Lectures notes

On

Engineering Mechanics

Course Code- BME-101

Prepared by

Prof. Mihir Kumar Sutar

Asst. professor,
Department of Mechanical Engg.
(New Syllabus(Effective from July,2010)
All Theory papers are 3-1-0(i.e, 4 contact Hrs. per week) having 4 credits
All Sessionals are $0-0-3$ (i.e, 3 contact Hrs. per week) having 2 credits
$1^{\text {st }} \& 2^{\text {nd }}$ Semester(Same for all branches)
(Theory)

BME 101-Engineering Mechanics

Module - I

1. Concurrent forces on a plane: Composition, resolution and equilibrium of concurrent coplanar forces, method of moment, friction (chapter 1). (7 pds.)
2. Parallel forces on a plane: General case of parallel forces, center of parallel forces and center of gravity, centroid of composite plane figure and curves(chapter 2.1 to 2.4) (4)

Module - II

3. General case of forces on a plane: Composition and equilibrium of forces in a plane, plane trusses, method of joints and method of sections, plane frame, principle of virtual work, equilibrium of ideal systems.(8)
4. Moments of inertia: Plane figure with respect to an axis in its plane and perpendicular to the plane, parallel axis theorem(chapter 3.1 to $3.4,5.1$, appendix A. 1 to A.3) (3)
Module - III
5. Rectilinear Translation: Kinematics, principle of dynamics, D Alembert's Principle, momentum and impulse, work and energy, impact (chapter 6). (11)

Module - IV

6. Curvilinear translation: Kinematics, equation of motion, projectile, D Alembert's principle of curvilinear motion. (4)
7. Kinematics of rotation of rigid body (Chapter 9.1) (3)

Text book:

1. Engineering mechanics: S Timoshenko \& Young; $4^{\text {th }}$ Edition (international edition) MC Graw Hill.

Reference books:

1. Fundamental of Engineering mechanics (2nd Edition): S Rajesekharan \& G Shankara Subramanium; Vikas Pub. House Pvt Itd.
2. Engineering mechanics: K.L. Kumar; Tata MC Graw Hill.

Lesson Plan

Subject: Engineering Mechanics (BME- 101),

Date	Lecture	Topics to be covered
08.01.2015	Lecture 1	Concurrent forces on a plane: Introduction to engineering mechanics,
09.01.2015	Lecture 2	Composition of forces, parallelogram law, numerical problems.
10.01.2015	Lecture 3	Resolution of forces, equilibrium of collinear forces, super position and transmissibility, free body diagram,
12.01.2015	Lecture 4	Equilibrium of concurrent forces: Lami's theorem, method of projection, equilibrium of three forces in a plane,
15.01.2015	Lecture 5	Method of moments, numerical problems on equilibrium of concurrent forces
16.01.2015	Lecture 6	Friction: Definition of friction, static friction, dynamics friction, coefficient of friction, angle of friction, angle of repose. Wedge friction, simple friction problems based on sliding of block on horizontal and inclined plane and wedge friction
17.01.2015	Lecture 7	Ladder and rope friction, simple problems on ladder and rope friction.
19.01.2015	Lecture 8	General case of parallel forces, center of parallel forces, numerical problems.
22.01.2015	Lecture 9	Center of gravity, centroid of plane figure and curves, numerical examples.
29.01.2015	Lecture 10	Centroid of composite figures figure and curves, numerical problems.
30.01.2015	Lecture 11	Numerical examples on centroid of plane figure and curves
31.01.2015	Lecture 12	Composition and equilibrium of forces in a plane: Introduction to plane trusses, perfect, redundant truss,

02.02 .2015	Lecture 13	Solving problem of truss using method of joint.		
05.02 .2015	Lecture 14	Numerical examples on solving truss problems using method of joint.		
06.02 .2015	Lecture 15	Method of section, numerical examples.		
07.02 .2015	Lecture 16	Numerical examples on method of joint and method of section		
09.02.2015	Lecture 17	Principle of virtual work: Basic concept, virtual displacement, numerical problems		
12.02 .2015	Lecture 18	Numerical problems on virtual work. 13.02 .2015 Lecture 19		Numerical problems on virtual work.
:---				
14.02 .2015	Lecture 20	Moment of Inertia of plane figure with respect to an axis in its		
:---				
plane, numerical examples.				
16.02 .2015	Lecture 21	Moment of Inertia of plane figure with respect to an axis and		
:---				
perpendicular to the plane, parallel axis theorem, numerical				
examples.				

		problems
02.03 .2015	Lecture 29	Numerical problems on momentum and impulse.
07.03 .2015	Lecture 30	Work and Energy: Basic theory and numerical problems
09.03 .2015	Lecture 31	Ideal systems: Conservation of energy: Basic theory and numerical problems
12.03 .2015	Lecture 32	Impact: Plastic impact, elastic impact, semi-elastic impact, coefficient of restitution numerical problems on impact on various conditions.
13.03 .2015	Lecture 33	Numerical problems on impact. 14.03 .2015 Lecture 34
Curvilinear Translation: Kinematics of curvilinear translation, displacement, velocity and acceleration, numerical problems on curvilinear translation		
16.03 .2015	Lecture 35	Differential equation of curvilinear motion: Basic theory and numerical problems
19.03 .2015	Lecture 36	Motion of a Projectile: 20.03 .2015
Lecture 37	Numerical problems on projectile for different cases.	
21.03 .2015	Lecture 38	D Alembert's Principles in Curvilinear Motion: Basic theory and numerical problems.
23.03 .2015	Lecture 39	Rotation of rigid body: Kinematics of rotation and numerical problems.
26.03 .2015	Lecture 40	Numerical problems on rotation of rigid bodies.

Mechanics

It is defined as that branch of science, which describes and predicts the conditions of rest or motion of bodies under the action of forces. Engineering mechanics applies the principle of mechanics to design, taking into account the effects of forces.

Statics

Statics deal with the condition of equilibrium of bodies acted upon by forces.

Rigid body

A rigid body is defined as a definite quantity of matter, the parts of which are fixed in position relative to each other. Physical bodies are never absolutely but deform slightly under the action of loads. If the deformation is negligible as compared to its size, the body is termed as rigid.

Force may be defined as any action that tends to change the state of rest or motion of a body to which it is applied.

The three quantities required to completely define force are called its specification or characteristics. So the characteristics of a force are:

1. Magnitude
2. Point of application
3. Direction of application

Concentrated force/point load

Distributed force

Line of action of force

The direction of a force is the direction, along a straight line through its point of application in which the force tends to move a body when it is applied. This line is called line of action of force.

Representation of force

Graphically a force may be represented by the segment of a straight line.

Composition of two forces

The reduction of a given system of forces to the simplest system that will be its equivalent is called the problem of composition of forces.

Parallelogram law

If two forces represented by vectors AB and AC acting under an angle α are applied to a body at point A. Their action is equivalent to the action of one force, represented by vector AD , obtained as the diagonal of the parallelogram constructed on the vectors AB and AC directed as shown in the figure.

Force AD is called the resultant of AB and AC and the forces are called its components.

$R=\sqrt{\left(P^{2}+Q^{2}+2 P Q \times \operatorname{Cos} \alpha\right)}$
Now applying triangle law
$\frac{P}{\operatorname{Sin} \gamma}=\frac{Q}{\operatorname{Sin} \beta}=\frac{R}{\operatorname{Sin}(\pi-\alpha)}$

Special cases

Case-I: If $\alpha=0^{\circ}$
$R=\sqrt{\left(P^{2}+Q^{2}+2 P Q \times \operatorname{Cos} 0^{\circ}\right)}=\sqrt{(P+Q)^{2}}=P+Q$

$$
\mathrm{R}=\mathrm{P}+\mathrm{Q}
$$

Case- II: If $\alpha=180^{\circ}$
$R=\sqrt{\left(P^{2}+Q^{2}+2 P Q \times \operatorname{Cos} 180^{\circ}\right)}=\sqrt{\left(P^{2}+Q^{2}-2 P Q\right)}=\sqrt{(P-Q)^{2}}=P-Q$

Case-III: If $\alpha=90^{\circ}$

$$
R=\sqrt{\left(P^{2}+Q^{2}+2 P Q \times \operatorname{Cos} 90^{\circ}\right)}=\sqrt{P^{2}+Q^{2}}
$$

Q
$\alpha=\tan ^{-1}(\mathrm{Q} / \mathrm{P})$

Resolution of a force

The replacement of a single force by a several components which will be equivalent in action to the given force is called resolution of a force.

Action and reaction

Often bodies in equilibrium are constrained to investigate the conditions.

w

w

Free body diagram

Free body diagram is necessary to investigate the condition of equilibrium of a body or system. While drawing the free body diagram all the supports of the body are removed and replaced with the reaction forces acting on it.

1. Draw the free body diagrams of the following figures.

2. Draw the free body diagram of the body, the string $C D$ and the ring.

3. Draw the free body diagram of the following figures.

Equilibrium of colinear forces:

Equllibrium law: Two forces can be in equilibrium only if they are equal in magnitude, opposite in direction and collinear in action.

(tension)

(compression)

Superposition and transmissibility

Problem 1: A man of weight $\mathrm{W}=712 \mathrm{~N}$ holds one end of a rope that passes over a pulley vertically above his head and to the other end of which is attached a weight $\mathrm{Q}=$ 534 N. Find the force with which the man's feet press against the floor.

Problem 2: A boat is moved uniformly along a canal by two horses pulling with forces $\mathrm{P}=890 \mathrm{~N}$ and $\mathrm{Q}=1068 \mathrm{~N}$ acting under an angle $\alpha=60^{\circ}$. Determine the magnitude of the resultant pull on the boat and the angles β and v.

$\mathrm{P}=890 \mathrm{~N}, \alpha=60^{\circ}$
$\mathrm{Q}=1068 \mathrm{~N}$
$R=\sqrt{\left(P^{2}+Q^{2}+2 P Q \cos \alpha\right)}$
$=\sqrt{\left(890^{2}+1068^{2}+2 \times 890 \times 1068 \times 0.5\right)}$
$=1698.01 \mathrm{~N}$

$\frac{Q}{\sin \beta}=\frac{P}{\sin v}=\frac{R}{\sin (\pi-\alpha)}$
$\sin \beta=\frac{Q \sin \alpha}{R}$
$=\frac{1068 \times \sin 60^{\circ}}{1698.01}$
$=33^{\circ}$

$\sin \nu=\frac{P \sin \alpha}{R}$
$=\frac{890 \times \sin 60^{\circ}}{1698.01}$
$=27^{\circ}$

Resolution of a force

Replacement of a single force by several components which will be equivalent in action to the given force is called the problem of resolution of a force.

By using parallelogram law, a single force R can be resolved into two components P and Q intersecting at a point on its line of action.

Equilibrium of collinear forces:

Equilibrium law: Two forces can be in equilibrium only if they are equal in magnitude, opposite in direction and collinear in action.

Law of superposition

The action of a given system of forces on a rigid body will no way be changed if we add to or subtract from them another system of forces in equllibrium.

Problem 3: Two spheres of weight P and Q rest inside a hollow cylinder which is resting on a horizontal force. Draw the free body diagram of both the spheres, together and separately.

Problem 4: Draw the free body diagram of the figure shown below.

Problem 5: Determine the angles α and β shown in the figure.

Problem 6: Find the reactions R_{1} and R_{2}.

Problem 7: Two rollers of weight P and Q are supported by an inclined plane and vertical walls as shown in the figure. Draw the free body diagram of both the rollers separately.

Problem 8: Find θ_{n} and θ_{t} in the following figure.

Problem 9: For the particular position shown in the figure, the connecting rod BA of an engine exert a force of $\mathrm{P}=2225 \mathrm{~N}$ on the crank pin at A. Resolve this force into two rectangular components P_{h} and P_{v} horizontally and vertically respectively at A.

$\mathrm{P}_{\mathrm{h}}=2081.4 \mathrm{~N}$
$\mathrm{P}_{\mathrm{v}}=786.5 \mathrm{~N}$

Equilibrium of concurrent forces in a plane

- If a body known to be in equilibrium is acted upon by several concurrent, coplanar forces, then these forces or rather their free vectors, when geometrically added must form a closed polygon.
- This system represents the condition of equilibrium for any system of concurrent forces in a plane.

W

$$
\begin{aligned}
& R_{a}=w \tan \alpha \\
& S=w \sec \alpha
\end{aligned}
$$

Lami's theorem

If three concurrent forces are acting on a body kept in an equllibrium, then each force is proportional to the sine of angle between the other two forces and the constant of proportionality is same.

$\frac{P}{\sin \alpha}=\frac{Q}{\sin \beta}=\frac{R}{\sin v}$

$\frac{S}{\sin 90}=\frac{R_{a}}{\sin (180-\alpha)}=\frac{W}{\sin (90+\alpha)}$

Problem: A ball of weight $\mathrm{Q}=53.4 \mathrm{~N}$ rest in a right angled trough as shown in figure. Determine the forces exerted on the sides of the trough at D and E if all the surfaces are perfectly smooth.

Problem: An electric light fixture of weight $\mathrm{Q}=178 \mathrm{~N}$ is supported as shown in figure. Determine the tensile forces S_{1} and S_{2} in the wires BA and BC, if their angles of inclination are given.

$S_{1} \cos \alpha=P$
$\mathrm{S}=\mathrm{P} \sec \alpha$

$$
\begin{aligned}
R_{b} & =W+S \sin \alpha \\
& =W+\frac{P}{\cos \alpha} \times \sin \alpha \\
& =W+P \tan \alpha
\end{aligned}
$$

Problem: A right circular roller of weight W rests on a smooth horizontal plane and is held in position by an inclined bar AC. Find the tensions in the bar AC and vertical reaction R_{b} if there is also a horizontal force P is active.

Theory of transmissiibility of a force:

The point of application of a force may be transmitted along its line of action without changing the effect of force on any rigid body to which it may be applied.

Problem:

$$
\begin{align*}
& \sum X=0 \\
& S_{1} \cos 30+20 \sin 60=S_{2} \sin 30 \\
& \frac{\sqrt{3}}{2} S_{1}+20 \frac{\sqrt{3}}{2}=\frac{S_{2}}{2} \\
& \frac{S_{2}}{2}=\frac{\sqrt{3}}{2} S_{1}+10 \sqrt{3} \\
& S_{2}=\sqrt{3} S_{1}+20 \sqrt{3} \tag{1}\\
& \sum Y=0 \\
& S_{1} \sin 30+S_{2} \cos 30=S_{d} \cos 60+20 \\
& \frac{S_{1}}{2}+S_{2} \frac{\sqrt{3}}{2}=\frac{20}{2}+20 \\
& \frac{S_{1}}{2}+\frac{\sqrt{3}}{2} S_{2}=30 \\
& S_{1}+\sqrt{3} S_{2}=60 \tag{2}
\end{align*}
$$

Substituting the value of S_{2} in Eq.2, we get
$S_{1}+\sqrt{3}\left(\sqrt{3} S_{1}+20 \sqrt{3}\right)=60$
$S_{1}+3 S_{1}+60=60$
$4 S_{1}=0$
$S_{1}=0 K N$
$S_{2}=20 \sqrt{3}=34.64 \mathrm{KN}$

Problem: A ball of weight W is suspended from a string of length 1 and is pulled by a horizontal force Q . The weight is displaced by a distance d from the vertical position as shown in Figure. Determine the angle α, forces Q and tension in the string S in the displaced position.

$\cos \alpha=\frac{d}{l}$
$\alpha=\cos ^{-1}\left(\frac{d}{l}\right)$
$\sin ^{2} \alpha+\cos ^{2} \alpha=1$
$\Rightarrow \sin \alpha=\sqrt{\left(1-\cos ^{2} \alpha\right)}$
$=\sqrt{1-\frac{d^{2}}{l^{2}}}$
$=\frac{1}{l} \sqrt{l^{2}-d^{2}}$
Applying Lami's theorem,
$\frac{S}{\sin 90}=\frac{Q}{\sin (90+\alpha)}=\frac{W}{\sin (180-\alpha)}$
$\frac{Q}{\sin (90+\alpha)}=\frac{W}{\sin (180-\alpha)}$
$\Rightarrow Q=\frac{W \cos \alpha}{\sin \alpha}=\frac{W\left(\frac{d}{l}\right)}{\frac{1}{l} \sqrt{l^{2}-d^{2}}}$
$\Rightarrow Q=\frac{W d}{\sqrt{l^{2}-d^{2}}}$

$$
S=\frac{W}{\sin \alpha}=\frac{W}{\frac{1}{l} \sqrt{l^{2}-d^{2}}}
$$

$$
=\frac{W l}{\sqrt{l^{2}-d^{2}}}
$$

Problem: Two smooth circular cylinders each of weight $\mathrm{W}=445 \mathrm{~N}$ and radius $\mathrm{r}=152$ mm are connected at their centres by a string AB of length $\mathrm{l}=406 \mathrm{~mm}$ and rest upon a horizontal plane, supporting above them a third cylinder of weight $\mathrm{Q}=890 \mathrm{~N}$ and radius $\mathrm{r}=152 \mathrm{~mm}$. Find the forces in the string and the pressures produced on the floor at the point of contact.

$\cos \alpha=\frac{203}{304}$
$\Rightarrow \alpha=48.1^{\circ}$
$\frac{R_{g}}{\sin 138.1}=\frac{R_{e}}{\sin 138.1}=\frac{Q}{83.8}$
$\Rightarrow R_{g}=R_{e}=597.86 \mathrm{~N}$

Resolving horizontally
$\sum X=0$
$S=R_{f} \cos 48.1$
$=597.86 \cos 48.1$
$=399.27 \mathrm{~N}$
Resolving vertically
$\sum Y=0$
$R_{d}=W+R_{f} \sin 48.1$
$=445+597.86 \sin 48.1$
$=890 \mathrm{~N}$
$R_{e}=890 \mathrm{~N}$
$S=399.27 N$

Problem: Two identical rollers each of weight $\mathrm{Q}=445 \mathrm{~N}$ are supported by an inclined plane and a vertical wall as shown in the figure. Assuming smooth surfaces, find the reactions induced at the points of support A, B and C .

$\frac{R_{a}}{\sin 120}=\frac{S}{\sin 150}=\frac{445}{\sin 90}$
$\Rightarrow R_{a}=385.38 \mathrm{~N}$
$\Rightarrow S=222.5 \mathrm{~N}$

Resolving vertically
$\sum Y=0$
$R_{b} \cos 60=445+S \sin 30$
$\Rightarrow R_{b} \frac{\sqrt{3}}{2}=445+\frac{222.5}{2}$
$\Rightarrow R_{b}=642.302 \mathrm{~N}$
Resolving horizontally
$\sum X=0$

$R_{c}=R_{b} \sin 30+S \cos 30$
$\Rightarrow 642.302 \sin 30+222.5 \cos 30$
$\Rightarrow R_{c}=513.84 \mathrm{~N}$

Problem:

A weight Q is suspended from a small ring C supported by two cords AC and BC . The cord AC is fastened at A while cord BC passes over a frictionless pulley at B and carries a weight P. If $P=Q$ and $\alpha=50^{\circ}$, find the value of β.

Resolving horizontally
$\sum X=0$
$S \sin 50=Q \sin \beta$
Resolving vertically
$\sum Y=0$
$S \cos 50+Q \sin \beta=Q$
$\Rightarrow S \cos 50=Q(1-\cos \beta)$
Putting the value of S from Eq. 1, we get
$S \cos 50+Q \sin \beta=Q$
$\Rightarrow S \cos 50=Q(1-\cos \beta)$
$\Rightarrow Q \frac{\sin \beta}{\sin 50} \cos 50=Q(1-\cos \beta)$
$\Rightarrow \cot 50=\frac{1-\cos \beta}{\sin \beta}$
$\Rightarrow 0.839 \sin \beta=1-\cos \beta$
Squaring both sides,
$0.703 \sin ^{2} \beta=1+\cos ^{2} \beta-2 \cos \beta$
$0.703\left(1-\cos ^{2} \beta\right)=1+\cos ^{2} \beta-2 \cos \beta$
$0.703-0.703 \cos ^{2} \beta=1+\cos ^{2} \beta-2 \cos \beta$
$\Rightarrow 1.703 \cos ^{2} \beta-2 \cos \beta+0.297=0$
$\Rightarrow \cos ^{2} \beta-1.174 \cos \beta+0.297=0$
$\Rightarrow \beta=63.13^{\circ}$

Method of moments

Moment of a force with respect to a point:

- Considering wrench subjected to two forces P and Q of equal magnitude. It is evident that force P will be more effective compared to Q , though they are of equal magnitude.
- The effectiveness of the force as regards it is the tendency to produce rotation of a body about a fixed point is called the moment of the force with respect to that point.
- Moment $=$ Magnitude of the force \times Perpendicular distance of the line of action of force.
- Point O is called moment centre and the perpendicular distance (i.e. OD) is called moment arm.
- Unit is N.m

Theorem of Varignon:

The moment of the resultant of two concurrent forces with respect to a centre in their plane is equal to the alzebric sum of the moments of the components with respect to some centre.

Problem 1:

A prismatic clear of $A B$ of length 1 is hinged at A and supported at B. Neglecting friction, determine the reaction R_{b} produced at B owing to the weight Q of the bar.

Taking moment about point A,
$R_{b} \times l=Q \cos \alpha \cdot \frac{l}{2}$
$\Rightarrow R_{b}=\frac{Q}{2} \cos \alpha$

Problem 2:

A bar AB of weight Q and length 21 rests on a very small friction less roller at D and against a smooth vertical wall at A. Find the angle α that the bar must make with the horizontal in equilibrium.

Resolving vertically,
$R_{d} \cos \alpha=Q$
Now taking moment about A,
$\frac{R_{d} \cdot a}{\cos \alpha}-Q . l \cos \alpha=0$
$\Rightarrow \frac{Q . a}{\cos ^{2} \alpha}-Q . I \cos \alpha=0$
$\Rightarrow Q . a-Q . l \cos ^{3} \alpha=0$
$\Rightarrow \cos ^{3} \alpha=\frac{Q . a}{Q . l}$
$\Rightarrow \alpha=\cos ^{-1} \sqrt[3]{\frac{a}{l}}$

Problem 3:

If the piston of the engine has a diameter of 101.6 mm and the gas pressure in the cylinder is 0.69 MPa . Calculate the turning moment M exerted on the crankshaft for the particular configuration.

Area of cylinder
$A=\frac{\pi}{4}(0.1016)^{2}=8.107 \times 10^{-3} \mathrm{~m}^{2}$
Force exerted on connecting rod,

$$
\begin{aligned}
& \mathrm{F}=\text { Pressure } \times \text { Area } \\
&=0.69 \times 10^{6} \times 8.107 \times 10^{-3} \\
&=5593.83 \mathrm{~N}
\end{aligned}
$$

Now $\alpha=\sin ^{-1}\left(\frac{178}{380}\right)=27.93^{\circ}$
$S \cos \alpha=F$
$\Rightarrow S=\frac{F}{\cos \alpha}=6331.29 \mathrm{~N}$
Now moment entered on crankshaft,
$S \cos \alpha \times 0.178=995.7 N=1 K N$

Problem 4:

A rigid bar AB is supported in a vertical plane and carrying a load Q at its free end. Neglecting the weight of bar, find the magnitude of tensile force S in the horizontal string CD.

Taking moment about A, $\sum M_{A}=0$
S. $\frac{l}{2} \cos \alpha=$ Q.l $\sin \alpha$
$\Rightarrow S=\frac{Q . l \sin \alpha}{\frac{l}{2} \cos \alpha}$
$\Rightarrow S=2 Q \cdot \tan \alpha$

Friction

- The force which opposes the movement or the tendency of movement is called Frictional force or simply friction. It is due to the resistance to motion offered by minutely projecting particles at the contact surfaces. However, there is a limit beyond which the magnitude of this force cannot increase.
- If the applied force is more than this limit, there will be movement of one body over the other. This limiting value of frictional force when the motion is impending, it is known as Limiting Friction.
- When the applied force is less than the limiting friction, the body remains at rest and such frictional force is called Static Friction, which will be having any value between zero and the limiting friction.
- If the value of applied force exceeds the limiting friction, the body starts moving over the other body and the frictional resistance experienced by the body while moving is known as Dynamic Friction. Dynamic friction is less than limiting friction.
- Dynamic friction is classified into following two types:
a) Sliding friction
b) Rolling friction
- Sliding friction is the friction experienced by a body when it slides over the other body.
- Rolling friction is the friction experienced by a body when it rolls over a surface.
- It is experimentally found that the magnitude of limiting friction bears a constant ratio to the normal reaction between two surfaces and this ratio is called Coefficient of Friction.

Coefficient of friction $=\frac{F}{N}$
where F is limiting friction and N is normal reaction between the contact surfaces.
Coefficient of friction is denoted by μ.
Thus, $\mu=\frac{F}{N}$

Laws of friction

1. The force of friction always acts in a direction opposite to that in which body tends to move.
2. Till the limiting value is reached, the magnitude of friction is exactly equal to the force which tends to move the body.
3. The magnitude of the limiting friction bears a constant ratio to the normal reaction between the two surfaces of contact and this ratio is called coefficient of friction.
4. The force of friction depends upon the roughness/smoothness of the surfaces.
5. The force of friction is independent of the area of contact between the two surfaces.
6. After the body starts moving, the dynamic friction comes into play, the magnitude of which is less than that of limiting friction and it bears a constant ratio with normal force. This ratio is called coefficient of dynamic friction.

Angle of friction

Consider the block shown in figure resting on a horizontal surface and subjected to horizontal pull P . Let F be the frictional force developed and N the normal reaction. Thus, at contact surface the reactions are F and N. They can be graphically combined to get the reaction R which acts at angle θ to normal reaction. This angle θ called the angle of friction is given by

$$
\tan \theta=\frac{F}{N}
$$

As P increases, F increases and hence θ also increases. θ can reach the maximum value α when F reaches limiting value. At this stage,

$$
\tan \alpha=\frac{F}{N}=\mu
$$

This value of α is called Angle of Limiting Friction. Hence, the angle of limiting friction may be defined as the angle between the resultant reaction and the normal to the plane on which the motion of the body is impending.

Angle of repose

Consider the block of weight W resting on an inclined plane which makes an angle θ with the horizontal. When θ is small, the block will rest on the plane. If θ is gradually increased, a stage is reached at which the block start sliding down the plane. The angle θ for which the motion is impending, is called the angle of repose. Thus, the maximum inclination of the plane on which a body, free from external forces, can repose is called Angle of Repose.

Resolving vertically,
$\mathrm{N}=\mathrm{W} \cdot \cos \theta$

Resolving horizontally, $\mathrm{F}=\mathrm{W} . \sin \theta$

Thus, $\tan \theta=\frac{F}{N}$
If ϕ is the value of θ when the motion is impending, the frictional force will be limiting friction and hence,
$\tan \phi=\frac{F}{N}$
$=\mu=\tan \alpha$
$\Rightarrow \phi=\alpha$
Thus, the value of angle of repose is same as the value of limiting angle of repose.

Cone of friction

- When a body is having impending motion in the direction of force P , the frictional force will be limiting friction and the resultant reaction R will make limiting angle α with the normal.
- If the body is having impending motion in some other direction, the resultant reaction makes limiting frictional angle α with the normal to that direction. Thus, when the direction of force P is gradually changed through 360°, the resultant R generates a right circular cone with semi-central angle equal to α.

Problem 1: Block A weighing 1000N rests over block B which weighs 2000 N as shown in figure. Block A is tied to wall with a horizontal string. If the coefficient of friction between blocks A and B is 0.25 and between B and floor is $1 / 3$, what should be the value of P to move the block (B), if
(a) P is horizontal.
(b) P acts at 30° upwards to horizontal.

Solution: (a)

Considering block A,
$\sum V=0$
$N_{1}=1000 \mathrm{~N}$
Since F_{1} is limiting friction,
$\frac{F_{1}}{N_{1}}=\mu=0.25$
$F_{1}=0.25 N_{1}=0.25 \times 1000=250 \mathrm{~N}$
$\sum H=0$
$F_{1}-T=0$
$T=F_{1}=250 \mathrm{~N}$
Considering equilibrium of block B,
$\sum V=0$
$N_{2}-2000-N_{1}=0$
$N_{2}=2000+N_{1}=2000+1000=3000 \mathrm{~N}$
$\frac{F_{2}}{N_{2}}=\mu=\frac{1}{3}$
$F_{2}=0.3 \mathrm{~N}_{2}=0.3 \times 1000=1000 \mathrm{~N}$

$$
\begin{aligned}
& \sum H=0 \\
& P=F_{1}+F_{2}=250+1000=1250 \mathrm{~N}
\end{aligned}
$$

(b) When P is inclined:
$\sum V=0$
$N_{2}-2000-N_{1}+P \cdot \sin 30=0$
$\Rightarrow N_{2}+0.5 P=2000+1000$
$\Rightarrow N_{2}=3000-0.5 P$
From law of friction,

$F_{2}=\frac{1}{3} N_{2}=\frac{1}{3}(3000-0.5 P)=1000-\frac{0.5}{3} P$
$\sum H=0$
$P \cos 30=F_{1}+F_{2}$
$\Rightarrow P \cos 30=250+\left(1000-\frac{0.5}{3} P\right)$
$\Rightarrow P\left(\cos 30+\frac{0.5}{3} P\right)=1250$
$\Rightarrow P=1210.43 \mathrm{~N}$

Problem 2: A block weighing 500N just starts moving down a rough inclined plane when supported by a force of 200 N acting parallel to the plane in upward direction. The same block is on the verge of moving up the plane when pulled by a force of 300 N acting parallel to the plane. Find the inclination of the plane and coefficient of friction between the inclined plane and the block.

$\sum V=0$
$N=500 \cdot \cos \theta$
$F_{1}=\mu N=\mu .500 \cos \theta$

$$
\begin{align*}
& \sum H=0 \\
& 200+F_{1}=500 \cdot \sin \theta \tag{1}\\
& \Rightarrow 200+\mu \cdot 500 \cos \theta=500 \cdot \sin \theta
\end{align*}
$$

$\sum V=0$
$N=500 \cdot \cos \theta$
$F_{2}=\mu N=\mu .500 \cdot \cos \theta$
$\sum H=0$

$500 \sin \theta+F_{2}=300$
$\Rightarrow 500 \sin \theta+\mu .500 \cos \theta=300$
Adding Eqs. (1) and (2), we get
$500=1000 . \sin \theta$
$\sin \theta=0.5$
$\theta=30^{\circ}$

Substituting the value of θ in Eq. 2,
$500 \sin 30+\mu .500 \cos 30=300$
$\mu=\frac{50}{500 \cos 30}=0.11547$

Parallel forces on a plane

Like parallel forces: Coplanar parallel forces when act in the same direction. Unlike parallel forces: Coplanar parallel forces when act in different direction. $|\uparrow|$

Resultant of like parallel forces:

Let P and Q are two like parallel forces act at points A and B . $\mathrm{R}=\mathrm{P}+\mathrm{Q}$

Resultant of unlike parallel forces:

$\mathrm{R}=\mathrm{P}-\mathrm{Q}$
R is in the direction of the force having greater magnitude.

Couple:

Two unlike equal parallel forces form a couple.

The rotational effect of a couple is measured by its moment.

Moment $=\mathrm{P} \times 1$

Sign convention: Anticlockwise couple (Positive)
Clockwise couple (Negative)

Problem 1: A rigid bar CABD supported as shown in figure is acted upon by two equal horizontal forces P applied at C and D . Calculate the reactions that will be induced at the points of support. Assume $1=1.2 \mathrm{~m}, \mathrm{a}=0.9 \mathrm{~m}, \mathrm{~b}=0.6 \mathrm{~m}$.

$\sum V=0$
$R_{a}=R_{b}$

Taking moment about A,

$$
R_{a}=R_{b}
$$

$$
R_{b} \times l+P \times b=P \times a
$$

$$
\Rightarrow R_{b}=\frac{P(0.9-0.6)}{1.2}
$$

$$
\Rightarrow R_{b}=0.25 P(\uparrow)
$$

$$
\Rightarrow R_{a}=0.25 P(\downarrow)
$$

Problem 2: Owing to weight W of the locomotive shown in figure, the reactions at the two points of support A and B will each be equal to $\mathrm{W} / 2$. When the locomotive is pulling the train and the drawbar pull P is just equal to the total friction at the points of contact A and B, determine the magnitudes of the vertical reactions R_{a} and R_{b}.

W
$\sum V=0$
$R_{a}+R_{b}=W$
Taking moment about B ,
$\sum M_{B}=0$
$R_{a} \times 2 a+P \times b=W \times a$
$\Rightarrow R_{a}=\frac{W \cdot a-P . b}{2 a}$
$\therefore R_{b}=W-R_{a}$
$\Rightarrow R_{b}=W-\left(\frac{W \cdot a-P . b}{2 a}\right)$
$\Rightarrow R_{b}=\frac{W \cdot a+P \cdot b}{2 a}$
Problem 3: The four wheels of a locomotive produce vertical forces on the horizontal girder AB. Determine the reactions R_{a} and R_{b} at the supports if the loads $P=90 \mathrm{KN}$ each and $\mathrm{Q}=72 \mathrm{KN}$ (All dimensions are in m).

$\sum V=0$
$R_{a}+R_{b}=3 P+Q$
$\Rightarrow R_{a}+R_{b}=3 \times 90+72$
$\Rightarrow R_{a}+R_{b}=342 \mathrm{KN}$
$\sum M_{A}=0$
$R_{b} \times 9.6=90 \times 1.8+90 \times 3.6+90 \times 5.4+72 \times 8.4$
$\Rightarrow R_{b}=164.25 \mathrm{KN}$
$\therefore R_{a}=177.75 \mathrm{KN}$

Problem 4: The beam AB in figure is hinged at A and supported at B by a vertical cord which passes over a frictionless pulley at C and carries at its end a load P . Determine the distance x from A at which a load Q must be placed on the beam if it is to remain in equilibrium in a horizontal position. Neglect the weight of the beam.

FBD

$A \underset{\sim}{\underset{\sim}{\downarrow}} \underset{\sim}{R_{A}} \overbrace{B}^{S=P}$

$$
\begin{aligned}
& \sum M_{A}=0 \\
& S \times l=Q \times x \\
& \Rightarrow x=\frac{P . l}{Q}
\end{aligned}
$$

Problem 5: A prismatic bar AB of weight $\mathrm{Q}=44.5 \mathrm{~N}$ is supported by two vertical wires at its ends and carries at D a load $\mathrm{P}=89 \mathrm{~N}$ as shown in figure. Determine the forces S_{a} and S_{b} in the two wires.

$\mathrm{Q}=44.5 \mathrm{~N}$
$\mathrm{P}=89 \mathrm{~N}$
Resolving vertically,
$\sum V=0$
$S_{a}+S_{b}=P+Q$

$\Rightarrow S_{a}+S_{b}=89+44.5$
$\Rightarrow S_{a}+S_{b}=133.5 \mathrm{~N}$
$\sum M_{A}=0$
$S_{b} \times l=P \times \frac{l}{4}+Q \times \frac{l}{2}$
$\Rightarrow S_{b}=\frac{P}{4}+\frac{Q}{2}$
$\Rightarrow S_{b}=\frac{89}{4}+\frac{44.5}{2}$
$\Rightarrow S_{b}=44.5$
$\therefore S_{a}=133.5-44.5$
$\Rightarrow S_{a}=89 \mathrm{~N}$

Centre of gravity

Centre of gravity: It is that point through which the resultant of the distributed gravity force passes regardless of the orientation of the body in space.

- As the point through which resultant of force of gravity (weight) of the body acts.

Centroid: Centrroid of an area lies on the axis of symmetry if it exits.
Centre of gravity is applied to bodies with mass and weight and centroid is applied to plane areas.

$$
\begin{aligned}
& x_{c}=\sum A_{i} x_{i} \\
& y_{c}=\sum A_{i} y_{i}
\end{aligned}
$$

$x_{c}=\frac{A_{1} x_{1}+A_{2} x_{2}}{A_{1}+A_{2}}$
$y_{c}=\frac{A_{1} y_{1}+A_{2} y_{2}}{A_{1}+A_{2}}$

$x_{c}=y_{c}=\frac{\text { Moment of area }}{\text { Total area }}$
$x_{c}=\frac{\int x \cdot d A}{A}$
$y_{c}=\frac{\int y \cdot d A}{A}$

Problem 1: Consider the triangle $A B C$ of base ' b ' and height ' h '. Determine the distance of centroid from the base.

Let us consider an elemental strip of width ' b_{1} ' and thickness ' $d y$ '.
$\triangle A E F \sim \triangle A B C$
$\therefore \frac{b_{1}}{b}=\frac{h-y}{h}$
$\Rightarrow b_{1}=b\left(\frac{h-y}{h}\right)$
$\Rightarrow b_{1}=b\left(1-\frac{y}{h}\right)$
Area of element EF (dA) $=\mathrm{b}_{1} \times \mathrm{dy}$

$$
=b\left(1-\frac{y}{h}\right) d y
$$

$$
\begin{aligned}
y_{c} & =\frac{\int y \cdot d A}{A} \\
& =\frac{\int_{0}^{h} y b\left(1-\frac{y}{h}\right) d y}{\frac{1}{2} b \cdot h} \\
& =\frac{b\left[\frac{y^{2}}{2}-\frac{y^{3}}{3 h}\right]_{0}^{h}}{\frac{1}{2} b \cdot h} \\
& =\frac{2}{h}\left[\frac{h^{2}}{2}-\frac{h^{3}}{3}\right] \\
& =\frac{2}{h} \times \frac{h^{2}}{6} \\
& =\frac{h}{3}
\end{aligned}
$$

Therefore, y_{c} is at a distance of $h / 3$ from base.

Problem 2: Consider a semi-circle of radius R. Determine its distance from diametral axis.

Due to symmetry, centroid ' y_{c} ' must lie on Y-axis.
Consider an element at a distance ' r ' from centre ' o ' of the semicircle with radial width dr.

Area of element $=(r . d \theta) \times \mathrm{dr}$
Moment of area about $\mathrm{x}=\int y . d A$
$=\int_{0}^{\pi} \int_{0}^{R}(r \cdot d \theta) \cdot d r \times(r \cdot \sin \theta)$
$=\int_{0}^{\pi} \int_{0}^{R} r^{2} \sin \theta \cdot d r . d \theta$
$=\int_{0}^{\pi} \int_{0}^{R}\left(r^{2} \cdot d r\right) \cdot \sin \theta \cdot d \theta$
$=\int_{0}^{\pi}\left[\frac{r^{3}}{3}\right]_{0}^{R} \cdot \sin \theta \cdot d \theta$
$=\int_{0}^{\pi} \frac{R^{3}}{3} \cdot \sin \theta \cdot d \theta$
$=\frac{R^{3}}{3}[-\cos \theta]_{0}^{\pi}$
$=\frac{R^{3}}{3}[1+1]$
$=\frac{2}{3} R^{3}$
$y_{c}=\frac{\text { Moment of area }}{\text { Total area }}$

$$
\begin{aligned}
& =\frac{2 / 3 R^{3}}{\pi R^{2} / 2} \\
& =\frac{4 R}{3 \pi}
\end{aligned}
$$

Therefore, the centroid of the semicircle is at a distance of $\frac{4 R}{3 \pi}$ from the diametric axis.

Centroids of different figures

Shape	Figure	\bar{X}	\bar{y}	Area
Rectangle		$\frac{b}{2}$	$\frac{d}{2}$	bd
Triangle		0	$\frac{h}{3}$	$\frac{b h}{2}$
Semicircle		0	$\frac{4 R}{3 \pi}$	$\frac{\pi r^{2}}{2}$
Quarter circle		$\frac{4 R}{3 \pi}$	$\frac{4 R}{3 \pi}$	$\frac{\pi r^{2}}{4}$

Problem 3: Find the centroid of the T-section as shown in figure from the bottom.

Area $\left(\mathrm{A}_{\mathrm{i}}\right)$	x_{i}	y_{i}	$\mathrm{A}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$	$\mathrm{A}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}$
2000	0	110	10,000	22,0000
2000	0	50	10,000	10,0000
4000			20,000	32,0000

$$
y_{c}=\frac{\sum A_{i} y_{i}}{A_{i}}=\frac{A_{1} y_{1}+A_{2} y_{2}}{A_{1}+A_{2}}=\frac{32,0000}{4000}=80
$$

Due to symmetry, the centroid lies on Y-axis and it is at distance of 80 mm from the bottom.

Problem 4: Locate the centroid of the I-section.

As the figure is symmetric, centroid lies on y -axis. Therefore, $\bar{x}=0$

$\operatorname{Area}\left(\mathrm{A}_{\mathrm{i}}\right)$	x_{i}	y_{i}	$\mathrm{A}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$	$\mathrm{A}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}$
2000	0	140	0	280000
2000	0	80	0	160000
4500	0	15	0	67500

$$
y_{c}=\frac{\sum A_{i} y_{i}}{A_{i}}=\frac{A_{1} y_{1}+A_{2} y_{2}+A_{3} y_{3}}{A_{1}+A_{2}+A_{3}}=59.71 \mathrm{~mm}
$$

Thus, the centroid is on the symmetric axis at a distance 59.71 mm from the bottom.
Problem 5: Determine the centroid of the composite figure about x-y coordinate. Take $\mathrm{x}=40 \mathrm{~mm}$.

$\mathrm{A}_{1}=$ Area of rectangle $=12 \mathrm{x} .14 \mathrm{x}=168 \mathrm{x}^{2}$
$\mathrm{A}_{2}=$ Area of rectangle to be subtracted $=4 \mathrm{x} \cdot 4 \mathrm{x}=16 \mathrm{x}^{2}$
$\mathrm{A}_{3}=$ Area of semicircle to be subtracted $=\frac{\pi R^{2}}{2}=\frac{\pi(4 x)^{2}}{2}=25.13 x^{2}$
$\mathrm{A}_{4}=$ Area of quatercircle to be subtracted $=\frac{\pi R^{2}}{4}=\frac{\pi(4 x)^{2}}{4}=12.56 x^{2}$
$\mathrm{A}_{5}=$ Area of triangle $=\frac{1}{2} \times 6 x \times 4 x=12 x^{2}$

Area $\left(\mathbf{A}_{\mathbf{i}}\right)$	$\mathbf{x}_{\mathbf{i}}$	$\mathbf{y}_{\mathbf{i}}$	$\mathbf{A}_{\mathbf{i}} \mathbf{x}_{\mathbf{i}}$	$\mathbf{A}_{\mathbf{i}} \mathbf{y}_{\mathbf{i}}$
$\mathrm{A}_{1}=268800$	$7 \mathrm{x}=280$	$6 \mathrm{x}=240$	75264000	64512000
$\mathrm{~A}_{2}=25600$	$2 \mathrm{x}=80$	$10 \mathrm{x}=400$	2048000	10240000
$\mathrm{~A}_{3}=40208$	$6 \mathrm{x}=240$	$\frac{4 \times 4 x}{3 \pi}=67.906$	9649920	2730364.448
$\mathrm{~A}_{4}=20096$	$10 x+\left(4 x-\frac{4 \times 4 x}{3 \pi}\right)$ $=492.09$	$8 x+\left(4 x-\frac{4 \times 4 x}{3 \pi}\right)$ $=412.093$	9889040.64	8281420.926
$\mathrm{~A}_{5}=19200$	$14 x+\frac{6 x}{3}=16 x$ $=640$	$\frac{4 x}{3}=53.33$		

$$
x_{c}=\frac{A_{1} x_{1}-A_{2} x_{2}-A_{3} x_{3}-A_{4} x_{4}+A_{5} x_{5}}{A_{1}-A_{2}-A_{3}-A_{4}+A_{5}}=326.404 \mathrm{~mm}
$$

$$
y_{c}=\frac{A_{1} y_{1}-A_{2} y_{2}-A_{3} y_{3}-A_{4} y_{4}+A_{5} y_{5}}{A_{1}-A_{2}-A_{3}-A_{4}+A_{5}}=219.124 \mathrm{~mm}
$$

Problem 6: Determine the centroid of the following figure.

$\mathrm{A}_{1}=$ Area of triangle $=\frac{1}{2} \times 80 \times 80=3200 \mathrm{~m}^{2}$
$\mathrm{A}_{2}=$ Area of semicircle $=\frac{\pi d^{2}}{8}-\frac{\pi R^{2}}{2}=2513.274 \mathrm{~m}^{2}$
$\mathrm{A}_{3}=$ Area of semicircle $=\frac{\pi D^{2}}{2}=1256.64 \mathrm{~m}^{2}$

Area $\left(\mathrm{A}_{\mathrm{i}}\right)$	x_{i}	y_{i}	$\mathrm{A}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$	$\mathrm{A}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}$
3200	$2 \times(80 / 3)=53.33$	$80 / 3=26.67$	170656	85344
2513.274	40	$\frac{-4 \times 40}{3 \pi}=-16.97$	100530.96	-42650.259
		0		
1256.64	40	50265.6	0	

$$
\begin{aligned}
& x_{c}=\frac{A_{1} x_{1}+A_{2} x_{2}-A_{3} x_{3}}{A_{1}+A_{2}+A_{3}}=49.57 \mathrm{~mm} \\
& y_{c}=\frac{A_{1} y_{1}+A_{2} y_{2}-A_{3} y_{3}}{A_{1}+A_{2}-A_{3}}=9.58 \mathrm{~mm}
\end{aligned}
$$

Problem 7: Determine the centroid of the following figure.

$\mathrm{A}_{1}=$ Area of the rectangle
$\mathrm{A}_{2}=$ Area of triangle
$\mathrm{A}_{3}=$ Area of circle

Area $\left(\mathrm{A}_{\mathrm{i}}\right)$	x_{i}	y_{i}	$\mathrm{A}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$	$\mathrm{A}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}$
30,000	100	75	3000000	2250000
3750	$100+200 / 3$ $=166.67$	$75+150 / 3$ $=125$	625012.5	468750
7853.98	100	75	785398	589048.5

$$
\begin{aligned}
& x_{c}=\frac{\sum A_{i} x_{i}}{\sum A_{i}}=\frac{A_{1} x_{1}-A_{2} x_{2}-A_{3} x_{3}}{A_{1}-A_{2}-A_{3}}=86.4 \mathrm{~mm} \\
& y_{c}=\frac{\sum A_{i} y_{i}}{\sum A_{i}}=\frac{A_{1} y_{1}-A_{2} y_{2}-A_{3} y_{3}}{A_{1}-A_{2}-A_{3}}=64.8 \mathrm{~mm}
\end{aligned}
$$

Numerical Problems (Assignment)

1. An isosceles triangle ADE is to cut from a square ABCD of dimension ' a '. Find the altitude ' y ' of the triangle so that vertex E will be centroid of remaining shaded area.

2. Find the centroid of the following figure.

3. Locate the centroid C of the shaded area obtained by cutting a semi-circle of diameter ' a ' from the quadrant of a circle of radius ' a '.

4. Locate the centroid of the composite figure.

Module -I

Truss/ Frame: A pin jointed frame is a structure made of slender (cross-sectional dimensions quite small compared to length) members pin connected at ends and capable of taking load at joints.

Such frames are used as roof trusses to support sloping roofs and as bridge trusses to support deck.

Plane frame: A frame in which all members lie in a single plane is called plane frame. They are designed to resist the forces acting in the plane of frame. Roof trusses and bridge trusses are the example of plane frames.

Space frame: If all the members of frame do not lie in a single plane, they are called as space frame. Tripod, transmission towers are the examples of space frames.

Perfect frame: A pin jointed frame which has got just sufficient number of members to resist the loads without undergoing appreciable deformation in shape is called a perfect frame. Triangular frame is the simplest perfect frame and it has 03 joints and 03 members.

It may be observed that to increase one joint in a perfect frame, two more members are required. Hence, the following expression may be written as the relationship between number of joint j, and the number of members m in a perfect frame.
$\mathrm{m}=2 \mathrm{j}-3$
(a) When LHS = RHS, Perfect frame.
(b) When LHS $<$ RHS, Deficient frame.
(c) When LHS $>$ RHS, Redundant frame.

Assumptions

The following assumptions are made in the analysis of pin jointed trusses:

1. The ends of the members are pin jointed (hinged).
2. The loads act only at the joints.
3. Self weight of the members is negligible.

Methods of analysis

1. Method of joint
2. Method of section

Problems on method of joints

Problem 1: Find the forces in all the members of the truss shown in figure.

$\tan \theta=1$
$\Rightarrow \theta=45^{\circ}$

Joint C

$S_{1}=S_{2} \cos 45$
$\Rightarrow S_{1}=40 K N$ (Compression)
$S_{2} \sin 45=40$

40 KN
$\Rightarrow S_{2}=56.56 K N$ (Tension)

Joint D

$S_{3}=40 \mathrm{KN}$ (Tension)
$S_{1}=S_{4}=40 K N$ (Compression)

Joint B

40 KN

Resolving vertically,
$\sum V=0$
$S_{5} \sin 45=S_{3}+S_{2} \sin 45$

$\Rightarrow S_{5}=113.137 \mathrm{KN}$ (Compression)

Resolving horizontally,
$\sum H=0$
$S_{6}=S_{5} \cos 45+S_{2} \cos 45$
$\Rightarrow S_{6}=113.137 \cos 45+56.56 \cos 45$
$\Rightarrow S_{6}=120 K N$ (Tension)
Problem 2: Determine the forces in all the members of the truss shown in figure and indicate the magnitude and nature of the forces on the diagram of the truss. All inclined members are at 60° to horizontal and length of each member is 2 m .

Taking moment at point A,
$\sum M_{A}=0$
$R_{d} \times 4=40 \times 1+60 \times 2+50 \times 3$
$\Rightarrow R_{d}=77.5 \mathrm{KN}$
Now resolving all the forces in vertical direction,
$\sum V=0$
$R_{a}+R_{d}=40+60+50$
$\Rightarrow R_{a}=72.5 \mathrm{KN}$
Joint A
$\sum V=0$
$\Rightarrow R_{a}=S_{1} \sin 60$
$\Rightarrow S_{1}=83.72 \mathrm{KN}$ (Compression)

$\sum H=0$
$\Rightarrow S_{2}=S_{1} \cos 60$
$\Rightarrow S_{1}=41.86 K N$ (Tension)

Joint D
$\sum V=0$
$S_{7} \sin 60=77.5$
$\Rightarrow S_{7}=89.5 \mathrm{KN}$ (Compression)
$\sum H=0$
$S_{6}=S_{7} \cos 60$
$\Rightarrow S_{6}=44.75 K N$ (Tension)

Joint B

$\sum V=0$
$S_{1} \sin 60=S_{3} \cos 60+40$
$\Rightarrow S_{3}=37.532 \mathrm{KN}$ (Tension)
$\sum H=0$
$S_{4}=S_{1} \cos 60+S_{3} \cos 60$
$\Rightarrow S_{4}=37.532 \cos 60+83.72 \cos 60$
$\Rightarrow S_{4}=60.626 K N$ (Compression)

Joint C
$\sum V=0$
$S_{5} \sin 60+50=S_{7} \sin 60$
$\Rightarrow S_{5}=31.76 K N$ (Tension)

Plane Truss (Method of section).
Encased analysing a plane truss, using method of section after doterming the support reactions a section line is drawn posing through. not more than three members in which forces are unknown, sue that the entire frame is cut into two separate ports.

Each part should be in equilibrium under the action of loads, reactions and the forces in the members. Method of section is preferred for the following cases:
ci) andysis of large truss in which fores in only few
members are required members are required
iii) If method of joint fails tostartor proved with analysis for not setting a joint with only two unto now forces.
Example 1.

Determine the force in the members FH, $H G$, and $G I$ in the trues Duetosymmetry $R_{a}=R_{3}=\frac{1}{2} \times \operatorname{tot} 1$ downward load

$$
=\frac{1}{2} \times 70=35 K N
$$

Toking the section to the left of the cut.

$$
\begin{gathered}
\quad \text { Taking moment abort } 9 \\
\sum M_{G}=0 . \\
F_{R H} \times 4 \sin 60+35 \times 12 \\
=10 \times 2+10 \times 6+10 \times 10 \\
\Rightarrow F_{F H}=\frac{(20+60+100)-420}{4 \sin 60^{\circ}} \\
=-69.28 \mathrm{~km} .
\end{gathered}
$$

Negativesign indicate o that direction should hove opposite $i \cdot e$ itis compressive in nature.
Now Resolving all the forces vertically $\sum y=0$

$$
\begin{aligned}
& 10+10+10+F_{G H} \sin 60=35 \\
& \Rightarrow f_{G H}=\frac{35-30}{\sin 60^{\circ}} \\
& \Rightarrow F_{G H}=5.78 \mathrm{kN} . \quad \text { (compressive) }
\end{aligned}
$$

Resolving all the forces horizontally $\Sigma x=0$.

$$
\begin{aligned}
& F_{F H}+F_{G H} \cos t 0=\dot{F}_{G L} \\
& \Rightarrow F_{G L}=69.28+5.78 \cos 60^{\circ}=72.17 \mathrm{kN} .1 \text { (tension) } \\
& K a \rightarrow 1
\end{aligned}
$$

Using teethed of sections determine the arialformes O in bors 1,2 and 3 .

Takins moment about joint $D \quad \sum M_{D}=0$.

$$
s_{1} \times a=p_{x} h \Rightarrow s_{1}=\frac{P h}{a} \quad(1) \quad \text { (tension) }
$$

Similarly taking E as the moment centre $\sum M_{E}=0$

$$
\begin{aligned}
& s_{3} \times a+p \times 2 h=0 \\
& \Rightarrow s_{3}=\frac{-2 p h}{a}
\end{aligned}
$$

(-ve sign indicates direction of force D illbe opposite and it Willie compressi re in nature
Resolving all the forces horizontally. $\sum x=0$.

$$
\begin{aligned}
& s_{2} \cos \alpha=p \\
& \Rightarrow s_{2}=\frac{p}{\cos \alpha}=\frac{p \sqrt{4^{2}+h^{2}}}{a} \quad(\text { Ans }) \quad \cos \alpha=\frac{a}{\sqrt{a^{2}+h^{2}}}
\end{aligned}
$$

$\frac{B C}{A C}=\tan 30^{\circ}$

$$
\Rightarrow B C=a \tan 30=0.578 a
$$

$$
\begin{aligned}
& Z M_{B}=0 . \\
& s_{3} \times 0.578 a+P \times a=0 \\
& \Rightarrow s_{3}=\frac{-P q}{0.578 q} \div-1.73 P
\end{aligned}
$$

(-ve sish indicates direction is opposite and itis compressine in noture
Resolving rentically $\Sigma y=0$

$$
\begin{aligned}
& s_{1} \sin 30=2 P+s_{2} \sin 30 \\
& \left.\Rightarrow s_{1}=\frac{2 p+s_{2} / 2}{\sin 30}=\left(4 p+s_{2}\right)-c 2\right)
\end{aligned}
$$

Now resolvine horizontally $\sum x=0$.

$$
\begin{aligned}
& s, \cos 30+s_{2} \cos 30^{\circ}=1.73 p \\
& \Rightarrow\left(4 P+s_{2}\right) \times \frac{\sqrt{3}}{2}+s_{2} \frac{\sqrt{3}}{2}=-1.73 p \\
& \Rightarrow \quad 2 \sqrt{3} p+\frac{\sqrt{3}}{2} s_{2}+\frac{\sqrt{3}}{2} s_{2}=4.73 p \\
& \Rightarrow \quad \frac{\sqrt{3}}{2} s_{2}=1.73 p-2 \sqrt{3} p \\
& =-1.73 P \\
& \Rightarrow \quad S_{2}=\frac{-1.73 P}{\sqrt{3}}=-p \text { (-ve sish indicates }
\end{aligned}
$$

the direction is opposite and itis compressine) Now $s_{1}=4 P$ P $=3 P$ (tansion):
0.4

resins method of sections, find arial forces in eachber 1,2 and 3 of the plane trues.
We have $\tan \theta=\left(\frac{1.5}{3}\right) \Rightarrow \theta=26.56^{\circ}$
considering sections:

$$
\begin{aligned}
& \text { Resolvinevertically } \Sigma y=0 \\
& \text { sc }=5 \mathrm{kN}
\end{aligned}
$$

Now taking moment about C

$$
\begin{aligned}
& s_{2} \times 1.5 \neq 5 \times 3=0 \\
& \Rightarrow s_{2}=-10 \mathrm{KN}
\end{aligned}
$$

-verism indicates direction should have been opposite

$$
s_{2}=10 \mathrm{kN} \quad(\text { compression) }
$$

Considering section $2+2$.

Taking moment a bout F

$$
\begin{aligned}
& \sum M E=0 \\
& \Leftrightarrow s_{3}=0
\end{aligned}
$$

Q'5
Assignment
Using method of joint and method of section find the axial force in the bor x.
Method of Joint
Considering the whole struethere and taking moment about $A \quad \sum M_{A}=0$.

$$
\begin{aligned}
& R_{B} \times 3=9 \times 1.5 \sin 60 \\
& \Rightarrow R_{B}=\frac{\sqrt{3}}{4} P .
\end{aligned}
$$

Q.1 (6.3) calculate the relation beth active forces T and Q for equilibrium of system of bars. The bars are socerranged that they form identical rhombuses,

Let $e=$ tenth of each sideof bor.
θ = angle made by each side ry the thombus

L Lethe virtreal displacement of P is $B-B$ '

$$
B-B^{\prime}=d x=\frac{d}{C R}(6 x)=-6 l \sin \theta d \theta
$$

Similarly the virtual displacement of Q is C, C I

$$
=d x_{2}=-2 l \sin \theta d \theta
$$

Applying principle of virtual work $\sum W=0$

$$
P \cdot d x_{1}=Q_{1} d x_{2}
$$

$$
\begin{aligned}
& \Rightarrow \quad p+(6 l \sin \theta d \theta)=\theta(2 l \sin \theta d \theta) \\
& \Rightarrow \quad+\quad \frac{\theta}{3}+\quad(\operatorname{tas})
\end{aligned}
$$

0.2

A prismatic bor $A B$ of length l and wt. Q stands in a vertical plane ant is seepported by smooth seerfoces at B A and B, $V \sin s$ principteof virtual work find the magnitude of horizontal force P applied at A ifthe boris in equilibrium,

Left the horizontal distance of from D is x

$$
\begin{gathered}
x=l \cos \theta \\
A^{\prime}=d x=-l \sin \theta A \theta
\end{gathered}
$$

vertical distance of Q from D is y

$$
\begin{aligned}
y & =\frac{l}{2} \sin \theta \\
c c^{\prime} & =d y
\end{aligned}
$$

Normal reactions $R a$ and R_{b} hare no work alongthe planes.
Applying principleof virtual work $\sum x=0$
$p d x=Q d y$

$$
\begin{aligned}
& P d x=Q d y \\
& P l \sin \theta d \theta=Q \frac{l}{2} \cos \theta d \theta \\
& \Rightarrow P=\frac{Q}{2} \cdot \cot \theta
\end{aligned}
$$

Q.3 (6.14)
find axial forces in the bar $C D$ of the simple trees by using method of virtual work.

Let S be the compressive force in bar $\frac{A D}{D}$.
consider the part $A B D F$ of the trues anderthe action of force R_{b}, T and s
Keeping E fixed and giving EB an angular displacement $d \alpha$

$$
\begin{aligned}
& \sum W=0, \\
& R_{b} \times B B^{\prime}=s \times F^{\prime}= \\
& B_{B}^{\prime}=\frac{l}{2} d \alpha \\
& F_{F}=h d \alpha \\
& R_{b} \times \frac{l}{2} d d=s \times h d \alpha \\
& \Rightarrow s=\frac{R b l}{2 h} \quad c l
\end{aligned}
$$

Now considering whole frame as equilibricem body $\sum y=0$,

$$
\begin{aligned}
& R_{a}+R_{b}=P . \\
& R_{b} \cdot l=P \cdot \frac{l}{2}=R_{b}=\frac{T}{2} \quad c_{2}
\end{aligned}
$$

Substituting the value ot R_{b} in eq. C_{1})

$$
\begin{aligned}
& s= \\
& =(6.15)
\end{aligned}
$$

Using principle of virtual work find reaction. Re for the truss/, Let the trues is Virtual displaced by an a mount dy $\sum w=0$,

$$
R_{a} \times A_{1}=P \times D D^{\prime}
$$

where $A A=P D=d y$

$$
\Rightarrow R a=P
$$

modipada to bisbrazan
near jasnroth mandir righthandside

Moment 0 Enertia ox plane figures

The moment of inertia ofany plane figere with respeet to x and y ares in its plane are euptessed las

$$
L_{x x}=\int y^{2} d A \quad f_{y}=\int x^{2} d A
$$

- Inx and Lyy ate also known as sechnd momentox factia area about the ane as itis distanceis squaned from corrosponding aris.
vait
Unito momentof inertia of area is eapressed ac m4 or $\operatorname{mon} 4$.
Momentof inprtia ox plane fipures:-
(i)

Considelrins corectongied X width band depth of, Doment of inertia about controidal aeis $r \times x$ parallel to the shortside i.e b

Now considering an elementery strip of width dy
Momentof inertia of the elementel st ip aboutcentroidal aris $x \times$ is

$$
\begin{aligned}
I_{x x} & =y^{2} d A \\
& =y^{2} b d y
\end{aligned}
$$

So moment ofinertio ox

$$
\hat{I}=\int_{\frac{d / 2}{2}}^{2 / 2} y^{2} b d y=b\left|\frac{y^{3}}{3}\right|_{-\frac{d}{2}}^{d / 2}=b\left[\frac{d 3^{3}}{24}+\frac{d 3}{24}\right]
$$

$$
\Rightarrow E_{x \times x}=\frac{b d^{3}}{12}
$$

Similary mar $1 y y=\frac{d b^{3}}{12}$
(ii) Triangle:- (Moment of, inertio of a triangle aboetit's 6

$$
\begin{aligned}
d A & =b, d y \\
\text { And } b_{y} & =\frac{(h-y)}{h} \times b .
\end{aligned}
$$

Moment of inertia of strip abocet base $A B$

$$
\begin{aligned}
& =y^{2} d A=y^{2} b_{1} d y \\
& =y^{2} \frac{(h-y)}{h} b d y
\end{aligned}
$$

\therefore Moment of ines tia of the triangle about $A B$

$$
\begin{aligned}
& I_{A B}=\int_{0}^{h} \frac{y^{2}(h-y) b d y}{h}=\int_{0}^{h}\left(y^{2}-\frac{y^{3}}{h}\right) b d y \\
= & b\left[\frac{y^{3}}{3}-\frac{y^{4}}{4 h}\right]_{0}^{h}=b\left[\frac{h^{3}}{3}-\frac{h^{4}}{4 h}\right] \\
= & b\left[\frac{h^{3}}{3}-\frac{h^{3}}{4}\right] \\
\Rightarrow & I_{A B}=\frac{b h^{3}}{12}
\end{aligned}
$$ h of thickness dy! Let dA is the area

of strip of strip
Consider a smalledistancey from the base

$$
\begin{aligned}
& =\int_{0}^{R} \frac{\gamma^{3}}{2}\left[\theta-\frac{\sin 2 \theta}{2}\right]_{0}^{2 \pi} d \gamma \\
& =\int_{0}^{R} \frac{\gamma^{3}}{2}\left(2 \pi-\frac{\sin 4 \pi}{2}\right]_{0}^{8}\left[\frac { r ^ { 4 } } { 8 } \left[\frac{2 \pi}{8}=\frac{\pi R 4}{4}\right.\right. \\
& =\left[\frac{\pi x+x}{2}=\frac{\pi R 4}{4}=\frac{64}{4}\right.
\end{aligned}
$$

$$
\left(\because R=\frac{D}{2}\right)
$$

Polar momentoX inertia:-
Moment of inertia about an anis perpendicular to the plane of area is called polar moment toy inertia it may denoted as Tor Pz

$$
\angle z R=\sum r^{2} d A
$$

Radius of Gyration:-
Radians of syootion may be defined by a relation

$$
K=\sqrt{\frac{I}{A}}
$$

where $K=$ radices oypotion
$L=$ moment of inertia

$$
A=\operatorname{cross}-\operatorname{sectional} \text { area }
$$

So, we can have the following relations

$$
\begin{aligned}
& k_{x x}=\sqrt{\frac{\delta x x}{A}} \\
& k_{y y}=\sqrt{\frac{\delta y y}{A}} \\
& K_{A B}=\sqrt{\frac{I_{A B}}{A}}
\end{aligned}
$$

Theorems of moment of inertia
There cere two the rems of moment of inertia
(a) Perpendicular axis theorem
(b) parallel ais theorem.

Perpendicular apis theorem!-
Moment of inertia of an area about on avis Lr to it's plane atony print O is equal to the sum of moments if inertia about any two mutually per pendicular acis through the same point 0 and lying in the plane of area.

$$
\begin{aligned}
I_{z z} & =I_{x x+}+y y \\
I z z & =\sum r^{2} d A \\
& =\sum\left(x^{2}+y^{2}\right) d A \\
& =\sum x^{2} d A+\sum y^{2} d A \\
\Rightarrow & I z z
\end{aligned}
$$

Parallel ans's theorem!-

Moment of inertia above an anis in the plane of an area is equal to the sum of moment of inertia about a parallel centroidal apis
 and the product of area and square of the distance beth
 the two parallel ave.

$$
I_{A B}=E x I_{G G}+A h^{2}
$$

Moment of inertio of standard sections:-
Moment of inertia of a rectangle aboect it hs centroidal anis $x \times$

$$
E x x=\frac{b d^{3}}{12}
$$

Similarly moment of inertia about it is (eentroidal avis $y y$

$$
I_{y y}=\frac{d b^{3}}{12}
$$

Now moment of inertia of rectangle

aboutit"s bose AB Can be obtained by applying parallel acis theorem

$$
\begin{aligned}
I_{A B} & =L x x+A h^{2} \\
& =\frac{b d^{3}}{12}+(b d)\left(\frac{d}{2}\right)^{2} \\
& =\frac{b d^{3}}{12}+\frac{b d^{3}}{4} \\
& =\frac{3 b d^{3}+b d^{3}}{12}=\frac{b d^{3}}{3} \\
\Rightarrow I A & =\frac{b d^{3}}{3}
\end{aligned}
$$

(ii) Momentofinertia of a.hollou rectangle section'. -

Moment of inertia of hollow rectangular section

$$
E_{x x}=\frac{B D^{3}}{12}-\frac{b d^{3}}{12}=\frac{1}{12}\left(B D^{3}-b d^{3}\right) \infty
$$

ciii) Mamentof inertio of trianble aboet it's bose:

Moment of inertia of triangle aboret it's base = momento inertia aboet its centroid $+A h^{2}$

Cusing por allelais theorem

$$
\begin{aligned}
& \Rightarrow L_{A B}=E x x+A h^{2} \\
& \Rightarrow \frac{b h^{3}}{12}=L x+\frac{1}{2} b \times h \times\left(\frac{h^{2}}{3}\right)^{2} \\
&=5 x+\frac{b^{3}}{2} \frac{b h^{3}}{18} \\
& \Rightarrow E x x=\frac{b h^{3}}{12}-\frac{b h^{3}}{18}=\frac{\left.6+b^{3}-b\right)^{3}}{12}= \\
&=\frac{3 b^{3}-2 b h^{3}}{36}=\frac{b h^{3}}{36} \\
& \Rightarrow E x x
\end{aligned}
$$

(iv) Momentofinertia of semiceircle
(a) aboet diametral aris

Moment of inertio of semicircle

$$
\text { aboet } A B=\frac{1}{2} \frac{\pi d 4}{64}
$$

$$
=\frac{\pi 94}{128}
$$

(b) about centroidal aris $\times x$

$$
A_{2} h=\frac{4 R}{3 \pi}=\frac{2 \pi}{3 \pi}
$$

$\operatorname{area} A=\frac{1}{2} \frac{\pi d^{2}}{4}=\frac{\pi d^{2}}{8}$
Usinu parallel aolstheorem

$$
\begin{aligned}
& I_{A B}=I_{x x}+A h^{2} \\
& \Rightarrow \quad \frac{\pi d+}{128}=E_{x x}+\frac{\pi d^{2}}{8} \times\left(\frac{2 d}{3 \pi}\right)^{2}=
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \frac{\pi d 4}{128} & =I x x+\frac{\pi d^{2}}{8} \times \frac{4 d^{2}}{9 \pi^{2}} \\
& =I x x+\frac{\pi d 4}{18 \pi} \\
\Rightarrow 1 x x & =\left(\frac{\pi d 4}{128}-\frac{94}{18 \pi}\right)
\end{aligned}
$$

Moment of inertia of Composite figures:-
Q. 1

Determine the moment ox inertia of the composite section about an avis passing through the centroid al avis. Also determine ME about anis of syr rametry and radius ofsyratix solve Dividing the composite area into A_{1} and A_{2}

$$
\begin{aligned}
& A_{1}=150 \times 10=1500 \mathrm{~mm}^{2} \\
& A_{2}=140 \times 10=1400 \mathrm{~mm}^{2}
\end{aligned}
$$

Distance of centroid from bose of the composite figlere

$$
\bar{y}=\frac{A_{1} y_{1}+A_{2} Y_{2}}{\left(A_{1}+A_{2}\right)}=\frac{1500 \times 145+1400 \times 70}{2900}
$$

$$
=108.79 \mathrm{~mm}
$$

Moment of inertia of the area about $x x$ arts

$$
\begin{aligned}
& \text { Momenta } I_{x x}=\left\{\frac{150 \times 10^{3}}{12}+1500 \times(145-108.79)^{2}\right\} \\
&+\left\{\frac{10 \times 140^{3}}{12}+1400 \times(108.79-70)^{2}\right\} \\
&=(12500+1966746.15)+(2286666.667+2106529.74) \\
&= 6372442.557 \mathrm{~mm} 4
\end{aligned}
$$

$$
\begin{aligned}
& \text { Similarly } \\
& \text { Ry }=\frac{10 \times 1503}{12}+\frac{140 \times 10^{3}}{12}=2812500711666.66667 \\
&=2824166.667 \mathrm{~mm} 4
\end{aligned}
$$

$$
\text { Radiusof oyrotion } K=\sqrt{\frac{L}{A}}
$$

$s o$

$$
\begin{aligned}
K_{r x} & =\sqrt{\frac{L_{x x}}{A}} \\
& =\sqrt{\frac{6372442.5}{2900}}=46.87 \mathrm{~mm} \\
\text { milarly kyy } & =\sqrt{\frac{E_{y y}}{A}}=\sqrt{\frac{2824166.667}{2900}}
\end{aligned}
$$

$$
=31.206 \mathrm{~mm}
$$

(AnS)
Q. 2 Determine the ME of L. section abret itis centridal ares parallel to the legs. Alsofind the polar moment of inertía.
We have $A_{1}=125 \times 10=1250 \mathrm{~mm}^{2}$

$$
\mathrm{A}_{2}=75 \times 10=750 \mathrm{~mm}^{2}
$$

Totel area $A_{1}+A_{2}=2000 \mathrm{~mm}^{2}$
Distanceot centroid f.om $1-1$
aris

$$
\begin{aligned}
\bar{y} & =\frac{A_{1} y_{1}+A_{2} y_{2}}{A_{1}+A_{2}} \\
& =\frac{1250 \times 62.5+750 \times 5}{2000}=40.9375 \mathrm{~mm}
\end{aligned}
$$

Distancery centroidal aris yy from the axis

$$
\begin{aligned}
\tilde{x} & =\frac{A_{1} x+A_{2} x_{2}}{A_{1}+A_{2}} \\
& =\frac{1250 \times 5+750 \times\left(\frac{75}{2}+10\right)}{2000} \\
& =\frac{1250 \times 5+750 \times 47,5}{2000}=20.93 \mathrm{~mm}
\end{aligned}
$$

Nomentox inertia about $x x$ aris

$$
\begin{aligned}
& \text { Nomentox } \quad I_{x x}=\left\{\frac{10 \times 1253}{12}+1250 \times(62.5-40.9375)^{2}\right\} \\
& \\
& \quad+\left\{\frac{75 \times 10^{3}}{12}+750 \times(40.9375-5)^{2}\right\} \\
& = \\
& =\left(\frac{1627604.167+581176.7578)+(6250+968627,9297}{3183658.854 m m 4}\right)
\end{aligned}
$$

Similarly MI about by controidal anis

$$
\begin{aligned}
& I_{y y}=\left\{\frac{125 \times 10^{3}}{12}+1250 \times(20.93-5)^{2}\right\} \\
& +\left\{\frac{10 \times 75^{3}}{12}+750 \times(47.5-20.93)^{2}\right\} \\
& =\frac{(10416.66667+317206.125)+(351562.5+529473.675)}{4} \\
& =1208658.967 \mathrm{~mm}^{4}
\end{aligned}
$$

Polar moment of inertia $I_{z 2}=E_{x x}+K_{y y}$

$$
=4392317.821 \mathrm{~mm}^{4} \quad \text { (Ans) }
$$

Q. 3 Determine the MI ofthesymmetrical \& section about it is centroidal ares $x-x$ and $y-y$. Also determine the polar moment of inertia of the section,
We have from the figure

$$
\begin{aligned}
& A_{1}=200 \times 9=1800 \mathrm{~mm}^{2} \\
& A_{2}=\phi 1232 \times 6.7=1554.4 \mathrm{~mm}^{2} \\
& A_{3}=200 \times 9=1800 \mathrm{~mm}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \bar{y}=\frac{A_{1} Y_{1}+A_{2} A_{2}+A_{3} Y_{3}}{\left(A_{1}+A_{2}+A_{3}\right)} \\
& =\frac{1800 \times(4.5+232+9)+1554.4 \times\left(\frac{232}{2} \times 9\right)+1800 \times 4.5}{(1800+1554.4+1800)} \\
& \begin{array}{l}
=\frac{1800 \times 245.5+1554.4 \times 125+1800 \times 4.5}{(1800+1554.4 \times 1800)} \\
=125 \mathrm{~mm} .
\end{array} \\
& \bar{x}=\frac{A_{1} x_{1}+A_{2} x_{2}+A_{3} x_{3}}{\left(A_{1}+A_{2}+A_{3}\right)} \\
& =\frac{1800 \times 100+1554.4 \times 96.65+1800 \times 100}{(1800+1554.4+1800)}=98.98
\end{aligned}
$$

$M A$ about $x x$ ar's

$$
\begin{aligned}
R_{x x}= & \left\{\frac{200 \times 9^{3}}{12}+1800 \times(125-4.5)^{2}\right\}+\left\{\frac{6.7 \times 232^{3}}{12}+1554.4 \times(1\right. \\
& +\left\{\frac{200 \times 9^{3}}{12}+1800 \times(125-4.5)^{2}\right\} \\
= & (12150+26136450)+(6972002.133+0) \\
& +(12150+26136450) \\
= & 26148600+6972002.138+26148600 \\
= & 59269202.13 \mathrm{~mm}
\end{aligned}
$$

ME about yr anis

$$
\begin{aligned}
\text { By }= & \frac{9 \times 200^{3}}{12}+\frac{232 \times 6.7^{3}}{12}+\frac{9 \times 200^{3}}{12} \\
= & 6000000+5814.751+6000000 \\
= & 12005814.75 \mathrm{~mm}^{4}
\end{aligned}
$$

$$
\begin{gathered}
\text { Polar momentox inertia } I_{x}=L_{x x}+\text { Any }_{x} \\
=71275016.88 \mathrm{~mm}^{4}
\end{gathered}
$$

$$
=71275016.88 \mathrm{~mm}^{4}
$$ about ire anis.

MI of the shaded section a bout $x x=M i$ of triangle $A B C$ about $K R$ $+M \pm 0$ semicircle ACS about $x x$ - mi of circle $=\frac{100 \times 100^{3}}{12}+\frac{\pi \times 1004}{128}-\frac{\pi \times 504}{64} \mathrm{~s}$

$$
=8333333.333+2454369.261-306796.1576
$$

$$
=10480906.44 \mathrm{~mm}^{4}
$$

$$
=101.048 \times 107 \mathrm{~mm}^{4}
$$

- Rectilinear Translation

In statics, itwas considered that the rigid bodies are at rest. In dynamice, its considered that they anein motion, Dynamics is commonly divided into fur o branches. Kinematics and lesetrice.

Ln, kinematics, wearevncerned With space time relationship of a given motion of abody and not at all with the forces that cousethe motion,

- Rn kinetics weareconcerned with finding the kind of motion that asiven body or system of bedies will hare under the action of given forces or with what forces nuetbeapplied to produce a decired motion,

Displacement
from the firs displacement of a particle $x \longrightarrow$ cen bedefined by its x-coordinate; meacured from the fixed reference point 0 .

- When the particle is tother righto fixed point 0 , this displacement can be considered positive and when intis towards the lefthand side it is considered al negative,

General displacement time equation?

$$
x=f(t) \quad \text {-1 } 11
$$

where fe) $=$ function of time,
for ecanpié

$$
x=c+b t
$$

Ln the above equation C, represents the initial displacement $a+t=0$, whelethe constant b shows the rate at which displacement increase o. It is called uniform rectilinear motion.

Sorond erampie is $x=\frac{1}{2}$ of 2
whene R is propertional totherquareol time. $\frac{\text { Nelocity }}{\text { N }}$

Aceleration

Enample The reatileinear motion of a portrile is defined by the displaeement -timesequation $x=x_{0}-u_{0}+t \frac{1}{2}$ at 2 Construet displaement-time and Meloeltyy diaeramfor

$$
a=0.125 \mathrm{~m} / \mathrm{s}^{2}
$$

The equation of motron is

$$
\left.x=\frac{\left.x_{0}-v_{0}+\frac{1}{2} a+2-c\right)}{d x}=\frac{d x}{d t}-v_{0}+a t \quad-c\right)
$$

surastitins x, and a in equetinn :1)

A beellot leavecthe muxyre ofo gun with reloeity
$v=750 \mathrm{~m} / \mathrm{s}$. Aecuming constant aceoleration (xam breech to muxxle find timet oceutpred by the bullet in travelling through oun batref which is 750 mm lung.
initial veloeity of bellet $u+0$
final veloetty of bellet $N=750 \mathrm{~m} / \mathrm{L}$, total distanle $c=0.75 \mathrm{~m}$.

$$
t=2
$$

we hare

$$
\Rightarrow v^{2}=2 a s=\frac{v^{2}}{25}=\frac{7502}{2 \times 0.75}
$$

$\underline{\theta}$
A staneis dropped into well and folls vertieally with condtant accolpration $S=9 . \mathrm{s} / \mathrm{m} / \mathrm{sec}^{2}$ The soun of ofimpaet of btane inghe betatimofwoll is heated ofter 6.5 See. Af reloetty of soukdis $336 \mathrm{~m} / \mathrm{s}$. Row deep is the o0ell??

$$
V=336 \mathrm{~m} / \mathrm{sec}
$$

let $S=$ depth of well
ft = trime taken bry thestane intothe well
$t_{2}=$ time taken by the sound tobe heated. total time $t=(t+t y)=6.5$ see.
Now $S=\cot +\frac{1}{2}$ st 2

$$
\begin{aligned}
& \Rightarrow s=0+\frac{1}{2} s t^{2} \\
& \Rightarrow+\sqrt{\frac{2 s}{3}}
\end{aligned}
$$

$$
\begin{aligned}
& v^{2}-u^{2}=200, \\
& =375000 \mathrm{~m} / \mathrm{sec}^{2} \\
& \text { Again } \quad v=6+a t \\
& \Rightarrow 750=375000 \times 1 \\
& >t=\frac{750}{37500}=10.002 \text { cee. }
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt{\frac{2 s}{\theta}}+\frac{3}{V}=8.5 \\
& \Rightarrow \quad \frac{2 s}{6}=\left(6.5-\frac{5}{336}\right)^{2} \\
& \begin{aligned}
25 & =9.81\left(6.5-\frac{5}{336}\right)^{2} \\
& =9.81\left(\frac{2184-5}{336}\right)^{2} \\
& =0.0291(2184-5)^{2}
\end{aligned} \\
& \begin{array}{l}
=0.0291\left(4769856+s^{2}-43685\right. \\
=138802.809+0.029152-127.10885
\end{array} \\
& \Rightarrow \quad 0.0291 s^{2}-129.1058+138502.809=0 \\
& \Rightarrow s= \\
& 0.2038 \mathrm{~s}=42.25+0.00000855 \mathrm{~s}^{2}-0.0386 \mathrm{~s} \\
& 0.00000885 c^{2}-0.1658 \leqslant+42.2510 \\
& b=17,31 \mathrm{~m} \text {. }
\end{aligned}
$$

A2
A rope $A B$ is attached at B to a small bluek of nestipitedimensions and poesecover a pelliey C sothat itt's free end A hange 1.5 m bove sround when the blok rests anthe floor. The end A of the rope is moved hoolzontolly in astrline by a man walking with a unifform velacity v_{0} $=3 \mathrm{~m} / \mathrm{s}$. plothte velority-time dias ram (b) find the tims t required for the brek to reach the pulley if $h=4.5 \mathrm{~m}$, pully dinonsid. are negligible.

A3 Aportive starts firm nestand moves alonp a strline with constont aceleration a, if, "t aequiree a velocity $\quad u=3 \mathrm{~m} / \mathrm{s}$. of ter harngs travelled a disthace $s=7.5 \mathrm{~m}$. find manit tude of acceleratirn.

Principles of Dynamics:
Newton's law of motion!
first law! Everybody continues in its state of rest or offenifform motion in astrdisht line except inso for asitmay ba compelled by force to change that state.
second Lao:-
The acceleration of a given particle is ponpertional tote force applied to it and takes place in the direction of the straight line in which the force vets.
Third law To every action there is alloys an equal and contrary reaction or the muteral actions of any two bodies are lalbags equal and oppositely directed.
General Equation of Motion of a Particle:

$$
m a=f
$$

Diofenentiol equation of Rrefilinear motion!:
Differential form of equation for rectilinear motion can be expressed as

\[

\]

Example

For the engine shown in fin, the combined wt. of piston and piston red $W=450 \mathrm{~N}$, , cronk rodive $r=250 \mathrm{~mm}$ and uniform
speed of rotation $n=120$ ppm, potermine the masnitude ofreseltant force actions in piston (a) at eaferme position and at the middle position
piston has a simple harmonic motion represented displacement-time equation

$$
\begin{aligned}
x & =r \cos \theta t \\
\omega=\frac{2 \pi n}{60} & =\frac{2 \pi \times 120}{\epsilon \theta}=4 \pi \operatorname{rad} / \mathrm{s} . \\
\dot{x} & =-r \omega \sin \theta t \\
\ddot{x} & =-r \omega^{2} \cos \omega t
\end{aligned}
$$

Differential equation ox motion

$$
\begin{aligned}
& \frac{|a|}{s} \dot{x}=x \\
\Rightarrow & \quad-\frac{w}{9} r^{2} \cos x t=x \\
\Rightarrow \quad x= & x-\frac{450}{9.81} \times 0.25(4 \pi)^{2} \cos (4 \pi t)
\end{aligned}
$$

for extreme position

$$
\begin{aligned}
& \cos \omega t_{2}-1 \\
& \&=1810 N .
\end{aligned}
$$

For prem middle position ass it $=0$.
so Resultant force $=0$.
E-2
A ballon of gross it wis falling vertically dion
ward with constant acceleration a, what amount of ballast Q must be thrown putin order to give ballon an equal upularof acceleration a
$P=$ buoy ont force.

$$
\begin{aligned}
& \frac{w a}{a}=(w-p) \\
& \frac{(w-Q) a}{s}=P-(W-Q) \\
& \frac{W_{a}+(w-Q)}{\varphi}=W-\not \subset+\not \subset-(Q 1-R)=Q \\
& \Rightarrow \quad \frac{W_{a+}+W_{a}-R_{a}}{Q}=Q \\
& \Rightarrow \quad 2 w_{a}=Q_{\rho}+Q a \\
& \Rightarrow a=\frac{2 k d a}{(s+a)}
\end{aligned}
$$

A $W^{t-W}=4450 \mathrm{~N}$ is supported in a vertical plane by string and pulleys arranged showing tiv. If the fee and A of the the string is pulled vertically dow. ward with constant acceleration $a=18 \mathrm{~m} / \mathrm{s}^{2}$ find tension s in the string.
Differential equation of notion for the system is

$$
\begin{aligned}
2 s-W & =\frac{W}{9} \times \frac{a}{2} \\
\Rightarrow 2 s & =w+\frac{w a}{29} \\
& =\frac{W}{2}\left(2+\frac{a}{25}\right) \\
& =\frac{w}{2}\left(1+\frac{a}{29}\right) \\
\Rightarrow s & =\frac{1 W}{2}\left(1+\frac{a}{29}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{(|a|-Q)^{a}}{\rho}=P-(W-Q) \\
& \left.\frac{\omega_{a}+(W-Q)}{\varphi}=W-\not \subset+\not \subset-(Q)-Q\right)=Q
\end{aligned}
$$

$$
\Rightarrow \quad \frac{W_{a}+W_{a}-R a}{\varphi}=Q
$$

$$
\begin{aligned}
& \Rightarrow \quad 2 \mathrm{Wa}=Q \rho+Q a \\
& \Rightarrow \quad Q=\frac{2 \mathrm{Na} a}{(\rho+a)}
\end{aligned}
$$

1. 1

A Wt. $W=4450 N$ is supported in a vertical plane by string and pulleys arranged shaeinin tiv. If the fie e and A of the the string is pulled vertically downwred with constant acceleration $a=18 \mathrm{~m} / \mathrm{s}^{2}$ find tension s in the string.
Differential equation of notion for the system is

$$
\begin{aligned}
& 2 s-w=\frac{w}{s} \times \frac{a}{2} \\
& \Rightarrow 2 s=w+\frac{w a}{29} \\
&=\frac{w}{2}\left(2+\frac{a}{2 s}\right) \\
&=w\left(1+\frac{a}{2 w}\right) \\
& \Rightarrow s=\frac{1 W}{2}\left(1+\frac{a}{29}\right) \\
&=\frac{4450}{2}\left(1+\frac{18}{2 \times 9.81}\right)=4266.28 \mathrm{~N} .
\end{aligned}
$$

Q. 2 An elevator of gross wt bl $=4450 \mathrm{~N}$ starts to move. upulard direction with aconstent acceleration and \rightarrow acquires avelocity $\theta=15 \mathrm{~m} / \mathrm{s}$; after traveling a distance $=1.8 \mathrm{~m}$, find tensile force s in the cable during it's motion.

$$
\begin{aligned}
|\alpha| & =4450 \mathrm{~N} \\
V & =18 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

initial velocity $u=0$
alistance trdbelled
alistance travelled $x=1.8 \mathrm{~m}$.

$$
x \equiv 1.8 \mathrm{~m}
$$

$$
s-w=\frac{w}{s}+a
$$

$$
\left.\Rightarrow s-w+\frac{w}{5} a=w\left(1+\frac{a}{5}\right)-c\right)
$$

Now applying equation of binematice

$$
\begin{aligned}
r^{2}-u^{2} & =2 a s \\
\Rightarrow \quad 1 s^{2}-0 & =2 a \times 1.8 \\
\Rightarrow a & =\frac{1 s^{2}}{2 \times 1.8}=90 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

substituting the vapes of a in eq. (1)
$s 2$

$$
4450\left(1+\frac{90}{9.81}\right)=45275
$$

$A-1$
Q. 3

A train wioughing 1870 N without the low motive starts to move with constant acceleration along straight track and in first $60 \leq$ acquires a velocity of 56 koph, Determine the tensions in draw bar beth locomotive and train ix the air resistance is O.005 time e the ot. Of the train.

$$
\mathrm{M}=\mathrm{O} \xrightarrow{a .005 \text { time the }} \quad v=56 \mathrm{kmph}=15.56 \mathrm{~m} / \mathrm{l} \text {. }
$$

$$
\begin{aligned}
& B-F=\frac{W}{Q} \cdot a \\
& \left.\Rightarrow S=0.005 \mathrm{~N}+\frac{b 1 a}{3}-1+1\right)
\end{aligned}
$$

from eq. of kinem atice.

$$
\begin{aligned}
& v=u+a t \\
& \Rightarrow a=\left(\frac{15.56-0}{60}\right)=0.26 \mathrm{~m} / \mathrm{sec}^{2}
\end{aligned}
$$

subetitreting the value of a ineq. C,

$$
\begin{aligned}
S & =101\left(0.005+\frac{9}{9}\right. \\
& =1870\left(0.005+\frac{6.26}{9.87}\right)=55 \mathrm{kN.}
\end{aligned}
$$

o. 4

A Wh. Wh is attached to the ond of asmall fleaible rope of dia. $d=6.25 \mathrm{~mm}$. and is reised vertically by pinding therope on a reel. if the reel is tur bod uniformiy atarateo 2 rps. what ill be the tension in repe
dia of nope $d=6.25 \mathrm{~mm}=0.00625 \mathrm{~m}$, NooJ revoletions $N=2$ rps.
lef $x=$ initialrodices oर reol. $t=$ time taken for M revolutians. Metradive after tsee.

$$
R=[x+(N+d)]
$$

$\begin{aligned} \text { Now maar veloetty } & V=K \omega \\ \omega & =\text { शातN. }\end{aligned}$

$$
\therefore V=(x+N+d) \quad 2 \text { त्रा }
$$

aceeleration sope $a=\frac{d v}{d t}$

$$
\begin{aligned}
& a=\frac{d}{d t}\left[2 \pi N x+2 \pi N^{2}+d\right]=2 \pi N^{2} d
\end{aligned}
$$

$$
\Rightarrow s=w\left(1 \neq \frac{2 \pi \times 2^{2} \times 0.00625}{9.87}\right)
$$

$$
=
$$

Ass in
Q. 5 A mine case of wt $W=8.9$ kN starts from rest and moves downitarof with constant acceleration travelling a distance $s=30 \mathrm{~m}$ in loser. find the tensile force in the cable.

$$
\begin{aligned}
& \text { Whtofiage } w=8+9 \mathrm{KN} \text {. } \\
& \text { initial velocity } u=0 \text {. }
\end{aligned}
$$

$$
\text { distance traveled } s=30 \mathrm{~m}
$$

$$
\begin{aligned}
& s=\operatorname{ctr}^{0} \frac{1}{2} a t^{2} \\
& \Rightarrow 30=\frac{1}{2} a \times 10^{2} \\
& \Rightarrow t=\frac{60}{10^{2}}=0.6 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

Differential equation oX rectilinear

$$
\begin{aligned}
W-S= & \frac{w}{s} \cdot a \\
\Rightarrow S= & =\frac{w}{s} a \\
= & 8.9\left(1-\frac{0.6}{9.87}\right. \\
\Rightarrow 3 & =8.35 \mathrm{KN} .
\end{aligned}
$$

D' Ale ebert's Principle
Differential equation of motion (rectilinear) can be written as

$$
x-n \ddot{x}=0 \quad-(1)
$$

Where $x=$ Resultant of all applied force in the direction of motion
$m=$ mass of the particle
The above equation nay be treated as equation of dynamic equilibrieun. To eapreate this equation, in addition to the real force acting on the particle a fictitious force $m \ddot{ }$ is required to be considered. This force is equal to the pirdect of mass of the particle andit's acceleration and directed in opposit direction, and is called the inertia force of the particle.

$$
-\sum m \ddot{x}=-\ddot{x} \sum m=-\frac{W}{3} \ddot{x}
$$

Where W a total wight of the body
so the eqreation of dynamic equilibrium can be expressed as:

$$
\sum x_{i}+\left(-\frac{W}{\varphi} \ddot{x}\right)=0
$$

Example 1

For the example shown considering the motion of pellay as shown by the arrow mock. we hare upwell acceleration \hat{x}_{2} for $1 /_{2}$ and downward acceleration \dot{x}_{1} form,

- corresponding inertia forces and their direction are indicated by dotted line.
- By adding inertia forces to the real forces (suet as W_{1}, W_{2} and tension in stang s) we obtain, for each particle, a system m of
forces in equilibrium.
The equilibrium equation for the entire syetem with ret S

$$
\begin{aligned}
\quad w_{2}+m_{2} \ddot{x} & =w_{1}-m_{1} \ddot{x} \\
\Rightarrow \quad\left(m_{1}+m_{2}\right) \ddot{x} & =\left(w_{1}-w_{2}\right)-y{ }_{x}=\frac{w_{1}-w_{2}}{\left(w_{1}+w_{2}\right)} \cdot 5
\end{aligned}
$$

Example 2
A booty is morines in upend direction by a rope.
So the equation of dynamic equilibrium considering the real and inertia forces.

$$
\begin{aligned}
& s-W-\frac{W}{s} a=0 \text {, so tensile force in rope } \\
& \Rightarrow W=W\left(1+\frac{a}{B}\right) \\
& \text { w }
\end{aligned}
$$

Q.1 Find tensions inthestring during motion of the system
(oo) if $w_{1}=900 \mathrm{~N}, w_{2}=450 \mathrm{~N}$. Tho pernthe inclined plane and block $w_{1}=0.2$
a

bl

When W, moves doonward'inthe inclined plane with an ec acceleration a, then aecaleration of $+/_{2}=\frac{a}{2}$
Considering dynamic equilibrium of $h l$, from D^{\prime} Alembert is principle

$$
\begin{aligned}
& \left.\left(\omega_{1} \sin 45^{\circ}-\mu a\right)-s\right)-\frac{w_{1}}{9} a=0 \\
& \Rightarrow \quad \frac{w_{1}}{s} a=W_{1} \sin 45^{\circ}-N_{1}-S \\
& =W_{1} \sin 45-\mu W, \cos 45^{\circ}-S \\
& \Rightarrow a=\left(900 \times \frac{1}{\sqrt{2}}-0.2 \times 900 \times \frac{1}{\sqrt{2}}-5\right) \frac{9.81}{900} \\
& =\binom{636.4-127.28-s) 0.0109}{6.3676-1.387352 .09} \\
& \Rightarrow a=\begin{array}{l}
6.93676-1.387352 \\
549-0.0109 \mathrm{~s}-\mathrm{c})
\end{array}
\end{aligned}
$$

Similarly for walsh H_{2}

$$
\begin{aligned}
2 s-w_{2}-\frac{w_{2}}{9} \frac{a}{2} & =0 \\
\Rightarrow \frac{w_{2} a}{2 s} & =w_{2}\left(1+\frac{a}{29}\right)=2 s \\
\Rightarrow 2 s & \Rightarrow \frac{450}{2}
\end{aligned}
$$

substituting the value ot s in eq. Cl)

$$
\begin{aligned}
a & =693676-1.387352-0.0109(225+11.46 a) \\
& =3.549408-2.4525-0.1249149 \\
& =3.096908-0.1249149
\end{aligned}
$$

Q.2 Two. weights P and Q are connected bythearrangement shown in fig. Neglecting friction and inertia of pulley and cord find the acceleration a of wt- Q Assume $P=178 \mathrm{M}, Q=133.5 \mathrm{~N}$.

Applying D^{\prime} Alembert's principle fo. Q

$$
\begin{aligned}
& Q-S-\frac{Q}{s} a=0 \\
& \left.\Rightarrow S=Q\left(1-\frac{a}{s}\right)-c 1\right) \\
& =133.5\left(1-\frac{a}{9.8}\right)^{s}
\end{aligned}
$$

$$
\begin{aligned}
& =133.5\left(1-\frac{9}{9 \cdot-8}\right)^{9} \\
& \text { plying } D^{9} \text { terns principle to } p
\end{aligned}
$$

Applying D^{\prime} Alemberts principle to

$$
\begin{aligned}
& 2 s-p-\frac{p a}{2 p}=0 \\
& \Rightarrow 2 s=p\left(1+\frac{9}{29}\right) \\
& \Rightarrow s\left.=\frac{p}{2}\left(1+\frac{a}{2 p}\right)-c_{2}\right) \\
&=\frac{178}{2}\left(1+\frac{9}{19.62}\right)
\end{aligned}
$$

$$
=\frac{178}{2}\left(1+\frac{9}{19.62}\right)
$$

$$
\begin{aligned}
& 133.5\left(1-\frac{9}{9.81}\right)=89\left(1+\frac{9}{19.62}\right) \\
& \Rightarrow 133.5-13.6089=89+4.5369
\end{aligned}
$$

$$
\Rightarrow 133.5-13.6089=89+4.5369
$$

$$
\Rightarrow \frac{18.144 a=44.5}{9}
$$

$$
\Rightarrow a-2.45 \mathrm{~m} / \mathrm{s}^{2} \text { (4ns) }
$$

Q 3 Assuming the car in the fig to have a velocity of 6 Hols find shortest distance declaration disturbing the block pata: $c=0.6 \mathrm{~m}, h=0.9 \mathrm{~m}$

$$
\mu=0.5
$$

Q. 3 Two blocks of wt $\mathrm{K} / 1=150 \mathrm{~N}$ and $\mathrm{W}_{2}=500 \mathrm{~N}$ are connected by an inextensible string, Find the aceele of the blocks and tensionin the string. $\mu_{1}=0.1, \mu_{3}=0$.

$$
\begin{aligned}
& \text { for blok } 1 \\
& s-\mu N_{1}=0 \\
& \Rightarrow s=\mu \omega_{1}=0.1 \times 150=15 \mathrm{~N} .
\end{aligned}
$$

for black 2

$W_{1}=890 \mathrm{~N} W_{2}=445 \mathrm{~N}$.

$$
x=0.2 \quad \alpha=4{ }^{\circ}
$$

find s.
considering equilibrium of W, and applying D^{\prime} Hembertis principle

$$
\begin{aligned}
W_{1} \sin & 45^{\circ}-\operatorname{len},-s-\frac{w_{1}}{s} a=0 \\
\Rightarrow \quad s & =1 a, \sin 45-\mu \operatorname{N}-\frac{w_{1}}{5} a \\
& =\frac{890}{\sqrt{2}}-0.2 \times 890 \times \frac{1}{\sqrt{2}}-\frac{890}{9.51} a \\
& =629.32-125.865-90.729 \\
s & =503.455-90.729
\end{aligned}
$$

Applying DI Hemberths principle for W_{2}

$$
\begin{aligned}
& 2 s-w_{2}-\frac{w_{2}}{9} \frac{a}{2}=0 \\
& \Rightarrow 2 s=w_{2}\left(1+\frac{9}{29}\right) \\
& \Rightarrow s=\frac{w_{2}}{2}\left(1+\frac{9}{29}\right)=\frac{445}{2}\left(1+\frac{a}{19.62}\right)=222.5+11.349
\end{aligned}
$$

equatins (1) and (2)

$$
\begin{aligned}
& 503.455-90.72 a=222.5+11.34 a \\
& \Rightarrow 102.6604 a=280.955 \\
& \Rightarrow a=2.75 \mathrm{~m} / \mathrm{s}^{2} \\
& \text { sos }
\end{aligned}=\frac{a 22.5+11.34 \times 2.75}{}=253.71 \mathrm{~N} .
$$

0.4

$$
\begin{aligned}
& W_{A}=44.5 \mathrm{~N} \quad W_{13}=89 \mathrm{~N} \\
& \alpha=30^{\circ} \quad \mu_{a}=0.15 \\
& \mu_{B}=0.3
\end{aligned}
$$

$$
\begin{aligned}
& W_{a} \sin 30-P-r_{a} R_{a}-\frac{W_{a} a}{3} a=0 \\
& \Rightarrow P=W_{a} \sin 30-\mu_{a} R_{a}-\frac{W_{a} a=00}{3} \\
&=44.5 \times \frac{1}{2}-0.15 \times 44.5 \times \cos 30 \\
&-\frac{44.5}{9.81} a a \\
&=22.25-5.78-4.53 a-c) \\
&=16.47-4.53 a-4) \\
& P+W_{b} \sin 30-\mu_{5} R_{b}-\frac{W_{b} a}{3}=0 \\
& \Rightarrow P=-\frac{W_{b}}{2}+6.3 \times 89 \cos 30+\frac{89}{9.89} a \\
&=-\frac{89}{2}+23.122+9.07 a \\
&=-21.378+9.07 a
\end{aligned}
$$

$$
\begin{aligned}
& 16.47-4.53 a=-21.378+9.079 \\
& \Rightarrow 13.6 a=37.848 \\
& \Rightarrow a=2.78 \mathrm{~m} / \mathrm{s}^{2} \\
& P=3.87 \mathrm{~N} .
\end{aligned}
$$

Momentum and Limpulse
We have the differential equation of rectilinear motion of a particle

$$
\frac{W}{9} \ddot{x}=X
$$

Above equation may be written as

$$
\frac{W}{s} \frac{d \dot{x}}{d t}=x
$$

$$
\text { or } \left.\quad d\left(\frac{w}{s} \dot{x}\right)=x d t-c 1\right)
$$

In the above equation we pill assume force x as a function of time represented by a force time diagrain.
The rishthand side of eqce)
is then represented by the area of shaded elemental strip of $h+\lambda$ and width at. This quantity ie
($x d t$) is called impulse of the force \rightarrow talk $\longrightarrow t$ X in time $d t$. The expression on the left hand aide of the expression $\left(\frac{W}{3} x^{\prime}\right)$ is called momentum of particle.
soche eq. (1), 'represents the differential change in momention of a particle in time at, rategrating eq.cr) we have.

$$
\frac{w}{\varphi} \dot{x}+c=\int_{0}^{t} x d t-(2)
$$

where C is a constant $\begin{aligned} & \text { integration }\end{aligned}$
Now assuming an instal moment, $A=0$, theppanticle has an initial velveity i_{0}

So

$$
\left.c=-\frac{k}{\rho} \dot{x}_{0} \quad-c_{3}\right)
$$

So equation (2) becomes

$$
\frac{w}{9} \dot{x}-\frac{w}{s} \dot{x}_{0}=\int_{0}^{t} x d+-(4)
$$

From equation (AT) itisclear that the to tel champ. momentum of o particle during a finite inter $v a l$ aft t. is equal to the impulse of acting force.
in other words

$$
f \cdot d t=d C \operatorname{lm} v
$$

where $m \times v=$ momentum
$\theta-1$
A man of $\omega+712 \mathrm{~N}$ stands in a bot so that he is 4.5 m from a pier on the shore. He walks 2.4 m in the boat towards the pier and then stops. How for from the pier with he be at the end of time. wt. of boat is 890 N.
$\omega \alpha$ of man $|a|=712 \mathrm{~N}$
wto boat $w_{2}=8-90 N$
Let v_{0} is the initial velreity Am an and fistime
then

$$
\begin{aligned}
v_{0} t & =x \\
\Rightarrow \quad v_{0} t & =2.4 / \mathrm{m} \\
\Rightarrow \quad v_{0} & =\left(\frac{2.4}{t}\right) \mathrm{m} / \mathrm{s}
\end{aligned}
$$

let $v=$ velvety of boat towards right acerding to conservation o momentum

$$
\begin{aligned}
w_{1} v_{0} & =\left(w_{1}+w_{2}\right) v \\
\Rightarrow v & =\frac{w_{1} v_{0}}{\left(w_{1}+w_{2}\right)}
\end{aligned}
$$

distance covered by y boat

$$
\begin{aligned}
& s=v \cdot t=\frac{w 1 v_{0}}{\left(w w_{1}+w_{2}\right)} \cdot t \\
& \Rightarrow s=\frac{712 \times 2.4}{f(712+890)} \cdot t
\end{aligned}
$$

position of man fiom, pier

$$
\begin{aligned}
& =4.5+s-x \\
& =4.5+1.567-2.4=3.167 \mathrm{~m} \quad \text { cons }
\end{aligned}
$$

0.2

A ircomotire not $534 \mathrm{kN} h$ as a veloesty of 16 krph and boeks into a frieghtcar of wt \&6 kN that is at rest on a track. after crepling atwhat velpeity v the entiretystem continues to move. Neplectyriction,

$$
\begin{aligned}
& \text { conservation } 0 \times \text { momentume } \\
& \Rightarrow v=\frac{534 \times 4.45}{(534+86)}=3.82 \mathrm{~m} / \mathrm{s} .
\end{aligned}
$$

0.3 4667.5 man its in a 333.75 N canoe andfine a rifle bullet horizontally. find neloity v with which the eanoe will move ofter theshot. the rifle has a muzzle veloity $6 G \mathrm{~m} / \mathrm{s}$ and witiof belletis 0.28 N .

$$
\begin{aligned}
& \text { Wr.ofman } \mid W_{1}=667.5 \mathrm{~N} \\
& \text { Wr. of cande } W_{2}=333.75 \mathrm{~N} . \\
& \mathrm{W} \cdot \text { of bellet } W_{2}=0.28 \mathrm{~N} .
\end{aligned}
$$

Velocity of nuzzle $u=660 \mathrm{~m} / \mathrm{s}$.
$V=$ finalvelveity of canae.
Aceordins to coneservation of momentern

$$
\begin{aligned}
& V=\frac{1 w_{3} u=\left(W,+w_{2}\right) V}{(667.5+333.75)}=0.28 \times 660 \\
& =0.182 \mathrm{n} / \mathrm{s} .
\end{aligned}
$$

0.4 A w ood siock wt 22.25 M rests on a snjoth horizogtol surface. Arerolver ballat wieiphing 0.14 N is shot attains oreveity of $3 \mathrm{~m} / \mathrm{s}$ whatis ruzzle velocity.
Wh. of wrod biokk $m_{1}=22.25 \mathrm{~N}$.
$w+\cdots$ bellet $W_{2} \div 0.14 \times N$.

According to conservation of mmentern

$$
\begin{aligned}
A_{1} v & =\operatorname{la} /_{2} u=\left(\mathrm{N}_{1},+1 w_{2}\right) V \\
\Rightarrow 6 & =\frac{(22.25+0.14) 3}{0.14} \\
& =479.98 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Conservationof monentem
When the sun of inpulses due to enternal forceiszero the momentom of thesyekm remain conserved

$$
\begin{aligned}
& \text { When } \sum_{0}^{t} x d t=0 \\
& \sum\left(\frac{w}{s}\right) x_{2}^{\prime}=\sum\left(\frac{b 1}{s}\right) x_{1}
\end{aligned}
$$

\because final nomenten $=$ initial momentun.

Curvilinear Translation
When \Leftrightarrow moving portille describes a w red pooh itissaid to Displacement

consider aparticle Pin a plane on a veered pot.
To-define the portive we need twoeoordinate x and y
as the porticle moves, theseevordin a toe

Change with time and the displacement time equations are

$$
\left.x=f_{1}(t) \quad y=f_{2}(t) \quad-c 1\right)
$$

The motion of particle con also be eaprossed as

$$
y=f(x) \quad s=f(t)
$$

where $y=f(x)$ represents the equation of path of and $s=f_{1}(t)$ gives displacement s meascered along the path as a function of time.
velocity! :-
Considering an infinitesimal time difference from to $t+1 t$ during which the particle mores from p top, alone it's path.
then velvity of portivis may be empneseed as

$$
\begin{array}{r}
\bar{v}_{a r}=\frac{\Delta s}{\Delta t} \\
(\operatorname{Vav})_{x}=\frac{\Delta x}{\Delta t} \\
(\operatorname{Vav})_{y}=\frac{\Delta y}{4 t}
\end{array}
$$

(aresage velocity along x and y coordinates)

It con alto be expressed as

$$
\begin{aligned}
& v_{x}=\frac{d x}{d t}=\dot{x} \\
& v_{y}-\frac{d y}{d t}=\dot{y}
\end{aligned}
$$

so the total velocity may be represented ty

$$
\theta=\sqrt{i^{2}+\dot{y}^{2}}
$$

and $\cos (v, x)=\frac{\dot{x}}{u}$ and $\cos (v, y)=\frac{\dot{y}}{u}$ where $s(v, x)$ and (v, y) denotes the onstes bet n the direction of velocity vector \vec{v} and the coordinate an el.

Acceleration:-
The acceleration particles maybe described as

$$
\begin{aligned}
& a_{x}=\frac{d \dot{x}}{d t}=\ddot{x} \\
& a_{y}=\frac{d \dot{y}}{d t}=\ddot{y}
\end{aligned}
$$

Lt is also known as instantaneme acceleration Total acceleration $a=\sqrt{\ddot{x}^{2}+\ddot{y}^{2}}$
Considering particular path for above case.

$$
\begin{aligned}
& x=r \cos \omega+\quad y=r \sin \omega t \\
& x+y^{2}=r^{2}
\end{aligned}
$$

$$
\begin{aligned}
\dot{x} & =-r \omega \sin \omega t \quad \dot{y}=r \omega \cos \omega t \\
\theta & =\sqrt{\dot{x}^{2}+\dot{y}^{2}} \\
\ddot{x} & =-r \omega^{2} \cos \omega t \quad \ddot{y}=-r \omega^{2} \sin \omega t \\
a & =\sqrt{\ddot{x}^{2}+\ddot{y}^{2}}
\end{aligned}
$$

D'Alembert's principle in curvilinear Motion
deceleration during circular motion

$\begin{aligned} V_{A} & =\text { tangential velocity at } A \\ & =\text { tangential velleity at } B\end{aligned}$

$$
=V_{B}=V
$$

Now $d v=v d \theta=v \frac{d s}{\gamma}=\frac{v}{\gamma} d s$

$$
\text { acceleration }=\frac{d v}{d t}=\frac{v^{2}}{2}
$$

so when a body moves with uniformvelgity va alone a corned pots of radius r, it hasa radial inward acceleration of magnitude $\frac{U 2}{r}$
Applying D 'Alembertls principle to set equilibrium condition an inertia force of magnitude $\frac{W}{8}$ a $=\frac{W}{s} \frac{k^{2}}{r}$ must be applied in quituard direction? it is known as centrifugal force.
Motion on a level, road

Consider a body is moving orth uniform velocity on a curvilinear curve of radius r. Le t the read is flat.
Let $W=$ wt \cdot of the body and inertia force is given by

$$
\frac{W}{v} a=\frac{W}{s} \frac{v^{2}}{r}
$$

Condition for skidding:-
Let w = ort. of vehicle
$R_{1} R_{2}=$ reactions at wheel
$F=$ frictional force.
$\frac{W}{Q} \cdot \frac{v^{2}}{\gamma}=$ inertia force
skidding tokeeplace when the frictional forces reaches limiting value ire

$$
F=\text { Mew }
$$

Thenmanm permissible speed to ovid skidding

$$
v=\sqrt{\frac{g^{r}}{2} \frac{B}{n}}
$$

The distance beth inner and outer wheel is equal to the gree of railway track and expressed as G.
so
z of all the forces inthe inclined plane

$$
\begin{aligned}
& \frac{w}{\varphi} \frac{v^{2}}{r} \cos \alpha-w \sin \alpha=0 \\
\Rightarrow & \tan \alpha=\frac{v^{2}}{\varphi r}
\end{aligned}
$$

Relation beta the angle of braking and designed speed is $\tan \alpha=\frac{v^{2}}{\theta^{2}}$
condition for skidding and overturning. -

(a) condition for skidding

where $\alpha=$ angleot inclination

$$
\begin{aligned}
\tan \phi & =\mu \\
S & =\text { gravitational acceleration }
\end{aligned}
$$

$\gamma=$ radices of nerve
vehicle will skid if the velocity is more than this value.
(b) condition for overturning:
limiting speed for con sideration of overturning

$$
v=\sqrt{\beta^{r} \frac{G+(2 h e / G)}{2 h-e}}
$$

Q.1. Acirculor ring has a mean radius $r=500 \mathrm{~mm}$ and is made of steel for which $w=77.12 \mathrm{kN} / \mathrm{m}^{3}$ and for which ultimate strength in tension is 413.85 MPa . Find the uniform speed of rotation abet its semetrical avis perpendicular to the plane of the ring at which itwill burst?

mean radius $r=500 \mathrm{~mm}=0.5 \mathrm{~m}$. density of the wheel $\omega=77+12$ wal /m $\sigma_{t}=$ ultimate stren \#th $=413.85 \times 10^{69}$

Now considering an infinitesimal small elementary ring extruded at an angle of 20
contriforal force acting

$$
8 F C=\frac{d w}{\rho} \cdot \frac{v^{2}}{\gamma}
$$

Let $P=$ tension on the ring
$A=$ cross-sectional area of ring.

$$
\begin{aligned}
d w & =\omega t: 0 x \text { the element } \\
& =w \times v o l u m e \\
& =w \times A \times O l \\
& =\omega A \times A \times r 2 d \theta
\end{aligned}
$$

Noe centrifuge al force

$$
\begin{aligned}
& \text { centrifugal force } \\
& \frac{\omega}{s}(A d Q) \times \frac{\theta^{2}}{\gamma}=\frac{\omega}{9} \times A \not 2 d \theta \times \frac{\theta^{2}}{\rho}=\frac{2 \omega A d \theta^{2}}{\rho}
\end{aligned}
$$

Bodancins forces alone the radiue $=2 p \sin \theta \theta$

$$
=\frac{2 \omega A d \theta u^{2}}{S}-c_{1}
$$

as $d \theta$ is very small $\sin d \theta \approx d \theta$
Eq. (1) may be written as

$$
\begin{aligned}
& 2 \phi d \theta=\frac{\$ \omega A d \theta \cdot v^{2}}{0} \\
& \Rightarrow+c c^{2}=\frac{\omega A \theta^{2}}{9}=\frac{P}{A}=\frac{\omega V^{2}}{B} \\
& \text { Tensile stress an the ins } V_{t}=A
\end{aligned}
$$

Now substituting the values

$$
413.85 \times 10^{6}=\frac{77.12 \times 103 \times v^{2}}{9.81}=2=29.495 \mathrm{~m} / \mathrm{s} \text {. }
$$

Now $\quad \theta=\frac{\pi D N}{60} \Rightarrow N=\frac{60 \times 229.45}{\pi \times 1}=4382 . \mathrm{rpm}$

D' Alembert's Principle in Curvilinear Motion
Equation of motion of a particle maybe written as

$$
\begin{aligned}
& x-m \ddot{x}=0 \\
& y-m \ddot{y}=0
\end{aligned} \quad\{\quad-c 1)
$$

Oof. Find the propersuper elevation 'e' for a 7.2 m hishion curve of radius $r=600 \mathrm{~m}$ in order that a car travelling with aspeed of 80 Kmph will have no tendency to skid sidenise.

$$
b=7.2 \mathrm{~m} \quad r=600 \mathrm{~m} \quad r=80 \mathrm{kmph}=22.23 \mathrm{~m} / \mathrm{s} \text {. }
$$

Resolving alone the inclined plane.

$$
\begin{aligned}
& w \sin \alpha=\frac{w}{3} \cdot \frac{v^{2}}{r^{2}} \cos \alpha \\
& \Rightarrow \tan \alpha=\frac{v^{2}}{r_{3}}
\end{aligned}
$$

from the geometry $\sin \alpha=\frac{e}{b}$, since α is verysinatl let $\sin \alpha \simeq \tan \alpha$

$$
\begin{aligned}
\frac{v^{2}}{r_{3}}=\frac{l}{b} \Rightarrow 2 & =\frac{b v^{2}}{r_{3}}=\frac{7.2 \times 22.23^{2}}{600 \times 9.81} \\
& =0.604 \mathrm{~m} \text { (Ans) }
\end{aligned}
$$

Q. 2 Arcing car travels around a circular tack of 300 m radius with a speed of 884 kmph . What angle α shield the flow of the track moke with horizontal in order to safeguard against striding.

$$
\begin{aligned}
\text { velocity } \theta & =384 \text { remph } \\
& =106.67 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

we hare ans of braking $\tan \alpha=\frac{u^{2}}{\gamma_{g}}$

$$
\Rightarrow \alpha=\tan ^{-1}\left(\frac{106.67^{2}}{300 \times 9.81}\right)=\sqrt{75.5^{9}} 1 \text { Ans) }
$$

connected by an elar47C string and suppsited on a trouble ae sharon. When the turnitate is oftat, the tension in the string is $S=222.5 \mathrm{~N}$ and the bells exert this sene force on each of the stops tan of B. What forces will the evert on the stope when the turn table is rotating uniformly about the vertical aws CD at borpm?

Wehare:

$$
\begin{aligned}
& W_{a}=445 \mathrm{~N} \quad W_{b}=66.75 \mathrm{~N} \\
& S=222.5 \mathrm{M} \\
& D=60 \mathrm{rpm}
\end{aligned}
$$

radius of rotation $r_{1}, r_{2}=0.25 \mathrm{~m}$
Now angular Wrapicity
$\omega=\frac{2 \pi N}{\theta_{0}}: \frac{2 \pi \times 60}{\theta_{0}}$ Q $2 \pi \mathrm{rad} / \mathrm{s}$.

$$
\frac{w}{s} \cdot \frac{v^{2}}{r_{1}}
$$

considering the left hand Side bell

$$
\begin{aligned}
R_{a}+\frac{W_{a}}{s} & =r_{1} w^{2}=S \\
\Rightarrow R_{a} & =222.5-\frac{44.5}{9.87} \times 0.25 \times(2 \pi)^{2} \\
& =177.72 \mathrm{~N} .
\end{aligned}
$$

Considering the ball on right h and side

$$
\begin{gathered}
R_{b}+\frac{W_{b}}{5} \times r_{2} \times w^{2}=5 \\
\Rightarrow R_{b}{ }^{2} 222.5-\frac{66.75}{9.8} \times 0.25 \times(2 \pi)^{2} \\
=155.34 \mathrm{~N} .
\end{gathered}
$$

IR otation of Risid Bodies:-
Angular motion:-
The rate of changeof angular displacement with time is colled angelor velocity and denoted by ω.

$$
\omega=\frac{d \theta}{d t}
$$

-Therate of chanse of angulor velocity with time is colled angular alederation and denolded by α

$$
\alpha=\frac{d \omega}{d t}=\frac{d^{2} \theta}{d t^{2}}+c_{2}
$$

Ansular acceleration may $a l$ so be laprecsed as:

$$
\begin{aligned}
& \alpha=\frac{d \omega}{d t}=\frac{d \omega}{d \theta} \cdot \frac{d \theta}{d t} \\
& \Rightarrow \alpha=\omega \cdot \frac{d \omega}{d \theta}-(B)\left(\vdots \frac{d \theta}{d t}=\omega\right)
\end{aligned}
$$

Relationship betwen angelarmotion and linear motion from fires $s=r \theta$ tansentiol vepoity (lineor) of the porticles.

$$
v=\frac{d s}{d t}=r \cdot \frac{d a}{d t}(-4)
$$

loneor accelerotion $a_{t}=\frac{d \theta}{d t}=r \frac{d^{2} Q}{d+2} \quad$ (c5)
If $\frac{v^{2}}{r}=\operatorname{radial}$ accoleration
Then $a_{n}=\frac{l^{2}}{r}=r \omega^{2}$ (b) where a_{n} - radia accoleration uniform angretar velou'ty (w)

$$
\omega=\frac{2 \pi N}{60} \text { a } \mathrm{rad} / \mathrm{sec} \quad \text { (7) }
$$

Oh The step pulley stor ts from rest and accelerates af $2 \operatorname{rad} / \mathrm{s}^{2}$. How neh time is required for block A to move 20 m . find also the velvety of A and B at the time.

when Amoval by 20 m , the onquiar displacement of pelliry θ is given
by

$$
\begin{aligned}
& \quad \partial \theta=S \\
& \Rightarrow L \times \theta=20 \\
& \Rightarrow \theta=20 \mathrm{rod} \\
& \Rightarrow=2 \mathrm{rad} / \mathrm{s}^{2} \text { and } \omega_{0}=0
\end{aligned}
$$

from kinematic relotio?

$$
\begin{aligned}
& \theta=\omega_{0}+t \frac{1}{2} \alpha_{1}{ }^{2} \\
& \Rightarrow 20=0 \times++\frac{1}{2 f} \times \not+t^{2} \\
& \Rightarrow t=4.472 \mathrm{sec}
\end{aligned}
$$

velocity of pulley at this time

$$
\begin{aligned}
\omega & =\omega_{0}+\alpha+ \\
& =0+2 \times 4.472 \\
& =8.944 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
\text { Velocity of block } A_{4} & =1 \times 8.944 \\
& =8.944 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\text { velocity of stock } B V_{B}=0.75 \times 8.944
$$

$$
=6.708 \mathrm{~m} / \mathrm{s} .
$$

Kinematics of rigid body for rotation!-
consider a wheel rotating about it's anis in clockwise dirnetio? with an acceleration α. Let 8 m be arias of an element at a distance r from the anis of rotation, ip be the
resulting force on this element

$$
\begin{aligned}
& \delta p=\delta m \times a \quad(a=\tan \text { agential acceleration) } \\
& \text { bet } a=r \times \alpha \quad(\alpha=\text { anpularacceleration } \\
& \therefore \delta p=\delta m+\alpha
\end{aligned}
$$

Rotational moment $\delta M_{A}=\delta p \times r$

$$
\begin{aligned}
& =\delta m r^{2} \alpha \\
& =\Sigma \delta M_{t}=\Sigma \delta m r^{2} \alpha \\
& =\alpha \sum \delta m r^{2} \\
\Rightarrow M_{t} & =\alpha I \quad(L=m \text { ass moment } \delta \text { inertia }
\end{aligned}
$$

Prodectox mos momentol inertia and angular velreity of rotating body is celled angelou momentum
so Angular momentum = I W

Kinetic eqersy of rotating bodios

$$
K \cdot E=\frac{1}{2} E \omega^{2}
$$

Q. 2 A flywheel weighing 50 kN and having radive of syration 1 m losses its speed from 400 rpm to 280 rpm in 2 min , calculate
ca) retarding torque, Cb) change in KE during the period, $c C$) change in angular momentum.
we have $\omega_{0}=4$ oorpm $=\frac{2 \pi \times 400}{60}=41.89 \mathrm{rad} / \mathrm{s}$

$$
\begin{aligned}
\omega & =280 \mathrm{rpm}=\frac{21 \times 280}{60}=29.32 \mathrm{rad} / \mathrm{s} . \\
t & =2 \mathrm{~min}=120 \mathrm{sec} \\
\omega & =\omega_{0}+\alpha t \\
\Rightarrow \alpha & =\frac{\omega-\omega_{0}}{t}=-1047 \text { rad } / \mathrm{s}^{2}
\end{aligned}
$$

Wt of flywheel $=50000 \mathrm{~N}$
mass of $11=\frac{50000}{9.87}=5096.84 \mathrm{~kg}$,
Radius of gyration $k=1 \mathrm{~m}$,

$$
\begin{aligned}
L & =m K^{2} \\
& =5096.84 \times 1=5096.84
\end{aligned}
$$

(a) Retarding torque

$$
\begin{aligned}
E \alpha & =5096.84 \times 0.1047 \\
& =533.64 \mathrm{Nm} .
\end{aligned}
$$

(b) change ink

$$
\begin{aligned}
& =\text { initial } k E-\operatorname{tinal} \text { er } \\
& =\frac{1}{2} \sum_{0}^{2}-\frac{1}{2} L_{w^{2}} \\
& =\frac{1}{2} \times 5096.84\left(41.89^{2}-29.32^{2}\right) \\
& =2280442.9 \mathrm{Nm} 228115.462 \mathrm{Nm}
\end{aligned}
$$

(c) change in angular momentum

$$
\begin{aligned}
& I_{\omega_{0}}-I_{\omega} \\
= & 5096.84(41.89-29.32) \\
= & 64067.298 \mathrm{Nm} .
\end{aligned}
$$

Q.3 A cylinder weighing 500N is welded to a 1 m 100 g uniform bor of 200 N . Determine the acceleration with which the assembly, will rotate about point A; if released from rest in horizontal position. Determine the reactions at A af th is instant.

Let α cannular acceleration of the osecmbly 3
$I=$ mas moment o inertia of the sem sly $I=\sum_{\substack{\text { of bor }}} \quad$ (transfer formula) mores mi about $A=\frac{1}{2} \times \frac{200}{9.81} \times 1^{2}+\frac{200}{9.81} \times(0.5)^{2}$

$$
=6.7968
$$

moss ML of cylinder about A

$$
\begin{aligned}
& =\frac{1}{2} \frac{500}{9.87} \times 0.2^{2}+\frac{500}{9.87} \times 1.2^{2} \\
& =74.4
\end{aligned}
$$

Mr of the system $=6.7968+74.4=81.2097$
Rotational moment a boect A

$$
\begin{aligned}
& M_{A}=200 \times 0.5+500 \times 1.2=700 \mathrm{Nm}, \\
M_{A} & =\alpha \\
\Rightarrow \quad \alpha= & \frac{700}{81.2097}=\frac{8.6197 \mathrm{rad} / \mathrm{sec}}{1}
\end{aligned}
$$

Instantaneous acceleration of rod $A B$ is

$$
\begin{aligned}
\text { vertices and } & =r, \alpha=0.5 \times 8.6197 \\
& =4.31 \mathrm{~m} /
\end{aligned}
$$

$$
=4.31 \mathrm{~m} / \mathrm{s} .
$$

Similarly instantaneous acceleration of cylinder

$$
\begin{aligned}
=r_{2} \alpha & =1.2 \times 8.6197 \\
& =10.34 \mathrm{~m} / \mathrm{s} .
\end{aligned}
$$

Applying DtAlembart's dynamic equilibrium

$$
\begin{aligned}
& R_{A}=200+500-\frac{200}{9.81} \times 4.31-\frac{500}{9.81} \times 10.34 \\
& \Rightarrow R_{A}=84.93 \mathrm{M} . \quad \text { (Ans) }
\end{aligned}
$$

