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Digital Signal Processing (3-1-0) 
Module-I (10 Hours) 

Discrete time signals and systems, The Convolution Sum and its properties, Difference 

Equation, 

Implementation of DT System, Correlation, LTI systems as Frequency-Selective Filters, 

Inverse Systems and 

Deconvolution. 

Module-II (10 Hours) 

Analysis of LTI system in z-Domain, One-sided z-Transform, The DFT as a linear 

transformation, Circular 

Convolution, Circular Correlation, Linear Filtering Methods Based on the DFT, The Discrete 

Cosine 

Transform(Brief Idea only). 

Module-III (10 Hours) 

Fast Fourier Transform Algorithms: Radix –2 FFT algorithm – Decimation – in Time (DIT) 

and Decimation 

– in Frequency (DIF) algorithm, Applications of FFT Algorithms, The Chirp-z Transform 

Algorithm. 

Module-IV (10 Hours) 

Structures for FIR and IIR Systems - Direct and Cascaded form, Design of Digital Filters: 

Causality and its 

Implications, Design of Linear Phase FIR filters using different windows, Design of IIR Filters 

- Impulse 

Invariance Method and Bilinear transformation method. 

Text Books: 

1. Digital Signal Processing – Principles, Algorithms and Applications - J.G.Proakis and 

D.G.Manolakis, 

4th Edition, PHI Learning Pvt. Ltd. (Selected Portions from Chapters 1, 2, 3, 4, 5, 7, 8, 9, 10, 

11, 

13, 14) 

2. Digital Signal Processing - S.Salivahanan, A.Vallavaraj, C. Gnanapriya, 2nd Edition The 

McGraw-Hill 

Companies. (Selected Portions from Chapters 1, 2, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14) 

Reference Books: 

1. Introduction to Digital Signal Processing –J.R.Johnson, PHI learning Pvt. Ltd. 

2. Discrete Time Signal Processing- A.V. Oppenheim and Schafer, PHI Learning Pvt. 

3. Digital Signal Processing: A computer based Approach - Sanjit K. Mitra, The McGraw-Hill 

Companies. 
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MODULE-1 

Introduction     

Signal: 

A signal is defined as any physical quantity th a t varies with time, space, or any other in 

dependent variable or variables. Mathematically, we describe a signal as a function of one or 

mo re independent variables. For example, the functions 

  s(t)= 5t 

describe a signal, one that varies linearly with the in d e p e n d e n t variable t (time). 

   

This function describes a signal of two in dependent variables x and y that could represent the 

two spatial coordinates in a p lane. 

System: 

A system may also be defined as a physical device th a t performs an operatioon a signal. For 

ex ample, a filter used to reduce the noise and interference corrupting desired in formation 

bearing signal is called a system . 

signal processing: 

W h en we pass a signal thrugh a system , as in filtering, we say that we have processed the 

signal. In this case the processing of the signal involves filtering the noise and interference 

from the desired signal. If the operation on the signal is n o n linear, the system is said to be 

non linear, and so forth . Such operations are usually referred to as signal rocessing. 

Analog signal processing: 

 

 

 

Digital signal processing: 
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Advantages of Digital over Analog Signal Processing : 

1- a digital programmable system allow s flexibility in re configuring the digital signal   

processing operations simply by changing the program . 

2- a digital system provides much better control of accuracy  . 

3- Digital signals are easily stored on magnetic media (tape or disk) without deterioration or 

loss of signal fidelity beyond that introduced in the A /D conversion. 

4- digital implementation of the signal processing system is cheaper than  analog signal 

processing. 

 Limitations: 

One practical limitation is the speed of operation of A /D converters and digital signal   

processors. We shall see that signals having extremely wide band widths require fast-sampling 

-rate A /D converters and fast digital signal processors. Hence there are analog signals with 

large bandwidths for which a digital processing approach is beyond the state of the art of digital 

hardware. 

Discrete time signals and systems 

CLASSIFICATION OF SIGNALS : There are 3 types of signals 

Continuous-time signals: Continuous-time signals or analog signals are defined for every 

value of time.  

Discrete-time signals :Discrete-time signals are defined only at certain specific values of time. 

Digital Signals: digital signal is defined as a function of an integer independent variable and 

its values are taken from a finite set of possible values, which are represented by a string of 0's 

and l's . 

DISCRETE-TIME SIGNALS : A disc rete-time signal x{n) is a function of an in dependent 

variable that is an integer. discrete-time signal is n o t defined at instants between two 

successive samples. Simply, the signal x ( n ) is n o t defined for n o n integer values o f n. So 

x(n) was   obtained from sampling an analog signal x a(t), then .i(n) = x a( nT) , where T is the 

sampling period (i.e., the time between successive samples). 
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Representation of discrete-time signal : 

A discrete-time signal can be represented in various way. But all can be represented 

graphically.  

 

 

                         Graphical representation of a discrete-time signal. 

Besides the graphical representation of a discrete-time signal or sequence as illustrated in above 

Fig. there are some alternative representations that are often more convenient to use. These are: 

1. Functional representation : 

 
 

2. Tabular representation : 

 

 
 

3.Sequence representation :An infinite-duration signal or sequence with the time origin (n = 

0) indicated by the symbol  ↑ is represented as 

 

   
A finite-duration sequence can be represented as 

 

   
 

Some Elementary Discrete-Time Signals : 



6 | P a g e  
 

In discrete-time signals and systems there are a number of basic signals that appear often and 

play an important role. These signals are defined below . 

 

1. Unit sample sequence/ unit impulse :  It is denote d as δ(n) and is defined as 

 

 
the unit impulse sequence is a signal that is zero every where, except at n =0 where its value is 

unity. The graphical representation of δ(n ) is  

  
2. Unit step signal:  It is denoted as  u(n ) and is defined as 

 

 
The graphical re presentation of u(n ) is  

 

 

 
 

3. Unit ramp signal : It is denoted as ur (n) and is defined as 

 

 
The graphical representation of u r(n) is  
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4-Exponential signal : It is a sequence of the form   

 

 
If the parameter a is real, then x(n) is a real signal.  illustratation of x(n) for various values of 

the parameter  a is  

 

 
 

When the parameter a is complex valued , it can be expressed as 

 

 
where r and ϴ are now the parameters. Hence we can express x( n ) as 
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Classification of Discrete-Time Signals: 
 

1-Energy signals and power signals: The energy  E of a signal x( n) is defined as  

   
If E is finite (i.e., 0 <E <∞),  if E is finite , P = 0. then x( n ) is called an energy signal. 

 

Many  signals that possess infinite energy, have a finite average power. The average power of 

a d iscrete-time signal x(n) is defined as  

   
If we define the signal energy of x(n) over the finite interval —N < n < N as  

  
the average power of the signal x( n) as  

   
if E is infinite and P is finite. the signal is called a power signal. 

 

2-Periodic signals and aperiodic signals: 

 

signal x( n) is periodic with period N ( N > 0) if an d only if 

    
the sinusoidal signal of the form  

   
is periodic when f0, is a rational number, that is, if f0 can be expressed as  

   
where k and N are integers. 

 

3-Symmetric (even) and antisymmetric (odd) signals : 

 

A real valued signal x ( n ) is called symmetric (even ) if 

   
O n the other hand , a signal x( n ) is called antisymmetric (odd ) if  

   
We can illustrate that any arbitrary signal can be expressed as the sum of two signal 

components, one of which is even and the other odd. The even signal component is formed by 

adding x(n) to x ( —n) and dividing by 2. that is. 

   
Similarly, w e form an odd signal component x0(n) according to the relation 
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So we obtain x(n),that is, 

   
 

Simple Manipulations of Discrete-Time Signals : 

 

Time shifting : 

A signal x (n ) may be shifted in time by replacing the independent variable n by n — k, w here 

k is an integer. If k is a positive integer, the time shift results in a delay of the signal by k units 

o f time. If k is a negative integer, the time shift results in an advance of the signal by \k\ units 

in time. 

Ex-  A signal x( n ) is graphically illustrated in Fig. below. Show a graphical representation of 

the signals x( n — 3) and x( n + 2). 
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The signal x (n — 3) is obtained by delaying x(n) by three units in time. On the other hand, the 

signal x(n + 2 ) is obtained by advancing x ( n ) by two units in time. Note that delay corresponds 

to shifting a signal to the right, whereas advance implies shifting the signal to the left on the 

time axis. 

 

Time Folding : The operations of folding is defined by  

   FD[x(n)] = x ( — n)  

 

Example:  
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Addition, multiplication, and scaling of sequences: 

 

Amplitude modifications include addition, multiplication, and scaling o f discrete-time signals. 

Amplitude scaling o f a signal by a constant A is accomplished by multiplying the value o f 

every signal sample by A. 

   
The sum of two signals x1( n) an d x2( n) is a signal y(n), whose value at any instant is equal 

to the sum of the values of these two signals at that instant, that is. 

 

 
 

The product of two signals is similarly defined on a sample -to -sample basis as 

 
 

DISCRETE-TIME SYSTEMS : 

A discrete-time system is a device or algorithm that operates on a discrete -time signal, called 

the input o r excitation, according to some w ell-defined rule, to produce another discrete-time 

signal called the output or response of the system . 

We say that the input signal x(n) is Transformed by the system in to a signal y(n), and the 

general relationship Between x( n) and y( n ) as  

 

   
where the symbol T denotes the transformation (also called an operator), or processing 

performed by the system on x(n) to produce y(n). 

 

Representation of Discrete-Time Systems : 

It is useful at this point to introduce a block diagram representation of discrete time systems. 

For this purpose we need to define some basic building blocks that can be interconnected to 

form complex systems. 

 

An adder: Figure below illustrates a system (adder) that perform s the addition o f two signal 

sequences to form another (the sum ) sequence, which we denote as y(n). 

  
 

A constant multiplier:  This operation is depicted by below Fig., and simply represents 

applying a scale factor on the input x (n).  
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A signal multiplier: Figure below  illustrates the multiplication of two signal sequences to 

form another (the product) sequence, denoted in the figure as y(n). we can view the 

multiplication        operation as memory less. 

  
A unit delay element: The unit delay is a special system that simply delays the signal passing 

th rough it by one sample. Fig. below illustrates such a system .If the input signal is x(n), the 

output is x( n — 1). In fact, the sample x{n — 1) is stored in memory at time n — 1 an d it is 

recalled fro m memory at time n to form y(n),  

 

    
T h e use o f the symbol z-1 to denote the unit of delay 

 

 
 

A unit advance element: In contrast to the unit delay, a unit advance moves the input x ( n ) 

ahead by one sample in time to yield x( n + 1). Fig. below illustrates this operation , with the 

operator z being used to denote the unit advance. 

 

    
 

Classification of Discrete-Time Systems :  

There are various types of  Discrete-Time Systems such as 

 

1-Static versus dynamic systems: 

A discrete-tim e system is called static or memory less if its output at any instant n depends at 

most on the input sample at the same time, but not on past or future samples of the input. In 

any other case, the system is said to be dynamic or to have memory .T h e systems described 

by the following input-output equations are both static or memory less 

 

y(n) = a x {n)  

y ( n )  = nx( n) + b x 3(n)  

 

On the other hand , the systems described by the following input-output relations are dynamic 

systems or systems with memory. 
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Time-invariant versus time-variant systems: We can subdivide the general class of systems 

in to the two broad categories, time -invariant systems and time -variant systems. A system is 

called time-in variant if its input-output characteristics do not change with time. 

A relaxed system T is time invariant o r shift invariant if and 

only if  

   
implies that for every in p u t signal x(n) a n d every time shift k. 

   
Now if this output y{n, k) = y{n — k), for all possible values o f k, the system is time invariant. 

O n the other hand , if the output y(n, k ) ≠  y( n — k), even for one value o f k, the system is 

time variant. 

 

Linear versus nonlinear systems: The general class o f system s can also be subdivided into 

linear system s and nonlinear system s. A linear system is one that satisfies the superposition 

principle. Simply stated, the principle o f superposition requires that the response o f the system 

to a weighted sum o f signals be equal to the corresponding weighted sum of the responses 

(outputs) of the system to each of the individual input signals. 

A relaxed T system is linear if and only if  

  

 
 

for any arbitrary input sequences x\ ( n) and x 2(n), and any arbitrary constants a1 and a2. 
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Causal versus noncausal systems: 

A system is said to be causal if the output of the system at any time n [i.e., y(n)] depends only 

on present and past inputs [i.e., x { n ), x(n - 1),x(n — 2 ) , . . . ] , but does not depend  on future 

inputs [i.e., x(n + 1), x( n + 2 ) , . . . ] . In mathematical terms, the output of a causal system 

satisfies an equation of the form 

   
If a system does not satisfy this definition, it is called noncausal. Such a system has an output 

tha t depends not only on present and past inputs but also on future inputs. 

 

Stable versus unstable systems: 

An arbitrary relaxed system is said to be stable if an d only if every bounded input produces a 

bounded output ( i:e; BIBO ). 

 

The conditions that the input sequence x{n) and the output sequence y(n) are bounded is transla 

ted mathematically to mean that there exist some finite numbers, say M x and M y. such that 

 

   
 

for all n. If. for some bounded input sequence ,x(n), the output is unbounded (infinite), the 

system is classified as unstable . 

 

DISCRETE-TIME LINEAR TIME-INVARIANT  SYSTEMS: 

The linearity and time-invariance properties of the system , the response of the system to any 

arb itrary input signal can be expressed in terms of the unit sample response of the system . 

The gen eral form of the expression that relates the unit sample response of the system and the 

arbitrary input signal to the output signal, called the convolution sum or the convolution 

formula, is also derived. Thus we are able to determine the output of any linear, time-invariant 

system to any arbitrary input signal. 

 

Response of LTI Systems to Arbitrary Inputs:  

 

The Convolution Sum : 

An arbitrary input signal x( n) in to a weighted sum of impulses, We are now ready to determine 

the response of any relaxed linear system to any Input signal. First, we denote the response y(n, 

k) of the system to the input unit Sample sequence at n = k by the special symbol h(n, k), -∞<k 

< ∞. T h a t is, 
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if the input is the arbitrary signal x(n) that is expressed as a sum of weighted impulses, that is. 

   
then the response of the system to x(n) is the corresponding sum of weighted outputs, that is, 

 

 

 

 

   
 

Clearly, the above equation follows from the superposition property of linear systems, and is 

know n as the superposition summation.th en by the time-invariance property , the response of 

the system to the delayed unit sample sequence δ(n - k) is  

   
Consequently , the superposition summation formula in  reduces to 

 

   
The above formula gives the response y(n) of the LTI system as a function of the input signal 

x ( n ) and the unit sample (impulse) response h(n) is called a convolution sum. 

 

To summarize, the process of computing the convolution between x ( k ) and h(k) involves the 

following four steps. 

1. Folding. Fold h(k) about k = 0 to obtain h ( - k ) . 

2. Shifting, Shift h ( —k) by n0 to the right (left) if n0 is positive (negative), to obtain h(n0— k). 

3. Multiplication. Multiply x ( k ) by h(n0— k) to obtain the product sequencevn0(k) = x ( k ) 

h(n0— k). 

4. Summation. Sum all the values o f the product sequence vn0(k) to obtain the value of the 

output at time n = n0. 

Example: 

The impulse response of a linear time-invariant system is 

   
Determine the response of the system to the input signal  
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Solution : We shall compute the convolution according to its formula. But we shall use graphs 

of the sequences to aid us in the computation. In Fig. below  we illustrate the input signal 

sequence x(k) and the impulse response h{k) of the system, using k as the time index. The first 

step in the computation of the convolution sum is to fold h(k). The folded sequence h(-k) is 

illustrated inconsequent figs . Now we can compute the output at n = 0. according to the 

convolution formula which is 

   
Since the shift n = 0, we use h(—k) directly without shifting it. The product sequence 

   
We continue the computation by evaluating the response of the system at n = 1. 

   
Finally, the sum of all the values in the product sequence yields 

   
In a similar manner, we can obtain y(2) by shifting h ( - k ) two units to the right. And y(2) = 

8. 

 Then y(3) = 3. y(4) = - 2 , y(5) = -1 .For n >5, we find that y(n) = 0 because the product 

sequences contain all zeros. 

Next we wish to evaluate y(n) for n < 0. We begin with n =-1.Then 

   
 



17 | P a g e  
 

 

 
 

   
 

 

 

 

 

Finally, summing over the values of the product sequence, we obtain 

 
then 
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Now we have the entire response of the system for -∞ <n < ∞. which we summarize below as 

 

 
 

Properties of Convolution: 

1- Commutative law :  

 
2- Associative law : 

 
   3-Distributive law : 

  

 

 
Finite-Duration and Infinite-Duration Impulse Response system: 

Linear time-invariant system s into two types, those that have a finite-duration Impulse 

response (FIR ) and those that have an infinite-duration impulse response(IIR ). Thus an fir 

system has an impulse response that is zero outside o f some Finite time interval. 

 

Stability and unstable Linear Time-Invariant Systems : 

We defined an arbitrary relaxed system as BIBO stable if and only if its output sequence y(n) 

is bounded for every bounded input x(n). 

The output is bounded if the impulse response of the system satisfies the condition 

 

   
T hat is, a linear time-invariant system is stable if its impulse response is absolutely summable 

. 

 

CORRELATION OF DISCRETE-TIME SIGNALS: 

 

A mathematical operation that closely resembles convolution is correlation .Just as in the case 

of convolution , two signal sequences are involved in correlation. correlation between the two 

signals is to measure the degree to which the two signals are similar and thus to extract some 

in formation that depends to a large extent on the application. Correlation o f signals is often 

encountered in radar, sonar, digital communications, geology, an do the rare as in science and 

en gineering . 

Let us suppose that we have two signal sequences x( n ) and y(n) that we wish to 

compare. In radar and active sonar applications. x( n ) can represent the sampled version of the 

transmitted signal and y{n) can represent the sampled version of the received signal at the 

output of the analog -to -digital (A /D ) converter. If a target is p resent in the space being 

searched by the radar or sonar, the received signal y(n) consists of a delayed version of the 

transmitted signal, reflected from the target. 
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This comparison process is performed by means of the correlation operation of 2 different 

types. 

 

Cross-correlation and Autocorrelation Sequences : 

Suppose that we have two real signal sequences x( n ) and y( n) each of which has finite energy. 

T he cross-correlation o f x( n ) and y(n) is a sequence rxy(l), which is defined as 

 

  
or, equivalently , as 

 
The index l is the (time) shift (or lag) parameter and the subscripts x y on the cross-correlation 

se quence  rxy(l), indicate the sequences being correlated .If we reverse the roles of x(n) an d 

y(n) and there fore reverse the order of the indices xy. we obtain the cross-correlation sequence 

 

 

  
or, equivalently , 

 
 

By comparing  the above 4 equations we conclude that 
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Hence , ryx(l) provides exactly the same information as rxy(l),with respect to the similarity of x 

( n) to y(n). 

 

Example: 

Determine the cross-correlation sequence rxy(l) of the sequences  

  

 
Solution : Let us use the definition of cross-correlation  to compute rxy(l). For I = 0 w e have  

   
The product sequence v0(n) =x (n) y( n ) is 

   
and hence the sum over all values of n is 

   
For I > 0, we simply shift y(n) to the right relative to x(n ) hy l units, compute the product 

sequence vl(n) = x(n)y(n — I), and finally, sum over all values o f the product sequence. Thus 

we obtain 

 

  
 

For l< 0, we shift y(n) to the left relative to x(n) by l units, compute the product sequence vl(n) 

= x(n )y(n — I), and sum over all values of the product sequence. Thus we obtain the values of 

the cross-correlation sequence 

 

 

 
 

Therefore, the cross-correlation sequence of x{n) and y(n) is 

 

  
 

Then the convolution o f x( n) with y (—n) yields the cross-correlation rxy(l) that is, 

   
 



21 | P a g e  
 

Autocorrelation: 

when y(n) = x( n), we have the autocorrelation of x(n),which is defined as the sequence  

 

  
or, equivalently, as 

 
For finite-duration sequences, 

   
and 

   
where i = l, k = 0 for l> 0, and i = 0, k = l  for l < 0. 

 

Properties of the Autocorrelation and Crosscorrelation Sequences : 

 

1-The cross-correlation sequence satisfies the condition that  

   
when y(n) = x ( n ), reduces to 

   
 

2-Th e normalized auto correlation sequence is defined as 

   
Similarly, we define the normalized cross-correlation sequence 

   
Now \ρxx{l)\ <1 and \ρxy{l)\ < 1, and hence these sequences are independent of signal scaling. 

 

3-the cross-correlation sequence satisfies the property 

   
the autocorrelation sequence satisfies the property 

   
Hence the auto correlation function is an even function. 
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MODULE-2 

The One-sided z-Transform: 

The one-sided or unilateral z-transform of a signal x(n) is defined by 

                                       𝑋+(𝑧) ≡ ∑ 𝑥(𝑛)𝑧−𝑛∞
𝑛=0         …………………………………..(1.1) 

Properties: 

1. It does not contain information about the signal x(n) for negative values of time. 

2. It is unique only for causal signals. 

3. The one-sided z-transform 𝑋+(𝑧) of x(n) is identical to the two-sided z-transform of 

the signal x(n)u(n).  

Shifting Property: 

 Time delay: 

              If                 𝑥(𝑛)
𝑧+

↔ 𝑋+(𝑧) 

 

                 then              𝑥(𝑛 − 𝑘)
𝑧+

↔ 𝑧−𝑘[𝑋+(𝑧) + ∑ 𝑥(−𝑛)𝑧𝑛𝑘
𝑛=1 ]     k > 0    ……(1.2) 

 

            In case x(n) is a causal signal 

                   then             𝑥(𝑛 − 𝑘)
𝑧+

↔ 𝑧−𝑘𝑋+(𝑧)        k > 0   ………………………(1.3) 

 Time advance: 

             

                     𝑥(𝑛 + 𝑘)
𝑧+

↔ 𝑧𝑘[𝑋+(𝑧) − ∑ 𝑥(𝑛)𝑧−𝑛𝑘−1
𝑛=0 ]       k > 0 …………………(1.4) 

Final Value Theorem: 

                If                 𝑥(𝑛)
𝑧+

↔ 𝑋+(𝑧) 

              

              then              lim
𝑛→∞

𝑥(𝑛) = lim
𝑧→1
(𝑧 − 1)𝑋+(𝑧)    ……………....(1.5) 

              

               The limit exists if the ROC of  (𝑧 − 1)𝑋+(𝑧) includes the unit circle. 
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Analysis of LTI System in z-domain: 

Response of Systems with Rational System: 

We consider a linear constant coefficient difference equation: 

                      𝑦(𝑛) = −∑ 𝑎𝑘
𝑁
𝑘=1 𝑦(𝑛 − 𝑘) + ∑ 𝑏𝑘𝑥(𝑛 − 𝑘)

𝑀
𝑘=0          ………………………. 

(2.1) 

corresponding system function H(z) is given by 

                     𝐻(𝑧) =
∑ 𝑏𝑘𝑧

−𝑘𝑀
𝑘=0

1+ ∑ 𝑎𝑘𝑧
−𝑘𝑁

𝑘=1

               ………………………………………….. (2.2) 

we apply an input signal x(n) whose z-transform is X(z).  For 𝑋(𝑧) =
𝑁(𝑧)

𝑄(𝑧)
 , 𝐻(𝑧) =  

𝐵(𝑧)

𝐴(𝑧)
  and 

zero initial conditions, the z-transform of the output of the system  has the form 

                                     𝑌(𝑧) = 𝐻(𝑧)𝑋(𝑧) =
𝐵(𝑧)𝑁(𝑧)

𝐴(𝑧)𝑄(𝑧)
  ……………………………….... (2.3) 

Suppose the system contains simple poles   𝑝1 , 𝑝2  , ……… , 𝑝𝑁  and X(z) contains poles 

𝑞1 , 𝑞2 , ……… , 𝑞𝐿 , where  𝑝𝑘 ≠ 𝑞𝑚 for all k = 1, 2 , …… , N and m = 1, 2 , ……. , L. Assuming 

no pole-zero cancellation the partial fraction expansion of Y(z) yields 

                                  𝑌(𝑧) = ∑
𝐴𝑘

1−𝑝𝑘𝑧
−1 + ∑

𝑄𝑘

1−𝑞𝑘𝑧
−1

𝐿
𝑘=1

𝑁
𝑘=1  …………........................ (2.4) 

The inverse transform of Y(z) is the output signal y(n) from the system: 

                                𝑦(𝑛) = ∑ 𝐴𝑘(𝑝𝑘)
𝑛𝑢(𝑛)𝑁

𝑘=1 + ∑ 𝑄𝑘(𝑞𝑘)
𝑛𝑢(𝑛)𝐿

𝑘=1  …………………... 

(2.5) 

where scale factors {Ak}and {Qk}are functions of both sets of poles {pk}and {qk}. 

Response of Pole-Zero Systems with Non-zero Initial Conditions: 

We consider the input signal x(n) to be a causal signal applied at n=0. The effects of all previous 

input signals to the system are reflected in the initial conditions y(-1), y(-2), . . . . , y(-N). We 

are interested in determining the output y(n) for 𝑛 ≥ 0. 

𝑌+(𝑧) = −∑𝑎𝑘𝑧
−𝑘 [𝑌+(𝑧) +∑𝑦(−𝑛)𝑧𝑛

𝑘

𝑛=1

] +∑𝑏𝑘𝑧
−𝑘𝑋+(𝑧)

𝑀

𝑘=0

𝑁

𝑘=1
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Causality and Stability: 

A causal linear time invariant system is one whose unit sample response h(n) satisfies the 

condition 

                                            h(n) = 0                  n < 0 

An LTI system is causal if and only if the ROC of the system function is the exterior of a circle 

of radius 𝑟 < ∞, including the point 𝑧 = ∞. 

A necessary and sufficient condition for an LTI system to be BIBO stable is 

∑ |ℎ(𝑛)| < ∞

∞

𝑛=−∞

 

An LTI system is BIBO stable if and only if the ROC of the system function includes the unit 

circle. 

Consequently, a causal and stable system must have a system function that converges for |𝑧| >

𝑟 < 1. Since the ROC cannot contain any poles of H(z) , it follows that a causal linear time-

invariant system is BIBO stable if and only if all the poles of H(z) are inside the unit circle. 

The DFT as a Linear Transformation: 

The formulas for the DFT and IDFT may be expressed as 

𝑋(𝑘) = ∑ 𝑥(𝑛)𝑊𝑁
𝑘𝑛

𝑁−1

𝑛=0

   ,                𝑘 = 0,1, … . , 𝑁 − 1     …………… . . (3.1) 

 

  

𝑥(𝑛) =
1

𝑁
∑𝑋(𝑘)

𝑁−1

𝑘=0

𝑊𝑁
−𝑘𝑛  ,        𝑛 = 0,1, … ,𝑁 − 1    ………………(3.2)                      

 where              𝑊𝑁 = 𝑒
−𝑗2𝜋

𝑁  

which is an Nth root of unity. 

The computation of each point of the DFT can be accomplished by N complex multiplications 

and (N-1) complex additions. Hence the N-point DFT values can be computed in a total of N2 

complex multiplications and N(N-1) complex additions.  

Let us define an N-point vector xN of the signal sequence x(n), n=0,1,…,N-1, an N-point vector 

XN of frequency samples, and an 𝑁 × 𝑁 matrix 𝑾𝑁 as 
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𝐱𝑁 = [

𝑥(0)
𝑥(1)
⋮

𝑥(𝑁 − 1)

]  ,   𝐗𝑁 = [

𝑋(0)
𝑋(1)
⋮

𝑋(𝑁 − 1)

]      

𝑾𝑁 =

[
 
 
 
 
 1
1
⋮
⋮
1

1
𝑊𝑁
𝑊𝑁
2

⋮
𝑊𝑁
𝑁−1

1
𝑊𝑁
2

𝑊𝑁
4

⋮

𝑊𝑁
2(𝑁−1)

⋯
⋯
⋯
⋮
⋯

1
𝑊𝑁
𝑁−1

𝑊𝑁
2(𝑁−1)

⋮

𝑊𝑁
(𝑁−1)(𝑁−1)

]
 
 
 
 
 

   ……………… . . (3.3) 

With these definitions, the N-point DFT may be expressed in the matrix form as 

𝐗𝑁 = 𝐖𝑁𝐱𝑁                      ……………………… . (3.4)     

where  𝐖𝑁 is the matrix of the linear transformation. 𝐖𝑁 is a symmetric matrix. If we assume 

that the inverse of 𝐖𝑁 exists, then we also write 

𝐱𝑁 = 𝐖𝑁
−1𝐗𝑁        ……………………… . (3.5)  

IDFT can also be expressed as 

𝐱𝑁 =
1

𝑁
𝐖𝑁
∗𝐗𝑁            ………………………… . (3.6) 

where 𝐖𝑁
∗  denotes the complex conjugate of the matrix 𝐖𝑁. Comparison of equations 3.5 and 

3.6  leads us to conclude that  

𝐖𝑁
−1 = 

1

𝑁
𝐖𝑁
∗                ……………………(3.7) 

which in turn implies  

𝐖𝑁𝐖𝑁
∗ = 𝑁𝐈𝑁          …………………………… . (3.8) 

where 𝐈𝑁 is a 𝑁 × 𝑁 identity matrix. 

 

 

Circular Convolution: 

Suppose that we have two finite-duration sequences of length N, 𝑥1(𝑛) and 𝑥2(𝑛). Their 

respective N point DFTs are  

𝑋1(𝑘) = ∑ 𝑥1(𝑛)𝑒
−𝑗2𝜋𝑛𝑘/𝑁

𝑁−1

𝑛=0

  ,      𝑘 = 0,1, … ,𝑁 − 1    …………………(4.1) 
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𝑋2(𝑘) = ∑ 𝑥2(𝑛)𝑒
−𝑗2𝜋𝑛𝑘/𝑁

𝑁−1

𝑛=0

  ,      𝑘 = 0,1, … ,𝑁 − 1    …………………(4.2) 

Multiplying the above two DFTs we get: 

𝑋3(𝑘) = 𝑋1(𝑘)𝑋2(𝑘)  , 𝑘 = 0,1, … ,𝑁 − 1    …………………(4.2) 

IDFT of {𝑋3(𝑘)} is 

                                     𝑥3(𝑚) =
1

𝑁
∑ 𝑋3(𝑘)𝑒

𝑗2𝜋𝑘𝑚
𝑁

𝑁−1

𝑛=0

  

                                                  =
1

𝑁
∑ 𝑋1(𝑘)𝑋2(𝑘)𝑒

𝑗2𝜋𝑘𝑚
𝑁

𝑁−1

𝑛=0

   …………………(4.3) 

Substituting for 𝑋1(𝑘) and 𝑋2(𝑘) in (4.3) using DFTs given in (4.1) and (4.2), we obtain 

                         𝑥3(𝑚)

=
1

𝑁
∑ [∑ 𝑥1(𝑛)𝑒

−
𝑗2𝜋𝑛𝑘
𝑁

𝑁−1

𝑛=0

] [∑ 𝑥2(𝑛)𝑒
−
𝑗2𝜋𝑛𝑘
𝑁

𝑁−1

𝑛=0

] 𝑒
𝑗2𝜋𝑘𝑚
𝑁

𝑁−1

𝑛=0

 ………… . (4.4) 

  

The inner sum in the brackets in (4.4) has the form 

∑𝑎𝑘 = {

          𝑁 ,                                𝑎 = 1          

1 − 𝑎𝑁

1 − 𝑎
,                       𝑎 ≠ 1

𝑁−1

𝑘=0

…………… . . (4.5) 

where 𝑎 is  defined as  

𝑎 = 𝑒𝑗2𝜋(𝑚−𝑛−𝑙)/𝑁 

Consequently, 

∑𝑎𝑘 = {
𝑁 ,                   𝑙 = 𝑚 − 𝑛 + 𝑝𝑁 = ((𝑚 − 𝑛))𝑁 ,      𝑝 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟
0 ,                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                        

𝑁−1

𝑘=0

   ……… . . (4.6) 

If we substitute the result in (4.6) into (4.4) , we obtain  

         𝒙𝟑(𝒎) = ∑ 𝒙𝟏(𝒏)𝒙𝟐

𝑵−𝟏

𝒏=𝟎

((𝒎 − 𝒏))𝑵      , 𝑚 = 0,1, … ,𝑁 − 1   ……… . . (4.7)     

The above convolution sum is called circular convolution. Thus we conclude that 

multiplication of the DFTs of two sequences is equivalent to the circular convolution of the 

two sequences in the time domain. 
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Linear Filtering Methods Based on the DFT: 

Use of the DFT in Linear Filtering: 

Suppose we have a finite-duration sequence x(n) of length L which excites an FIR filter of 

length M. Let 

𝑥(𝑛) = 0,     𝑛 < 0 𝑎𝑛𝑑 𝑛 ≥ 𝐿 

ℎ(𝑛) = 0,     𝑛 < 0 𝑎𝑛𝑑 𝑛 ≥ 𝑀 

where ℎ(𝑛) is the impulse response of the FIR filter. 

The output sequence 𝑦(𝑛) of the FIR filter: 

                                          𝑦(𝑛) = ∑ ℎ(𝑘)𝑥(𝑛 − 𝑘)

𝑀−1

𝑘=0

       ………………(5.1) 

The duration of 𝑦(𝑛) is 𝐿 +𝑀 − 1. 

 The frequency-domain equivalent to (5.1) is 

                                      𝑌(𝜔) = 𝑋(𝜔)𝐻(𝜔)    ……………………(5.2) 

If the sequence 𝑦(𝑛) is to be represented uniquely in the frequency domain by samples of its 

spectrum 𝑌(𝜔) at a set of discrete frequencies, the number of distinct samples must equal or 

exceed 𝐿 +𝑀 − 1. Therefore, a DFT of size 𝑁 ≥ 𝐿 +𝑀 − 1 is required to represent {y(n)} in 

the frequency domain. 

 

 

Now if 

𝑌(𝑘) ≡ 𝑌(𝜔)|
𝜔=

2𝜋𝑘
𝑁
 ,         𝑘 = 0,1, … ,𝑁 − 1 

                    = 𝑋(𝜔)𝐻(𝜔)|
𝜔=

2𝜋𝑘
𝑁
  
,         𝑘 = 0,1, … ,𝑁 − 1 

then 

                        𝑌(𝑘) = 𝑋(𝑘)𝐻(𝑘) ,       𝑘 = 0,1, … ,𝑁 − 1     …………… . . (5.3) 

where {𝑋(𝑘)} and {𝐻(𝑘)} are the N-point DFTs of the corresponding sequences x(n) and h(n), 

respectively. Since the sequences x(n) and h(n) have a duration less than N, we simply pad 

these sequences with zeros to increase their length to N.  
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Since the (𝑁 = 𝐿 +𝑀 − 1)-point DFT of the output sequence y(n) is sufficient to represent 

y(n) in the frequency domain, it follows that  the multiplication of the N-point DFTs X(k) and 

H(k) followed by the computation of the N-point IDFT, must yield sequence {y(n)}.  

Thus, the N-point circular convolution of x(n) with h(n) must be equivalent to the linear 

convolution of x(n) with h(n). Thus with zero padding, the DFT can be used to perform linear 

filtering. 

Filtering of Long Data Sequences: 

Let the FIR filter has duration M. The input data sequence is segmented into blocks of L points, 

where , by assumption, 𝐿 ≫ 𝑀. 

Overlap-save method: 

Size of input data blocks, 𝑁 = 𝐿 + 𝑁 − 1 

DFTs and IDFTs are of length 𝑁. 

Each data block consists of the last 𝑀− 1 data points of the previous data block followed by 

𝐿 new data points to form a data sequence of length 𝑁 = 𝐿 + 𝑁 − 1. An 𝑁-point DFT is 

computed for each data block.  

The impulse response of the FIR filter is increased in length by appending 𝐿 − 1 zeros and an 

𝑁-point DFT of the sequence is computed once and stored. The multiplication of the two 𝑁-

point DFTs {𝐻(𝑘)} and {𝑋𝑚(𝑘)} for the mth block of data yields 

𝑌̂𝑚(𝑘) = 𝐻(𝑘)𝑋𝑚(𝑘),       𝑘 = 0,1, … ,𝑁 − 1      ………… . (5.4.1) 

 

 

Then the N-point IDFT yields the result  

𝑌̂𝑚(𝑛) = {𝑦̂𝑚(0)𝑦̂𝑚(1)… 𝑦̂𝑚(𝑀 − 1)𝑦̂𝑚(𝑀)… 𝑦̂𝑚(𝑁 − 1)}    ……… . (5.4.2) 

 

Since the data record is of length 𝑁, the first 𝑀 − 1 points of 𝑦𝑚(𝑛) are corrupted by aliasing 

and must be discarded. The last 𝐿 points of  𝑦𝑚(𝑛) are exactly same as the result from linear 

convolution and, as a consequence, 

 

𝑦̂𝑚(𝑛) = 𝑦𝑚(𝑛) , 𝑛 = 𝑀,𝑀 + 1,… , 𝑁 − 1   …………(5.4.3) 
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To avoid loss of data  due to aliasing, the last  𝑀 − 1 points of each data record are saved and 

these points become the first 𝑀 − 1 points of the subsequent record. To begin the processing, 

the first 𝑀 − 1 points of the first record are set to zero. Thus blocks of data sequences are: 

𝑥1(𝑛) = {0, 0, … , 0⏟      
𝑀−1 𝑝𝑜𝑖𝑛𝑡𝑠

, 𝑥(0), 𝑥(1), … , 𝑥(𝐿 − 1)}       ……… . (5.4.4)                         

𝑥2(𝑛) = {𝑥 (𝐿 − 𝑀 + 1),… , 𝑥(𝐿 − 1)⏟                
𝑀−1 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠 𝑓𝑟𝑜𝑚 𝑥1(𝑛)

, 𝑥(𝐿), … , 𝑥(2𝐿 − 1)⏟            
𝐿 𝑛𝑒𝑤 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠

}     ……… (5.4.5) 

      𝑥3(𝑛) = {𝑥 (2𝐿 − 𝑀 + 1),… , 𝑥(2𝐿 − 1)⏟                  
𝑀−1 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠 𝑓𝑟𝑜𝑚 𝑥2(𝑛)

, 𝑥(2𝐿), … , 𝑥(3𝐿 − 1)⏟            
𝐿 𝑛𝑒𝑤 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠

}     ……… (5.4.6) 

                    Input  signal                     L                                   L                               L 

 

 

                                     

                                       

                             M-1 zeros                                                      L 

 

 

 

 

                  Output signal        

 

 

          Discard M-1 points                           

 

                                                             Discard M-1 points 

 

                                                                                              Discard M-1 points     

(Linear FIR filtering by the overlap-save method) 

             x1(n) 

M-1 

x2(n) 

                            x3(n)                                                                          

 

                

 

 

 

 

 

 

              y1(n) 

                           y2(n)    

          y3(n) 
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Overlap-add method: 

Size of input block = 𝐿 

Size of the DFTs and IDFT is 𝑁 = 𝐿 +𝑀 − 1. 

To each data block we append 𝑀 − 1 zeros and compute the 𝑁-point DFT. The data blocks 

may be represented as 

𝑥1(𝑛) = {𝑥(0), 𝑥(1), … , 𝑥(𝐿 − 1), 0,0, … ,0⏟    
𝑀−1 𝑧𝑒𝑟𝑜𝑠

}   …………(5.5.1) 

 

           𝑥2(𝑛) = {𝑥(𝐿), 𝑥(𝐿 − 1),… , 𝑥(2𝐿 − 1), 0,0, … ,0⏟    
𝑀−1 𝑧𝑒𝑟𝑜𝑠

}   …………(5.5.2) 

 

𝑥3(𝑛) = {𝑥(2𝐿), … , 𝑥(3𝐿 − 1), 0,0, … ,0⏟    
𝑀−1 𝑧𝑒𝑟𝑜𝑠

}       …………(5.5.3) 

 

and so on. The two 𝑁-point DFTs are multiplied together to form  

𝑌𝑚(𝑘) = 𝐻(𝑘)𝑋𝑚(𝑘),          𝑘 = 0,1, … ,𝑁 − 1      …… . . (5.5.4) 

 

The IDFT yields data blocks of length 𝑁 that are free of aliasing, since the size of the DFTs 

and IDFT is 𝑁 = 𝐿 +𝑀 − 1 and the sequences are increased to 𝑁-points by appending zeros 

to each block. 

Since each data block is terminated with M-1 zeros , the last M-1 points from each output block 

must be overlapped and added to the first M-1 points of the succeeding block. Hence this 

method is called the overlap-add method. The output sequence is: 

 

𝑦(𝑛) = {𝑦1(0), 𝑦1(1),… , 𝑦1(𝐿 − 1), 𝑦1(𝐿)+𝑦2(0), 𝑦1(𝐿 + 1) + 𝑦2(1), … , 𝑦1(𝑁 − 1) +

                 𝑦2(𝑀 −

1), 𝑦2(𝑀) , … }                                                                          …………… . . (5.5.5)  
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     Input data                    L                                  L                                    L 

 

 

 

                                                                 

                                                                M-1 zeros 

 

 

                                                                                                           M-1 zeros 

 

 

 

Output data 

 

                     

            M-1 points add together 

 

                                                    M-1 points add together 

 

(Linear FIR filtering by the overlap-add method) 

 

The Discrete Cosine Transform : 

Forward DCT: 

Let an N-point sequence x(n) which is real and even, that is, 

 𝑥(𝑛) = 𝑥(𝑁 − 𝑛), 0 ≤ 𝑛 ≤ 𝑁 − 1 

Let s(n) be a 2N-point even symmetric extension of x(n) defined by 

              x1(n) 

                  x2(n)                                                                      

 

                 x3(n) 

             y1(n) 

                    y2(n) 

                 y3(n) 
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𝑠(𝑛) = {
𝑥(𝑛),                            0 ≤ 𝑛 ≤ 𝑁 − 1
𝑥(2𝑁 − 𝑛 − 1),        𝑁 ≤ 𝑛 ≤ 2𝑁 − 1

     ………… . (6.1) 

The DCT of x(n) can be computed by taking the 2N-point DFT of s(n) and multiplying the 

result by 𝑊2𝑁
𝑘/2

. The forward DCT is defined by 

𝑉(𝑘) = 2∑ 𝑥(𝑛) cos [
𝜋

𝑁
(𝑛 +

1

2
) 𝑘]

𝑁−1

𝑛=0

 ,      0 ≤ 𝑘 ≤ 𝑁 − 1      ……………… . . (6.2) 

Inverse DCT 

𝑥(𝑛) =
1

𝑁
{
𝑉(0)

2
+∑ 𝑉(𝑘) cos [

𝜋

𝑁
(𝑛 +

1

2
) 𝑘]

𝑁−1

𝑘=1

}  ,      0 ≤ 𝑛 ≤ 𝑁 − 1       …… . . (6.3) 

DCT as an Orthogonal Transform 

The 𝑁 × 𝑁 DCT matrix 𝐶𝑁 of the sequence  𝑥(𝑛), 0 ≤ 𝑛 ≤ 𝑁 − 1 is a real orthogonal matrix, 

that is, it satisfies 

                                                                𝐶𝑁
−1 = 𝐶𝑁

𝑇                                                          ……… . . (6.4) 

Orthogonality simplifies the computation of the inverse transform because it replaces matrix 

inversion by matrix transposition. 

Circular Correlation : 

If x(n) and y(n) are two periodic sequences, each with period N, then their cross correlation 

sequence is defined as 

                                                          𝑟𝑥𝑦(𝑙) =
1

𝑁
∑ 𝑥(𝑛)𝑦(𝑛 − 𝑙)                        …………(7.1)

𝑁−1

𝑛=0

 

 

 

 

 

 

 

 



33 | P a g e  
 

Module-III 

Fast Fourier Transform Algorithms: 

1. Introduction 

For a finite-duration sequence x(n) of length N, the DFT sum may be written as  

𝑋(𝑘) = ∑ 𝑥(𝑛)𝑊𝑁
𝑘𝑛 , 𝑘 = 0,1, … ,𝑁 − 1 

𝑁−1

𝑛=0

 

Where 𝑊𝑁 = 𝑒
−𝑗2𝜋/𝑁 . There are a total of N values of X(.) ranging from X(0) to X(N–1). The 

calculation of X(0) involves no multiplications at all since every product term involves 𝑊𝑁
0 = 𝑒−𝑗0 =

1. Further, the first term in the sum always involves 𝑊𝑁
0 or 𝑒−𝑗0 = 1 and therefore does not require 

a multiplication. Each X(.) calculation other than X(0) thus involves (N-1) complex multiplications. 

And each X(.) involves (N–1) complex additions. Since there are N values of X(.) the overall DFT 

requires (N-1)2 complex multiplications and N(N-1) complex additions. For large N we may round 

these off to N2 complex multiplications and the same number of complex additions. 

Each complex multiplication is of the form 

(A + jB) (C + jD) = (AC – BD) + j(BC + AD) 

and therefore requires four real multiplications and two real additions. Each complex addition is of 

the form 

(A + jB) + (C + jD) = (A + C) + j(B + D) 

and requires two real additions. Thus the computation of all N values of the DFT requires 4N2 real 

multiplications and 4N2 (= 2N2 + 2N2) real additions. Efficient algorithms which reduce the number 

of multiply-and-add operations are known by the name of fast Fourier transform (FFT). The 

Cooley-Tukey and Sande-Tukey FFT algorithms exploit the following properties of the twiddle 

factor (phase factor),  𝑊𝑁 = 𝑒
−𝑗2𝜋/𝑁 (the factor  𝑒−𝑗2𝜋/𝑁 is called the Nth principal root of 1): 

1. Symmetry property  𝑊𝑁
𝑘+𝑁/2

= −𝑊𝑁
𝑘 

2. Periodicity property   𝑊𝑁
𝑘+𝑁 = 𝑊𝑁

𝑘 

To illustrate, for the case of N = 8, these properties result in the following relations: 

𝑊8
0 = −𝑊8

4 = 1    𝑊8
1 = −𝑊8

5 =
1−𝑗

√2
    

𝑊8
2 = −𝑊8

6 = −𝑗    𝑊8
3 = −𝑊8

7 = −
1+𝑗

√2
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The use of these properties reduces the number of complex multiplications from N2 to  
𝑁

2
log2𝑁 

(actually the number of multiplications is less than this because several of the multiplications by 𝑊𝑁
𝑟 

are really multiplications by ±1 or ±j and don’t count); and the number of complex additions are 

reduced from N 2 to N log2𝑁 . Thus, with each complex multiplication requiring four real 

multiplications and two real additions and each complex addition requiring two real additions, the 

computation of all N values of the DFT requires 

Number of real multiplications = 4 (
𝑁

2
log2𝑁) = 2𝑁 log2𝑁 

Number of real additions = 2𝑁 log2𝑁 + 2(
𝑁

2
log2𝑁) = 3𝑁 log2𝑁 

We can get a rough comparison of the speed advantage of an FFT over a DFT by computing the 

number of multiplications for each since these are usually more time consuming than additions. For 

instance, for N = 8 the DFT, using the above formula, would need 82 = 64 complex multiplications, 

but the radix-2 FFT requires only 12 (=
8

2
log2 8 = 4 × 3). 

 

We consider first the case where the length N of the sequence is an integral power of 2, that is, N=2ν 

where ν is an integer. These are called radix-2 algorithms of which the decimation-in-time (DIT) 

version is also known as the Cooley-Tukey algorithm and the decimation-in-frequency (DIF) 

version is also known as the Sande-Tukey algorithm. We show first how the algorithms work; their 

derivation is given later. For a radix of (r = 2), the elementary computation (EC) known as the 

butterfly consists of a single complex multiplication and two complex additions. 

If the number of points, N, can be expressed as N = r m , and if the computation algorithm is carried 

out by means of a succession of r-point transforms, the resultant FFT is called a radixr algorithm. 

In a radix-r FFT, an elementary computation consists of an r-point DFT followed by the 

multiplication of the r results by the appropriate twiddle factor. The number of ECs required is 

𝐶𝑟 =
𝑁

𝑟
log𝑟 𝑁 

which decreases as r increases. Of course, the complexity of an EC increases with increasing r. For 

r = 4, the EC requires three complex multiplications and several complex additions.  

Suppose that we desire an N-point DFT where N is a composite number that can be 

factored into the product of integers 

N = N1 N2 … Nm 
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If, for instance, N = 64 and m = 3, we might factor N into the product 64 = 4 x 4 x 4, and the 64-point 

transform can be viewed as a three-dimensional 4 x 4 x 4 transform. If N is a prime number so that 

factorization of N is not possible, the original signal can be zero-padded and the resulting new 

composite number of points can be factored. 

2. Radix-2 decimation-in-time FFT (Cooley-Tukey) 

 

Procedure and important points 

 
1. The number of input samples is N = 2ν where ν is an integer. 

2. The input sequence is shuffled through bit-reversal. The index n of the sequence x(n) is 

expressed in binary and then reversed. 

3. The number of stages in the flow graph is given by ν = log2𝑁. 

4. Each stage consists of N/2 butterflies. 

5. Inputs/outputs for each butterfly are separated as follows:  

Separation = 2m-1 samples where m = stage index, stages being numbered from left to right 

(that is, m = 1 for stage 1, m = 2 for stage 2 etc.). This amounts to separation increasing 

from left to right in the order 1, 2, 4… N/2. 

 

 
 

6. The number of complex additions = 𝑁 log2𝑁 and the number of complex multiplications 
𝑁

2
log2𝑁.  

7. The elementary computation block in the flow graph, called the butterfly, is shown here. 

This is an in-place calculation in that the outputs (A + B 𝑊𝑁
𝑘 ) and (A – B 𝑊𝑁

𝑘
  ) can be 

computed and stored in the same locations as A and B. 
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Example 1 Radix-2, 8-point, decimation-in-time FFT for the sequence 

n→ 0 1 2 3 4 5 6 7 

x(n) = {1, 2 3 4 –4 –3 –2 –1} 

Solution The twiddle factors are 

𝑊8
0 = 1                                                       𝑊8

1 = 𝑒−𝑗2𝜋/8 = 𝑒−𝑗𝜋/4 =
1

√2
− 𝑗

1

√2
 

𝑊8
2 = (𝑒−𝑗2𝜋/8)

2
=  𝑒−𝑗𝜋/2 = −𝑗             𝑊8

3 = (𝑒−𝑗2𝜋/8)
3
= 𝑒−𝑗3𝜋/4 = −

1

√2
− 𝑗

1

√2
 

One of the elementary computations is shown below: 

 

The signal flow graph follows: 

 

The DFT is  

X(k) = {0, (5 – j12.07), (–4 + j4), (5 – j2.07), –4, (5 + j2.07), (–4 – j4), (5 + j12.07)} 
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3. Radix-2 decimation-in-frequency FFT (Sande-Tukey) 

 

Procedure and important points 

 
1. The number of input samples is N = 2ν where ν is an integer. 

2. The input sequence is in natural order; the output is in bit-reversed order. 

3. The number of stages in the flow graph is given by ν = log2𝑁. 

4. Each stage consists of N/2 butterflies. 

5. Inputs/outputs for each butterfly are separated in the reverse order from that of the DIT. 

The separation decreases from left to right in the order N/2, … , 4, 2, 1. 

6. The number of complex additions = N log2𝑁 and the number of complex multiplications 

is 
𝑁

2
log2𝑁. 

7. The basic computation block in the flow graph of the DIF FFT is the butterfly shown here. 

This is an in-place calculation in that the two outputs (A + B) and (A – B) 𝑊𝑁
𝑘 can be 

computed and stored in the same locations as A and B. 

 

 

 

Example 2:  Radix-2, 8-point, decimation-in-frequency FFT for the sequence 

n→ 0 1 2 3 4 5 6 7 

x(n) = {1, 2 3 4 –4 –3 –2 –1} 

Solution : 

The twiddle factors are the same as in the DIT FFT done earlier (both being 8-point DFTs): 

𝑊8
0 = 1                                                       𝑊8

1 = 𝑒−𝑗2𝜋/8 = 𝑒−𝑗𝜋/4 =
1

√2
− 𝑗

1

√2
 

𝑊8
2 = (𝑒−𝑗2𝜋/8)

2
=  𝑒−𝑗𝜋/2 = −𝑗             𝑊8

3 = (𝑒−𝑗2𝜋/8)
3
= 𝑒−𝑗3𝜋/4 = −

1

√2
− 𝑗

1

√2
 

One of the elementary computations is shown below: 
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The signal flow graph follows: 

 

 

The DFT is  

X(k) = {0, (5 – j12.07), (–4 + j4), (5 – j2.07), –4, (5 + j2.07), (–4 – j4), (5 + j12.07)} 

 

(DIT Template) 

The elementary computation (Butterfly): 

 

 

The signal flow graph: 

 



39 | P a g e  
 

 

 

 

(DIF Template) 

The elementary computation (Butterfly): 

 

 

 

 

 

 

The signal flow graph: 
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16-point DIF FFT 
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4. Inverse DFT using the FFT algorithm 

 
The inverse DFT of an N-point sequence {X(k), k = 1, 2, … , (N–1)} is defined as 

 

𝑥(𝑛) =
1

𝑁
∑𝑋(𝑘)𝑊𝑁

−𝑘𝑛 ,                𝑛 = 0,1, … ,𝑁 − 1 

𝑁−1

𝑘=0

 

Where 𝑊𝑁 = 𝑒
−𝑗2𝜋/𝑁. Take the complex conjugate of x(n) and multiply by N to get 

 

𝑁𝑥∗(𝑛) = ∑ 𝑋∗(𝑘)𝑊𝑁
𝑘𝑛

𝑁−1

𝑘=0

 

The right hand side of the above equation is simply the DFT of the sequence 𝑋∗(𝑘) and can be 

computed by using any FFT algorithm. The desired output sequence is then found by taking the 

conjugate of the result and dividing by N 

 

𝑥(𝑛) =
1

𝑁
(∑ 𝑋∗(𝑘)𝑊𝑁

𝑘𝑛

𝑁−1

𝑘=0

)

∗

 

 

Example 3:  Given the DFT sequence X(k) = {0, (–1–j), j, (2+j), 0, (2–j), –j, (–1+j)} obtain the 

IDFT x(n) using the DIF FFT algorithm. 

 

Solution: 

 

 This is an 8-point IDFT. The 8-point twiddle factors are, as calculated earlier, 

 

𝑊8
0 = 1                                                       𝑊8

1 = 𝑒−𝑗2𝜋/8 = 𝑒−𝑗𝜋/4 =
1

√2
− 𝑗

1

√2
 

𝑊8
2 = (𝑒−𝑗2𝜋/8)

2
=  𝑒−𝑗𝜋/2 = −𝑗             𝑊8

3 = (𝑒−𝑗2𝜋/8)
3
= 𝑒−𝑗3𝜋/4 = −

1

√2
− 𝑗

1

√2
 

 

The elementary computation (Butterfly) is shown below: 
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The signal flow graph follows: 

 

 
 

The output at stage 3 gives us the values {8𝑥∗(𝑛)} in bit-reversed order: 

 

{8𝑥∗(𝑛)}𝑏𝑖𝑡 𝑟𝑒𝑣 𝑜𝑟𝑑𝑒𝑟  = {2, –2, 4, –4, –6.24, 2.24, 6.24, –2.24} 

 

The IDFT is given by arranging the data in normal order, taking the complex conjugate of the 

sequence and dividing by 8: 

 

{8𝑥∗(𝑛)}𝑛𝑜𝑟𝑚𝑎𝑙𝑜𝑟𝑑𝑒𝑟 = {2, –6.24, 4, 6.24, –2, 2.24, –4, –2.24} 

 

𝑥(𝑛) = {
1

4
,
−6.24

8
,
1

2
,
6.24

8
,
1

4
,
2.24

8
,−
1

2
,
−2.24

8
} 

 

𝑥(𝑛) = {0.25,−0.78, 0.5, 0.78, −0.25,0.28, −0.5, −0.28} 
Example 4: Given the DFT sequence X(k) = {0, (1–j), j, (2+j), 0, (2–j), (–1+j), –j}, obtain the IDFT 

x(n) using the DIF FFT algorithm. 

 

Solution: 

There is no conjugate symmetry in {X(k)}. Using MATLAB 

X = [0, 1-1j, 1j, 2+1j, 0, 2-1j, -1+1j, -1j] 

x = ifft(X) 

 

The IDFT is 

 

x(n) = {0.5, (-0.44 + 0.037i), (0.375 - 0.125i), (0.088 + 0.14i), (-0.75 + 0.5i), (0.44 + 0.21i), (-0.125 

- 0.375i), (-0.088 - 0.39i)} 
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5. APPLICATIONS OF FFT ALGORITHMS: 

 

1. Efficient Computation of the DFT of Two Real Sequences 

 
The FFT algorithm is designed to perform complex multiplications and additions, even though the 

input data may be real valued. The basic reason for this situation is that the phase factors are complex 

and hence, after the first stage of the algorithm, all variables are basically complex-valued. In view 

of the fact that the algorithm can handle complex -valued input sequences, we can exploit this 

capability in the computation of the DFT of two real-valued sequences. Suppose that 𝑥1(𝑛) and 

𝑥2(𝑛) are two real-valued sequences of length N, and let x(n) be a complex-valued sequence defined 

as 

 

𝑥(𝑛) = 𝑥1(𝑛) + 𝑗𝑥2(𝑛)         0 ≤ 𝑛 ≤ 𝑁 − 1 
 

The DFT operation is linear and hence the DFT of x(n) can be expressed as 

 

𝑋(𝑘) = 𝑋1(𝑘) + 𝑗𝑋2(𝑘) 
 

The sequences 𝑥1(𝑛) and 𝑥2(𝑛)can be expressed in terms of x(n) as follows: 

 

𝑥1(𝑛) =
𝑥(𝑛) + 𝑥∗(𝑛)

2
 

 

𝑥2(𝑛) =
𝑥(𝑛) − 𝑥∗(𝑛)

2𝑗
 

 

 

Hence the DFTs of 𝑥1(𝑛) and 𝑥2(𝑛) are 

 

𝑋1(𝑘) =
1

2
{𝐷𝐹𝑇[𝑥(𝑛)] + 𝐷𝐹𝑇[𝑥∗(𝑛)]} 

 

𝑋2(𝑘) =
1

2𝑗
{𝐷𝐹𝑇[𝑥(𝑛)] − 𝐷𝐹𝑇[𝑥∗(𝑛)]} 

 

Recall that the DFT of  𝑥∗(𝑛) is 𝑋∗(𝑁 − 𝑘). Therefore 

 

𝑋1(𝑘) =
1

2
[𝑋(𝑘) + 𝑋∗(𝑁 − 𝑘)] 

 

𝑋2(𝑘) =
1

2𝑗
[𝑋(𝑘) − 𝑋∗(𝑁 − 𝑘)] 

 

Thus, by performing a single DFT on the complex-valued sequence x(n), we have obtained the DFT 

of the two real sequences with only a small amount of additional computation that is involved in 

computing 𝑋1(𝑘) and 𝑋2(𝑘)from X(k). 
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2. Efficient Computation of the DFT of a 2N-Point Real Sequence 
 

Suppose that g(n) is a real-valued sequence of 2N points. We now demonstrate how to obtain the 

2N-point DFT of g(n) from computation of one N-point DFT involving complex-valued data. First, 

we define 

 

𝑥1(𝑛) = 𝑔(2𝑛) 
 

𝑥2(𝑛) = 𝑔(2𝑛 + 1) 
 

Thus we have subdivided the 2N-point real sequence into two N-point real sequences. Now we can 

apply the method described in the preceding section. 

Let x(n) be the N-point complex-valued sequence 

 

 

𝑥(𝑛) = 𝑥1(𝑛) + 𝑗𝑥2(𝑛) 
 

From the results of the preceding section, we have 

 

𝑋1(𝑘) =
1

2
[𝑋(𝑘) + 𝑋∗(𝑁 − 𝑘)] 

 

𝑋2(𝑘) =
1

2𝑗
[𝑋(𝑘) − 𝑋∗(𝑁 − 𝑘)] 

 

Finally, we must express the 2N-point DFT in terms of the two N-point DFTs, 𝑋1(𝑘) and 𝑋2(𝑘). To 

accomplish this, we proceed as in the decimation-in-time FFT algorithm, namely, 

 

𝐺(𝑘) = ∑ 𝑔(2𝑛)𝑊2𝑁
2𝑛𝑘

𝑁−1

𝑛=0

+∑𝑔(2𝑛 + 1)𝑊2𝑁
(2𝑛+1)𝑘

𝑁−1

𝑛=0

 

= ∑ 𝑥1(𝑛)𝑊𝑁
𝑛𝑘

𝑁−1

𝑛=0

+𝑊2𝑁
𝑘 ∑𝑥2(𝑛)𝑊𝑁

𝑛𝑘

𝑁−1

𝑛=0

 

Consequently, 

𝐺(𝑘) = 𝑋1(𝑘) +𝑊2
𝑘𝑁𝑋2(𝑘)       𝑘 = 0,1, … . , 𝑁 − 1 

𝐺(𝑘 + 𝑁) = 𝑋1(𝑘) −𝑊2
𝑘𝑁𝑋2(𝑘)       𝑘 = 0,1, … . , 𝑁 − 1 

 

Thus we have computed the DFT of a 2N-point real sequence from one N-point DFT and some 

additional computation. 
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6. The Chirp-z Transform Algorithm: 
 

The DFT of an N-point data sequence x(n) has been viewed as the z-transform of 𝑥1(𝑛) evaluated at 

N equally spaced points on the unit circle. It has also been viewed as N equally spaced samples of 

the Fourier transform of the data sequence x(n). In this section we consider the evaluation of X(z) on 

other contours in the z-plane, including the unit circle. 

Suppose that we wish to compute the values of the z-transform of x(n) at a set of points {zk}. Then, 

𝑋(zk) = ∑ 𝑥(𝑛)𝑧𝑘
−𝑛           𝑘 = 0,1, … , 𝐿 − 1 

𝑁−1

𝑛=0

 

For example, if the contour is a circle of radius r and the zk are N equally spaced points, then 

𝑧𝑘 = 𝑟𝑒
𝑗2𝜋𝑘𝑛/𝑁       𝑘 = 0,1,2, … , 𝑁 − 1 

𝑋(zk) = ∑[𝑥(𝑛)𝑟−𝑛]𝑒−𝑗2𝜋𝑘𝑛/𝑁           𝑘 = 0,1,2, … ,𝑁 − 1 

𝑁−1

𝑛=0

 

In this case the FFT algorithm can be applied on the modified sequence 𝑥(𝑛)𝑟−𝑛 . 
More generally, suppose that the points zk in the z-plane fall on an arc which begins at 

some point 

 
z0 = r0𝑒

𝑗𝛳0 

and spirals either in toward the origin or out away from the origin such that the points zk are defined 

as  

 

zk = r0𝑒
𝑗𝛳0(R0𝑒

𝑗𝜙0)
𝑘
           𝑘 = 0,1, … , 𝐿 − 1 

Note that if R0 < 1, the points fall on a contour that spirals toward the origin and if R0 > 1, the contour 

spirals away from the origin. If Ro = 1, the contour is a circular arc of radius r0. If r0 = 1 and R0 = l, 

the contour is an arc of the unit circle. The latter contour would allow us to compute the frequency 

content of the sequence x(n) at a dense set of L frequencies in the range covered by the arc without 

having to compute a large DFT, that is, a DFT of the sequence x(n) padded with many zeros to obtain 

the desired resolution in frequency. Finally, if r0 = R0 = 1, = 0, ϴ0 = 0, ϕ0 = 2n / N, and L = N, the 

contour is the entire unit circle and the frequencies are those of the DFT. 
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When points {zk} are substituted into the expression for the z transform, we obtain 

 

𝑋(zk) = ∑ 𝑥(𝑛)𝑧𝑘
−𝑛

𝑁−1

𝑛=0

 

= ∑ 𝑥(𝑛)(r0𝑒
𝑗𝛳0)

−𝑛
𝑉−𝑛𝑘

𝑁−1

𝑛=0

 

 

where, by definition,  𝑉 = R0𝑒
𝑗𝜙0 
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We can express the above equation in the form of a convolution, by noting that 

𝑛𝑘 =
1

2
[𝑛2 + 𝑘2 − (𝑘 − 𝑛)2] 

𝑋(zk) = 𝑉
−𝑘2/2∑[𝑥(𝑛)(r0𝑒

𝑗𝛳0)
−𝑛
𝑉−𝑛

2/2]𝑉(𝑘−𝑛)
2/2

𝑁−1

𝑛=0

 

Let us define a new sequence g(n) as 

𝑔(𝑛) = 𝑥(𝑛)(r0𝑒
𝑗𝛳0)

−𝑛
𝑉−𝑛

2/2 

 

Then,  

𝑋(zk) = 𝑉
−𝑘2/2∑𝑔(𝑛)𝑉(𝑘−𝑛)

2/2

𝑁−1

𝑛=0

 

The summation in the above expression can be interpreted as the convolution of the sequence g(n) 

with the impulse response h(n) of a filter, where 

ℎ(𝑛) = 𝑉𝑛
2/2 

 

Hence, 

𝑋(zk) = 𝑉
−𝑘2/2𝑦(𝑘) =

𝑦(𝑘)

ℎ(𝑘)
          𝑘 = 0,1, … , 𝐿 − 1 

Where y(k) is the output of the filter 

𝑦(𝑘) = ∑ 𝑔(𝑛)ℎ(𝑘 − 𝑛)

𝑁−1

𝑛=0

         𝑘 = 0,1, … , 𝐿 − 1 

We observe that both h(n) and g(n) are complex-valued sequences. The sequence h(n) with R0 = 1 

has the form of a complex exponential with argument 𝑤𝑛 = 𝑛2𝜙0/2 = (𝑛𝜙0/2)𝑛. The quantity 

𝑛𝜙0/2 represents the frequency of the complex exponential signal, which increases linearly with 

time. Such signals are used in radar systems and are called chirp signals. Hence the z-transform 

evaluated is called the chirp-z transform. 
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MODULE 4: 

Structures for FIR and IIR Systems: 

Structure for FIR Systems: 

In general a FIR system is described by the difference equation 







1

0

)()(
M

k

k knxbny  

Or equivalently, by the system function 







1

0

)(
M

k

k

k zbzH  

1. Direct-Form Structure: 

The direct-form realization follows the convolution summation 

 

 

 

Direct form realisation of FIR system 

We observe that this structure requires M-1 memory locations for storing the M-1 

previous inputs, and has a complexity of M multiplications and M-1 additions per 

output point. Since the output consists of a weighted linear combination of M-1 past 

values of the input and the weighted current value of the input, the structure in above 

figure, resembles a tapped delay line or a transversal system consequently, the direct- 

form realization is often called a transversal or tapped-delay-line filter. 
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2. Cascade-Form Structures: 

The cascade realization follows naturally from the system function given by 

 

It is simple matter to factor H(z) into second order FIR system so that 





M

k

k zHzH
1

)()(  

Where Hk (z)=bk0+bk1z
-1+bk2z

-2 , k=1,2,3…………k 

And K is the integer part of (M + l) /2. The filter parameter b0 may be equally 

distributed among the K filter sections, such that or it may be 

assigned to a single filter section. The zeros of H ( z ) are grouped in pairs to produce 

the second-order FIR systems. It is always desirable to form pairs of complex-

conjugate roots so that the coefficients {bki} are real valued. On the other hand, real-

valued roots can be paired in any arbitrary manner. The cascade-form realization along 

with the basic second-order section is shown below. 

 

Cascade Realisation of a FIR system 
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Design of Digital Filters: 

Causality and Its Implications: 

Let us consider the issue of causality in more detail by examining the impulse response 

h(n) of an ideal low pass filter with frequency response characteristic 

H(w)={ 
0

1
    









c

c
 

The impulse response of the filter is 

h(n)={ 

0,
sin

0,





n
n

n

n

c

cc

c












 

 

 

Unit sample response of an ideal low pass filter 

A plot of h{n) for wc = π/ 4 is illustrated in the above figure. It is clear that the ideal 

low pass filter is noncausal and hence it cannot be realized in practice. 

One possible solution is to introduce a large delay n0 in h(n) and arbitrarily to set 

h(n)=0 for n < n0. However, the resulting system no longer has an ideal frequency 

response characteristic. Indeed, if we set h(n) = 0 for n < n0, the Fourier series 

expansion of H(w) results in the Gibbs phenomenon. 
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Paley-Wiener Theorem: 

If h(n) has finite energy and h(n) = 0 for n < 0, then 

 

Conversely, if |H(ω)| is square integrable and if the integral in the above equation is 

finite, then we can associate with |H(ω)| a phase response , so that the resulting 

filter with frequency response H(ω)=│H(ω)│ejθ(ω) is causal. 

One important conclusion that we draw from the Paley-Wiener theorem is that the 

magnitude function |H(ω)| can be zero at some frequencies, but it can’t be zero over 

any finite band of frequencies, since the integral then becomes infinite. Consequently 

any ideal filter is noncausal. 

 Apparently causalty imposes some tight constraints on a linear time invariant 

system. In addition to the Paley-Wiener condition causalty also implies a strong 

relation between HR(ω) and HI(ω), the real and imaginary components of the frequency 

response H(ω).To illustrate this dependence we decompose h(n).That iseven and an 

odd sequence, that is  

H(n)=he(n)+ho(n) 

Where he(n)= 
2

1
[h(n)+h(-n)] and 

2

1
[h(n)-h(-n)] 

Now, if h(n) is causal ,it is possible to recover h(n) from its even part he(n) for 0≤n≤∞ 

or from its odd component ho(n) for 1≤n≤∞. 

Indeed, it can be easily seen that 

h(n)=2he(n)u(n)-he(0)δ(n) n≥0 

and 

h(n)=2ho(n)u(n)-ho(0)δ(n) n≥1 

Since h0 (n) = 0 for n = 0, we cannot recover h(0) from h0 (n) and hence we also must 

know h(0). In any case, it is apparent that h0 (n) = he(n) for n > 1, so there is a strong 

relationship between h0 (n) and he(n). 
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If h (n) is absolutely summable (i.e., BIBO stable), the frequency response H(w) exists, 

and 

 

In addition, if h(n) is real valued and causal, the symmetry properties of the Fourier 

transform imply that 

 

 Since h(n) is completely specified by he(n), it follows that H(ω) is completely 

determined if we know HR(ω).alternatively H(ω) is completely determined from HI(ω) 

and h(0).In short HR(ω) and HI(ω) are independent and cannot be specified 

independently if the system is causal. Equivalently the magnitude and phase responses 

of a causal filter are interdependent and hence cannot be specified independently. 

Design of Linear Phase FIR filters using different windows: 

In many cases a linear phase characteristics is required through the passband of the 

filter. It can be shown that causal IIR filter cannot produce a linear phase characteristics 

and only special forms of causal FIR filters can give linear phase. If {h[n]} represents 

the impulse response of a discrete time linear system a necessary and sufficient 

condition for linear phase is that {h[n]} have finite duration N, that it be symmetric 

about its midpoint, i.e. 
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For N even we get a non-integer delay, which will cause the value of the sequence to 

change. 

One approach to design FIR filters linear phase is to use windows. The easiest way to 

obtain FIR filter is to simply truncate the impulse response of an IIR filter. If  

{hd[n]}is the impulse response of the designed FIR filter then the fir filter with 

impulse response {h[n]} can be obtained as follows. 

H[n]={ 
otherwise

NnNnhd

,0

],[ 21 
 

This can be thought of as being formed by a product of {hd[n]} and a window 

function {w[n]} 

{h[n]}= {hd[n]} {w[n]} 

where {w[n]} is the window function. 

Using modulation property of fourier transform  

H(ejω)= 
2

1
[ Hd(e

jω)   -w(ejω)] 

In general for smaller N values spreading of main lobe more, and for larger N 

narrower thr main lobe and │ H(ejω)│ comes closer to │ Hd(e
jω)│.Much work has 

been done on adjusting {w[n]} to satisfy certain main lobe and side lobe 

requirements .Some of the commonly used windows are given below- 

(a) Rectangular Window 

WR(n)={ 
otherwise

Nn

,0

10,1 
 

(b) Bartlett (Triangular) 

WB(n)={ 

elsewhere

NnN
N

n

Nn
N

n

,0

12/)1(,
1

2
2

2/)1(0,
1

2








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 (c) Hanning Window 

WHan(n)={ 

otherwise

Nn
Nn

,0

10,
2

)]1/(2cos[1


 
 

(d)Blackman Window 

WBl(n)={ 
   

otherwise

Nn
N

n
N

n

,0

10,
1

4cos08.
1

2cos5.42. 





 
 

(e)Kaiser Window 

WK(n)={ 10,

,0

)
2

1
(

2

1

2

1

0

2

1
22

0









 



















 








 

Nn

otherwise

N
wI

N
n

N
I

a

a

 

Where I0(x) is the modified Zero Order Bessel Function of the first kind. 

 The Transition width and the minimum stopped attenuation for different windows 

are listed below- 

 

We first choose a window that satisfies the minimum attenuation and the 

bandwidth that allows us to choose the appropriate value of N. Actual frequency 

response characteristics are then calculated and we check the requirments are met 

or not  

Design of IIR Filters: 

There are two methods for design the IIR filter.  

1. Impulse Invariant Method 

2. Bilinear Transformation Method 
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1. Filter design by impulse invariance: 

Here the impulse response h[n] of the desire discrete time system is proportional to 

equally spaces samples of the continuous time filter i.e, 

 H[n]=Tdha(nTd) 

Where Td represents a sample interval.Since the specification of the filter are given 

in discrete time domain it turns out that Td has no role to play in design of the filter. 

From the sampling theorem the frequency response of the discrete time filter is 

given by 

 H(ejω)= 





k dd

a
T

k
j

T
jH )

2
(


 

Since any practical continuous time filter is not strictly band limited there is some 

aliasing. However if the continuous time filter approaches zero at high frequency 

the aliasing may be negligible. Then the frequency response of the discrete time 

filter is 

H(ejω)≈ 


-k

a )(H
dT

j


,│ω│≤πType equation here. 

We first convert digital filter specifications to continuous time filter 

specifications. Neglecting aliasing we get Ha(jΩ) specification by applying the 

relation Ω= ω/Td. Where Ha(jΩ) is transferred to the designed filter H(z). 

Let us assume that the poles of the continuous time filter are simple, then 

Ha(s)= 
 

N

k k

k

ss

A

1

 

The corresponding Impulse response is ha(t)={ 

0,0

0,
1






t

teA
N

k

ts

k
k

 

Then h[n]=Tdha(nTd)= 


N

k

nTs

kd nueAT dk

1

][  

The system function function for this is H(z)= 




N

k
Ts

kd

ze

AT
dk

1
11

 

We see that a pole at s= sk in the s-plane is transferred to a pole at z= dkTs
e  in the 

z-plane. If the continuous time filter is stable i.e Re{sk}<0, then the magnitude of 
dkTs

e  will be less than 1.So the pole will be inside the unit circle. Thus the causal 

discrete filter is stable. The mapping of zero is not so straight forward. 
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Bilinear Transformation: 

This technique avoids the problem of aliasing by mapping jΩ axis in the s-plane to 

one revolution of unit circle in the z-plane. If Ha(s) is the continuous time transfer 

function the discrete time transfer function is detained by replacing s with 

S= 















1

1

1

12

z

z

Td

 

From which we get  z= 
 

sT

sT

d

d

)2/(1

2/1




 

Substituting s=  +jΩ , we get 

22
1

22
1

dd

dd

T
j

T

T
j

T

z












 

If  <0, it is then magnitude of the real part in the denominator is more than that of 

the numerator and so │z│<1. Similarly if  >0 then │z│>1 for all Ω.Thus pole in 

the left half of the s-plane will get mapped to the poles inside the unit circle in z-

plane. If  =0 then  

2
1

2
1

d

d

T
j

T
j

z







  

so │z│=1,writing z= je  we get  

je =

2
1

2
1

d

d

T
j

T
j







 

Rearranging we get 
2/cos

2/sin

)(

)(

1

1

2 2/2/2/

2/2/2/












j
eee

eee

e

eT
j

jjj

jjj

j

j

d 















 

Or 2/tan
2


dT

  or 
2

tan2 1 dT
  .

 


