
1 | P a g e

COPYRIGHT IS NOT RESERVED BY AUTHORS. AUTHORS
ARE NOT RESPONSIBLE FOR ANY LEGAL ISSUES ARISING
OUT OF ANY COPYRIGHT DEMANDS AND/OR REPRINT
ISSUES CONTAINED IN THIS MATERIALS. THIS IS NOT
MEANT FOR ANY COMMERCIAL PURPOSE & ONLY MEANT
FOR PERSONAL USE OF STUDENTS FOLLOWING
SYLLABUS PRINTED NEXT PAGE. READERS ARE
REQUESTED TOSEND ANY TYPING ERRORS CONTAINED,
HEREIN.

2 | P a g e

Digital Signal Processing (3-1-0)
Module-I (10 Hours)

Discrete time signals and systems, The Convolution Sum and its properties, Difference

Equation,

Implementation of DT System, Correlation, LTI systems as Frequency-Selective Filters,

Inverse Systems and

Deconvolution.

Module-II (10 Hours)

Analysis of LTI system in z-Domain, One-sided z-Transform, The DFT as a linear

transformation, Circular

Convolution, Circular Correlation, Linear Filtering Methods Based on the DFT, The Discrete

Cosine

Transform(Brief Idea only).

Module-III (10 Hours)

Fast Fourier Transform Algorithms: Radix –2 FFT algorithm – Decimation – in Time (DIT)

and Decimation

– in Frequency (DIF) algorithm, Applications of FFT Algorithms, The Chirp-z Transform

Algorithm.

Module-IV (10 Hours)

Structures for FIR and IIR Systems - Direct and Cascaded form, Design of Digital Filters:

Causality and its

Implications, Design of Linear Phase FIR filters using different windows, Design of IIR Filters

- Impulse

Invariance Method and Bilinear transformation method.

Text Books:

1. Digital Signal Processing – Principles, Algorithms and Applications - J.G.Proakis and

D.G.Manolakis,

4th Edition, PHI Learning Pvt. Ltd. (Selected Portions from Chapters 1, 2, 3, 4, 5, 7, 8, 9, 10,

11,

13, 14)

2. Digital Signal Processing - S.Salivahanan, A.Vallavaraj, C. Gnanapriya, 2nd Edition The

McGraw-Hill

Companies. (Selected Portions from Chapters 1, 2, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14)

Reference Books:

1. Introduction to Digital Signal Processing –J.R.Johnson, PHI learning Pvt. Ltd.

2. Discrete Time Signal Processing- A.V. Oppenheim and Schafer, PHI Learning Pvt.

3. Digital Signal Processing: A computer based Approach - Sanjit K. Mitra, The McGraw-Hill

Companies.

3 | P a g e

MODULE-1

Introduction

Signal:

A signal is defined as any physical quantity th a t varies with time, space, or any other in

dependent variable or variables. Mathematically, we describe a signal as a function of one or

mo re independent variables. For example, the functions

 s(t)= 5t

describe a signal, one that varies linearly with the in d e p e n d e n t variable t (time).

This function describes a signal of two in dependent variables x and y that could represent the

two spatial coordinates in a p lane.

System:

A system may also be defined as a physical device th a t performs an operatioon a signal. For

ex ample, a filter used to reduce the noise and interference corrupting desired in formation

bearing signal is called a system .

signal processing:

W h en we pass a signal thrugh a system , as in filtering, we say that we have processed the

signal. In this case the processing of the signal involves filtering the noise and interference

from the desired signal. If the operation on the signal is n o n linear, the system is said to be

non linear, and so forth . Such operations are usually referred to as signal rocessing.

Analog signal processing:

Digital signal processing:

4 | P a g e

Advantages of Digital over Analog Signal Processing :

1- a digital programmable system allow s flexibility in re configuring the digital signal

processing operations simply by changing the program .

2- a digital system provides much better control of accuracy .

3- Digital signals are easily stored on magnetic media (tape or disk) without deterioration or

loss of signal fidelity beyond that introduced in the A /D conversion.

4- digital implementation of the signal processing system is cheaper than analog signal

processing.

 Limitations:

One practical limitation is the speed of operation of A /D converters and digital signal

processors. We shall see that signals having extremely wide band widths require fast-sampling

-rate A /D converters and fast digital signal processors. Hence there are analog signals with

large bandwidths for which a digital processing approach is beyond the state of the art of digital

hardware.

Discrete time signals and systems

CLASSIFICATION OF SIGNALS : There are 3 types of signals

Continuous-time signals: Continuous-time signals or analog signals are defined for every

value of time.

Discrete-time signals :Discrete-time signals are defined only at certain specific values of time.

Digital Signals: digital signal is defined as a function of an integer independent variable and

its values are taken from a finite set of possible values, which are represented by a string of 0's

and l's .

DISCRETE-TIME SIGNALS : A disc rete-time signal x{n) is a function of an in dependent

variable that is an integer. discrete-time signal is n o t defined at instants between two

successive samples. Simply, the signal x (n) is n o t defined for n o n integer values o f n. So

x(n) was obtained from sampling an analog signal x a(t), then .i(n) = x a(nT) , where T is the

sampling period (i.e., the time between successive samples).

5 | P a g e

Representation of discrete-time signal :

A discrete-time signal can be represented in various way. But all can be represented

graphically.

 Graphical representation of a discrete-time signal.

Besides the graphical representation of a discrete-time signal or sequence as illustrated in above

Fig. there are some alternative representations that are often more convenient to use. These are:

1. Functional representation :

2. Tabular representation :

3.Sequence representation :An infinite-duration signal or sequence with the time origin (n =

0) indicated by the symbol ↑ is represented as

A finite-duration sequence can be represented as

Some Elementary Discrete-Time Signals :

6 | P a g e

In discrete-time signals and systems there are a number of basic signals that appear often and

play an important role. These signals are defined below .

1. Unit sample sequence/ unit impulse : It is denote d as δ(n) and is defined as

the unit impulse sequence is a signal that is zero every where, except at n =0 where its value is

unity. The graphical representation of δ(n) is

2. Unit step signal: It is denoted as u(n) and is defined as

The graphical re presentation of u(n) is

3. Unit ramp signal : It is denoted as ur (n) and is defined as

The graphical representation of u r(n) is

7 | P a g e

4-Exponential signal : It is a sequence of the form

If the parameter a is real, then x(n) is a real signal. illustratation of x(n) for various values of

the parameter a is

When the parameter a is complex valued , it can be expressed as

where r and ϴ are now the parameters. Hence we can express x(n) as

8 | P a g e

Classification of Discrete-Time Signals:

1-Energy signals and power signals: The energy E of a signal x(n) is defined as

If E is finite (i.e., 0 <E <∞), if E is finite , P = 0. then x(n) is called an energy signal.

Many signals that possess infinite energy, have a finite average power. The average power of

a d iscrete-time signal x(n) is defined as

If we define the signal energy of x(n) over the finite interval —N < n < N as

the average power of the signal x(n) as

if E is infinite and P is finite. the signal is called a power signal.

2-Periodic signals and aperiodic signals:

signal x(n) is periodic with period N (N > 0) if an d only if

the sinusoidal signal of the form

is periodic when f0, is a rational number, that is, if f0 can be expressed as

where k and N are integers.

3-Symmetric (even) and antisymmetric (odd) signals :

A real valued signal x (n) is called symmetric (even) if

O n the other hand , a signal x(n) is called antisymmetric (odd) if

We can illustrate that any arbitrary signal can be expressed as the sum of two signal

components, one of which is even and the other odd. The even signal component is formed by

adding x(n) to x (—n) and dividing by 2. that is.

Similarly, w e form an odd signal component x0(n) according to the relation

9 | P a g e

So we obtain x(n),that is,

Simple Manipulations of Discrete-Time Signals :

Time shifting :

A signal x (n) may be shifted in time by replacing the independent variable n by n — k, w here

k is an integer. If k is a positive integer, the time shift results in a delay of the signal by k units

o f time. If k is a negative integer, the time shift results in an advance of the signal by \k\ units

in time.

Ex- A signal x(n) is graphically illustrated in Fig. below. Show a graphical representation of

the signals x(n — 3) and x(n + 2).

10 | P a g e

The signal x (n — 3) is obtained by delaying x(n) by three units in time. On the other hand, the

signal x(n + 2) is obtained by advancing x (n) by two units in time. Note that delay corresponds

to shifting a signal to the right, whereas advance implies shifting the signal to the left on the

time axis.

Time Folding : The operations of folding is defined by

 FD[x(n)] = x (— n)

Example:

11 | P a g e

Addition, multiplication, and scaling of sequences:

Amplitude modifications include addition, multiplication, and scaling o f discrete-time signals.

Amplitude scaling o f a signal by a constant A is accomplished by multiplying the value o f

every signal sample by A.

The sum of two signals x1(n) an d x2(n) is a signal y(n), whose value at any instant is equal

to the sum of the values of these two signals at that instant, that is.

The product of two signals is similarly defined on a sample -to -sample basis as

DISCRETE-TIME SYSTEMS :

A discrete-time system is a device or algorithm that operates on a discrete -time signal, called

the input o r excitation, according to some w ell-defined rule, to produce another discrete-time

signal called the output or response of the system .

We say that the input signal x(n) is Transformed by the system in to a signal y(n), and the

general relationship Between x(n) and y(n) as

where the symbol T denotes the transformation (also called an operator), or processing

performed by the system on x(n) to produce y(n).

Representation of Discrete-Time Systems :

It is useful at this point to introduce a block diagram representation of discrete time systems.

For this purpose we need to define some basic building blocks that can be interconnected to

form complex systems.

An adder: Figure below illustrates a system (adder) that perform s the addition o f two signal

sequences to form another (the sum) sequence, which we denote as y(n).

A constant multiplier: This operation is depicted by below Fig., and simply represents

applying a scale factor on the input x (n).

12 | P a g e

A signal multiplier: Figure below illustrates the multiplication of two signal sequences to

form another (the product) sequence, denoted in the figure as y(n). we can view the

multiplication operation as memory less.

A unit delay element: The unit delay is a special system that simply delays the signal passing

th rough it by one sample. Fig. below illustrates such a system .If the input signal is x(n), the

output is x(n — 1). In fact, the sample x{n — 1) is stored in memory at time n — 1 an d it is

recalled fro m memory at time n to form y(n),

T h e use o f the symbol z-1 to denote the unit of delay

A unit advance element: In contrast to the unit delay, a unit advance moves the input x (n)

ahead by one sample in time to yield x(n + 1). Fig. below illustrates this operation , with the

operator z being used to denote the unit advance.

Classification of Discrete-Time Systems :

There are various types of Discrete-Time Systems such as

1-Static versus dynamic systems:

A discrete-tim e system is called static or memory less if its output at any instant n depends at

most on the input sample at the same time, but not on past or future samples of the input. In

any other case, the system is said to be dynamic or to have memory .T h e systems described

by the following input-output equations are both static or memory less

y(n) = a x {n)

y (n) = nx(n) + b x 3(n)

On the other hand , the systems described by the following input-output relations are dynamic

systems or systems with memory.

13 | P a g e

Time-invariant versus time-variant systems: We can subdivide the general class of systems

in to the two broad categories, time -invariant systems and time -variant systems. A system is

called time-in variant if its input-output characteristics do not change with time.

A relaxed system T is time invariant o r shift invariant if and

only if

implies that for every in p u t signal x(n) a n d every time shift k.

Now if this output y{n, k) = y{n — k), for all possible values o f k, the system is time invariant.

O n the other hand , if the output y(n, k) ≠ y(n — k), even for one value o f k, the system is

time variant.

Linear versus nonlinear systems: The general class o f system s can also be subdivided into

linear system s and nonlinear system s. A linear system is one that satisfies the superposition

principle. Simply stated, the principle o f superposition requires that the response o f the system

to a weighted sum o f signals be equal to the corresponding weighted sum of the responses

(outputs) of the system to each of the individual input signals.

A relaxed T system is linear if and only if

for any arbitrary input sequences x\ (n) and x 2(n), and any arbitrary constants a1 and a2.

14 | P a g e

Causal versus noncausal systems:

A system is said to be causal if the output of the system at any time n [i.e., y(n)] depends only

on present and past inputs [i.e., x { n), x(n - 1),x(n — 2) , . . .] , but does not depend on future

inputs [i.e., x(n + 1), x(n + 2) , . . .] . In mathematical terms, the output of a causal system

satisfies an equation of the form

If a system does not satisfy this definition, it is called noncausal. Such a system has an output

tha t depends not only on present and past inputs but also on future inputs.

Stable versus unstable systems:

An arbitrary relaxed system is said to be stable if an d only if every bounded input produces a

bounded output (i:e; BIBO).

The conditions that the input sequence x{n) and the output sequence y(n) are bounded is transla

ted mathematically to mean that there exist some finite numbers, say M x and M y. such that

for all n. If. for some bounded input sequence ,x(n), the output is unbounded (infinite), the

system is classified as unstable .

DISCRETE-TIME LINEAR TIME-INVARIANT SYSTEMS:

The linearity and time-invariance properties of the system , the response of the system to any

arb itrary input signal can be expressed in terms of the unit sample response of the system .

The gen eral form of the expression that relates the unit sample response of the system and the

arbitrary input signal to the output signal, called the convolution sum or the convolution

formula, is also derived. Thus we are able to determine the output of any linear, time-invariant

system to any arbitrary input signal.

Response of LTI Systems to Arbitrary Inputs:

The Convolution Sum :

An arbitrary input signal x(n) in to a weighted sum of impulses, We are now ready to determine

the response of any relaxed linear system to any Input signal. First, we denote the response y(n,

k) of the system to the input unit Sample sequence at n = k by the special symbol h(n, k), -∞<k

< ∞. T h a t is,

15 | P a g e

if the input is the arbitrary signal x(n) that is expressed as a sum of weighted impulses, that is.

then the response of the system to x(n) is the corresponding sum of weighted outputs, that is,

Clearly, the above equation follows from the superposition property of linear systems, and is

know n as the superposition summation.th en by the time-invariance property , the response of

the system to the delayed unit sample sequence δ(n - k) is

Consequently , the superposition summation formula in reduces to

The above formula gives the response y(n) of the LTI system as a function of the input signal

x (n) and the unit sample (impulse) response h(n) is called a convolution sum.

To summarize, the process of computing the convolution between x (k) and h(k) involves the

following four steps.

1. Folding. Fold h(k) about k = 0 to obtain h (- k) .

2. Shifting, Shift h (—k) by n0 to the right (left) if n0 is positive (negative), to obtain h(n0— k).

3. Multiplication. Multiply x (k) by h(n0— k) to obtain the product sequencevn0(k) = x (k)

h(n0— k).

4. Summation. Sum all the values o f the product sequence vn0(k) to obtain the value of the

output at time n = n0.

Example:

The impulse response of a linear time-invariant system is

Determine the response of the system to the input signal

16 | P a g e

Solution : We shall compute the convolution according to its formula. But we shall use graphs

of the sequences to aid us in the computation. In Fig. below we illustrate the input signal

sequence x(k) and the impulse response h{k) of the system, using k as the time index. The first

step in the computation of the convolution sum is to fold h(k). The folded sequence h(-k) is

illustrated inconsequent figs . Now we can compute the output at n = 0. according to the

convolution formula which is

Since the shift n = 0, we use h(—k) directly without shifting it. The product sequence

We continue the computation by evaluating the response of the system at n = 1.

Finally, the sum of all the values in the product sequence yields

In a similar manner, we can obtain y(2) by shifting h (- k) two units to the right. And y(2) =

8.

 Then y(3) = 3. y(4) = - 2 , y(5) = -1 .For n >5, we find that y(n) = 0 because the product

sequences contain all zeros.

Next we wish to evaluate y(n) for n < 0. We begin with n =-1.Then

17 | P a g e

Finally, summing over the values of the product sequence, we obtain

then

18 | P a g e

Now we have the entire response of the system for -∞ <n < ∞. which we summarize below as

Properties of Convolution:

1- Commutative law :

2- Associative law :

 3-Distributive law :

Finite-Duration and Infinite-Duration Impulse Response system:

Linear time-invariant system s into two types, those that have a finite-duration Impulse

response (FIR) and those that have an infinite-duration impulse response(IIR). Thus an fir

system has an impulse response that is zero outside o f some Finite time interval.

Stability and unstable Linear Time-Invariant Systems :

We defined an arbitrary relaxed system as BIBO stable if and only if its output sequence y(n)

is bounded for every bounded input x(n).

The output is bounded if the impulse response of the system satisfies the condition

T hat is, a linear time-invariant system is stable if its impulse response is absolutely summable

.

CORRELATION OF DISCRETE-TIME SIGNALS:

A mathematical operation that closely resembles convolution is correlation .Just as in the case

of convolution , two signal sequences are involved in correlation. correlation between the two

signals is to measure the degree to which the two signals are similar and thus to extract some

in formation that depends to a large extent on the application. Correlation o f signals is often

encountered in radar, sonar, digital communications, geology, an do the rare as in science and

en gineering .

Let us suppose that we have two signal sequences x(n) and y(n) that we wish to

compare. In radar and active sonar applications. x(n) can represent the sampled version of the

transmitted signal and y{n) can represent the sampled version of the received signal at the

output of the analog -to -digital (A /D) converter. If a target is p resent in the space being

searched by the radar or sonar, the received signal y(n) consists of a delayed version of the

transmitted signal, reflected from the target.

19 | P a g e

This comparison process is performed by means of the correlation operation of 2 different

types.

Cross-correlation and Autocorrelation Sequences :

Suppose that we have two real signal sequences x(n) and y(n) each of which has finite energy.

T he cross-correlation o f x(n) and y(n) is a sequence rxy(l), which is defined as

or, equivalently , as

The index l is the (time) shift (or lag) parameter and the subscripts x y on the cross-correlation

se quence rxy(l), indicate the sequences being correlated .If we reverse the roles of x(n) an d

y(n) and there fore reverse the order of the indices xy. we obtain the cross-correlation sequence

or, equivalently ,

By comparing the above 4 equations we conclude that

20 | P a g e

Hence , ryx(l) provides exactly the same information as rxy(l),with respect to the similarity of x

(n) to y(n).

Example:

Determine the cross-correlation sequence rxy(l) of the sequences

Solution : Let us use the definition of cross-correlation to compute rxy(l). For I = 0 w e have

The product sequence v0(n) =x (n) y(n) is

and hence the sum over all values of n is

For I > 0, we simply shift y(n) to the right relative to x(n) hy l units, compute the product

sequence vl(n) = x(n)y(n — I), and finally, sum over all values o f the product sequence. Thus

we obtain

For l< 0, we shift y(n) to the left relative to x(n) by l units, compute the product sequence vl(n)

= x(n)y(n — I), and sum over all values of the product sequence. Thus we obtain the values of

the cross-correlation sequence

Therefore, the cross-correlation sequence of x{n) and y(n) is

Then the convolution o f x(n) with y (—n) yields the cross-correlation rxy(l) that is,

21 | P a g e

Autocorrelation:

when y(n) = x(n), we have the autocorrelation of x(n),which is defined as the sequence

or, equivalently, as

For finite-duration sequences,

and

where i = l, k = 0 for l> 0, and i = 0, k = l for l < 0.

Properties of the Autocorrelation and Crosscorrelation Sequences :

1-The cross-correlation sequence satisfies the condition that

when y(n) = x (n), reduces to

2-Th e normalized auto correlation sequence is defined as

Similarly, we define the normalized cross-correlation sequence

Now \ρxx{l)\ <1 and \ρxy{l)\ < 1, and hence these sequences are independent of signal scaling.

3-the cross-correlation sequence satisfies the property

the autocorrelation sequence satisfies the property

Hence the auto correlation function is an even function.

22 | P a g e

MODULE-2

The One-sided z-Transform:

The one-sided or unilateral z-transform of a signal x(n) is defined by

 𝑋+(𝑧) ≡ ∑ 𝑥(𝑛)𝑧−𝑛∞
𝑛=0 …………………………………..(1.1)

Properties:

1. It does not contain information about the signal x(n) for negative values of time.

2. It is unique only for causal signals.

3. The one-sided z-transform 𝑋+(𝑧) of x(n) is identical to the two-sided z-transform of

the signal x(n)u(n).

Shifting Property:

 Time delay:

 If 𝑥(𝑛)
𝑧+

↔ 𝑋+(𝑧)

 then 𝑥(𝑛 − 𝑘)
𝑧+

↔ 𝑧−𝑘[𝑋+(𝑧) + ∑ 𝑥(−𝑛)𝑧𝑛𝑘
𝑛=1] k > 0 ……(1.2)

 In case x(n) is a causal signal

 then 𝑥(𝑛 − 𝑘)
𝑧+

↔ 𝑧−𝑘𝑋+(𝑧) k > 0 ………………………(1.3)

 Time advance:

 𝑥(𝑛 + 𝑘)
𝑧+

↔ 𝑧𝑘[𝑋+(𝑧) − ∑ 𝑥(𝑛)𝑧−𝑛𝑘−1
𝑛=0] k > 0 …………………(1.4)

Final Value Theorem:

 If 𝑥(𝑛)
𝑧+

↔ 𝑋+(𝑧)

 then lim
𝑛→∞

𝑥(𝑛) = lim
𝑧→1
(𝑧 − 1)𝑋+(𝑧) ……………....(1.5)

 The limit exists if the ROC of (𝑧 − 1)𝑋+(𝑧) includes the unit circle.

23 | P a g e

Analysis of LTI System in z-domain:

Response of Systems with Rational System:

We consider a linear constant coefficient difference equation:

 𝑦(𝑛) = −∑ 𝑎𝑘
𝑁
𝑘=1 𝑦(𝑛 − 𝑘) + ∑ 𝑏𝑘𝑥(𝑛 − 𝑘)

𝑀
𝑘=0 ……………………….

(2.1)

corresponding system function H(z) is given by

 𝐻(𝑧) =
∑ 𝑏𝑘𝑧

−𝑘𝑀
𝑘=0

1+ ∑ 𝑎𝑘𝑧
−𝑘𝑁

𝑘=1

 ………………………………………….. (2.2)

we apply an input signal x(n) whose z-transform is X(z). For 𝑋(𝑧) =
𝑁(𝑧)

𝑄(𝑧)
 , 𝐻(𝑧) =

𝐵(𝑧)

𝐴(𝑧)
 and

zero initial conditions, the z-transform of the output of the system has the form

 𝑌(𝑧) = 𝐻(𝑧)𝑋(𝑧) =
𝐵(𝑧)𝑁(𝑧)

𝐴(𝑧)𝑄(𝑧)
 ……………………………….... (2.3)

Suppose the system contains simple poles 𝑝1 , 𝑝2 , ……… , 𝑝𝑁 and X(z) contains poles

𝑞1 , 𝑞2 , ……… , 𝑞𝐿 , where 𝑝𝑘 ≠ 𝑞𝑚 for all k = 1, 2 , …… , N and m = 1, 2 , ……. , L. Assuming

no pole-zero cancellation the partial fraction expansion of Y(z) yields

 𝑌(𝑧) = ∑
𝐴𝑘

1−𝑝𝑘𝑧
−1 + ∑

𝑄𝑘

1−𝑞𝑘𝑧
−1

𝐿
𝑘=1

𝑁
𝑘=1 …………........................ (2.4)

The inverse transform of Y(z) is the output signal y(n) from the system:

 𝑦(𝑛) = ∑ 𝐴𝑘(𝑝𝑘)
𝑛𝑢(𝑛)𝑁

𝑘=1 + ∑ 𝑄𝑘(𝑞𝑘)
𝑛𝑢(𝑛)𝐿

𝑘=1 …………………...

(2.5)

where scale factors {Ak}and {Qk}are functions of both sets of poles {pk}and {qk}.

Response of Pole-Zero Systems with Non-zero Initial Conditions:

We consider the input signal x(n) to be a causal signal applied at n=0. The effects of all previous

input signals to the system are reflected in the initial conditions y(-1), y(-2), , y(-N). We

are interested in determining the output y(n) for 𝑛 ≥ 0.

𝑌+(𝑧) = −∑𝑎𝑘𝑧
−𝑘 [𝑌+(𝑧) +∑𝑦(−𝑛)𝑧𝑛

𝑘

𝑛=1

] +∑𝑏𝑘𝑧
−𝑘𝑋+(𝑧)

𝑀

𝑘=0

𝑁

𝑘=1

24 | P a g e

Causality and Stability:

A causal linear time invariant system is one whose unit sample response h(n) satisfies the

condition

 h(n) = 0 n < 0

An LTI system is causal if and only if the ROC of the system function is the exterior of a circle

of radius 𝑟 < ∞, including the point 𝑧 = ∞.

A necessary and sufficient condition for an LTI system to be BIBO stable is

∑ |ℎ(𝑛)| < ∞

∞

𝑛=−∞

An LTI system is BIBO stable if and only if the ROC of the system function includes the unit

circle.

Consequently, a causal and stable system must have a system function that converges for |𝑧| >

𝑟 < 1. Since the ROC cannot contain any poles of H(z) , it follows that a causal linear time-

invariant system is BIBO stable if and only if all the poles of H(z) are inside the unit circle.

The DFT as a Linear Transformation:

The formulas for the DFT and IDFT may be expressed as

𝑋(𝑘) = ∑ 𝑥(𝑛)𝑊𝑁
𝑘𝑛

𝑁−1

𝑛=0

 , 𝑘 = 0,1, … . , 𝑁 − 1 …………… . . (3.1)

𝑥(𝑛) =
1

𝑁
∑𝑋(𝑘)

𝑁−1

𝑘=0

𝑊𝑁
−𝑘𝑛 , 𝑛 = 0,1, … ,𝑁 − 1 ………………(3.2)

 where 𝑊𝑁 = 𝑒
−𝑗2𝜋

𝑁

which is an Nth root of unity.

The computation of each point of the DFT can be accomplished by N complex multiplications

and (N-1) complex additions. Hence the N-point DFT values can be computed in a total of N2

complex multiplications and N(N-1) complex additions.

Let us define an N-point vector xN of the signal sequence x(n), n=0,1,…,N-1, an N-point vector

XN of frequency samples, and an 𝑁 × 𝑁 matrix 𝑾𝑁 as

25 | P a g e

𝐱𝑁 = [

𝑥(0)
𝑥(1)
⋮

𝑥(𝑁 − 1)

] , 𝐗𝑁 = [

𝑋(0)
𝑋(1)
⋮

𝑋(𝑁 − 1)

]

𝑾𝑁 =

[

 1
1
⋮
⋮
1

1
𝑊𝑁
𝑊𝑁
2

⋮
𝑊𝑁
𝑁−1

1
𝑊𝑁
2

𝑊𝑁
4

⋮

𝑊𝑁
2(𝑁−1)

⋯
⋯
⋯
⋮
⋯

1
𝑊𝑁
𝑁−1

𝑊𝑁
2(𝑁−1)

⋮

𝑊𝑁
(𝑁−1)(𝑁−1)

]

 ……………… . . (3.3)

With these definitions, the N-point DFT may be expressed in the matrix form as

𝐗𝑁 = 𝐖𝑁𝐱𝑁 ……………………… . (3.4)

where 𝐖𝑁 is the matrix of the linear transformation. 𝐖𝑁 is a symmetric matrix. If we assume

that the inverse of 𝐖𝑁 exists, then we also write

𝐱𝑁 = 𝐖𝑁
−1𝐗𝑁 ……………………… . (3.5)

IDFT can also be expressed as

𝐱𝑁 =
1

𝑁
𝐖𝑁
∗𝐗𝑁 ………………………… . (3.6)

where 𝐖𝑁
∗ denotes the complex conjugate of the matrix 𝐖𝑁. Comparison of equations 3.5 and

3.6 leads us to conclude that

𝐖𝑁
−1 =

1

𝑁
𝐖𝑁
∗ ……………………(3.7)

which in turn implies

𝐖𝑁𝐖𝑁
∗ = 𝑁𝐈𝑁 …………………………… . (3.8)

where 𝐈𝑁 is a 𝑁 × 𝑁 identity matrix.

Circular Convolution:

Suppose that we have two finite-duration sequences of length N, 𝑥1(𝑛) and 𝑥2(𝑛). Their

respective N point DFTs are

𝑋1(𝑘) = ∑ 𝑥1(𝑛)𝑒
−𝑗2𝜋𝑛𝑘/𝑁

𝑁−1

𝑛=0

 , 𝑘 = 0,1, … ,𝑁 − 1 …………………(4.1)

26 | P a g e

𝑋2(𝑘) = ∑ 𝑥2(𝑛)𝑒
−𝑗2𝜋𝑛𝑘/𝑁

𝑁−1

𝑛=0

 , 𝑘 = 0,1, … ,𝑁 − 1 …………………(4.2)

Multiplying the above two DFTs we get:

𝑋3(𝑘) = 𝑋1(𝑘)𝑋2(𝑘) , 𝑘 = 0,1, … ,𝑁 − 1 …………………(4.2)

IDFT of {𝑋3(𝑘)} is

 𝑥3(𝑚) =
1

𝑁
∑ 𝑋3(𝑘)𝑒

𝑗2𝜋𝑘𝑚
𝑁

𝑁−1

𝑛=0

 =
1

𝑁
∑ 𝑋1(𝑘)𝑋2(𝑘)𝑒

𝑗2𝜋𝑘𝑚
𝑁

𝑁−1

𝑛=0

 …………………(4.3)

Substituting for 𝑋1(𝑘) and 𝑋2(𝑘) in (4.3) using DFTs given in (4.1) and (4.2), we obtain

 𝑥3(𝑚)

=
1

𝑁
∑ [∑ 𝑥1(𝑛)𝑒

−
𝑗2𝜋𝑛𝑘
𝑁

𝑁−1

𝑛=0

] [∑ 𝑥2(𝑛)𝑒
−
𝑗2𝜋𝑛𝑘
𝑁

𝑁−1

𝑛=0

] 𝑒
𝑗2𝜋𝑘𝑚
𝑁

𝑁−1

𝑛=0

 ………… . (4.4)

The inner sum in the brackets in (4.4) has the form

∑𝑎𝑘 = {

 𝑁 , 𝑎 = 1

1 − 𝑎𝑁

1 − 𝑎
, 𝑎 ≠ 1

𝑁−1

𝑘=0

…………… . . (4.5)

where 𝑎 is defined as

𝑎 = 𝑒𝑗2𝜋(𝑚−𝑛−𝑙)/𝑁

Consequently,

∑𝑎𝑘 = {
𝑁 , 𝑙 = 𝑚 − 𝑛 + 𝑝𝑁 = ((𝑚 − 𝑛))𝑁 , 𝑝 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟
0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑁−1

𝑘=0

 ……… . . (4.6)

If we substitute the result in (4.6) into (4.4) , we obtain

 𝒙𝟑(𝒎) = ∑ 𝒙𝟏(𝒏)𝒙𝟐

𝑵−𝟏

𝒏=𝟎

((𝒎 − 𝒏))𝑵 , 𝑚 = 0,1, … ,𝑁 − 1 ……… . . (4.7)

The above convolution sum is called circular convolution. Thus we conclude that

multiplication of the DFTs of two sequences is equivalent to the circular convolution of the

two sequences in the time domain.

27 | P a g e

Linear Filtering Methods Based on the DFT:

Use of the DFT in Linear Filtering:

Suppose we have a finite-duration sequence x(n) of length L which excites an FIR filter of

length M. Let

𝑥(𝑛) = 0, 𝑛 < 0 𝑎𝑛𝑑 𝑛 ≥ 𝐿

ℎ(𝑛) = 0, 𝑛 < 0 𝑎𝑛𝑑 𝑛 ≥ 𝑀

where ℎ(𝑛) is the impulse response of the FIR filter.

The output sequence 𝑦(𝑛) of the FIR filter:

 𝑦(𝑛) = ∑ ℎ(𝑘)𝑥(𝑛 − 𝑘)

𝑀−1

𝑘=0

 ………………(5.1)

The duration of 𝑦(𝑛) is 𝐿 +𝑀 − 1.

 The frequency-domain equivalent to (5.1) is

 𝑌(𝜔) = 𝑋(𝜔)𝐻(𝜔) ……………………(5.2)

If the sequence 𝑦(𝑛) is to be represented uniquely in the frequency domain by samples of its

spectrum 𝑌(𝜔) at a set of discrete frequencies, the number of distinct samples must equal or

exceed 𝐿 +𝑀 − 1. Therefore, a DFT of size 𝑁 ≥ 𝐿 +𝑀 − 1 is required to represent {y(n)} in

the frequency domain.

Now if

𝑌(𝑘) ≡ 𝑌(𝜔)|
𝜔=

2𝜋𝑘
𝑁
 , 𝑘 = 0,1, … ,𝑁 − 1

 = 𝑋(𝜔)𝐻(𝜔)|
𝜔=

2𝜋𝑘
𝑁

, 𝑘 = 0,1, … ,𝑁 − 1

then

 𝑌(𝑘) = 𝑋(𝑘)𝐻(𝑘) , 𝑘 = 0,1, … ,𝑁 − 1 …………… . . (5.3)

where {𝑋(𝑘)} and {𝐻(𝑘)} are the N-point DFTs of the corresponding sequences x(n) and h(n),

respectively. Since the sequences x(n) and h(n) have a duration less than N, we simply pad

these sequences with zeros to increase their length to N.

28 | P a g e

Since the (𝑁 = 𝐿 +𝑀 − 1)-point DFT of the output sequence y(n) is sufficient to represent

y(n) in the frequency domain, it follows that the multiplication of the N-point DFTs X(k) and

H(k) followed by the computation of the N-point IDFT, must yield sequence {y(n)}.

Thus, the N-point circular convolution of x(n) with h(n) must be equivalent to the linear

convolution of x(n) with h(n). Thus with zero padding, the DFT can be used to perform linear

filtering.

Filtering of Long Data Sequences:

Let the FIR filter has duration M. The input data sequence is segmented into blocks of L points,

where , by assumption, 𝐿 ≫ 𝑀.

Overlap-save method:

Size of input data blocks, 𝑁 = 𝐿 + 𝑁 − 1

DFTs and IDFTs are of length 𝑁.

Each data block consists of the last 𝑀− 1 data points of the previous data block followed by

𝐿 new data points to form a data sequence of length 𝑁 = 𝐿 + 𝑁 − 1. An 𝑁-point DFT is

computed for each data block.

The impulse response of the FIR filter is increased in length by appending 𝐿 − 1 zeros and an

𝑁-point DFT of the sequence is computed once and stored. The multiplication of the two 𝑁-

point DFTs {𝐻(𝑘)} and {𝑋𝑚(𝑘)} for the mth block of data yields

𝑌̂𝑚(𝑘) = 𝐻(𝑘)𝑋𝑚(𝑘), 𝑘 = 0,1, … ,𝑁 − 1 ………… . (5.4.1)

Then the N-point IDFT yields the result

𝑌̂𝑚(𝑛) = {𝑦̂𝑚(0)𝑦̂𝑚(1)… 𝑦̂𝑚(𝑀 − 1)𝑦̂𝑚(𝑀)… 𝑦̂𝑚(𝑁 − 1)} ……… . (5.4.2)

Since the data record is of length 𝑁, the first 𝑀 − 1 points of 𝑦𝑚(𝑛) are corrupted by aliasing

and must be discarded. The last 𝐿 points of 𝑦𝑚(𝑛) are exactly same as the result from linear

convolution and, as a consequence,

𝑦̂𝑚(𝑛) = 𝑦𝑚(𝑛) , 𝑛 = 𝑀,𝑀 + 1,… , 𝑁 − 1 …………(5.4.3)

29 | P a g e

To avoid loss of data due to aliasing, the last 𝑀 − 1 points of each data record are saved and

these points become the first 𝑀 − 1 points of the subsequent record. To begin the processing,

the first 𝑀 − 1 points of the first record are set to zero. Thus blocks of data sequences are:

𝑥1(𝑛) = {0, 0, … , 0⏟
𝑀−1 𝑝𝑜𝑖𝑛𝑡𝑠

, 𝑥(0), 𝑥(1), … , 𝑥(𝐿 − 1)} ……… . (5.4.4)

𝑥2(𝑛) = {𝑥 (𝐿 − 𝑀 + 1),… , 𝑥(𝐿 − 1)⏟
𝑀−1 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠 𝑓𝑟𝑜𝑚 𝑥1(𝑛)

, 𝑥(𝐿), … , 𝑥(2𝐿 − 1)⏟
𝐿 𝑛𝑒𝑤 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠

} ……… (5.4.5)

 𝑥3(𝑛) = {𝑥 (2𝐿 − 𝑀 + 1),… , 𝑥(2𝐿 − 1)⏟
𝑀−1 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠 𝑓𝑟𝑜𝑚 𝑥2(𝑛)

, 𝑥(2𝐿), … , 𝑥(3𝐿 − 1)⏟
𝐿 𝑛𝑒𝑤 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠

} ……… (5.4.6)

 Input signal L L L

 M-1 zeros L

 Output signal

 Discard M-1 points

 Discard M-1 points

 Discard M-1 points

(Linear FIR filtering by the overlap-save method)

 x1(n)

M-1

x2(n)

 x3(n)

 y1(n)

 y2(n)

 y3(n)

30 | P a g e

Overlap-add method:

Size of input block = 𝐿

Size of the DFTs and IDFT is 𝑁 = 𝐿 +𝑀 − 1.

To each data block we append 𝑀 − 1 zeros and compute the 𝑁-point DFT. The data blocks

may be represented as

𝑥1(𝑛) = {𝑥(0), 𝑥(1), … , 𝑥(𝐿 − 1), 0,0, … ,0⏟
𝑀−1 𝑧𝑒𝑟𝑜𝑠

} …………(5.5.1)

 𝑥2(𝑛) = {𝑥(𝐿), 𝑥(𝐿 − 1),… , 𝑥(2𝐿 − 1), 0,0, … ,0⏟
𝑀−1 𝑧𝑒𝑟𝑜𝑠

} …………(5.5.2)

𝑥3(𝑛) = {𝑥(2𝐿), … , 𝑥(3𝐿 − 1), 0,0, … ,0⏟
𝑀−1 𝑧𝑒𝑟𝑜𝑠

} …………(5.5.3)

and so on. The two 𝑁-point DFTs are multiplied together to form

𝑌𝑚(𝑘) = 𝐻(𝑘)𝑋𝑚(𝑘), 𝑘 = 0,1, … ,𝑁 − 1 …… . . (5.5.4)

The IDFT yields data blocks of length 𝑁 that are free of aliasing, since the size of the DFTs

and IDFT is 𝑁 = 𝐿 +𝑀 − 1 and the sequences are increased to 𝑁-points by appending zeros

to each block.

Since each data block is terminated with M-1 zeros , the last M-1 points from each output block

must be overlapped and added to the first M-1 points of the succeeding block. Hence this

method is called the overlap-add method. The output sequence is:

𝑦(𝑛) = {𝑦1(0), 𝑦1(1),… , 𝑦1(𝐿 − 1), 𝑦1(𝐿)+𝑦2(0), 𝑦1(𝐿 + 1) + 𝑦2(1), … , 𝑦1(𝑁 − 1) +

 𝑦2(𝑀 −

1), 𝑦2(𝑀) , … } …………… . . (5.5.5)

31 | P a g e

 Input data L L L

 M-1 zeros

 M-1 zeros

Output data

 M-1 points add together

 M-1 points add together

(Linear FIR filtering by the overlap-add method)

The Discrete Cosine Transform :

Forward DCT:

Let an N-point sequence x(n) which is real and even, that is,

 𝑥(𝑛) = 𝑥(𝑁 − 𝑛), 0 ≤ 𝑛 ≤ 𝑁 − 1

Let s(n) be a 2N-point even symmetric extension of x(n) defined by

 x1(n)

 x2(n)

 x3(n)

 y1(n)

 y2(n)

 y3(n)

32 | P a g e

𝑠(𝑛) = {
𝑥(𝑛), 0 ≤ 𝑛 ≤ 𝑁 − 1
𝑥(2𝑁 − 𝑛 − 1), 𝑁 ≤ 𝑛 ≤ 2𝑁 − 1

 ………… . (6.1)

The DCT of x(n) can be computed by taking the 2N-point DFT of s(n) and multiplying the

result by 𝑊2𝑁
𝑘/2

. The forward DCT is defined by

𝑉(𝑘) = 2∑ 𝑥(𝑛) cos [
𝜋

𝑁
(𝑛 +

1

2
) 𝑘]

𝑁−1

𝑛=0

 , 0 ≤ 𝑘 ≤ 𝑁 − 1 ……………… . . (6.2)

Inverse DCT

𝑥(𝑛) =
1

𝑁
{
𝑉(0)

2
+∑ 𝑉(𝑘) cos [

𝜋

𝑁
(𝑛 +

1

2
) 𝑘]

𝑁−1

𝑘=1

} , 0 ≤ 𝑛 ≤ 𝑁 − 1 …… . . (6.3)

DCT as an Orthogonal Transform

The 𝑁 × 𝑁 DCT matrix 𝐶𝑁 of the sequence 𝑥(𝑛), 0 ≤ 𝑛 ≤ 𝑁 − 1 is a real orthogonal matrix,

that is, it satisfies

 𝐶𝑁
−1 = 𝐶𝑁

𝑇 ……… . . (6.4)

Orthogonality simplifies the computation of the inverse transform because it replaces matrix

inversion by matrix transposition.

Circular Correlation :

If x(n) and y(n) are two periodic sequences, each with period N, then their cross correlation

sequence is defined as

 𝑟𝑥𝑦(𝑙) =
1

𝑁
∑ 𝑥(𝑛)𝑦(𝑛 − 𝑙) …………(7.1)

𝑁−1

𝑛=0

33 | P a g e

Module-III

Fast Fourier Transform Algorithms:

1. Introduction

For a finite-duration sequence x(n) of length N, the DFT sum may be written as

𝑋(𝑘) = ∑ 𝑥(𝑛)𝑊𝑁
𝑘𝑛 , 𝑘 = 0,1, … ,𝑁 − 1

𝑁−1

𝑛=0

Where 𝑊𝑁 = 𝑒
−𝑗2𝜋/𝑁 . There are a total of N values of X(.) ranging from X(0) to X(N–1). The

calculation of X(0) involves no multiplications at all since every product term involves 𝑊𝑁
0 = 𝑒−𝑗0 =

1. Further, the first term in the sum always involves 𝑊𝑁
0 or 𝑒−𝑗0 = 1 and therefore does not require

a multiplication. Each X(.) calculation other than X(0) thus involves (N-1) complex multiplications.

And each X(.) involves (N–1) complex additions. Since there are N values of X(.) the overall DFT

requires (N-1)2 complex multiplications and N(N-1) complex additions. For large N we may round

these off to N2 complex multiplications and the same number of complex additions.

Each complex multiplication is of the form

(A + jB) (C + jD) = (AC – BD) + j(BC + AD)

and therefore requires four real multiplications and two real additions. Each complex addition is of

the form

(A + jB) + (C + jD) = (A + C) + j(B + D)

and requires two real additions. Thus the computation of all N values of the DFT requires 4N2 real

multiplications and 4N2 (= 2N2 + 2N2) real additions. Efficient algorithms which reduce the number

of multiply-and-add operations are known by the name of fast Fourier transform (FFT). The

Cooley-Tukey and Sande-Tukey FFT algorithms exploit the following properties of the twiddle

factor (phase factor), 𝑊𝑁 = 𝑒
−𝑗2𝜋/𝑁 (the factor 𝑒−𝑗2𝜋/𝑁 is called the Nth principal root of 1):

1. Symmetry property 𝑊𝑁
𝑘+𝑁/2

= −𝑊𝑁
𝑘

2. Periodicity property 𝑊𝑁
𝑘+𝑁 = 𝑊𝑁

𝑘

To illustrate, for the case of N = 8, these properties result in the following relations:

𝑊8
0 = −𝑊8

4 = 1 𝑊8
1 = −𝑊8

5 =
1−𝑗

√2

𝑊8
2 = −𝑊8

6 = −𝑗 𝑊8
3 = −𝑊8

7 = −
1+𝑗

√2

34 | P a g e

The use of these properties reduces the number of complex multiplications from N2 to
𝑁

2
log2𝑁

(actually the number of multiplications is less than this because several of the multiplications by 𝑊𝑁
𝑟

are really multiplications by ±1 or ±j and don’t count); and the number of complex additions are

reduced from N 2 to N log2𝑁 . Thus, with each complex multiplication requiring four real

multiplications and two real additions and each complex addition requiring two real additions, the

computation of all N values of the DFT requires

Number of real multiplications = 4 (
𝑁

2
log2𝑁) = 2𝑁 log2𝑁

Number of real additions = 2𝑁 log2𝑁 + 2(
𝑁

2
log2𝑁) = 3𝑁 log2𝑁

We can get a rough comparison of the speed advantage of an FFT over a DFT by computing the

number of multiplications for each since these are usually more time consuming than additions. For

instance, for N = 8 the DFT, using the above formula, would need 82 = 64 complex multiplications,

but the radix-2 FFT requires only 12 (=
8

2
log2 8 = 4 × 3).

We consider first the case where the length N of the sequence is an integral power of 2, that is, N=2ν

where ν is an integer. These are called radix-2 algorithms of which the decimation-in-time (DIT)

version is also known as the Cooley-Tukey algorithm and the decimation-in-frequency (DIF)

version is also known as the Sande-Tukey algorithm. We show first how the algorithms work; their

derivation is given later. For a radix of (r = 2), the elementary computation (EC) known as the

butterfly consists of a single complex multiplication and two complex additions.

If the number of points, N, can be expressed as N = r m , and if the computation algorithm is carried

out by means of a succession of r-point transforms, the resultant FFT is called a radixr algorithm.

In a radix-r FFT, an elementary computation consists of an r-point DFT followed by the

multiplication of the r results by the appropriate twiddle factor. The number of ECs required is

𝐶𝑟 =
𝑁

𝑟
log𝑟 𝑁

which decreases as r increases. Of course, the complexity of an EC increases with increasing r. For

r = 4, the EC requires three complex multiplications and several complex additions.

Suppose that we desire an N-point DFT where N is a composite number that can be

factored into the product of integers

N = N1 N2 … Nm

35 | P a g e

If, for instance, N = 64 and m = 3, we might factor N into the product 64 = 4 x 4 x 4, and the 64-point

transform can be viewed as a three-dimensional 4 x 4 x 4 transform. If N is a prime number so that

factorization of N is not possible, the original signal can be zero-padded and the resulting new

composite number of points can be factored.

2. Radix-2 decimation-in-time FFT (Cooley-Tukey)

Procedure and important points

1. The number of input samples is N = 2ν where ν is an integer.

2. The input sequence is shuffled through bit-reversal. The index n of the sequence x(n) is

expressed in binary and then reversed.

3. The number of stages in the flow graph is given by ν = log2𝑁.

4. Each stage consists of N/2 butterflies.

5. Inputs/outputs for each butterfly are separated as follows:

Separation = 2m-1 samples where m = stage index, stages being numbered from left to right

(that is, m = 1 for stage 1, m = 2 for stage 2 etc.). This amounts to separation increasing

from left to right in the order 1, 2, 4… N/2.

6. The number of complex additions = 𝑁 log2𝑁 and the number of complex multiplications
𝑁

2
log2𝑁.

7. The elementary computation block in the flow graph, called the butterfly, is shown here.

This is an in-place calculation in that the outputs (A + B 𝑊𝑁
𝑘) and (A – B 𝑊𝑁

𝑘
) can be

computed and stored in the same locations as A and B.

36 | P a g e

Example 1 Radix-2, 8-point, decimation-in-time FFT for the sequence

n→ 0 1 2 3 4 5 6 7

x(n) = {1, 2 3 4 –4 –3 –2 –1}

Solution The twiddle factors are

𝑊8
0 = 1 𝑊8

1 = 𝑒−𝑗2𝜋/8 = 𝑒−𝑗𝜋/4 =
1

√2
− 𝑗

1

√2

𝑊8
2 = (𝑒−𝑗2𝜋/8)

2
= 𝑒−𝑗𝜋/2 = −𝑗 𝑊8

3 = (𝑒−𝑗2𝜋/8)
3
= 𝑒−𝑗3𝜋/4 = −

1

√2
− 𝑗

1

√2

One of the elementary computations is shown below:

The signal flow graph follows:

The DFT is

X(k) = {0, (5 – j12.07), (–4 + j4), (5 – j2.07), –4, (5 + j2.07), (–4 – j4), (5 + j12.07)}

37 | P a g e

3. Radix-2 decimation-in-frequency FFT (Sande-Tukey)

Procedure and important points

1. The number of input samples is N = 2ν where ν is an integer.

2. The input sequence is in natural order; the output is in bit-reversed order.

3. The number of stages in the flow graph is given by ν = log2𝑁.

4. Each stage consists of N/2 butterflies.

5. Inputs/outputs for each butterfly are separated in the reverse order from that of the DIT.

The separation decreases from left to right in the order N/2, … , 4, 2, 1.

6. The number of complex additions = N log2𝑁 and the number of complex multiplications

is
𝑁

2
log2𝑁.

7. The basic computation block in the flow graph of the DIF FFT is the butterfly shown here.

This is an in-place calculation in that the two outputs (A + B) and (A – B) 𝑊𝑁
𝑘 can be

computed and stored in the same locations as A and B.

Example 2: Radix-2, 8-point, decimation-in-frequency FFT for the sequence

n→ 0 1 2 3 4 5 6 7

x(n) = {1, 2 3 4 –4 –3 –2 –1}

Solution :

The twiddle factors are the same as in the DIT FFT done earlier (both being 8-point DFTs):

𝑊8
0 = 1 𝑊8

1 = 𝑒−𝑗2𝜋/8 = 𝑒−𝑗𝜋/4 =
1

√2
− 𝑗

1

√2

𝑊8
2 = (𝑒−𝑗2𝜋/8)

2
= 𝑒−𝑗𝜋/2 = −𝑗 𝑊8

3 = (𝑒−𝑗2𝜋/8)
3
= 𝑒−𝑗3𝜋/4 = −

1

√2
− 𝑗

1

√2

One of the elementary computations is shown below:

38 | P a g e

The signal flow graph follows:

The DFT is

X(k) = {0, (5 – j12.07), (–4 + j4), (5 – j2.07), –4, (5 + j2.07), (–4 – j4), (5 + j12.07)}

(DIT Template)

The elementary computation (Butterfly):

The signal flow graph:

39 | P a g e

(DIF Template)

The elementary computation (Butterfly):

The signal flow graph:

40 | P a g e

16-point DIF FFT

41 | P a g e

4. Inverse DFT using the FFT algorithm

The inverse DFT of an N-point sequence {X(k), k = 1, 2, … , (N–1)} is defined as

𝑥(𝑛) =
1

𝑁
∑𝑋(𝑘)𝑊𝑁

−𝑘𝑛 , 𝑛 = 0,1, … ,𝑁 − 1

𝑁−1

𝑘=0

Where 𝑊𝑁 = 𝑒
−𝑗2𝜋/𝑁. Take the complex conjugate of x(n) and multiply by N to get

𝑁𝑥∗(𝑛) = ∑ 𝑋∗(𝑘)𝑊𝑁
𝑘𝑛

𝑁−1

𝑘=0

The right hand side of the above equation is simply the DFT of the sequence 𝑋∗(𝑘) and can be

computed by using any FFT algorithm. The desired output sequence is then found by taking the

conjugate of the result and dividing by N

𝑥(𝑛) =
1

𝑁
(∑ 𝑋∗(𝑘)𝑊𝑁

𝑘𝑛

𝑁−1

𝑘=0

)

∗

Example 3: Given the DFT sequence X(k) = {0, (–1–j), j, (2+j), 0, (2–j), –j, (–1+j)} obtain the

IDFT x(n) using the DIF FFT algorithm.

Solution:

 This is an 8-point IDFT. The 8-point twiddle factors are, as calculated earlier,

𝑊8
0 = 1 𝑊8

1 = 𝑒−𝑗2𝜋/8 = 𝑒−𝑗𝜋/4 =
1

√2
− 𝑗

1

√2

𝑊8
2 = (𝑒−𝑗2𝜋/8)

2
= 𝑒−𝑗𝜋/2 = −𝑗 𝑊8

3 = (𝑒−𝑗2𝜋/8)
3
= 𝑒−𝑗3𝜋/4 = −

1

√2
− 𝑗

1

√2

The elementary computation (Butterfly) is shown below:

42 | P a g e

The signal flow graph follows:

The output at stage 3 gives us the values {8𝑥∗(𝑛)} in bit-reversed order:

{8𝑥∗(𝑛)}𝑏𝑖𝑡 𝑟𝑒𝑣 𝑜𝑟𝑑𝑒𝑟 = {2, –2, 4, –4, –6.24, 2.24, 6.24, –2.24}

The IDFT is given by arranging the data in normal order, taking the complex conjugate of the

sequence and dividing by 8:

{8𝑥∗(𝑛)}𝑛𝑜𝑟𝑚𝑎𝑙𝑜𝑟𝑑𝑒𝑟 = {2, –6.24, 4, 6.24, –2, 2.24, –4, –2.24}

𝑥(𝑛) = {
1

4
,
−6.24

8
,
1

2
,
6.24

8
,
1

4
,
2.24

8
,−
1

2
,
−2.24

8
}

𝑥(𝑛) = {0.25,−0.78, 0.5, 0.78, −0.25,0.28, −0.5, −0.28}
Example 4: Given the DFT sequence X(k) = {0, (1–j), j, (2+j), 0, (2–j), (–1+j), –j}, obtain the IDFT

x(n) using the DIF FFT algorithm.

Solution:

There is no conjugate symmetry in {X(k)}. Using MATLAB

X = [0, 1-1j, 1j, 2+1j, 0, 2-1j, -1+1j, -1j]

x = ifft(X)

The IDFT is

x(n) = {0.5, (-0.44 + 0.037i), (0.375 - 0.125i), (0.088 + 0.14i), (-0.75 + 0.5i), (0.44 + 0.21i), (-0.125

- 0.375i), (-0.088 - 0.39i)}

43 | P a g e

5. APPLICATIONS OF FFT ALGORITHMS:

1. Efficient Computation of the DFT of Two Real Sequences

The FFT algorithm is designed to perform complex multiplications and additions, even though the

input data may be real valued. The basic reason for this situation is that the phase factors are complex

and hence, after the first stage of the algorithm, all variables are basically complex-valued. In view

of the fact that the algorithm can handle complex -valued input sequences, we can exploit this

capability in the computation of the DFT of two real-valued sequences. Suppose that 𝑥1(𝑛) and

𝑥2(𝑛) are two real-valued sequences of length N, and let x(n) be a complex-valued sequence defined

as

𝑥(𝑛) = 𝑥1(𝑛) + 𝑗𝑥2(𝑛) 0 ≤ 𝑛 ≤ 𝑁 − 1

The DFT operation is linear and hence the DFT of x(n) can be expressed as

𝑋(𝑘) = 𝑋1(𝑘) + 𝑗𝑋2(𝑘)

The sequences 𝑥1(𝑛) and 𝑥2(𝑛)can be expressed in terms of x(n) as follows:

𝑥1(𝑛) =
𝑥(𝑛) + 𝑥∗(𝑛)

2

𝑥2(𝑛) =
𝑥(𝑛) − 𝑥∗(𝑛)

2𝑗

Hence the DFTs of 𝑥1(𝑛) and 𝑥2(𝑛) are

𝑋1(𝑘) =
1

2
{𝐷𝐹𝑇[𝑥(𝑛)] + 𝐷𝐹𝑇[𝑥∗(𝑛)]}

𝑋2(𝑘) =
1

2𝑗
{𝐷𝐹𝑇[𝑥(𝑛)] − 𝐷𝐹𝑇[𝑥∗(𝑛)]}

Recall that the DFT of 𝑥∗(𝑛) is 𝑋∗(𝑁 − 𝑘). Therefore

𝑋1(𝑘) =
1

2
[𝑋(𝑘) + 𝑋∗(𝑁 − 𝑘)]

𝑋2(𝑘) =
1

2𝑗
[𝑋(𝑘) − 𝑋∗(𝑁 − 𝑘)]

Thus, by performing a single DFT on the complex-valued sequence x(n), we have obtained the DFT

of the two real sequences with only a small amount of additional computation that is involved in

computing 𝑋1(𝑘) and 𝑋2(𝑘)from X(k).

44 | P a g e

2. Efficient Computation of the DFT of a 2N-Point Real Sequence

Suppose that g(n) is a real-valued sequence of 2N points. We now demonstrate how to obtain the

2N-point DFT of g(n) from computation of one N-point DFT involving complex-valued data. First,

we define

𝑥1(𝑛) = 𝑔(2𝑛)

𝑥2(𝑛) = 𝑔(2𝑛 + 1)

Thus we have subdivided the 2N-point real sequence into two N-point real sequences. Now we can

apply the method described in the preceding section.

Let x(n) be the N-point complex-valued sequence

𝑥(𝑛) = 𝑥1(𝑛) + 𝑗𝑥2(𝑛)

From the results of the preceding section, we have

𝑋1(𝑘) =
1

2
[𝑋(𝑘) + 𝑋∗(𝑁 − 𝑘)]

𝑋2(𝑘) =
1

2𝑗
[𝑋(𝑘) − 𝑋∗(𝑁 − 𝑘)]

Finally, we must express the 2N-point DFT in terms of the two N-point DFTs, 𝑋1(𝑘) and 𝑋2(𝑘). To

accomplish this, we proceed as in the decimation-in-time FFT algorithm, namely,

𝐺(𝑘) = ∑ 𝑔(2𝑛)𝑊2𝑁
2𝑛𝑘

𝑁−1

𝑛=0

+∑𝑔(2𝑛 + 1)𝑊2𝑁
(2𝑛+1)𝑘

𝑁−1

𝑛=0

= ∑ 𝑥1(𝑛)𝑊𝑁
𝑛𝑘

𝑁−1

𝑛=0

+𝑊2𝑁
𝑘 ∑𝑥2(𝑛)𝑊𝑁

𝑛𝑘

𝑁−1

𝑛=0

Consequently,

𝐺(𝑘) = 𝑋1(𝑘) +𝑊2
𝑘𝑁𝑋2(𝑘) 𝑘 = 0,1, … . , 𝑁 − 1

𝐺(𝑘 + 𝑁) = 𝑋1(𝑘) −𝑊2
𝑘𝑁𝑋2(𝑘) 𝑘 = 0,1, … . , 𝑁 − 1

Thus we have computed the DFT of a 2N-point real sequence from one N-point DFT and some

additional computation.

45 | P a g e

6. The Chirp-z Transform Algorithm:

The DFT of an N-point data sequence x(n) has been viewed as the z-transform of 𝑥1(𝑛) evaluated at

N equally spaced points on the unit circle. It has also been viewed as N equally spaced samples of

the Fourier transform of the data sequence x(n). In this section we consider the evaluation of X(z) on

other contours in the z-plane, including the unit circle.

Suppose that we wish to compute the values of the z-transform of x(n) at a set of points {zk}. Then,

𝑋(zk) = ∑ 𝑥(𝑛)𝑧𝑘
−𝑛 𝑘 = 0,1, … , 𝐿 − 1

𝑁−1

𝑛=0

For example, if the contour is a circle of radius r and the zk are N equally spaced points, then

𝑧𝑘 = 𝑟𝑒
𝑗2𝜋𝑘𝑛/𝑁 𝑘 = 0,1,2, … , 𝑁 − 1

𝑋(zk) = ∑[𝑥(𝑛)𝑟−𝑛]𝑒−𝑗2𝜋𝑘𝑛/𝑁 𝑘 = 0,1,2, … ,𝑁 − 1

𝑁−1

𝑛=0

In this case the FFT algorithm can be applied on the modified sequence 𝑥(𝑛)𝑟−𝑛 .
More generally, suppose that the points zk in the z-plane fall on an arc which begins at

some point

z0 = r0𝑒

𝑗𝛳0

and spirals either in toward the origin or out away from the origin such that the points zk are defined

as

zk = r0𝑒
𝑗𝛳0(R0𝑒

𝑗𝜙0)
𝑘
 𝑘 = 0,1, … , 𝐿 − 1

Note that if R0 < 1, the points fall on a contour that spirals toward the origin and if R0 > 1, the contour

spirals away from the origin. If Ro = 1, the contour is a circular arc of radius r0. If r0 = 1 and R0 = l,

the contour is an arc of the unit circle. The latter contour would allow us to compute the frequency

content of the sequence x(n) at a dense set of L frequencies in the range covered by the arc without

having to compute a large DFT, that is, a DFT of the sequence x(n) padded with many zeros to obtain

the desired resolution in frequency. Finally, if r0 = R0 = 1, = 0, ϴ0 = 0, ϕ0 = 2n / N, and L = N, the

contour is the entire unit circle and the frequencies are those of the DFT.

46 | P a g e

When points {zk} are substituted into the expression for the z transform, we obtain

𝑋(zk) = ∑ 𝑥(𝑛)𝑧𝑘
−𝑛

𝑁−1

𝑛=0

= ∑ 𝑥(𝑛)(r0𝑒
𝑗𝛳0)

−𝑛
𝑉−𝑛𝑘

𝑁−1

𝑛=0

where, by definition, 𝑉 = R0𝑒
𝑗𝜙0

47 | P a g e

We can express the above equation in the form of a convolution, by noting that

𝑛𝑘 =
1

2
[𝑛2 + 𝑘2 − (𝑘 − 𝑛)2]

𝑋(zk) = 𝑉
−𝑘2/2∑[𝑥(𝑛)(r0𝑒

𝑗𝛳0)
−𝑛
𝑉−𝑛

2/2]𝑉(𝑘−𝑛)
2/2

𝑁−1

𝑛=0

Let us define a new sequence g(n) as

𝑔(𝑛) = 𝑥(𝑛)(r0𝑒
𝑗𝛳0)

−𝑛
𝑉−𝑛

2/2

Then,

𝑋(zk) = 𝑉
−𝑘2/2∑𝑔(𝑛)𝑉(𝑘−𝑛)

2/2

𝑁−1

𝑛=0

The summation in the above expression can be interpreted as the convolution of the sequence g(n)

with the impulse response h(n) of a filter, where

ℎ(𝑛) = 𝑉𝑛
2/2

Hence,

𝑋(zk) = 𝑉
−𝑘2/2𝑦(𝑘) =

𝑦(𝑘)

ℎ(𝑘)
 𝑘 = 0,1, … , 𝐿 − 1

Where y(k) is the output of the filter

𝑦(𝑘) = ∑ 𝑔(𝑛)ℎ(𝑘 − 𝑛)

𝑁−1

𝑛=0

 𝑘 = 0,1, … , 𝐿 − 1

We observe that both h(n) and g(n) are complex-valued sequences. The sequence h(n) with R0 = 1

has the form of a complex exponential with argument 𝑤𝑛 = 𝑛2𝜙0/2 = (𝑛𝜙0/2)𝑛. The quantity

𝑛𝜙0/2 represents the frequency of the complex exponential signal, which increases linearly with

time. Such signals are used in radar systems and are called chirp signals. Hence the z-transform

evaluated is called the chirp-z transform.

48 | P a g e

MODULE 4:

Structures for FIR and IIR Systems:

Structure for FIR Systems:

In general a FIR system is described by the difference equation







1

0

)()(
M

k

k knxbny

Or equivalently, by the system function







1

0

)(
M

k

k

k zbzH

1. Direct-Form Structure:

The direct-form realization follows the convolution summation

Direct form realisation of FIR system

We observe that this structure requires M-1 memory locations for storing the M-1

previous inputs, and has a complexity of M multiplications and M-1 additions per

output point. Since the output consists of a weighted linear combination of M-1 past

values of the input and the weighted current value of the input, the structure in above

figure, resembles a tapped delay line or a transversal system consequently, the direct-

form realization is often called a transversal or tapped-delay-line filter.

49 | P a g e

2. Cascade-Form Structures:

The cascade realization follows naturally from the system function given by

It is simple matter to factor H(z) into second order FIR system so that





M

k

k zHzH
1

)()(

Where Hk (z)=bk0+bk1z
-1+bk2z

-2 , k=1,2,3…………k

And K is the integer part of (M + l) /2. The filter parameter b0 may be equally

distributed among the K filter sections, such that or it may be

assigned to a single filter section. The zeros of H (z) are grouped in pairs to produce

the second-order FIR systems. It is always desirable to form pairs of complex-

conjugate roots so that the coefficients {bki} are real valued. On the other hand, real-

valued roots can be paired in any arbitrary manner. The cascade-form realization along

with the basic second-order section is shown below.

Cascade Realisation of a FIR system

50 | P a g e

Design of Digital Filters:

Causality and Its Implications:

Let us consider the issue of causality in more detail by examining the impulse response

h(n) of an ideal low pass filter with frequency response characteristic

H(w)={
0

1









c

c

The impulse response of the filter is

h(n)={

0,
sin

0,





n
n

n

n

c

cc

c












Unit sample response of an ideal low pass filter

A plot of h{n) for wc = π/ 4 is illustrated in the above figure. It is clear that the ideal

low pass filter is noncausal and hence it cannot be realized in practice.

One possible solution is to introduce a large delay n0 in h(n) and arbitrarily to set

h(n)=0 for n < n0. However, the resulting system no longer has an ideal frequency

response characteristic. Indeed, if we set h(n) = 0 for n < n0, the Fourier series

expansion of H(w) results in the Gibbs phenomenon.

51 | P a g e

Paley-Wiener Theorem:

If h(n) has finite energy and h(n) = 0 for n < 0, then

Conversely, if |H(ω)| is square integrable and if the integral in the above equation is

finite, then we can associate with |H(ω)| a phase response , so that the resulting

filter with frequency response H(ω)=│H(ω)│ejθ(ω) is causal.

One important conclusion that we draw from the Paley-Wiener theorem is that the

magnitude function |H(ω)| can be zero at some frequencies, but it can’t be zero over

any finite band of frequencies, since the integral then becomes infinite. Consequently

any ideal filter is noncausal.

 Apparently causalty imposes some tight constraints on a linear time invariant

system. In addition to the Paley-Wiener condition causalty also implies a strong

relation between HR(ω) and HI(ω), the real and imaginary components of the frequency

response H(ω).To illustrate this dependence we decompose h(n).That iseven and an

odd sequence, that is

H(n)=he(n)+ho(n)

Where he(n)=
2

1
[h(n)+h(-n)] and

2

1
[h(n)-h(-n)]

Now, if h(n) is causal ,it is possible to recover h(n) from its even part he(n) for 0≤n≤∞

or from its odd component ho(n) for 1≤n≤∞.

Indeed, it can be easily seen that

h(n)=2he(n)u(n)-he(0)δ(n) n≥0

and

h(n)=2ho(n)u(n)-ho(0)δ(n) n≥1

Since h0 (n) = 0 for n = 0, we cannot recover h(0) from h0 (n) and hence we also must

know h(0). In any case, it is apparent that h0 (n) = he(n) for n > 1, so there is a strong

relationship between h0 (n) and he(n).

52 | P a g e

If h (n) is absolutely summable (i.e., BIBO stable), the frequency response H(w) exists,

and

In addition, if h(n) is real valued and causal, the symmetry properties of the Fourier

transform imply that

 Since h(n) is completely specified by he(n), it follows that H(ω) is completely

determined if we know HR(ω).alternatively H(ω) is completely determined from HI(ω)

and h(0).In short HR(ω) and HI(ω) are independent and cannot be specified

independently if the system is causal. Equivalently the magnitude and phase responses

of a causal filter are interdependent and hence cannot be specified independently.

Design of Linear Phase FIR filters using different windows:

In many cases a linear phase characteristics is required through the passband of the

filter. It can be shown that causal IIR filter cannot produce a linear phase characteristics

and only special forms of causal FIR filters can give linear phase. If {h[n]} represents

the impulse response of a discrete time linear system a necessary and sufficient

condition for linear phase is that {h[n]} have finite duration N, that it be symmetric

about its midpoint, i.e.

53 | P a g e

For N even we get a non-integer delay, which will cause the value of the sequence to

change.

One approach to design FIR filters linear phase is to use windows. The easiest way to

obtain FIR filter is to simply truncate the impulse response of an IIR filter. If

{hd[n]}is the impulse response of the designed FIR filter then the fir filter with

impulse response {h[n]} can be obtained as follows.

H[n]={
otherwise

NnNnhd

,0

],[21 

This can be thought of as being formed by a product of {hd[n]} and a window

function {w[n]}

{h[n]}= {hd[n]} {w[n]}

where {w[n]} is the window function.

Using modulation property of fourier transform

H(ejω)=
2

1
[Hd(e

jω) -w(ejω)]

In general for smaller N values spreading of main lobe more, and for larger N

narrower thr main lobe and │ H(ejω)│ comes closer to │ Hd(e
jω)│.Much work has

been done on adjusting {w[n]} to satisfy certain main lobe and side lobe

requirements .Some of the commonly used windows are given below-

(a) Rectangular Window

WR(n)={
otherwise

Nn

,0

10,1 

(b) Bartlett (Triangular)

WB(n)={

elsewhere

NnN
N

n

Nn
N

n

,0

12/)1(,
1

2
2

2/)1(0,
1

2









54 | P a g e

 (c) Hanning Window

WHan(n)={

otherwise

Nn
Nn

,0

10,
2

)]1/(2cos[1


 

(d)Blackman Window

WBl(n)={
   

otherwise

Nn
N

n
N

n

,0

10,
1

4cos08.
1

2cos5.42. 





 

(e)Kaiser Window

WK(n)={ 10,

,0

)
2

1
(

2

1

2

1

0

2

1
22

0









 



















 








 

Nn

otherwise

N
wI

N
n

N
I

a

a

Where I0(x) is the modified Zero Order Bessel Function of the first kind.

 The Transition width and the minimum stopped attenuation for different windows

are listed below-

We first choose a window that satisfies the minimum attenuation and the

bandwidth that allows us to choose the appropriate value of N. Actual frequency

response characteristics are then calculated and we check the requirments are met

or not

Design of IIR Filters:

There are two methods for design the IIR filter.

1. Impulse Invariant Method

2. Bilinear Transformation Method

55 | P a g e

1. Filter design by impulse invariance:

Here the impulse response h[n] of the desire discrete time system is proportional to

equally spaces samples of the continuous time filter i.e,

 H[n]=Tdha(nTd)

Where Td represents a sample interval.Since the specification of the filter are given

in discrete time domain it turns out that Td has no role to play in design of the filter.

From the sampling theorem the frequency response of the discrete time filter is

given by

 H(ejω)= 





k dd

a
T

k
j

T
jH)

2
(



Since any practical continuous time filter is not strictly band limited there is some

aliasing. However if the continuous time filter approaches zero at high frequency

the aliasing may be negligible. Then the frequency response of the discrete time

filter is

H(ejω)≈ 


-k

a)(H
dT

j


,│ω│≤πType equation here.

We first convert digital filter specifications to continuous time filter

specifications. Neglecting aliasing we get Ha(jΩ) specification by applying the

relation Ω= ω/Td. Where Ha(jΩ) is transferred to the designed filter H(z).

Let us assume that the poles of the continuous time filter are simple, then

Ha(s)= 
 

N

k k

k

ss

A

1

The corresponding Impulse response is ha(t)={

0,0

0,
1






t

teA
N

k

ts

k
k

Then h[n]=Tdha(nTd)= 


N

k

nTs

kd nueAT dk

1

][

The system function function for this is H(z)= 




N

k
Ts

kd

ze

AT
dk

1
11

We see that a pole at s= sk in the s-plane is transferred to a pole at z= dkTs
e in the

z-plane. If the continuous time filter is stable i.e Re{sk}<0, then the magnitude of
dkTs

e will be less than 1.So the pole will be inside the unit circle. Thus the causal

discrete filter is stable. The mapping of zero is not so straight forward.

56 | P a g e

Bilinear Transformation:

This technique avoids the problem of aliasing by mapping jΩ axis in the s-plane to

one revolution of unit circle in the z-plane. If Ha(s) is the continuous time transfer

function the discrete time transfer function is detained by replacing s with

S= 















1

1

1

12

z

z

Td

From which we get z=
 

sT

sT

d

d

)2/(1

2/1





Substituting s=  +jΩ , we get

22
1

22
1

dd

dd

T
j

T

T
j

T

z













If  <0, it is then magnitude of the real part in the denominator is more than that of

the numerator and so │z│<1. Similarly if  >0 then │z│>1 for all Ω.Thus pole in

the left half of the s-plane will get mapped to the poles inside the unit circle in z-

plane. If  =0 then

2
1

2
1

d

d

T
j

T
j

z









so │z│=1,writing z= je we get

je =

2
1

2
1

d

d

T
j

T
j







Rearranging we get
2/cos

2/sin

)(

)(

1

1

2 2/2/2/

2/2/2/












j
eee

eee

e

eT
j

jjj

jjj

j

j

d 















Or 2/tan
2


dT

 or
2

tan2 1 dT
  .

