¢=0

Y |0 ¢=4#T,,42T,..... £NT, (3.43)
h(0) b(-T,) - b2NT,) | Cov ] 0]
b(T;) b(0) o B(=2N +DT] [ Cya 0
b(NT,) B[N -1T,] ---  b(=NT}) ¢, | |1

| b(2NT,) B[(2N =T, ] - b (0) Cy 0

L W 1 LT (3.44)

In the above matrix represents 2N + 1 independent equations as many number of tap weights C;
which are uniquely determined by solving the matrix.

Mean square and Adaptive Equalizer
Mean square equalizer Instead of forcing zero crossing this method tries to minimize mean
square error by a set of output samples solving simultancous equations.

Adaptive equalizer This is useful when channel characteristics is changing. This involves
sending pre-assigned pulses at periodic intervals prior to data transmission which adjusts tap
weights by an iterative procedure that minimizes [SI.



Eye Diagrams
Polar Signaling with Raised Cosine Transform (r = 0.5)

L] I
Sampling and decision instant Sampling and decision instants

Figure 3.23 Eye diagram of Polar Signaling with Raised Cosine Transform (single window)

L fl < 3R
o , f—1iR
Pif)=13 (1 —sinm ( RH b)) If] - 3| < LR,
b
0 1f] > 5By

(3.45)

Polar Signaling with Raised Cosine Transform (7 = 0.5). The pulse corresponding to P(f) is
cos(mr Ryt

p(t) = sinc(mRyt) b(L—bZ)

1 —4r2R;t? (3.46)

1.5

Figure 3.24 Eye diagram of Polar Signaling with Raised Cosine Transform (multiple window)

Eve Diagram Measurements

» Maximum opening affects noise margin

= Slope of signal determines sensitivity to timing jitter
= Level crossing timing jitter affects clock extraction

= Area of opening is also related to noise margin
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Figure 3.25 Measurement using Eye diagram
Timing Extraction

The received digital signal needs to be sampled at précised instants. This requires a clock signal at
the receiver in synchronism with the clock signal at the transmitter (Symbol or bit

synchronization). Three general methods of synchronization exist.
1. Derivation from a primary or a secondary standard (e.g. transmitter and receiver slaved to a
master timing source)
2. Transmitting a separate synchronizing signal (Pilot clock)
3. Self synchronization, where the timing information is extracted from the received signal itself.

The first method is suitable for large volume of data and high speed communication systems
because of its high cost. In the second method, part of the channel capacity is used to transmit
timing information and is suitable when the available capacity is large compared to the data rate.
The third method is a very efficient method of timing extraction or clock recovery because the
timing is derived from the digital signal itself.

Timing Jitter

Variations of pulse positions or sampling instants cause timing jitter. This results from several causes,
some of which are dependent on the pulse pattern being transmitted where as others are not. The
former are cumulative along the chain of regenerative repeaters because all the repeaters are affected in
the same way, where as the forms of jitter are random from regenerator to regenerator and therefore
tend to partially cancel out their mutual effects over a long-haul link. Random forms of jitter are caused
by noise, interference, and mistuning of clock circuits. The pattern-depend jitter results from clock
mistuning, amplitude-to-phase conversion in the clock circuit, and ISI, which alters the position of the
peaks of the input signal according to the pattern. The r.m.s. value of the jitter over a long chain of ‘N’
repeaters can be shown to increase as VN .

Jitter accumulation over a digital link may be reduced by buffering the link with an elastic store and
clocking out the digital stream under the control of highly stable PLL. Jitter reduction is necessary
about every 200 miles in a long digital link to keep the maximum jitter with reasonable limits.



A Baseband Signal Receiver

v

Figure 3.26 Transmitted pulse with noise

The above figure explains that noise may cause an error in the determination of a transmitted voltage level.
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Figure 3.27 A receiver for a binary coded signal.

Peak SNR

Selt)

So(T)= E
T

Figure 3.28 (a)The signal output (b) the noise output of the integrator as shown in figure 3.27

Using t=RC, Vv,/(T)= lj [s(2) + n(t)] dt = —J s(t) dt + —j n(t) dt
(3.47)
LT VT

The sample voltage due to the signal is 5,(T) = R Vdt = .

(3.48)

.
The sample voltage due to the noise is n,(T) = %jn n(t) dt (3.49)



The variance of noise is 7,(7) is known to us and is

V(T)=s,(T)+ n,T)

Figure of merit is w =227
(n,(DF 7
Probability of Error
flng(T)]

2 17 gl
= T)/ =0,

e

fln(T)] =

a I
02 =n3(T) =

nr

21°

no(T)

Figure 3.29 The Gaussian probability density of the noise sample 7,(7)

w o —niT)2c}

Po= | fla(Tdn(T)= [~ Eo—dn(T)
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2 Ejf=1«',,‘r..-'n
= lcrﬂ:{V\/E]
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5 \I12
_1—::1‘11:(]’ _TJ
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(3.54)

Note that P, decreases rapidly as E,/1] increases.
The maximum value of P, is ).
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Figure 3.30 Variation of P, versus E,/n



Optimum Threshold

P(s1) = Pisz)
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Figure 3.31 Decision threshold when apriori probability are (a) equal (b) unequal

Consider, when symbol sent is v, the probability ol receiving voltage v is P(w/s) and for
symbol sent s, it is A(v/s5,). We define apriori probability of presence of these symbols as P(s;) and
P(s,) respectively. The decision threshold A4 is such that for v = 4, symbol s, is selected and for
v <= A, symbol s, is selected. Then probability of error

P,= P(.s’,)J‘ . Ap(v_f.s’,)dv t P(.s'z)J‘ _ Ap(v.f.s'z)dv

(3.55)
lo L le _
J‘F}Ap(v. sy dv J‘F{lp[v. spdv =1 (3.56)
— . _ /e 1 . .
P,=P(s)) [1 | rw mdv} Piss) [ p(visyy
= P(s)) + J‘M [P(s,)p(vis,) — P(s)p(vis,)dv]dv (3.57)
probability of error is minimum if for every v > A,
P(s))p(vis,) = P(s,)p(vis,)  Or, pWv/s) > P(s,) (3.58)
p(vis,)  Pls))
maximum likelihood detector _2V/51) 3 P(s,) (3.59)

pWisy) 5 P(s)

generalized Baves receiver C, P(s|)p(vis|) > C2P(s,)p(V/s,) (3.60)



Optimum Receiver

We assume that the received signal is a binary waveform. One binary digit (bit) is represented by a
signal waveform s;(¢) which persists for time 7, while the other bit is represented by the waveform s,(¢)
which also lasts for an interval 7. For example, in the case of transmission at baseband, as shown in
Fig. 3.27, si1(f) = +V, while s,(f) = —V; for other modulation systems, different waveforms are
transmitted. For example, for PSK signaling, s,(f) = 4 cos wot and sy(t) = —4 coswyt; while for FSK,
s1(t) = A cos (wo + Q)t and s,(¢) = 4 cos (wo — Q).

Gaussian noise, n(t)
Spectral density, G,(f)

s4(t) l S:Vrgf’;e (So1(T) + n(T)
or o >(+) »|  Filter H T o wlT= S or
sal) | e (scelT) + ()

Figure 3.32 A receiver for binary coded signaling

An error [we decide s,(7) is transmitted rather than s,(7)] will result if

S”l (T] - S”E (Tl
=

o

2 (3.61)
probability of error is P = J“’ 9_7_”3”3-"303 dn,(T) = lcritrml(rl_srﬂ(?‘]]
) © m—s,me J2no? ? 2 N
212
for the case s,,(T) = VT/T and s,(T) = — VT/T, P,= %crﬂ:{} ;?TJ

The complementary error function is monotonically decreasing function of its argument
(indicated in Fig. 3.30). Hence, as is to be anticipated, P, decreases as the difference s5,1(7) — s,2(7)
becomes larger and as the r.m.s. noise voltage o, becomes smaller. The optimum filter, then, is the
filter which maximizes the ratio

Sol (1) - Sruﬁ(rl

o (3.62)
We shall now calculate the transfer function H(f) of this optimum filter. As a matter of
mathematical convenience we shall actually maximize y* rather than y

Calculation of the Optimum-Filter Transfer Function H{ f)

Signal to the optimum filter is p(?) = s1(¢) — s2(?)
Corresponding output signal of the filter is p,(¢) = 5,1(¢) — S02(%)
Let P(f) and P,(f) be the Fourier transforms, respectively, of p(¢) and p,(¢). Then

Po(f) = H(H)P(f) (3.63)



pdT) = | BN Tdf = [ H(OPS T df

(3.64)
G, (f) = H(IPG,(f) df (3.65)
Normalized output noise power 0 :j ) G, (f)df ‘:j ©H(OPGf) df (3.66)
- VP ) el 25T [
2D ‘jm H()P(f)e a_’f‘
(_')'2 hd ) . .
o H G /
R RAR 367)
Schwarz inequality defines |[ ~ X (Hdr <[ Ix(r)? dr [y ar (3.68)
The equal sign applies when X(f) = KY (f) (3.69)
2(T) jjﬂ X(HY(Hdf _
b <[y
a? j XOFYodf
- (3.70)
or, D[ g [T PO, (3.71)
0’3 j_m (}( ﬁj j_m (}1}]' 1]{] C-}(
Y(f) = P(f)e/*/
G (f)
L 5y . . . w_ P o
The ratio pg(T) /oy will attain its maximum value when H(f) = K——e /% (3.73)

G,(f)

Optimum Filter using Matched Filter
An optimum filter which yields a maximum ratio p2(T)/oZ is called a matched filter when the input

noise is white. In this case G,(f) = 17/2, and equation (3.73) becomes

H(f) = K%e“’“ﬂ'”
e (3.74)
W= FH )] = 2 j“ PH( f)e?/ T/t df
]] —aa
- [~ PHpye e Day
n - (3.75)

A physically realizable filter will have an impulse response which is real, A(¢) — i*(¢)
2K

2K e Sy et .
W)= =[P’ df = = p(T - 1)
T..' —co

(3.76)
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since p(f) = s1(1) — s2(0)  h(t) = == [s)(T ~ 1) — 55(T ~ )] (3.77)
n
s4(1) p(t) =si(t) —sq(t)
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Figure 3.33
The signals (a) s;(t), (b) _
s,it), and (c) pit) = s,(t) pT= 0
— 85(t) (d] p(t) rotated 2a -
about the axis t = 0.
(e) The waveform in (d)
translated to the right (e)
by amount T. T t
Probability of Error of Matched Filter
IR IR
With G,(f) = n/2, {7} =2 J' " PR df (3.78)
O-“ max n
= S - el 2 T 2
From Parseval’s theorem, j P( )= df = j p(1) dt = j pr(t) dt (3.79)
—00 —_—n D
2(T) T ,
{f’”( } - Qj [s,(5) — s,(0) dt (11.50a)
o - n-o )
max
AT T T
n[ju sy (t)dt +IU s5 () dt Hju .sl(rl.sg(:‘]n’r:l
- ;(E.\l FE, — 2E )
n (3.80)
The optimum choice of s,(¢) is as given by s2(¢) = — s51(¢) (3.81)
Hence, E,=E,=-E,=E (3.82)



{;JS(T]} _8E;
O oo " (3.83)

- 1/2 ,
5 T) - \2
(Podmin = %‘JL{%{%} } = %crﬁj (E‘_‘}
- % max = n (384)

Integrator as Matched Filter

s\(0=V 0<t<T

When we have, (3.85)
sif)=-V 0<i<T
Impulse response of the matched filter is, h(t) = % [s:(T —t) — s,(T —t)] (3.86)
§(T — 1) — so(T — 1) 1s a pulse of amplitude 2V extending from ¢ =0tot =17
Hence, h(t) = % QV)[u(®) — u(t = T)] (3.87)
The inverse transform of (), that is, the transfer function of the filter, becomes,
with s the Laplace transform variable,
| et
H(s) = ——
=57 (3.88)

The first term in equation (3.88) represents an integration beginning at ¢ = 0, while the second term
represents an integration with reverse polarity beginning at ¢ = 7.

Optimum Filter using Correlator

Local signal
si(t) —salt)
Valt)
Input f/
51(t) + nit) f(1) f o Sa(T) + nG{T}]
vi(t) = = x »| Integrator —{——o ™~ o r=W(T)
S+ e Sample se2(T) + no(T) J
Correlator

Figure 3.34 A coherent system of signal reception

S(T) = lJ' TS (Ols (0) — s2(D)] dt
T et (3.89)

n(T) = lj " n(0)lsy(6) — 52(0)] dt
o (3.90)

If A(¢) is the impulsive response of the matched filter, then
T
v (Dh(t — A) dA = j’n vi(A) (£ — A) dA,

oo

(T =
=] (3.91)



2K
h(t) = 22 [s)(T — 1) — 5,(T — 1)]
n

(3.92)
2K ¢ T
V(1) = _j VS (T — 1+ A) — s(T— 1+ A)] dA
nJdo (3.93)
v = 2K j "W (T 1+ A~ syT— 1+ A)] dA
n-o (3.94)
Since v(A) = s,(A) + n(A), and v (1) = s,(1) + n (1), setting £ = T yields
T
5o(T) =27 [y st Ws1(D) = 5,(W)]dA (3.95)
Where, 5/(A4) is equal to s;(A) or s2(4)
Similarly, n, (T) = ? T ns; (D) — s,(D]dA (3.96)

Thus s,(¢) and n,(¢), as calculated from equations (3.89) and (3.90) for the correlation receiver,
and as calculated from equations (3.95) and (3.96) for the matched filter receiver, are identical.
Hence the performances of the two systems are identical.

Optimal Coherent Reception: PSK

s1(7) = A cos oyt

The input signal is (3.97)

SE(I] = "1 COS ﬂ.)[)f

In PSK, s1(¢) = — 52(¢), Equation (3.84) gives the error probability as in base band transmission

L — l e E.\' — L. Con “12?—‘
P, Eurf(, f - Ei-fft,f o (3.98)

o E.
Imperfect Phase Synchronization P, = %crﬂ: —Cos~ ¢ (3.99)
< Ul

Imperfect Bit Synchronization
2K ¢ T 2K pT+7
sAT+17)=—| Acos @24 cos ®yt] dt —— A cos @,t[2A4 cos @]
n s n-Yr
2K, 4 2K, 2t
= 22 [ANT - 1) - A*1] = —[A“T]{l ——}
n n r (3.100)
If the overlap is in the other direction, integration extends from —zto 7'— 7
2K _ , 2l7| |
s,(T+ 1) = —[A“Tj{l——
I (3.101)
. | E, 27
Correspondingly, P, = —erfc : (1 - (3.102)
2 n T/

If 7= 0.057, the probability of error is increased by a factor 10
If both phase error and timing error are present, then



Probability of error P, =

5 2
) f\“ E" ) (1 27:)“
erfc ? (cos” ¢) _?

Optimal Coherent Reception: FSK

1| —

§1(t) = A cos (@, + Q)
SE(I] = ;‘1 COSs (CO[) Q]f

Local WaVCfOI‘In IS & l(f] Sz(f] = ;‘f COs (a)[) T Q ]f ;‘f COS (CO[) Q ]f

§1(f) = —s5(f) assumption is obviously not valid for FSK

) 2(T) T N
We start with {L} — gj [s,(£) — s(O)) dt
o neo

]

Substituting s,(¢) and s,(f)

sin[2(@, +Q)T | sin[2(w, -Q)T sin2®, T

pa(T) 24° r{ sin 2QT
. = 1— +
: 7
max

a

If we assume that the offset angular frequency Q is very small @,T > |

pa(T)| _24°T | §in 20T
0'2 n 2QT
max

(u]

Largest value when Q is selected so that 2Q7 = 3 7/2

o (7) L A2/2)T
{p ( } o AT g AT
max

2 n n

0

12

r 2 T L E. . i2
p, = Lage) L 228 ~Lere] 0.6
SR T 2 n
max

Where, the signal energy is E, = 4*T/2

When one of two erthogonal frequencies are transmitted, 2Q7 = mn

P =

e

J | =

| Es '
erfc ﬁ'
=n.

1
20T 2 2w, +QT 2 No,-QT

(3.103)

(3.104)

(3.105)

(3.106)

(3.107)

(3.108)

(3.109)

(3.110)

(3.111)

Comparing the probability of error obtained for FSK [Eq. (3.110)] with probability of error obtained for
PSK [Eq. (3.98)], we see that equal probability of error in each system can be achieved if the signal energy
in the PSK signal is 0.6 times as large as the signal energy in FSK. As a result, a 2 dB increase in the
transmitted signal power is required for FSK. Why is FSK inferior to PSK? The answer is that in PSK,

s1(f) = — s5(f), while in FSK this condition is not satisfied. Thus, although an optimum filter is used in each

case, PSK results in considerable improvement compared with FSK.



Optimal Coherent Reception: QPSK

52 S1
A cos wot
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S Signal
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Figure 3.35 A phasor diagram representation of the signals in QPSK
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Figure 3.36 A correlation receiver for QPSK

We note from Fig. 3.35, that the reference waveform of correlator 1 is an angle ¢ = 45° to the axes of
orientation of all of the four possible signals. Hence, from equation (3.99), since (cos 45°)* = ', the
probability that correlator 1 or correlator 2 will make an error is

. ’ 1 - ‘42.?—.‘\'
Fpy =By =erle 1
- n (3.112)

to compare this result to the result obtained for BPSK 7,=2T

Pi=P, =1;cri‘c ﬁg = P (BPSK)
] b (3.113)

(3.114)

(3.115)
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Fig.4.1 Balanced Modulator

Transmitted signals are

VH(Z):VBPSK(Z): 2PS COs Wyt (41)
VH( VBPSK \/ﬁ(cosa)om—zz) 4.2)
=-,J2F; cosw,t .

In BPSK the data b(t) in a stream of binary digit with voltage levels which as a matter of
convenience, we take +1 V and -1 V. So BPSK can be written as

VBpsk (t)zb(t) 2P cos m,t (43)

Transmission

This Vppsk (f) signal is transmitted through the channel. While it moves in the transmission path of
the channel, the phase of the carrier may be changed at the output of the receiver. So the BPSK

signal received at the input of the receiver can be taken as Vgpsr(t) = b(t)./2P;cos (w,t + @)
where Ar=¢/w, is the time delay.

Receiver
b(t)2P; cos? (@t + ) = b(t)2 Py { = cosZ(a)ot+¢)}

kT, kT,

¥, (KT;) = b(kTy ){/2P; J' %dz +b(KT;) 2P, J' %cosZ(a}Ot +@)dt = b(ka)\/%T T,

(k-1)T (k=1)Tp

(4.4)
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Fig. 4.2 Synchronous demodulator
Spectrum

The waveform b(t) is a NRZ binary waveform which makes an excursion between +,/p, and - /7, .
The PSD of this waveform

_ sinzz fTj 2
Gp(f) =P Tp( A ) (4.5)

The BPSK waveform is the NRZ waveform multiplied by ,/2P, cosw,s. Thus the power spectral
density of the BPSK signal is

) 2 - 2
Gpsk (0=PyTy/2 Sm”(f—fo)Tb:l {SIM(fanO)Tb}
spsk (D =FTh { =TTy | | 2 I

(4.6)

Simultaneous bit transmission and thereafter overlapping of spectra is known as inter-channel
interference. Restricting the overlapping by considering the principal lobe to transmit 90% of
power ultimately cause inter-symbol interference.

Geometrical representation of BPSK signals:

When BPSK signal can be represented, in terms of one orthogonal signal

up(t)=1/2/ Ty cosw,t s
Vapsk (1)=[ VETpb()| \/% coswpt = [ JBTpb() Jur (0 (4.7)



The distance between signals is
d=2(PT, =2.JE, (4.8)

docL (4.9)

e

DPSK (Differential Phase Shift Keying)

In BPSK receiver to regenerate the carrier we start by squaring  5(t),/2P, cosw,t .but when the
received signal were instead -b(t)2P cosw,t, the recovered carrier would remain as before.

Therefore we shall not be able to determine whether the received baseband is transmitted signal
b(t) or its negative i.e. -b(t). DPSK and DEPSK are modification of BPSK which have the merit
that they eliminate the ambiguity about whether the demodulated data is actual or inverted. In
addition DPSK avoids the need to provide the synchronous carrier required at the demodulator for
detecting a BPSK signal.

Transmitter (Generation)

d(t)
b(t)
— Vprsk Balanced
Modulator [—»
b(t-Ts) — >
Delay Ts 2P, cosm,t
Fig.4.3 generation of DPSK
Here, b(t) = d(t) © b(t—Ty) (4.10)

b(0) cannot be found unless we know d(0) and b(-1). Here we have b(0) = 0, b(+1) = 0 so d(1)
should be 0.

In this Fig. 4.3, d(0) & b(-1) is not shown. Here we have chosen b(0) = 0. If we choose b(0) = 1,
then there is no problem in detection of b(t).
Vppsk () =b(t)2P; cos oyt

=+ /2P cosw,t

4.11)

Transmission

When Vppsk(t) is transmitted from the generator to the channel, at passes through the channel, then
b(t) may be changed to —b(t) before reaching receiver.
Receiver

b(t)b(t-Ty) = 1, ifd(t) =0
but  b(t)b(t-Ty) =-1, ifd(t) = 1



To integrate bit
b(t)\[2P; cos(@,t + 0) Synchronous demodulator synchronizer

(multiplier)

Delay Ty

b(t—Ty)J2 P cos(w, (t —Tp) + 6)

Fig. 4.6 Receiver of DPSK

Advantage of DPSK over BPSK

1. Local carrier generation not required and receiver circuit is simple.
2. If whole of the bits of b(t) is inverted then also correct d(t) can be recovered.

Disadvantage

1. Noise in one bit interval may cause errors to two bit determination that is a tendency for bit
errors to occur in pairs. The single errors are also possible.
2. Specrum of DPSK is same as BPSK .the geometrical representation of DPSK is same as BPSK.

DEPSK (Differentially Encoded Phase Shift Keying)

DPSK demodulator requires a device which operates at the carrier frequency and provides a delay
of Ty. Differentially encoded PSK eliminates the need for such a piece of hardware Transmitter or
generator is same as DPSK

b(t) from synchronous demodulator

d(t)=Db(t) @ b(t-Tp)

Delay Ty b(t-Ty)

Fig 4.7a Generation of DEPSK

OPSK (Quadrature Phase Shift Keying )

The transmission bandwidth of bit NRZ signal is f,. So the transmission rate is
2f,bps.Hence to transmit BPSK signal the channel must have a bandwidth of 2f,. QPSK has been
formulated to allow the bits to be transmitted using half the bandwidth. D-flip flop is used in
QPSK transmitter to operate as one bit storage device.



Generation

QPSK transmitter

b(t)

\/E cos ayt

be(t)
D Flip Flop BM 5.0
fy Vrsk(t)
Toggle Even clock
— ¢ ) Adder —
Odd clock
Clock freq. l
D Flip Flop BM So(t)
» » X

\/E sin @yt

Fig 4.7b Generation of QPSK

Transmission

Due to finite distance between generator and receiver the signal available at receiver may have
some phase change so,

Vopsk () = ki\[P by (t)sin(wyt + ) + ky [ Py b, (£) cos(wit + 6)

VQPSK(t) sin(m0t+6)
X

o\

(2k+1) T,

J

Vgpsk(t)cos(wot+0)

(2k-1)T,

Sampling switch

(2k+1)T,

Reception
QPSK receiver
Vapsk(t)
( )*Raise i/p to
4™ power \
Band pass Filter
4f,
Frequency divider
+4 %
L]

cos(mwot+0)
SIn(m.t+0)

Fig 4.8 Reception of QPSK

(2k-1)Tp,

Oa

(Ot

(4.12)
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Samples are taken alternatively from one and the other integrator output at the end of each
bit time Ty, and these samples are half in the latch for the bit time Ty and these samples half in the
latch for the bit time Ty. Each individual integrator output is sampled at intervals 2Ty,. The latch
output is the recovered bit stream b(t).

Spectrum:

The waveform by(t) or be(t) (if NRZ ) is binary waveform makes an excursion +,/A and -/p . The
PSD of this waveform

o 2
Gbo(f):Ghe(f):PS(sz){%} (4.13)

When QPSK signal is multiplied by cosa,t . Then the PSD of the QPSK signal is

. 2 . 2
Gopsk = PSTbHsmﬂ(ffo)@Tb)} N {Sln”(f+fo)(2Tb)} ] (4.14)

7(f = fo)(2Tp) w(f + fo)(2Tp)

Symbol versus bit transmission

In BPSK we deal with each bit individually in its duration Tp. In QPSK we lump two bits together
to form what is termed a symbol. The symbol can have any one of four possible values
corresponding to the two bit sequence 00, 01, 10 and 11. We therefore arrange to make four
distinct signals available for transmission. At the receiver each signal represents one symbol and
correspondingly two bits. When bits are transmitted, as in BPSK, the signal changes occur at the
bit rate. When symbols are transmitted the changes occur at the symbol rate which is one half the
bit rate. Thus the symbol time is T = 2T, (OQPSK). Ts= Ty(QPSK)

Geometrical representation of QPSK signals in signal space

Four symbols are four quadrature signals. These are to be represented in signal space. One
possibility representing the QPSK signal in one equation is

VQPSK = ZPSCOS [(l)ot + (Zm + 1)%] 5 m=0, 1, 2, 3 (415)
Vonsi =[2P. cos[(2m+l)%] COSW, £ —[2P sin{(2m+l)%} sinw, ¢ (4.16)

To represent this signal in signal space, two ortho-normal signals are be selected. They can be
2 2 .

U,(t)=,/=cosw,tand U,(t)=,|—=sinw, t
T T

So V,pg can be written as

Vopsk = [,/PSTcos 2m+ 1)%]\/% coswyt — [,/PsTsin 2m+ 1)%]\/%51’710)01: (4.17)

b, and b, take values as +1 or -1. So we can write the same V/

opsk Signal as



Virsi =\ Eyb.(0.10,(t) = JE, b, (H).u, () (4.18)

Where,

b,(t) =~/2 cos2m +1) =
4 (4.19)
b, (t) = —/2 sin(2m + 1)%

In the above equations 7'=27,. Working at above signals four symbols can be shown in signal
space as shown below. Four dots in the signal space represents four symbol. The distance of signal

point form the origin is /E, , which in the square root of the signal energy associated with the
symbol. i.e E =PT =2PT,. The signal points which differ in a signal bit are separates by the
distance d =./PT, =./E, .Noise immunity in QPSK is same as BPSK.

M-ary Phase shift keying

In BPSK we transmit each bit individually. Depending on Whether b(t) is logic 0 or logic
1, We transmit one or another of sinusoid for the bit time 7,, the sinusoids differ in phase by

27/2 =180 . In QPSK We lump together two bits. Depending on which of the four two-bit words
develops, we transmit one or another of four sinusoids of duration 27 /M ,the sinusoids differing
in phase by amount 27 /4 =90 . The scheme can be extended. Let us lump together N bits so that
in this N- bit symbol, extending over the N7, , there are 2" = M possible symbol as shown in Fig.
4.9. Now let us represent the symbols by sinusoids of duration N7, =7, which differ from one

another by the phase 27 /M . Hardware to accomplish this M-ary communication is available. So
Vi-anrse = (2P cos @, )coswit (2B sing, )sinwy  m=0,1,2,3————(M-1) (4.20)

Vd
Where, ¢ ==(2m+1)—
¢m ( )M



\/E :\/PSTS 277/”” VO 2
uy(t)= |[—cosayt

uy(t) = ’Ti sin ayt
L N

Fig 4.9 Spectrum of M-ary PSK

N

The co-ordinate are the orthogonal waveformsu, (t) = 2 coswyt and u,(t) = 2 sin wyt .
\/ T, T,

N N

Vir—anrse = (2P, cos @, ) cos wyt — (/2 P, sin g, ) sin wyt (4.21)

= P, coswyt — P, sin w;t
where, P, = /2P, cos ¢,
P = hp P sing, (4.22)

Spectrum

sinz /1, Jz (4.23)

G.1)=G,(1)=P, Ts(
T

When carrier multiplied to bit , the resultant spectrum is centered at the carrier frequency

2 2
and extends normally overa BW =B=—=2f = %

S

The distance between symbol signal points

d= \/4Es sin’ (%} = \/4NE,, sin’ (2%) (4.24)




M-ary PSK Transmitter and Receiver

0
—>
I TN
Serial To Digital to Sinusoidal signal sources
Parallel Analog Phased controlled by
Converter | | Converter V(Sm)

n

Fig 4.10 Transmission of M-ary PSK

Finally v(s,) is applied as a control input to a special type of constant amplitude
sinusoidal signal source whose phase ¢, is determined by v(s, ). Altogether, then the output is
fixed amplitude, sinusoidal waveform, whose phase has a one to one correspondence to the

assembled N-bit symbol. The phase can change once per symbol time.

Vit —ary psk (1) = P.cos wyt — P, sin wyt
VM—ary psk (t).sin eyt
M 4’0 Ts
() « x > [oa
AJ 0
10 o
v A/D )
= recover
= - —®
Mf,
M -1
cosM at
A
Frequency Vs —ary psk (D-cosaptl
divider+~ M X > I()dt
n
COS Cl)Of
sin a)ot

Fig 4.11 Reception of M-ary PSK



The integrator outputs are voltages whose amplitudes are proportional to 7.P and T P

respectively and charge at the symbol rate. These voltages measure the components of the received
signal in the directions of the quadrature phasors sin wyt & cosw,t . Finally the signals 7,P, and

TP, are applies to advice which reconstructs the digital N-bit signal which constitutes the

transmitted signal.

BESK (Frequency shift keying)

The BFSK signal can be represented for binary data waveform b(t) as
Vs (1) = +|2 P, cos(w,t + b(1)Qt) (4.25)

Where b(t)=+1 or -1 corresponding to the logic level 0 and 1. The transmitted signal is of
amplitude /2P, and is either

Virse (1) = V,; () = \2P, cos(w, + Q)1

4.26
Ve 1) =V, (1) = \/ECOS(WO -t ( )

And thus fhas an angular frequency w, +€2 or w,—€2 with Q a constant offset from the

normal carrier frequency w,. So, w,=w,+Q & f, = 1, +2£:f0 + 1, =w,—Q
p/a

Transmitter (Generation of BFSK)

At any time P, (t)orP, (t) is 1 but not both so that the generated signal is either at angular

frequency w, orat w, .

VEL Py ()
b(t) Pu(t) Pu(t)
3 \/EPH(t)costt
\/T:cosa)ot > X +1v +1v Ov
b
Y -lv Ov +1v
ADDER
A
\/Tzsin Wyt #m
’ \/ﬁPL (t)sinaw;t

ET, PL ()

Fig 4.12 Transmission of BFSK



Receiver (Reception of BFSK)

fu=fot o= fut
T

The BFSK signal is applied to two band pass filters one with frequency at f,, the other at
f,. Here we have assumed, that f,, -7 P =2 f, The filter frequency ranges selected do not overlap

and each filter has a pass band wide enough to encompass a main lobe in the spectrum of BFSK.

Hence one filter will pass nearby all the energy in the transmission at f, . The filter outputs

are applied to envelope detectors and finally the envelope detector outputs are compared by a

comparator.
Ja=l+h
5 | Filter .| Envelope
A[ 7 Cos @t i | detector
T
2P, cos(ayt +b(H)Q B=2f, b(t)
>
2 | Filter .| Envelope
/* sinwgt detector
Ty
fu=Jlo=Iv

Fig 4.13 Reception of BFSK

When noise is present, the output of the comparator may vary due to the system response to
the signal and noise. Thus, practical system use a bit synchronizer and an integrator and sample the
comparator output only once at the end of each time interval 7 .

Spectrum(BFSK)

In terms of the variable P, (t) & P, (t) the BFSK signal can be written as

Virsc 1) = /2P, P, .cos(wyt +6,,)+ /2P, .P,.cos(w,t+ 6,) (4.27)

Here each of two signals are of independent and random, uniformly distributed phase. E
ach of the terms in above equation looks like the signal /2P, b(t) cosw, ¢ which we encountered in

BPSK, but there is an important difference. In the BPSK case, b(t) is bipolar(it alternates between
+1 and-1), while in the present case P, & P, are unipolar (it alternates between+1 and 0). We may

however, rewrite P, & P, as the sum of a constant and a bipolar variable, i.e.



1 1
P,(0)=+5 P (0

O (4.28)

Pt)=—+=P(t
2 (1) S5 6 ®
In the above equation P,(t)& P (t)are bipolar, alternating between +1 and -1 and are

complementary. We have then

Virsic (©) =4 /% cos(wyt+6,,) +4 I% cos(w,t+06,)+, [%PH” cos(wyt+6,,)+4 /I%PL cos(wt+6,)(4.29)

The first terms in above equation produce a power spectral density which consists of two impulses,
one at f,, and one at f, . The last two terms produce the spectrum of two binary PSK signals, one
centered at---- and one about f,, — f, =2, is assumed. For this separation 2f, between f, and f,

we observe that the overlapping between the two parts of the spectra is not large and we may
expect to be able, without excessive difficulty, to distinguish the levels of the binary waveforms

b(t). in any event, with this separation the bandwidth of BFSK is, BW .., =4f,

Geometrical representation of orthogonal BFSK in signal space

We know that any signal could be represented asc, u,(t)+c, u,(t) Where u,(t)=4/2/T, cosw,t and
u,(t)=4/2/T, sinw,t are the orthogonal vectors in the signal space. u,(t)and u,(t) are orthogonal
over the symbol interval 7, and if the symbol is single bit7, =7, .The coefficients ¢ & c,are

constants. In M-ary PSK the orthogonality of the vectorsu, andu,results from their phase

quadrature. In the present case of BFSK it is appropriate that the orthogonality should result from a
special selection of the frequencies of the unit vectors. Accordingly, with m and n integers, let us
establish unit vectors.

[2
u,(t) = Fscoswot
(4.30)
/2 .
u,(t) = Fssmwot

: 1 .
In which, as usual, f, =—. The vectors u,and u,at the mth & nth and harmonics of the
b

fundamental frequency f,. As we are aware, from the principles of Fourier analysis, different

. . . 1
harmonics(m + n) are orthogonal over the interval of the fundamental period 7, =—. It now the
b

frequencies f, and f, in a BFSK system are selected to be



Sy =mf,
fi=nf,

Then corresponding signal vectors are
V, )=+ E,u,(t) and V, (t) =/ E, u,(t)
The signal V,(t)& V,(t), like vectors are orthogonal. The distance between signal end points is

therefore d = ,/2E, which is considerably smaller than the distance separating end points

(i.e d =/2E, ) of BPSK signal, which are antipodal.

If we consider Non-orthogonal BFSK and (w,—w,)T, = 37 then distance d = \/2.4E,
2

1. Not be as effective as BPSK in the presence of noise. Because in BFSK, since carrier
is present in the spectrum and takes some energy, information bearing term is there by
diminished.

2. dislessso Pis more & SNR is less.

BW requirement is higher.

M-Ary FSK
Envelop detector
Filter Diode
|- f [
0 dO
N-bit
d pu—
0 Select d,
D/A Freq. Filter Diode N-bit
d — —
1 conv d ;n:(;/ula " ] A/D
Largest
erter tor conve
rter
dN—l d
output Nl
L Filter Diode ]
Fn—l

Fig 4.14 M-ary FSK

At the transmitter an N-bit symbol is presented for each 7 to an N-bit D/A converter. The

converter output is applied to a frequency modulator, which generates a carrier waveform whose
frequency is determined by the modulating waveform. The transmitted signal for the duration of



the symbol interval, is of frequency fy,or f,or f,,_1, where M =2V M =2V At the receiver,
the incoming signal is applied to M parallel band pass filter with carrier frequency fy, fi.....far—-1

and each followed by an envelope detector. The envelope detectors apply their outputs to a device
which determines which of the detector indication is the largest and transmit that envelope output
to an N-bit A/D converter. In this scheme the probability of error is minimized by selecting

frequencies f, f}......fay—1 so that the M signals are mutually orthogonal. One common employed

arrangement simply provides that the carrier frequency be successive even harmonics of the
symbol frequency f; =1/7 . Thus the lowest frequency, say f, = Kf, , while f; =(K+2)f, etc. in

this case the spectral density patterns of the individual possible transmitted signals overlap, which
is an extension of BFSK. It is clear that to pass M-Ary FSK the required spectral range is

B=2Mf, (4.31a)

_Jb
Since,fs _W and M =2V

So, B=2""f /N (4.31b)

M-Ary FSK required a considerably increased BW in comparison with M-Ary PSK.
However as we shall see the probability of error for M-Ary FSK decreases as M increases, while
for M-Ary PSK, the probability of error increases with M.

Geometrical Representation of M-Ary FSK in Signal Space

The case of M-Ary orthogonal FSK signal is extension of signal space representation for
the case of orthogonal binary FSK. We can simply conceive of co-ordinate system with M
mutually orthogonal co-ordinate axes. The signal vectors are parallel to these axes. The best we
can do pictorially is the 3-dimensional case. The square of the length of the signal vector is the
normalized energy and the distance between the signal points is

d=.\2E, = 2NE, (4.32)

This value of d is greater than the value of d calculated for M-Ary PSK.

Minimum Shift Keying (MSK)

The wide spectrum of QPSK is due to the character of baseband signal. This signal consists of
abrupt changes, and abrupt changes give rise to spectral components at high frequencies. The
problem of interchannel interference in QPSK is so serious that regulatory and standardization
energies such as FCC and CCIR will not permit these system will be used except with band pass
filtering at carrier frequencies to suppress the side lobe. If we try to pass the baseband signal
through a low pass filter to suppress the insignificant side lobes (the main lobe contains 90% of
signal energy). Such filtering will cause ISI.



The QPSK is a system which the signal is of constant amplitude, the information content
being borne by phase changes. In both QPSK and OQPSK are abrupt phase changes in the signal.

In QPSK these changes can occur at the symbol rate 1/ 7, =1/27}, and can be as large as 180° . In

OQPSK phase changes of 90° can occur at the bit rate. Such abrupt phase changes cause many
problems.

There are two difference between QPSK and MSK

1. In MSK the baseband waveform, that multiplies the quadrature carrier, is much smoother
than the abrupt rectangular wave form of QPSK. While the spectrum of MSK has a main
centre lobe while as 1-5 times as wide the main lobe of QPSK.

2. The wave form of MSK exhibits phase continuity that is there are no abrupt changes in
QPSK. As a result we avoid the ISI caused by non-linear amplifier.

The staggering which is optimal in QPSK is essential in MSK. MSK transmitter needs two
waveforms sin27z(t/47,) and cos2x(t/47,)to generate smooth baseband. The MSK transmitted

signal is
Visc ©) =+2P.[b,(t).sin 27 (t/ 4T, )] cosw,, t + /2P, [, (t).cos 2z (t/ 4T, )]sinw,, ¢ (4.33)

suppose 27 /4T, =Q . then we can rewrite the above equation as

Vi ©) =+J2P.[b,(t).sin Qt]cos wyt + 2P, [b, (t).cos Qt]sin wyt (4.34)

The above equation to be modified form of OQPSK, which we can call “shaped QPSK”. We can
call apparent that MSK is an FSK system.

Ve ©)=4/2P [be (% {sin wyt.cos ¥ +cos wt.sin (} b (% {sinwyt.cos (¥ —cos w)t.sin (U}
(4.35)
b (% {sin wyt.cos (¥ +cos wt.sin (} + b, (% {sin wyt.cos (U —cos wt.sin (U} ]

_ 2PS{bo(t);be(t)}sm(wo+Q)t+\/§[w}sm(wo_g)t

b +b b —b .
< C, =—"—%,w, =w, +Q& w, =w,—Q then the above equation can be

If we define C,, =

written as,

Vs () = 2P.C,, (t).5in w, t +J2P.C, (t).sin w1 (4.36)

Here b, =*land b, =1, so it can be easily verified that, if b, =b,= then C, =0write
C, =b,=b, =1, Furtherif b, =b,, then C,, =0and C, =b, =b, ==1, Thus depending on the
value of the bits w, and w, in each bit interval, the transmitted signal is at angular frequency wy

or at wy, precisely as in FSK and amplitude is always equal to /2P, .



In MSK, the two frequencies f,, and f, are chosen to ensure that the two possible signals are

orthogonal over the bit interval 7, . That is, we impose the constraint that

T,
I sinw,t.sinwt =0
0

This is possible only when, 27(f,, + f,)T, = mm and27(f,, — f, )1, =nr,

where m and n are integers. In equation (4.35)

a2 h
fu= o= g+
Qb
fo=timyo= 1

£, =1

AS, 27[(fH _fL)Z; =nw

= 27rb.f%.Tb =nrx

=>n=1
Again,
27(fy + f,)T, =mx

— 2m, 2f,. T, =mx

m
Jo ZZ']::

=

(4.36a)

(4.37)

(4.38)

(4.39)

Eq(38) shows that sincen=1, f and f are as close together as possible for orthogonality to prevail.
It 1s for this reason that the present system is called “minium shift keying”. Equation(4.39) shows

that the carrier frequency fj is an integral multiple of fi/4. Thus

fu =m0 S
£, =m-n./

(4.40)



MSK Transmitter & Receiver
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Spectrum of MSK

We see that the base band waveform which multiplies the sinmgt in MSK is

p(t)=+2p.b, cos% fit T, <t<T, (4.41)

_32E,| cos2zf ] f,
= =3y

The waveform p(t) hasa PSD G, ( f )

Gy (1) gives by
2
_32E, | cos2xf ] f,
7’ 1_(4f )2

b

G, (/)

(4.42)

Then the PSD for the total MSK signal of equation (4.33) is

cos27(f—1,) /£, 2+ cos 27(f+£,) /1, 43)
1-[4(f-£)/f,T 1-[4(f+£)/f,T '

8E
Gmsk (f) = :

2
T

It is clear from the fig-4.9 that the main loab in MSK is wider than the main lobe in QPSK. In
MSK the band width required to accommodate this lobe is 2*3/4f,=1.5f, while it is only 1f; in
QPSK. However in MSK the side lobe are very greatly suppressed in comparision to QPSK. in
QPSK ,G(f) falls off as 1/f* while in MSK G(¥) falls off as 1/f* It turns out that in MSK 99% of the
signal power is contained in a band width of about 1.2f, . while in QPSK the corresponding
bandwidth is about &f;.

Geometrical representation of MSK in signal space

The signal space representation of MSK is shown in Fig 4.17a. The orthogonal unit vectors of the
co-ordinate system are given by ug(t) and uy(t). The end point of the four possible signal vectors

are indicated by dots. The smallest distance between signal pointis d = /2E, =2,/E,

QPSK generates two BPSK signal which are orthogonal to one another by virtue of the fact that
the respective carriers are in phase quadrature. Such phase quadrature can also be charactarised as
time quadrature since , at a carrier frequency to a phase shift of n/2 is accomplished by a time shift
in amount 1/4fpi.esin27z f (t+1/41)) =sin(2r ft+7/2)=cos2xf,¢t It is of interest to note , in

contrast, that in MSK we have again two BPSK signal [i.e the two individual terms in equation
4.36]



Here, however ,the respective carriers are orthogonal to one another by virtue of the fact that they
are in frequency quadrature.

Phase continuity in MSK

A most important and useful feature of MSK in its phase continuity. This matter is illustrated in
4.17 b in waveform g, h ,and 1. Here we have assumed f,=5f,/4 so that

fy= fo+fi/4= 5f,/4 +,/4 =1.5f, (4.44)
fL: fo-fb/4: Sfb/4 -fb/4 :lfb (445)

Carriers of fy and f; are shown in g & h. We also find form eqn(4.35),that for the various
combination of by and be , ¥, (£)/y/2F . It is clear that because of staging ,by and b, don’t change
simultaneously. The waveform Vg (t) is generated in the following way: in each bit interval we
determine from eqn (4.36a), whether to use the carrier frequency fy or f; and also whether to use
carrier waveform is to be inverted. Having made such a determination the waveform of Vp(t)is
smooth and exhibits no abrupt changes in phase. Hence, in MSK we avoid the difficulty described
above (pulse case),which results from the abrupt phase changes in the waveform of QPSK. We
shall now see that the phase continuity and is a general characteristics of MSK. For this purpose
we note from table 3 that the V(1)

Waveform of eqn(4.35) or eqn (4.36) can be written as

Vinsic () = bo (025, sin[ @yt +by(®) b (D1 | (4.46)
The instantaneous phase ¢(t) of the sinusoidal in eqn (4.46) is given by

$(t) = axt + by (1) b (HQ (4.47)
For convergence we represent the two phases as ¢,(t) or ¢_(t), where

(0= (@) + Dt b, (Obe()=+1 (4.48)
40 =(@)~Dt by (Db, (01 (4.49)

bo(t) can take +-land be(t) can take +-1.The term by(t) ,be(t) in eqn(4.46) can change at times
KTy(k inis an integer).but they don’t change at the same time .consider then ,first a change in
be(t).such a change will cause a phase change which is a multiple of 2~ ,which is equivalent to n,
change at all (be(t) can only change when k is even ).when by(t) changes the phase change in 4(t)
will be an odd multiple of ~ i.e a phase change of ~ .but as per eqn (4.46) and its coefficient by(t)
which multiplies |25 sing(t) .whenever there is a change in by(t) to change the phase 4() by = ,the
coefficient by(t) will also change the sign of ,yielding an additional ~ phase change. Hence a
change in by(t) produces no net phase discontinuity.



Use of signal space to calculate probability of error for BPSK & BFSK

BPSK: in BPSK case,the signal space is one dimensional . The signal s1 & s2 are given by

o ((tt))} = \/ﬁb(t)cos wyt ; 0<t<Tp (4.50)
)

Where b(t)=t+1 for s; and b(t)=-1 for s, Py is the signal power. If we introduce the unit
(normalized)

Vector u(t)= %b cosayt ,then

s | 2
sz(t)}—b(t)JﬂTb\/;coswot (4.51)

,
!
L

=BTy u(®)

A
v

(@)

noise + s1(t)=y/ PsTp u(t)
or s (t)=\ P Ty u(t)

T b sampled at every Ty,
Jode —% :
0

u(t) ®

Fig 4.17 (a) Signal Vector (b) Co-relator Receiver

So signal vectors each of length /R7, ,measured in terms of unit vector u(t).processing at the

correlator receiver, we will generate a response r; or 1, for s; and s, respectively when no. noise is
present. Now suppose that in some interval, because of noise a response r is generated.if we find
|r—n| <|r—n| then we determine that s;(t) was transmitted.

The relevant noise in BPSK case is
n(t) =ng(t)u(t) =ng \/Tzcos ot (452)
b

Where ng is a Gaussian random variable.

. . T
Variance of noise power = 2.2

=00y =——"F="" r=Rc=1T;



Variance of noise energy = o, :#Tb - (4.53)
b

n
2
Let us take S,(t) was transmitted. The error probability ie the probability that the signal is
mistaken or judged as S;(t).This is possible only when ny>./RT;, .thus error probability P, is given
by

o0

s
P, = e 20 dnyy (4.54)
N 2707 /—1;[ 7,

1T 7”07
P =— e T dn

Jm

KTy

2
2 d _ P.T,
Let us assume x* ="0 " then dx = % when 79 =/AT, then x= | s%

0

a%ﬁ [ ey (4.55)
N

~Lerge( |2 ST”)=lerfc<JE—7) (4.56)

2 n 2 n

As argument of erfc increases ,its value decreases .ie p. decreases .

Thus error probability is seen to fall off monotonically with an increase in distance between
signals.

BESK

The unit vectors in BFSK considered are

u(t)= %b cos oyt

(4.57)
up(t) = %b cosant

mand @, are selected in sucha manner that they are orthogonal over the interval 7, .The

transmitted signal s;(t) and s,(t) are of power P are given by

Si(t) ={2B; cosat =[BT}, cosayt = [ BT u(t) (4.58)
SH(t) =28, cosant =[BT}, cosant =[BT ux(t) (4.59)

In the absence of noise , when s;(t) is received, then r,=0 and » =./RT, .forsy(t) is received, then

;=0 and n =BT, .The vectors representing r; and r, are of length /A7, .since the signal is two

dimensional ,the relevant noise in the present case is



n(t) =ny(Huy(®) +ny(t)ur ()

Where n; and n; are Gaussian random variable each of variance =of =03 = % .

up (t)

noise+s1(t) or sy (t
—

uy ()

Fig 4.18 Reception in BFSK signal

T
J ot
0

T
J 0t
0

sampled at

every Ty,

n

(4.60)

Now let us suppose that s(t) is transmitted and the observed voltage at the output of the receiver

arer; and r, .we find r; not equal to r; because of the noise n; and # =0 because of noise then n; .

we have locus of points equidistant from r; and r, suppose as shown that received voltage r is
closer to r; to r,.Then we shall have made an error in estimating which signal was transmitted.It is

readily apparent that such an error will occur when ever noise # >n -7, or (m+m)>RT, .since

n; and n, are uncorrelated ,random variable ny=(n;+n,) has a variance of =of +05 =n and its

probability density function

e—né/Zn

1
ﬂnw_ﬁ

The probability error is

e BT 1 B
—zefc( 277) 26/’6(\/;)

=%erfc(\/%)

4.61)

(4.62)

(4.63)

For comparison of equation 4.55 & 4.62 should be used. Equation 4.56 & 4.63 are generalized

equation.



