THEORY OF COMPUTATION
LECTURE NOTES

(Subject Code: BCS-303)

for
Bachelor of Technology

N
Computer Science and Engineering

&
|nformation Technology

VEER SURENDRA SAI UNIVERSITY
OF TECHNOLOGY,ODISHA, BURLA

Department of Computer Science and Engineering & Information Technology

Veer Surendra Sai University of Technology

(Formerly UCE, Burla)
Burla, Sambalpur, Odisha

Lecture Note Prepared by: Prof. D. Chandrasekhar Ro
Prof. Kishore Kumar Sahu
Prof. Pradipta Kumar Das

DISCLAIMER

This document does not claim any originality andinea be
used as a substitute for prescribed textbooks. iitfeemation

presented here is merely a collection by the cotamitnembers
for their respective teaching assignments. Varisagrces as
mentioned at the end of the document as well a&dyfieevailable
material from internet were consulted for preparitys

document. The ownership of the information lies hwihe

respective authors or institutions.

BCS 303 THEORY OF COMPUTATION3-1-0) Cr.-4

Module — | (10 Lectures)
Introduction to Automata: The Methods Introduction to Finite Automata, Structural
Representations, Automata and Complexity. Provingui¥alences about Sets, The
Contrapositive, Proof by Contradiction, Inductiveodfs General Concepts of Automata
Theory: Alphabets Strings, Languages, Applicatioh&utomata Theory.

Finite Automata: The Ground Rules, The Protocol, Deterministic [eifkutomata: Definition
of a Deterministic Finite Automata, How a DFA Prsses Strings, Simpler Notations for
DFA’s, Extending the Transition Function to Stringse Language of a DFA

Nondeterministic Finite AutomataAn Informal View. The Extended Transition Functiol he
Languages of an NFA, Equivalence of Deterministid Blondeterministic Finite Automata.
Finite Automata With Epsilon-Transitions: Uses[®Transitions, The Formal Notation for an
[-NFA, Epsilon-Closures, Extended Transitions anddieges forfl-NFA'’s, Eliminating [I-
Transitions.

Module — I (10 Lectures)

Reqular Expressions and Languages Regular Expressions: The Operators of regular
Expressions, Building Regular Expressions, Preaszleof Regular-Expression Operators,
Precedence of Regular-Expression Operators

Finite Automata and Regular Expressions: From DF#&'sRegular Expressions, Converting
DFA’s to Regular Expressions, Converting DFA’s tegalar Expressions by Eliminating States,
Converting Regular Expressions to Automata.

Algebraic Laws for Regular Expressions:

Properties of Regular Languages The Pumping Lemma for Regular Languages, Appbceti

of the Pumping Lemma Closure Properties of Regukanguages, Decision Properties of
Regular Languages, Equivalence and MinimizatioAuwtbmata,

Context-Free Grammars and LanguagesDefinition of Context-Free Grammars, Derivations
Using a Grammars Leftmost and Rightmost Derivatidie Languages of a Grammatr,

Parse Trees:Constructing Parse Trees, The Yield of a Parse,Tirderence Derivations, and
Parse Trees, From Inferences to Trees, From ToeBsrivations, From Derivation to Recursive
Inferences,

Applications of Context-Free Grammars: Parsers, Ambiguity in Grammars and Languages:
Ambiguous Grammars, Removing Ambiguity From Granmsnéeftmost Derivations as a Way
to Express Ambiguity, Inherent Anbiguity

Module — 1l (10 Lectures)

Pushdown Automata Definition Formal Definition of Pushdown Automata, Graphical
Notation for PDA’s, Instantaneous Descriptions &fl2A,

Languages of PDA Acceptance by Final State, Acceptance by EmptykStamm Empty Stack
to Final State, From Final State to Empty Stack

Equivalence of PDA’s and CFG’s: From Grammars tsHélown Automata, From PDA’s to
Grammars
Deterministic Pushdown Automata Definition of a Deterministic PDA, Regular Language

and Deterministic PDA’s, DPDA’s and Context-Freengaages, DPDA’s and Ambiguous
Grammars

Properties of Context-Free Languages Normal Forms for Context-Free Grammars, The
Pumping Lemma for Context-Free Languages, Closuopdfties of Context-Free Languages,
Decision Properties of CFL’s

Module -1V (10 Lectures)

Introduction to Turing Machines: The Turing Machine: The Instantaneous Descriptions
Turing Machines, Transition Diagrams for Turing Maws, The Language of a Turing
Machine, Turing Machines and Halting

Programming Techniques for Turing Machines, Extmsito the Basic Turing Machine,
Restricted Turing Machines, Turing Machines and Qoters,

Undecidability: A Language That is Not Recursively Enumerable, Eenatmg the Binary
Strings, Codes for Turing Machines, The DiagonéilirelLanguage

An Undecidable Problem That Is RE: Recursive LagggaComplements of Recursive and RE
languages, The Universal Languages, Undecidalofitiie Universal Language

Undecidable Problems About Turing Machines: Redustj Turing Machines That Accept the
Empty Language. Post's Correspondence Problem:niDefi of Post's Correspondence
Problem, The “Modified” PCP, Other Undecidable Reals: Undecidability of Ambiguity for
CFG’s

Text Book:

1. Introduction to Automata Theory Languages, and Qgatmn, by J.E.Hopcroft,
R.Motwani & J.D.Ullman (% Edition) — Pearson Education

2. Theory of Computer Science (Automata Language & Quations), by K.L.Mishra &
N. Chandrashekhar, PHI

MODULE-I

What is TOC?

In theoretical computer science, the theory of computation is the branch that deals with
whether and how efficiently problems can be solved on a model of computation, using an
algorithm. The field is divided into three major branches: automata theory, computability theory
and computational complexity theory.

In order to perform a rigorous study of computation, computer scientists work with a
mathematical abstraction of computers called a model of computation. There are several models
in use, but the most commonly examined is the Turing machine.

Automata theory

In theoretical computer science, automata theory is the study of abstract machines (or more
appropriately, abstract 'mathematical’ machines or systems) and the computational problems that
can be solved using these machines. These abstract machines are called automata.

This automaton consists of

e states (represented in the figure by circles),
¢ and transitions (represented by arrows).

As the automaton sees a symbol of input, it makes a transition (or jump) to another state,
according to its transition function (which takes the current state and the recent symbol as its
inputs).

Uses of Automata: compiler design and parsing.

Start

Figure 1.2: A finite automaton modeling recognition of then

Introduction to formal proof:
Basic Symbols used :

U — Union

N- Conjunction

' - Empty String

@ — NULL set

7- negation

¢ — compliment

= > implies

Additive inverse: a+(-a)=0

Multiplicative inverse: a*1/a=1

Universal set U={1,2,3,4,5}

Subset A={1,3}

A’ ={24,5}

Absorption law: AU(A NB) = A, AN(AUB) = A

De Morgan’s Law:
(AUB) =A’ N B’
(ANBY =A’UPB’
Double compliment
(A’) =A

ANA =0

Logic relations:
a>b=>7aUb
7(aNb)=7a U 7b

Relations:

Let a and b be two sets a relation R contains aXb.

Relations used in TOC:

Reflexive: a = a

Symmetric: aRb = > bRa

Transition: aRb, bRc => aRc

If a given relation is reflexive, symmentric and transitive then the relation is called equivalence
relation.

Deductive proof: Consists of sequence of statements whose truth lead us from some initial
statement called the hypothesis or the give statement to a conclusion statement.

The theorem that is proved when we go from a hypothesis H to a conclusion
C is the statement “if H then C.” We say that C is deduced from H. :

Additional forms of proof:
Proof of sets

Proof by contradiction
Proof by counter example

Direct proof (AKA) Constructive proof:
If p is true then g is true
Eg: if a and b are odd numbers then product is also an odd number.
Odd number can be represented as 2n+1
a=2x+1, b=2y+1
product of a X b = 2x+1) X (2y+1)
= 2(2xy+x+y)+1 = 2z+1 (odd number)

Proof by contrapositive:

i The contrapositive of the statement “if H then C” is “if not C
then not H.” A statement and its contrapositive are either both true or both
false, so we can prove either to prove the other.

Theorem 1.10: RU(SNT)=(RUS)N(RUT).

| | Statement Justification
1. |zisin RU(SNT) Given
2. |zisin Rorzisin SNT | (1) and definition of union
3. | zisin Rorrisin (2) and definition of intersection
both § and T
4. | zisin RUS (3) and definition of union
5. |xisin RUT (3) and definition of union
6. | zisin (RUS)N(RUT) | (4), (5), and definition
of intersection

Figure 1.5: Steps in the “if” part of Theorem 1.10

Statement Justification
l.lzisin (RUS)N(RUT) | Given
2.|zisin RUS (1) and definition of intersection
. |zisin RUT (1) and definition of intersection
4. | zisin Ror z is in (2), (3), and reasoning

both S and T about unions

5. | zisin Rorzisin SNT | (4) and definition of intersection
6. | zisin RU(SNT) (5) and definition of union

Figure 1.6: Steps in the “only-if” part of Theorem 1.10

To see why “if H then C” and “if not C then not H™ are logically equivalent,
first observe that there are four cases to consider:

1. H and C both true.
2. H true and C false.
3. (' true and H false.

4. H and C both false.

Proof by Contradiction:

H and not C implies falsehood.

That is, start by assuming both the hypothesis H and the negation of the
conclusion C. Complete the proof by showing that something known to be
false follows logically from H and not C'. This form of proof is called proaf by
contradiction.

It often is easier to prove that a statement is not a theorem than to prove
it 45 a theorem. As we mentioned, if S is any statement, then the statement
“S is not a theorem” is itself a statement without parameters, and thus can

Be regarded as an observation than a theorem.

Alleged Theorem 1.13: All primes are odd. (More formally, we might say:
if integer x is a prime, then z is odd.)

DISPROOF: The integer 2 is a prime, but 2 is even. O

For any sets a,b,c if aNb = ® and c is a subset of b the prove that afNc =@
Given : aNb=® and c subset b

Assume: aflc = @

Then ¥ x, xea and xec == xeb

=> alb =® = > aNc=D(i.e., the assumption is wrong)

Proof by mathematical Induction:

Suppose we are given a statement S(n), about an integer n, to prove. One
common approach is to prove two things:

1. The basis, where we show S(i) for a particular integer i. Usually, z =0
or i = 1, but there are examples where we want to start at some higher
i, perhaps because the statement S is false for a few small integers.

2. The inductive step, where we assume n > i, where i is the basis integer,
and we show that “if S(n) then S(n + 1).”

e The Induction Principle: If we prove S(i) and we prove that for all n > 1,
S(n) implies S(n + 1), then we may conclude S(n) for all n > 1.

Languages :

The languages we consider for our discussion is an abstraction of natural languages. That is,
our focus here is on formal languages that need precise and formal definitions. Programming
languages belong to this category.

Symbols :

Symbols are indivisible objects or entity that cannot be defined. That is, symbols are the atoms
of the world of languages. A symbol is any single object such as & a0,1,4#,
begin, or do.

Alphabets :

An alphabet is a finite, nonempty set of symbols. The alphabet of a language is normally denoted
by Z. When more than one alphabets are considered for discussion, then

subscripts may be used (e.g. 2.2y etc) or sometimes other symbol like G may also be
introduced.

Z=1{0,1

z= {cz, b, r:}

E={cx, b oo, & z}
Example : 2= {#’ V. s, “8}

Strings or Words over Alphabet :

A string or word over an alphabet ~ Zis a finite sequence of concatenated symbols of oy

Example : 0110, 11, 001 are three strings over the binary alphabet { 0, 1 } .
aab, abcb, b, cc are four strings over the alphabet { a, b, c }.

It is not the case that a string over some alphabet should contain all the symbols from the alpha-
bet. For example, the string cc over the alphabet { a, b, ¢ } does not contain the symbols a and b.
Hence, it is true that a string over an alphabet is also a string over any superset of that alphabet.

Length of a string :
The number of symbols in a string w is called its length, denoted by |w/|.

Example : | 011 |=4, [11|=2, |b|=1

Convention : We will use small case letters towards the beginning of the English alphabet
to denote symbols of an alphabet and small case letters towards the end to

denote strings over an alphabet. That is,
a, becex (symbols) and M.V, W, X, V. 2

are strings.

Some String Operations :

Let © = ®1%2% = Gagpg VT bbby € by be two strings. The concatenation of x and y

denoted by xy, is the string ~ “1%2%z " @By o By g is, the concatenation of x and y

denoted by xy is the string that has a copy of x followed by a copy of y without any intervening
space between them.

Example : Consider the string 011 over the binary alphabet. All the prefixes, suffixes and
substrings of this string are listed below.

Prefixes: ¢ 0, 01, 011.
Suffixes: ¢ 1, 11, 011.
Substrings: & 0, 1, 01, 11, 011.

Note that x is a prefix (suffix or substring) to x, for any string x and ¢ is a prefix (suffix or
substring) to any string.

A string x 1s a proper prefix (suffix) of string y if x is a prefix (suffix) of y and x # y.

In the above example, all prefixes except 011 are proper prefixes.

Powers of Strings : For any string x and integer 720 we use %to denote the string
formed by sequentially concatenating n copies of x. We can also give an inductive

definition of * as follows:

® . . ®o_ n-1
& =¢,ifn=0; otherwise & =&«

Example : If x=011,then %'=011011011, *=011and * =¢

Powers of Alphabets :

We write Z' (for some integer k) to denote the set of strings of length k with symbols
from Z. In other words,

= {w|wisastringover = and | w|=k}. Hence, for any alphabet, 2’ denotes the set
of all strings of length zero. That is, 2= { e }. For the binary alphabet { 0, 1 } we have
the following.

== (e}

= =40, 13

=3 ={00, 01,10, 11},

=¥ = {000, 001, 010, 011, 100, 101, 110, 111}

The set of all strings over an alphabet = is denoted by Z'. That is,
=2t ozt oz 2 U

=z

The set Z contains all the strings that can be generated by iteratively concatenating sym-
bols from Z any number of times.

Example : If Z= {a,b}, then o { & a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, ...}.

Please note that if = =F then Z thatis ARG may look odd that one can proceed
from the empty set to a non-empty set by iterated concatenation. But there is a reason for this
and we accept this convention

The set of all nonempty strings over an alphabet Z s denoted by % That is,

R I NN W I O JESPI R PO

=zt

Note that Z is infinite. It contains no infinite strings but strings of arbitrary lengths.

Reversal :
B

YT A% % he reversal of the string is T %1 %A

For any string

An inductive definition of reversal can be given as follows:

Languages :
A language over an alphabet is a set of strings over that alphabet. Therefore, a

language L is any subset of Z'. That is, any L C2isa language.
Example :

1. F is the empty language.

2. Zisa language for any 2.

3. {e}is alanguage forany Z. Note that, ¢={e) . Because the language F does not
contain any string but {e} contains one string of length zero.

4. The set of all strings over { 0, 1 } containing equal number of 0's and 1's.

5. The set of all strings over {a, b, c} that starts with a.

Convention : Capital letters A, B, C, L, etc. with or without subscripts are normally used to
denote languages.

Set operations on languages : Since languages are set of strings we can apply set operations to
languages. Here are some simple examples (though there is nothing new in it).

Union : A string
xel ul, grehL xel

Example: {0, 11,01,011} “~{1,01,110}={0, 11,01, 011, 111 }
Intersection : A string, x@ L1 NLo iff x Ly and x Lo

Example: {0, 11,01,011} m{1,01,110}={01}

Complement : Usually, Z'is the universe that a complement is,taken with respect to.
=
Thus for a language L, the complement is L(bar) = { * | x& L},

Example : Let L = { x| [x| is even }. Then its complement is the language { x €Z | |xis
odd }.

Similarly we can define other usual set operations on languages like relative com-

plement, symmetric difference, etc.

Reversal of a language :

R _ R
The reversal of a language L, denoted as I* is defined as: L° = {w'| wel}p

Example :

. LetL=1{0,11,01,011 }. Then Z* ={0,11,10,110}.

2. LetL={ T°o” | n is an integer }. Then T { T°o” | n is an integer }.

Language concatenation : The concatenation of languages Liand = is defined as

Lli?:{xyl XELlandyELE}.

Example : { a, ab }{ b, ba } = { ab, aba, abb, abba }.

Note that ,
1. b= L 4y in general.
2. L =@
Ligy = L = (&

Iterated concatenation of languages : Since we can concatenate two languages, we also repeat
this to concatenate any number of languages. Or we can concatenate a language with itself any

number of times. The operation I denotes the concatenation of

L with itself n times. This is defined formally as follows:

Ly ={e}
= rrt

Example : Let L = { a, ab }. Then according to the definition, we have

Ly = e

L = L{e} = L = {a, ab)

Ly = L L =Aa, abi{a, ab} = {aa, acd, aba, abab)
L, =L L ={a, abl{aa, aab, aba, abab}

= {aaa, aaab, acba, aabab, abaa, abaab, ababa, ababab)

and so on.

Kleene's Star operation : The Kleene star operation on a language L, denoted as is
defined as follows :

L]

L Vi
=(Unionnin N)
oo o

= { x| x is the concatenation of zero or more strings from L }

L]

L, .) . .
Thus s the set of all strings derivable by any number of concatenations of strings in
L. It is also useful to define

i . :) o .
= , 1.e., all strings derivable by one or more concatenations of strings in L. That is

E“]
=(UnionninNandn>0) £
= L]. L) Lj Ll L3 g

Example : Let L = { a, ab }. Then we have,
F AN N Y UL
= {e} “Y{a, ab} ““{aa, aab, aba, abab} “- ...
F_pourour u-
= {a, ab} ““{aa, aab, aba, abab} - ...

Note : €is in L‘, for every language L, including .

The previously introduced definition of ~ Z is an instance of Kleene star.

(Generates) (Recognizes)
Grammar »anguage <— Automata

Automata: A algorithm or program that automatically recognizes if a particular string belongs to
the language or not, by checking the grammar of the string.

An automata is an abstract computing device (or machine). There are different varities of such
abstract machines (also called models of computation) which can be defined mathematically.

Every Automaton fulfills the three basic requirements.

Every automaton consists of some essential features as in real computers. It has a mech-
anism for reading input. The input is assumed to be a sequence of symbols over a given
alphabet and is placed on an input tape(or written on an input file). The simpler automata
can only read the input one symbol at a time from left to right but not change. Powerful
versions can both read (from left to right or right to left) and change the input.

e The automaton can produce output of some form. If the output in response to an input
string is binary (say, accept or reject), then it is called an accepter. If it produces an out-
put sequence in response to an input sequence, then it is called a transducer(or automaton
with output).

« The automaton may have a temporary storage, consisting of an unlimited number of
cells, each capable of holding a symbol from an alphabet (whcih may be different from
the input alphabet). The automaton can both read and change the contents of the storage
cells in the temporary storage. The accusing capability of this storage varies depending
on the type of the storage.

+ The most important feature of the automaton is its control unit, which can be in any
one of a finite number of interval states at any point. It can change state in some de-
fined manner determined by a transition function.

Input tape
|
|
F
e ™
Finite T
Contraol —> Ermporary
Storage
i Output b

Figure 1: The figure above shows a diagrammatic representation of a generic automa-
tion.

Operation of the automation is defined as follows.
At any point of time the automaton is in some integral state and is reading a particular symbol

from the input tape by using the mechanism for reading input. In the next time step the automa-
ton then moves to some other integral (or remain in the same state) as defined by the transition
function. The transition function is based on the current state, input symbol read, and the content
of the temporary storage. At the same time the content of the storage may be changed and the
input read may be modifed. The automation may also produce some output during this transition.
The internal state, input and the content of storage at any point defines the configuration of the
automaton at that point. The transition from one configuration to the next (as defined by the
transition function) is called a move. Finite state machine or Finite Automation is the simplest
type of abstract machine we consider. Any system that is at any point of time in one of a finite
number of interval state and moves among these states in a defined manner in response to some
input, can be modeled by a finite automaton. It doesnot have any temporary storage and hence a
restricted model of computation.

Finite Automata

Automata (singular : automation) are a particularly simple, but useful, model of compu-
tation. They were initially proposed as a simple model for the behavior of neurons.

States, Transitions and Finite-State Transition System :

Let us first give some intuitive idea about a state of a system and state transitions before
describing finite automata.

Informally, a state of a system is an instantaneous description of that system which gives all
relevant information necessary to determine how the system can evolve from that point on.

Transitions are changes of states that can occur spontaneously or in response to inputs to the
states. Though transitions usually take time, we assume that state transitions are instantaneous
(which is an abstraction).

Some examples of state transition systems are: digital systems, vending machines, etc. A system

containing only a finite number of states and transitions among them is called
a finite-state transition system.

Finite-state transition systems can be modeled abstractly by a mathematical model called
finite automation

Deterministic Finite (-state) Automata

Informally, a DFA (Deterministic Finite State Automaton) is a simple machine that reads an in-
put string -- one symbol at a time -- and then, after the input has been completely read, decides
whether to accept or reject the input. As the symbols are read from the tape, the automaton can
change its state, to reflect how it reacts to what it has seen so far. A machine for which a deter-
ministic code can be formulated, and if there is only one unique way to formulate the code, then
the machine is called deterministic finite automata.

Thus, a DFA conceptually consists of 3 parts:

1. A tape to hold the input string. The tape is divided into a finite number of cells. Each
cell holds a symbol from z.
2. A tape head for reading symbols from the tape
3. A control , which itself consists of 3 things:
o finite number of states that the machine is allowed to be in (zero or more states
are designated as accept or final states),
o a current state, initially set to a start state,

o a state transition function for changing the current state.

An automaton processes a string on the tape by repeating the following actions until the tape
head has traversed the entire string:

1. The tape head reads the current tape cell and sends the symbol s found there to the
control. Then the tape head moves to the next cell.

2. he control takes s and the current state and consults the state transition function to get
the next state, which becomes the new current state.

Once the entire string has been processed, the state in which the automation enters is examined.
If it is an accept state , the input string is accepted ; otherwise, the string is rejected . Summariz-

ing all the above we can formulate the following formal definition:

Deterministic Finite State Automaton : A Deterministic Finite State Automaton (DFA) is
a 5-tuple : M=(Q.Z.6 q.F)

e Qis a finite set of states.
. Zis a finite set of input symbols or alphabet
F:1 Q%I is the “next state” transition function (which is total). Intuitively, is?¢ a
function that tells which state to move to in response to an input, i.e., if M is in

. : a
state q and sees input a, it moves to state (4.2) .

e T E L the start state.

F S s the set of accept or final states.

Acceptance of Strings :

W=,

A DFA accepts a string “xif there is a sequence of states o> 91> 7 dujp

such that

1. 9ois the start state.
9. 5'[qi=fi'i+1) = If;‘z'+1f0r all 0 =i =&
3. 9x =4

Language Accepted or Recognized by a DFA :

The language accepted or recognized by a DFA M is the set of all strings accepted by M , and

L(M) . L(M)={weZ'| M accepts w]

is denoted by i.e. "The notion of

acceptance can also be made more precise by extending the transition function g

Extended transition function :

Extend g: @*Z = (which is function on symbols) to a function on strings, i.e. .
d.QxZ =0

That is, J I[g, w) is the state the automation reaches when it starts from the state q and finish
processing the string w. Formally, we can give an inductive definition as follows:

The language of the DFA M is the set of strings that can take the start state to one of the
accepting states i.e.

L(M)={ W& z | M accepts w }

-

={wEE'| g '[‘i'n:W)EF}

Example 1 :

M=(0.Z,8,4,.F)

Q= (0.0

90is the start state

F={q]

5a0:0)=qy d(a.0)=a

5'[%:1):'53’1 5'[@’1s1)='5i'1

It is a formal description of a DFA. But it is hard to comprehend. For ex. The language of the
DFA is any string over { 0, 1} having at least one 1

We can describe the same DFA by transition table or state transition diagram as follow-
ing:

Transition Table :

0 1
—dy | &

s) o i

It is easy to comprehend the transition diagram.
0

S o

Explanation : We cannot reach find state 91w/0 or in the i/p string. There can be any no.

of 0's at the beginning. (The self-loop at 90 on label 0 indicates it). Similarly there
can be any no. of 0's & 1's in any order at the end of the string.

Transition table :

It is basically a tabular representation of the transition function that takes two arguments (a state
and a symbol) and returns a value (the “next state”).

« Rows correspond to states,

+ Columns correspond to input symbols,

« Entries correspond to next states

+ The start state is marked with an arrow

« The accept states are marked with a star (*).

—dy | o
Hs i) 9 o

(State) Transition diagram :

A state transition diagram or simply a transition diagram is a directed graph which can be
constructed as follows:

1. For each state in Q there is a node.

2. There is a directed edge from node q to node p labeled a iff 5(g. a)=p . (If there
are several input symbols that cause a transition, the edge is labeled by the list of these
symbols.)

3. There is an arrow with no source into the start state.

4. Accepting states are indicated by double circle.

5.
6. Here is an informal description how a DFA operates. An input to a DFA can be any

string we Put a pointer to the start state q. Read the input string w from left
to right, one symbol at a time, moving the pointer according to the transition

function, & If the next symbol of w is a and the pointer is on state p, move the

pointer to (7. a) . When the end of the input string w is encountered, the pointer is on
some state, 1. The string is said to be accepted by the DFA if 7€ F and
rejected if * % . Note that there is no formal mechanism for moving the pointer.

7. Alanguage L€ Z' is said to be regular if L = L(M) for some DFA M.

Regular Expressions: Formal Definition

We construct REs from primitive constituents (basic elements) by repeatedly applying certain
recursive rules as given below. (In the definition)

Definition : Let S be an alphabet. The regular expressions are defined recursively as follows.
Basis :
i) isaRE
¢
i) isaRE
£
iii) ,ais RE.
Yaes

These are called primitive regular expression i.e. Primitive Constituents

Recursive Step :

If
r
"1and *2are REs over, then so are

|) .?"1+.?"2

i) 7172

Closure : ris RE over only if it can be obtained from the basis elements (Primitive REs)
by a finite no of applications of the recursive step (given in 2).

Example : Let Z = {0,1,2 }. Then (0+21)*(1+ F) is a RE, because we can construct this
expression by applying the above rules as given in the following step.

Steps RE Constructed

0+21

(0+21)
(0+21)*
12 (0+21)*

T o0 N M WD =

Rule Used

Rule 1iii)

Rule 1(i)

Rule 2(i) & Results of Step 1, 2
Rule 2(iv) & Step 3

2(ii), 4, 11

Language described by REs : Each describes a language (or a language is associated
with every RE). We will see later that REs are used to attribute regular languages.

Notation : If r is a RE over some alphabet then L(r) is the language associate with r . We can
define the language L(r) associated with (or described by) a REs as follows.

1. #is the RE describing the empty language i.e. L(';é) =3

2. €is a RE describing the language {<}i.e. L(E)={€}.

3. ¥a €5 4is a RE denoting the language {a} i.e . L(a) = {a} .

4. If "1and “2are REs denoting language L("1) and L("2) respectively, then

i) 1 " "2is a regular expression denoting the language L(" 2) = L("1) U L("?)

ii) 71"2is a regular expression denoting the language L("1"2)=L("1) L("*)

' L{n) =[L{r
iii) 1 is a regular expression denoting the language (rl) [(r))

iv) ("1) is a regular expression denoting the language L(("1)) = L("1)

Example : Consider the RE (0*(0+1)). Thus the language denoted by the RE is
L(0*(0+1)) = L(0*) L(041) wevveeeerieieeeene by 4(ii)

= L(0)*L(0) u L(1)

={=,0,00,000,.} {0} {1

={=, 0,00,000......... }{0,1}

= {0, 00, 000, 0000........... ,1,01, 001, 0001,............... }

Precedence Rule

Consider the RE ab + c. The language described by the RE can be thought of either
L(a)L(b+c) or L(ab) L(c) as provided by the rules (of languages described by RESs)
given already. But these two represents two different languages lending to ambiguity.
To remove this ambiguity we can either

1) Use fully parenthesized expression- (cumbersome) or

2) Use a set of precedence rules to evaluate the options of REs in some order. Like
other algebras mod in mathematics.

For REs, the order of precedence for the operators is as follows:

i) The star operator precedes concatenation and concatenation precedes union (+)
operator.

ii) It is also important to note that concatenation & union (+) operators are associative
and union operation is commutative.

Using these precedence rule, we find that the RE ab+c represents the language L(ab)
L(c) i.e. it should be grouped as ((ab)+c).

W)

We can, of course change the order of precedence by using parentheses. For example,

the language represented by the RE a(b+c) is L(a)L(b+c).

Example : The RE ab*+b is grouped as ((a(b*))+b) which describes the language
L(a)(L(b))* - L(D)

Example : The RE (ab)*+b represents the language (L(a)L(b))* ‘- L(b).

Example : It is easy to see that the RE (0+1)*(0+11) represents the language of all
strings over {0,1} which are either ended with 0 or 11.

Example : The regular expression r =(00)*(11)*1 denotes the set of all strings with an

_ 2142w+l
even number of 0's followed by an odd number of 1's i.e. £ = (0717 [220, 2 20}

Note : The notation 7"is used to represent the RE r*. Similarly, f“zrepresents the RE
rr, 7* denotes 7" r, and so on.

An arbitrary string over Z = {0,1} is denoted as (0+1)*.

Exercise : Give a RE r over {0,1} s.t. L()={®?€Z |# has at least one pair of
consecutive 1's}

Solution : Every string in L(r) must contain 00 somewhere, but what comes before and
what goes before is completely arbitrary. Considering these observations we can write
the REs as (0+1)*11(0+1)*.

Example : Considering the above example it becomes clean that the RE
(0+1)*11(0+1)*+(0+1)*00(0+1)* represents the set of string over {0,1} that contains the
substring 11 or 00.

Example : Consider the RE 0*10*10*. It is not difficult to see that this RE describes the
set of strings over {0,1} that contains exactly two 1's. The presence of two 1's in the RE
and any no of 0's before, between and after the 1's ensure it.

Example : Consider the language of strings over {0,1} containing two or more 1's.
Solution : There must be at least two 1's in the RE somewhere and what comes before,
between, and after is completely arbitrary. Hence we can write the RE as
(0+1)*1(0+1)*1(0+1)*. But following two REs also represent the same language, each
ensuring presence of least two 1's somewhere in the string

i) 0*10*1(0+1)*

ii) (0+1)*10*10*

Example : Consider a RE r over {0,1} such that

L) = {me{ﬂ,l}' | @

Solution : Though it looks similar to ex , it is harder to construct to construct. We
observer that, whenever a 1 occurs, it must be immediately followed by a 0. This
substring may be preceded & followed by any no of 0's. So the final RE must be a
repetition of strings of the form: 00...0100....00 i.e. 0*100*. So it looks like the RE is
(0*100%)*. But in this case the strings ending in 1 or consisting of all 0's are not
accounted for. Taking these observations into consideration, the final RE is r =
(0*100*)(1+ £)+0*(1+<).

has no pair of consecutive 1's}

Alternative Solution :

The language can be viewed as repetitions of the strings 0 and 01. Hence get the RE as
r=(0+10)*(1+%<).This is a shorter expression but represents the same language.

Regular Expression and Regular Language :
Equivalence(of REs) with FA :

Recall that, language that is accepted by some FAs are known as Regular language.
The two concepts : REs and Regular language are essentially same i.e. (for) every
regular language can be developed by (there is) a RE, and for every RE there is a
Regular Langauge. This fact is rather suprising, because RE approach to describing
language is fundamentally differnet from the FA approach. But REs and FA are
equivalent in their descriptive power. We can put this fact in the focus of the following
Theorem.

Theorem : A language is regular iff some RE describes it.

This Theorem has two directions, and are stated & proved below as a separate lemma

REto FA:
REs denote regular languages :

Lemma : If L(r) is a language described by the RE r, then it is regular i.e. there is a FA
such that L(M) = L(r).

Proof : To prove the lemma, we apply structured index on the expression r. First, we

show how to construct FA for the basis elements: '3:', €and for any 2€Z . Then we show
how to combine these Finite Automata into Complex Automata that accept the Union,
Concatenation, Kleen Closure of the languages accepted by the original smaller
automata.

Use of NFAs is helpful in the case i.e. we construct NFAs for every REs which are
represented by transition diagram only.

Basis :

. Case():" =% Then =% Then £1") =% and the following NFA N

recognizes L(r). Formally N=(0. (4.2, 4,4, F, ¢

dlga)=¢vacs, F=¢

where Q = {¢g} and

_ﬂ+©ﬁ

7N
S~ S

e Case (ii): ¥ ==. L(r)={¢) , and the following NFA N accepts L(r). Formally

N=({g}. Z. 3. 9. (9}) ypere 5(@.4)=¢ VacX

Since the start state is also the accept step, and there is no any transition defined, it will
accept the only string =and nothing else.

e Case (iii) : r=a for some @E2 Then L(r) = {a}, and the following NFA N
accepts L(r).

N=|:{p,g}, ¥ 5,p,{g}) J(p.a)={a}. s, E?}={¢5'}for S*=Porb=a

Formally, where

Induction :

Assume that the start of the theorem is true for REs “1and “2. Hence we can assume
that we have automata Mland M,

respectively i.e. L(M,) =L[’“ljand L
schematically as shown below.

that accepts languages denoted by REs “1and "2,

M)=L(%) The Fas are represented

Each has an initial state and a final state. There are four cases to consider.

« Case (i) : Consider the RE " ~" " 2denoting the language Lind v L) e

My M, M,

construct FA **2, from “*1and “*2to accept the language denoted by RE “as

follows :

Mz “

N e

M,

Create a new (initial) start state 7" and give - transition to the initial state of and

M; This is the initial state of 5.

« Create a final state 7 and give £-transition from the two final state of M) and

My Fisthe only final state of M: and final state of M1and >

My

will be ordinary
states in

o All the state of Mland M,

are also state of M3.

M,

« Allthe moves of #1and are also moves of . [Formal Construction]

It is easy to prove that L(35) = Lin)

L{M3) = L)

Proof: To show that we must show that

_ Lln) v Lin)

_ L) = L(a,) by following transition of

Starts at initial state 4° and enters the start state of either #10r #3 follwoing the

transition i.e. without consuming any input. WLOG, assume that, it enters the start state
of M1, From this point onward it has to follow only the transition of M1t0 enter the final
state of Ml, because this is the only way to enter the final state of M by following the e-
transition.(Which is the last transition & no input is taken at hte transition). Hence the

whole input w is considered while traversing from the start state of M1t0 the final state

Of Ml Ml

. Therefore “*1must accept ™.

w e L(M)) WELI{M;:I.

Say, or

WLOG, say " € L(M)
Therefore when Mlprocess the string w , it starts at the initial state and enters the final
state when w consumed totally, by following its transition. Then M: also accepts w, by
starting at state 7" and taking £-transition enters the start state of M, -follows the moves

of 1to enter the final state of #1 consuming input w thus takes €-transition to b
Hence proved

Lin) Lin

« Case(ii) : Consider the RE " ~ 'T2denoting the language) We construct

FA Matrom #18 Matg accept £1%) as follows :

Create a new start state g and a new final state

1. Add £- transition from

o 9'to the start state of #1
o 7 to J
o final state of i, to the start state of M,

2. All the states of Mlare also the states of M3. M; has 2 more states than that of

Mlnamely 7 and /.

3. All the moves of M, are also included in M3.

M can accept €.

My

By the transition of type (b),
By the transition of type (a), ~*can enters the initial state of M1wio any input and then
follow all kinds moves of M, to enter the final state of Mland then following € -transition
can enter 7 . Hence if any We s accepted by M) then w is also accepted by M3. By
the transition of type (b), strings accepted by M, can be repeated by any no of times &

thus accepted by M: Hence accepts €and any string accepted by M, repeated (i.e.

concatenated) any no of times. Hence L(M3) =(2(2)) = (Lml) 7

Case(iv) : Let #=("1). Then the FA s also the FA for (1), since the use of
parentheses does not change the language denoted by the expression

Non-Deterministic Finite Automata

Nondeterminism is an important abstraction in computer science. Importance of
nondeterminism is found in the design of algorithms. For examples, there are many
problems with efficient nondeterministic solutions but no known efficient deterministic
solutions. (Travelling salesman, Hamiltonean cycle, clique, etc). Behaviour of a process
is in a distributed system is also a good example of nondeterministic situation. Because

the behaviour of a process might depend on some messages from other processes that
might arrive at arbitrary times with arbitrary contents.
It is easy to construct and comprehend an NFA than DFA for a given regular language.
The concept of NFA can also be used in proving many theorems and results. Hence, it
plays an important role in this subject.
In the context of FA nondeterminism can be incorporated naturally. That is, an NFA is
defined in the same way as the DFA but with the following two exceptions:

e multiple next state.

e £-transitions.
Multiple Next State :

» In contrast to a DFA, the next state is not necessarily uniquely determined by the
current state and input symbol in case of an NFA. (Recall that, in a DFA there is
exactly one start state and exactly one transition out of every state for each
symbol in).

o This means that - in a state ¢ and with input symbol a - there could be one, more

than one or zero next state to go, i.e. the value of 309,20} is a subset of Q. Thus

&g,a) _ {4 &9 yhich means that any one of 91° 927" -9k could be the next
state.

o The zero next state case is a special one giving g(g,a) =¢5, which means that
there is no next state on input symbol when the automata is in state ¢. In such a
case, we may think that the automata "hangs" and the input will be rejected.

=- transitions :

In an -transition, the tape head doesn't do anything- it doesnot read and it doesnot
move. However, the state of the automata can be changed - that is can go to zero, one

or more states. This is written formally as lg.8)={ar 424 implying that the next
state could by any one of 91> 92> Z&w/o consuming the next input symbol.

Acceptance :

Informally, an NFA is said to accept its input & if it is possible to start in some start state
and process # , moving according to the transition rules and making choices along the
way whenever the next state is not uniquely defined, such that when % is completely
processed (i.e. end of @ is reached), the automata is in an accept state. There may be
several possible paths through the automation in response to an input & since the start
state is not determined and there are choices along the way because of multiple next
states. Some of these paths may lead to accpet states while others may not. The

automation is said to accept @ if at least one computation path on input starting from
at least one start state leads to an accept state- otherwise, the automation rejects input
@ Alternatively, we can say that, % is accepted iff there exists a path with label & from
some start state to some accept state. Since there is no mechanism for determining
which state to start in or which of the possible next moves to take (including the @ -
transitions) in response to an input symbol we can think that the automation is having
some "guessing" power to chose the correct one in case the input is accepted

Example 1 : Consider the language L = {¥ € {0, 1}* | The 3rd symbol from the right is
1}. The following four-state automation accepts L.

The m/c is not deterministic since there are two transitions from state 91on input 1 and
no transition (zero transition) from #4on both 0 & 1.

For any string & whose 3rd symbol from the right is a 1, there exists a sequence of legal

transitions leading from the start state ¢, to the accept state 4+. But for any string
& where 3rd symbol from the right is 0, there is no possible sequence of legal

tranisitons leading from 91and 9¢. Hence m/c accepts L. How does it accept any string
@& er?

Formal definition of NFA :

M={0Z,0.q,. F
Formally, an NFA is a quituple [Q 7o :] where Q, £, 90, and F bear
the same meaning as for a DFA, but & the transition function is redefined as follows:

5. @x(zZu(g})— P(E)

where P(Q) is the power set of Q i.e. 2€,
The Langauge of an NFA :

From the discussion of the acceptance by an NFA, we can give the formal definition of a
language accepted by an NFA as follows :

N=(0.% 8.4,.F)

If is an NFA, then the langauge accepted by N is writtten as L(N) is

given by L) =[m| g, @) N F = ';é] .

That is, L(N) is the set of all strings w in Z"such that e @) contains at least one
accepting state.

Removing B-transition:

< - transitions do not increase the power of an NFA . That is, any =- NFA (NFA with
£transition), we can always construct an equivalent NFA without -transitions. The
equivalent NFA must keep track where the = NFA goes at every step during
computation. This can be done by adding extra transitions for removal of every =-
transitions from the =- NFA as follows.

If we removed the =- transition EEP’E) ~“from the - NFA , then we need to moves

from state p to all the state ¥ on input symbol ¢ < thich are reachable from state q (in
the £- NFA) on same input symbol g. This will allow the modified NFA to move from
state p to all states on some input symbols which were possible in case of £-NFA on
the same input symbol. This process is stated formally in the following theories.

Theorem if L is accepted by an £- NFA N, then there is some equivalent

NFA N yithout Etransitions accepting the same language L
Proof:

N=(0.%.6.4, 7)

Let be the given € ~HF4 with

We construct N = [Q’E’ .y ’Fa)

8'(g,a)= e &g,
Where, (2.4) {p |p (4 ﬂ)] forall €& and 4 €Z and
= [?U{qu} if SI:Q'D,EJHF = g otherwise.

Other elements of N'and N

L(M)=L(W)

We can show that i.e. N'and N are equivalent.

We need to prove that "we Z'

we L(W) i#f we L(M) |

Ywe X &g wieF' iff §(g,w)eF

We will show something more, that is,

Twe L é*[gn,w) = S[gn,w)

We will show something more, that is, i

Basis : /=1 then x=a€X
But @ (40-a) = 5(dv.) by definition of &".

. . - it
Induction hypothesis Let the statement hold for all ¥ =" with el < .

&5 =& N
(40:7) Efu’m)) By definition of extension of &
=& 5’[%,3:) a
.:‘i‘“(A[)) By inductions hypothesis.
=& |d(g,.x),a
- 5 (R.a) Assuming that
=U'5f[p"ﬂ) é‘[qn,x)=R,WhereRgQ
FER
) FL;JRE[p,a:] By definition of ¢
=5 g, X "
"[gt Since X =914 %)
= 5. v)

To complete the proof we consider the case

] =0

When i.e. ¥=5then

o

5'(4.€) ~{a} gng by the construction of ¥+ 90 € ¥ wherever 3(90%) constrains a state in F.

o

If #=# (and thus 3(90.) is not in F), then ¥+ with ol =1, " leads to an accepting state in N'iff it leac
to an accepting state in N (by the construction of N'and N).

Also, if (W =%, thus wis accepted by N' iff wis accepted by N (iff %0 = F)

If F'=FU{q) (and, thus in M we load 3 (40.€) in F), thus =is accepted by both N'and N ..

> . . .
Let |W|‘1. If wcannot lead to 9in N/, then we L[N). (Since can add =transitions to get an accept

state). So there is no harm in making 90an accept state in N
Ex: Consider the following NFA with - transition.
(v (v
3 1 > 0,e ;
|

01

=
Transition Diagram &
| Lo | 1 | € |
=gy | {2) (%001} 2
1 {fi'z} ¢ {‘i'z}
7 g, {fh} ¢ {‘3’2}

Transition diagram for &' for the equivalent NFA without €- moves

[0 | 1 |
Fsl (0.2 (d0.q1.9,)
d1 {‘i':a} {gz}
F o {‘i':a} {gz}

Since 3(408) =2 e - the start state gy must be final state in the equivalent NFA .

Since 3(4:5) = 4; and 8(4:.0) ~%1and 8(4:.1) "~ %2we add moves 8(40,0) - P2and
Slanl) =4, in the equivalent NFA . Other moves are also constructed accordingly.

=-closures:

The concept used in the above construction can be made more formal by defining the
£ -closure for a state (or a set of states). The idea of =-closure is that, when moving

from a state p to a state g (or from a set of states S; to a set of states S;) an input = z
we need to take account of all =-moves that could be made after the transition.
Formally, for a given state q,

= catl be reached from g by zZero or tnore € -moves
€ -closures: () ={rlr ched }

Similarly, for a given set £ <&

< -closures:
[Rj = {p = Q|p can ke reached from any ¢ € Rby following zero or more £ —moves}

So, in the construction of equivalent NFA N'without £-transition from any NFA with

=moves. the first rule can now be written as d [q’aj =€ -closure (E[Q’aj)

Equivalence of NFA and DFA

It is worth noting that a DFA is a special type of NFA and hence the class of languages
accepted by DFA s is a subset of the class of languages accepted by NFA s.
Surprisingly, these two classes are in fact equal. NFA s appeared to have more power
than DFA s because of generality enjoyed in terms of €-transition and multiple next
states. But they are no more powerful than DFA s in terms of the languages they
accept.

Converting DFA to NFA

Theorem: Every DFA has as equivalent NFA

Proof: A DFA is just a special type of an NFA . In a DFA , the transition functions is

frj
defined from Q*Z to Qwhereas in case of an NFA it is defined from CxZ to 2 and
D=[Q,E,5,gD,F) N=[Q“,E,5“,qn,F)

follows.

be a DFA . We construct an equivalent NFA as

{Q’i}e!gf:v‘?iEQ

5 ((pha)=(5(n.0)).
If 5[?:‘1)=Q’=and 5*({_3;.},@:{?}_
All other elements of N are as in D.

i ¥ "€ LID) o there is sequence of states #0-#1:92"""-%xgch that

5':‘?:'-1=‘1:'j =g, and g, €F

Then it is clear from the above construction of N that there is a sequence of states (in N)
EOECAREDE “"{q*}such that 8 ({4} -a)={4) and (a.}eF and hence ™' L(&).

Similarly we can show the converse.
Hence , L{w)=L(D)

Given any NFA we need to construct as equivalent DFA i.e. the DFA need to simulate
the behaviour of the NFA . For this, the DFA have to keep track of all the states where
the NFA could be in at every step during processing a given input string.

There are 2" possible subsets of states for any NFA with n states. Every subset
corresponds to one of the possibilities that the equivalent DFA must keep track of. Thus,

the equivalent DFA will have <" states.

The formal constructions of an equivalent DFA for any NFA is given below. We first
consider an NFA without =transitions and then we incorporate the affects of
=transitions later.

Formal construction of an equivalent DFA for a given NFA without Stransitions.

N=(0.Z.8.4,F)

Given an without €- moves, we construct an equivalent DFA

_ n ¥ I il
D_(Q 28y F)as follows

gf =Py . @7={8IFca).

l.e.

Q’ﬁu ={'¢i’u}=

FP={q"eQ”d"NF = g
in DFA D)

(i.e. every subset of Q which as an element in Fis considered as a final stat

5 (apdy g} a) = 8(gna)Ud (gy.a)) U S(g,.a)

D= [N
forall #€Z and ¢ {fi'wi'z, ,q;-,}

where g; =0, 14isk
Jﬂ(qﬂﬂ): ng[ﬁi’z‘ﬂ)
That is, d =t

To show that this construction works we need to show that L(D)=L(N) i.e.
Ywe T &7 (g7 w)e F? iff 5(a,.w)NF =g

or TWEE 87 ({q,}.w)NF = iff 8(q, W) F =g

We will prove the following which is a stranger statement thus required.

Twe D, &7 [{qn} ,W) =5‘[gn,wj

Proof : We will show by inductions on i

Basis If |W':O, then w =<
o = =
So, 57((a).€) = {4} E[g”’ej’by definition.

Inductions hypothesis : Assume inductively that the statement holds 7W¢& =" of length
less than or equal to n.

Inductive step

|w|=3z+1 x|=3zanda:EE.

Let , then W = Z@ with |

Now,

e

&7 [{qn},w) = &7 [{‘i'n} ,m)
=57 (5‘3 [{ gru} ,x),czjl, by inductive extension of 87

= [Sfﬁi’u,x),ajl,byinducti on hypothesis
- U 5(g;,a), by definition of ST
'?IEJK'?IJ‘K:'

= &(g,.7a) by definition of 5 (extension of &)
= (gy.w)

Now, given any NFA with =-transition, we can first construct an equivalent NFA without
€ -transition and then use the above construction process to construct an equivalent
DFA , thus, proving the equivalence of NFA's and DFA s..

It is also possible to construct an equivalent DFA directly from any given NFA with < -
transition by integrating the concept of =-closure in the above construction.

Recall that, for any S,

<- closure :
[Sj = {q = Q|q canbe reached from any pe Sby following zero of more € —transit ons}

. . - . Il
In the equivalent DFA , at every step, we need to modify the transition functions ¢~ to
keep track of all the states where the NFA can go on €-transitions. This is done by

o n
replacing 3g.a) by €-closure (E[g’ﬂ)), i.e. we now compute (q ’a:l at every step as
follows:

&% (qﬂ,a) = [g S Q‘q £ &-—closure [E(qﬂ,cz))] .

Besides this the initial state of the DFA D has to be modified to keep track of all the
states that can be reached from the initial state of NFA on zero or more -transitions.

n o
This can be done by changing the initial state 90 to €-closure (90).
It is clear that, at every step in the processing of an input string by the DFA D, it enters
a state that corresponds to the subset of states that the NFA N could be in at that
particular point. This has been proved in the constructions of an equivalent NFA for any
=-NFA

If the number of states in the NFA is n, then there are 2" states in the DFA . That is,
each state in the DFA is a subset of state of the NFA .

But, it is important to note that most of these 2* states are inaccessible from the start
state and hence can be removed from the DFA without changing the accepted
language. Thus, in fact, the number of states in the equivalent DFA would be much less

than 2°.
Example : Consider the NFA given below.

[0 L1 = |
—dy {‘i'nsfifl} ¢ ¢
g {Ci'l} g {ﬁi’z}
& ¢ ¢ {':E’u}

Since there are 3 states in the NFA

There will be 2° =8 states (representing all possible subset of states) in the equivalent
DFA . The transition table of the DFA constructed by using the subset constructions
process is produced here.

| ” 0 ” 1 | The start state of the DFA is - closures [q”) ={qﬂ}
g g g
— g, {qu ,ql,qg} ¢ | The final states are all those subsets that contains 41 (since

%1 = Fin the NFA).

Let us compute one entry,

57 [{ qD,D}) == —closure [5[% D:]:l

(40}
(90}
(90}
la.) |{a.q.92) ||{20) =& —closure ({g.4})
(40}
(40}

={9y.01. 42}

Similarly, all other transitions can be computed

0 1

—>iq) {%.q.920 ¢

{ﬁ}u,t}l,t}g} {Q’n,ql,fh} {qﬂ}

Corresponding Transition fig. for DFA.Note that states

CARES ’{M:‘} 19095} and {4y, 9) are not accessible and hence can be removed. This
gives us the following simplified DFA with only 3 states.

It is interesting to note that we can avoid encountering all those inaccessible or
unnecessary states in the equivalent DFA by performing the following two steps
inductively.

1. If 9ois the start state of the NFA, then make £- closure (90) the start state of the
equivalent DFA . This is definitely the only accessible state.

2. If we have already computed a set @ of states which are accessible. Then

SY(S : :
Ya €L compute ((’aD because these set of states will also be accessible.

Following these steps in the above example, we get the transition table given below

MODULE-II

Regular Expressions: Formal Definition

We construct REs from primitive constituents (basic elements) by repeatedly applying certain recursive rules as
given below. (In the definition)

Definition : Let S be an alphabet. The regular expressions are defined recursively as follows.
Basis :

i) ';éis aRE

i) Sis a RE

i) ¥ €5 4is RE.

These are called primitive regular expression i.e. Primitive Constituents

Recursive Step :

F
If “1and * 2 are REs over, then so are
ntry

i)

AFa

i)

Closure : ris RE over only if it can be obtained from the basis elements (Primitive REs) by a finite no of
applications of the recursive step (given in 2).

Example : Let Z_ {0,1,2}. Then (0+21)*(1+ F) is a RE, because we can construct this expression by
applying the above rules as given in the following step.

Steps RE Constructed Rule Used
1 1 Rule 1(iii)
2 @ Rule 1(i)

3 1+ ¢ Rule 2(i) & Results of Step 1, 2

4 1+9) Rule 2(iv) & Step 3
5 2 1(ii)

6 1 1(ii)

7 21 2(ii), 5, 6

8 0 1(iii)

9 0+21 2(i), 7, 8

10 (0+21) 2(iv), 9

11 (0+21)* 2(ii), 10

12 (0+21)* 2(i), 4, 11

Language described by REs : Each describes a language (or a language is associated with every RE). We
will see later that REs are used to attribute regular languages.

Notation : If 7 is a RE over some alphabet then L(r) is the language associate with r . We can define the

language L(r) associated with (or described by) a REs as follows.

1. ';éis the RE describing the empty language i.e. L(';é) = ';é
2. Zis a RE describing the language {T}ie. L(T)={=}.

3. 7 & €5 4is aRE denoting the language {a} i.e . L(a) = {a} .

4.1f "1and " are REs denoting language L(rl) and L(72) respectively, then

+ +
17 Mg regular expression denoting the language L(177 y=L("1) U L("2)

)

Fa

)

ii) “1”'2is a regular expression denoting the language L(’1"2)=L("1) L(

i L) = (£

iii) 1 is a regular expression denoting the language

L]

1

iv) (rl) is a regular expression denoting the language L((rl)) =L("1)
Example : Consider the RE (0*(0+1)). Thus the language denoted by the RE is
L(0*(0+1)) = L(0*) L(0+1) «evvereeeririienne by 4(ii)

= L(0)*L(0) u L(1)

={*=,0,00,000,........ }{o} ~{1}

={*=,0,00,000,........ }{0,1}

={0, 00, 000, 0000........... ,1,01, 001, 0001,........cc..... }

Precedence Rule

Consider the RE ab + c¢. The language described by the RE can be thought of either L(a)L(b+c) or

L(ab) - L(c) as provided by the rules (of languages described by REs) given already. But these two
represents two different languages lending to ambiguity. To remove this ambiguity we can either

1) Use fully parenthesized expression- (cumbersome) or

2) Use a set of precedence rules to evaluate the options of REs in some order. Like other algebras mod in
mathematics.

For REs, the order of precedence for the operators is as follows:
i) The star operator precedes concatenation and concatenation precedes union (+) operator.

ii) It is also important to note that concatenation & union (+) operators are associative and union operation is
commutative.

Using these precedence rule, we find that the RE ab+c represents the language L(ab) - L(c) i.e. it should be
grouped as ((ab)+c).

We can, of course change the order of precedence by using parentheses. For example, the language
represented by the RE a(b+c) is L(a)L(b+c).

Example : The RE ab*+b is grouped as ((a(b*))+b) which describes the language L(a)(L(b))* - L(b)
Example : The RE (ab)*+b represents the language (L(a)L(b))* - L(b).

Example : It is easy to see that the RE (0+1)*(0+11) represents the language of all strings over {0,1} which are
either ended with 0 or 11.

Example : The regular expression r =(00)*(11)*1 denotes the set of all strings with an even number of 0's

— FaRqdm+l 5 5
followed by an odd number of 1's i.e. L{r) = {071 | 7220, 20}

+ 2 3 2
Note : The notation ¥ is used to represent the RE rr*. Similarly, ¥ represents the RE rr, ¥ denotes © r,
and so on.

An arbitrary string over Z_ {0,1} is denoted as (0+1)*.

@e |@

Exercise : Give a RE r over {0,1} s.t. L(r)={ has at least one pair of consecutive 1's}

Solution : Every string in L(r) must contain 00 somewhere, but what comes before and what goes before is
completely arbitrary. Considering these observations we can write the REs as (0+1)*11(0+1)*.

Example : Considering the above example it becomes clean that the RE (0+1)*11(0+1)*+(0+1)*00(0+1)*
represents the set of string over {0,1} that contains the substring 11 or 00.

Example : Consider the RE 0*10*10*. It is not difficult to see that this RE describes the set of strings over {0,1}
that contains exactly two 1's. The presence of two 1's in the RE and any no of 0's before, between and after the
1's ensure it.

Example : Consider the language of strings over {0,1} containing two or more 1's.

Solution : There must be at least two 1's in the RE somewhere and what comes before, between, and after is
completely arbitrary. Hence we can write the RE as (0+1)*1(0+1)*1(0+1)*. But following two REs also represent
the same language, each ensuring presence of least two 1's somewhere in the string

i) 0*10*1(0+1)*
ii) (0+1)*10*10*

Example : Consider a RE r over {0,1} such that

me{[ﬁl,l}'| a

L(r)={ has no pair of consecutive 1's}

Solution : Though it looks similar to ex , it is harder to construct to construct. We observer that, whenever
a 1 occurs, it must be immediately followed by a 0. This substring may be preceded & followed by any no of
0's. So the final RE must be a repetition of strings of the form: 00...0100....00 i.e. 0*100*. So it looks like the
RE is (0*100%)*. But in this case the strings ending in 1 or consisting of all 0's are not accounted for. Taking
these observations into consideration, the final RE is r = (0*100*)(1+ =)+0*(1+%).

Alternative Solution :
The language can be viewed as repetitions of the strings 0 and 01. Hence get the RE as r = (0+10)*(1+%=).This
is a shorter expression but represents the same language.

Regular Expression:

FA to regular expressions:

FA to RE (REs for Regular Languages) :

Lemma : If a language is regular, then there is a RE to describe it. i.e. if L = L(M) for some DFA M, then there
is a RE rsuch that L = L(r).

Proof : We need to construct a RE r such that Lir) {W | we L{M}} . Since M is a DFA, it has a finite
no of states. Let the set of states of M is Q = {1, 2, 3,..., n} for some integer n. [Note : if the n states of M were
denoted by some other symbols, we can always rename those to indicate as 1, 2, 3,..., n]. The required RE is
constructed inductively.

)
Notations : ¥ is a RE denoting the language which is the set of all strings w such that w is the label of a

. 124, jim
path from state i to state j [-)in M, and that path has no intermediate state whose number is
greater then k. (i & j (begining and end pts) are not considered to be "intermediate" so i and /or j can be

greater than k)
o
We now construct ¥ inductively, for all i, j = Q starting at k = 0 and finally reaching k = n.

0]
Basis : k=0, ¥ i.e. the paths must not have any intermediate state (since all states are numbered 1 or
above). There are only two possible paths meeting the above condition :

1. Adirect transition from state i to state j.
o}
E . . .
o ¥ =aifthenis a transition from state i to state j on symbol the single symbol a.
(i}
A +ep, +-- , iy . .
i _ 4T % if there are multiple transitions from state i to state j on symbols
al:ﬂjs T %_ .
Y
o ¥ =fifthereis no transition at all from state i to state j.
2. All paths consisting of only one node i.e. when i =j. This gives the path of length 0 (i.e. the RE

£ denoting the string €) and all self loops. By simply adding 1 to various cases above we get the
corresponding REs i.e.

[
Egh
o ' =%E4qifthereis a self loop on symbol a in state i .
[
Fi ity -t . . .
o & =471 T ®if there are self loops in state i as multiple symbols
R T
™

o '® = Eifthereis no self loop on state i.
Induction :

Assume that there exists a path from state i to state j such that there is no intermediate state whose number is
Ly
. L
greater than k. The corresponding Re for the label of the path is ¥
There are only two possible cases :

1. The path dose not go through the state k at all i.e. number of all the intermediate states are less than
-1}
k. So, the label of the path from state i to state j is tha language described by the RE i
2. The path goes through the state k at least once. The path may go from i to j and k may appear more
than once. We can break the into pieces as shown in the figure 7.

Ficke1) Migfk1)

O— OO

A path from i to j that goes through k exactly once

(rkk':-w)*

D

A path from i to | that goes through k more than once

Figure 7

1. The first part from the state i to the state k which is the first recurence. In this path, all intermediate
(k1)
states are less than k and it starts at iand ends at k. So the RE " denotes the language of the
label of path.

2. The last part from the last occurence of the state k in the path to state j. In this path also, no
(-1}
o
intermediate state is numbered greater than k. Hence the RE ¥ denoting the language of the label
of the path.

3. Inthe middle, for the first occurence of k to the last occurence of k , represents a loop which may be

taken zero times, once or any no of times. And all states between two consecutive k's are numbered
less than .

F- 1})
Hence the label of the path of the part is denoted by the RE (.The label of the path from state i to state
Jj is the concatenation of these 3 parts which is

I I -1
A (s80) A

Since either case 1 or case 2 may happen the labels of all paths from state i to j is denoted by the following RE

1 1 el
'ri;!:h} :""i_;!:k :l+'ri(: }(”"ﬂ }) ”igh :l

L.y

We can construct ¥ forall i, j ={1,2,..., n} in increasing order of k starting with the basis k = 0 upto k = n
Ly,

since ¥ depends only on expressions with a small superscript (and hence will be available). WLOG, assume

that state 1 is the start state and 1" #2* 7" Y are the m final states where ji £{1,2,...,n}, 1 21 =m gng

wmin . According to the convention used, the language of the automatacan be denoted by the RE

By (xg
iy Py T

]
be¥ ;
Since 71 is the set of all strings that starts at start state 1 and finishes at final state ”'rlfollowing the transition
of the FA with any value of the intermediate state (1, 2, ... , n) and hence accepted by the automata.

Regular Grammar:

G = (N %P5

A grammar is right-linear if each production has one of the following three forms:
e A*CB,
e A7c,
o AFE

Where A, B = N (with A = B allowed) and £ = Z A grammar G is left-linear if each production has once of
the following three forms.

A7Bc,A7c,A™E
A right or left-linear grammar is called a regular grammar.
Regular grammar and Finite Automata are equivalent as stated in the following theorem.

Theorem : A language L is regular iff it has a regular grammar. We use the following two lemmas to prove the
above theorem.

Lemma 1 : If L is a regular language, then L is generated by some right-linear grammar.

M=(0.%, 8, g, F)

Proof : Let be a DFA that accepts L.

O={q0 a0 @) L =M@ G @)

Let and

G =(NZPSJ)

We construct the right-linear grammar by letting

andP={‘d_}C‘B | 5[ﬂ,cj=3}u{ﬂ_}c | 5[;‘1, .:::lEB}

[Note: If 5E€ & then & =€)

W= iy

Let a, € L(M) . For M to accept w, there must be a sequence of states 90- 91> 2 Dhgyeh that

5[%:“1) =d
5[@"1:%) = iy

5[%-1:‘3&:' =y

and %S 7

By construction, the grammar G will have one production for each of the above transitions. Therefore, we have
the corresponding derivation.

S =g, S Sl = S, A, Syl =W
do = hdh 7 hiadh 7 Z Hia e L i3
Hence w = L(g).

Conversely, if W=y, € L(G) , then the derivation of w in G must have the form as given above. But,
then the construction of G from M implies that

5[%’@1%" . a"':] L , Where 9w EF , completing the proof.

G = (NI P 5

Lemma 2 : Let be a right-linear grammar. Then L(G) is a regular language.

Proof: To prove it, we construct a FA M from G to accept the same language.

M=(0.%, 8 ¢.F

) is constructed as follows:

Q= Nulg,)

(97 is a special sumbol notin N)

dg = F=[qf}

Forany < N and 2€Z and 9 is defined as

I(a.a)={rle>apeP) g>agP

g Slea)={zlamwePrufe) 4 sacp

We now show that this construction works.

W= .y

Let € L) . Then there is a derivation of w in G of the form

S?ﬂlﬁh e L P A A R B (=w)
By contradiction of M, there must be a sequence of transitions

5[%:‘3‘1) =
5[9’1sﬂ'z)= &y

5[@'&_1,.:1&:] =dy

=, a, € LM

implying that W i.e. wis accepted by M.

Conversely, if W g accepted by M, then because 97 is the only accepting state of M, the

transitions causing w to be accepted by M will be of the form given above. These transitions corresponds to a

we L7
derivationof w in the grammar G. Hence [) , completing the proof of the lemma.

A—cl|c|e

Given any left-linear grammar G with production of the form , We can construct from it a right-

linear grammar & by replacing every production of G of the form 4 —* £E yjth 4 — Fc

syt N
L[Gj) (L(GD . Since 'ﬁis right-linear, L(G)

It is easy to prove that is regular. But then so are

oy B
(2(6) | o

ie. because regular languages are closed under reversal.
Putting the two lemmas and the discussions in the above paragraph together we get the proof of the theorem-

A language L is regular iff it has a regular grammar
Example : Consider the grammar
G 5—04|0

A= 15

It is easy to see that G generates the language denoted by the regular expression (01)*0.
The construction of lemma 2 for this grammar produces the follwoing FA.
This FA accepts exactly (01)*1.

Decisions Algorithms for CFL

In this section, we examine some questions about CFLs we can answer. A CFL may be represented using a
CFG or PDA. But an algorithm that uses one representation can be made to work for the others, since we can
construct one from the other.

Testing Emptiness :
Theorem : There are algorithms to test emptiness of a CFL.

Proof : Given any CFL L, there is a CFG G to generate it. We can determine, using the construction described

in the context of elimination of useless symbols, whether the start symbol is useless. If so, then L@ = '35;
otherwise not.

Testing Membership :

Given a CFL L and a string x, the membership, problem is to determine whether * = La

Given a PDA P for L, simulating the PDA on input string x doesnot quite work, because the PDA can grow its
stack indefinitely on =input, and the process may never terminate, even if the PDA is deterministic.

G = (N3P 35

So, we assume that a CFG is given such that L = L(G).

Let us first present a simple but inefficient algorithm.

@ =(NZ.P,8

-

L —e
Convert G to in CNF generating @) { } . If the input string & =*= | then we need to

S=e
determine whether ¥ and it can easily be done using the technique given in the context of elimination of
e LT e LT
= -production. If X #E then * [:] iff & [:] . Consider a derivation under a grammar in CNF. At

every step, a production in CNF in used, and hence it adds exactly one terminal symbol to the sentential form.

Hence, if the length of the input string x is n, then it takes exactly n steps to derive x (provided x is in [))-

’
Let the maximum number of productions for any nonterminal in &is K. So at every step in derivation, there
are atmost k choices. We may try out all these choices, systematically., to derive the string x in ' Since

¥
there are atmost K Ii.e. K choices. This algorithms is of exponential time complexity. We now present an
efficient (polynomial time) membership algorithm.

Pumping Lemma:
Limitations of Finite Automata and Non regular Languages :

The class of languages recognized by FA s is strictly the regular set. There are certain languages which are
non regular i.e. cannot be recognized by any FA

L={a"t"n 20}

Consider the language

In order to accept is language, we find that, an automaton seems to need to remember when passing the
center point between a's and b's how many a's it has seen so far. Because it would have to compare that with
the number of b's to either accept (when the two numbers are same) or reject (when they are not same) the
input string.

But the number of a's is not limited and may be much larger than the number of states since the string may be
arbitrarily long. So, the amount of information the automaton need to remember is unbounded.

A finite automaton cannot remember this with only finite memory (i.e. finite number of states). The fact that FA
s have finite memory imposes some limitations on the structure of the languages recognized. Inductively, we
can say that a language is regular only if in processing any string in this language, the information that has to

HiH
be remembered at any point is strictly limited. The argument given above to show that & £%is non regular is

informal. We now present a formal method for showing that certain languages such as @b are non regular
Properties of CFL’s

Closure properties of CFL.:

We consider some important closure properties of CFLs.

Theorem : If Ll and E'z are CFLs then so is Ll L Lﬁ

G =[N’21’P’Sl)and G =(M.25. 5.5,)

we can assume that MM, = '35. Let Sy
G =(M.5.5.5) G

3
from ~land 2, where

Proof : Let be CFGs generating. Without loss of generality,

: : A A
is a nonterminal not in ~"lor "2 . We construct the grammar

Ny = WU U{S3}

=5 UE,
B - BUBU(S = 515)
We now show that L(GJ =L[Gl)UL[G:4:J =LUL,

Thus proving the theorem.

L] 1 L]
5= W S= 5 =w
Let V= Ll. Then @ . All productions applied in their derivation are also in G3. Hence % % je.
we L{G)
we LI
similarly, it "€ 22 then (G)

Thus LUL ¢ LEGﬂ.

. 1
(G 8= 5= 5,
3/ Then ~ % and the first step in this derivation must be either ~ % or

-

We
Conversely, let

1 1
S3= by =S =W
% Considering the former case, we have % &

NN, AW o | |
Since “'land "2 are disjoint, the derivation % must use the productions of “!only (which are also in

N2 e L(G)

¥) Since 5 €N is the start symbol of Gl. Hence, % giving

= L[Gﬂj . Thus L{GE) - I'IULE

Using similar reasoning, in the latter case, we get

S L(GEZ]=‘E'1UL2

o, , as claimed

Theorem : If Lland JI'zare CFLs, thenso is Ll E'z.

G =({M.Z.8.5) G =(M.25. 5.5,)

Proof : Let and be the CFGs generating & and Ly respectively.

. N, . - S5 . N, M
Again, we assume that ~ land ~ 2 are disjoint, and ~*is a nonterminal notin ~ lor ~ 2. we construct the CFG

G=(M.5.B.8) G

from ~land Gﬂ,where
M, =N1U%U{S3}
Z =5 Uz,

E=RURU[S = 55,)

We claim that

S=x By =y
To prove it, we first assume that x€ Ly and yei, . Then % and % . We can derive the string xyin

i
3 as shown below.

1 L] L]
= SN = xS =
3931393 3@7{}’

EcP_ ABCPF Li,c L&)

since and "2 =~ _Hence

We
For the converse, let [3) . Then the derivation of w in G3 will be of the form

1 *
Ay T ApA, =W
% % j.e. the first step in the derivation must see the rule 85 7 5

5 € M and 5 € Nﬂ some string x will be generated from S using productions in A (which are

. Again, since Nland i are
disjoint and

alsoin P3) and such that 2 =~ ¥,

Thus NS oS, =, S ysw
=X Sy =y

Hence % and % |

This means that w can be divided into two parts x, y such that xS Lland ye LE Thus we Ll .This
completes the proof

Theorem : If Lis a CFL, then so is & .

Proof : Let G- (N’ %5 S) be the CFG generating L. Let us construct the CFG ¢ - [N’ P ’S)

P'= P8 55|€)

where .

from G

We now prove that L [Gj - (L [Gj) =L , which prove the theorem.

T can generate =in one step by using the production 5 — € gince rcr , T can generate any string in L.

weE L

— L - W .
172 *where ¢ for L21 =%y can be generated by

o
Let WE L for any n >1 we can write "
& using following steps.

* *

2-1 *
S?SS---S?WISS---S:; WML EE - S VWl W, S W

n

First (n-1)-steps uses the production S — SS producing the sentential form of 7 numbers of S 's. The

nonterminal S in the i-th position then generates b using production in P (which are also in F)

It is also easy to see that G can generate the empty string, any string in L and any string ¥ = ﬂnfor n>1and
none other.

Hence L{3) = [L(Gj) =I

Theorem : CFLs are not closed under intersection

L ={a'¥'d’ |1, 20}

Proof : We prove it by giving a counter example. Consider the language
CFG generates L, and hence a CFL

.The following

S XC
X—akh|e
C—cCle

"ht w20

b
The nonterminal X generates strings of the form @ and C generates strings of the form & | # 210

These are the only types of strings generated by X and C. Hence, S generates = .

S R 0 I FE R
=iadet i, i 20
Using similar reasoning, it can be shown that the following grammar Lﬁ { 8.] and hence it is

also a CFL.

S AX
A—ad|e
X —>bkiv|e

Al h {a"b"" |n 2 0}

and is already shown to be not context-free.
Hence proof.
Theorem : A CFL's are not closed under complementations

Proof : Assume, for contradiction, that CFL's are closed under complementation. Since, CFL's are also closed

under union, the language Ll U LE , Where & and L are CFL's must be CFL. But by DeMorgan's law

LUL =LN1L
This contradicts the already proved fact that CFL's are not closed under intersection.

But it can be shown that the CFL's are closed under intersection with a regular set.

Theorem : If Lis a CFL and R is a regular language, then LR is a CFL.

F= I[Qp’z’r’ﬁr’qp’zﬂ’Fp)

= = 4 ra
Proof : Let be a PDA for L and let [Q‘D’ -Cp-4p- D)beaDFAforR.

We construct a PDA M from P and D as follows

M= [QF XQD,E,T,EM,(QF,Qﬂ):ZD’FF XFD)

where s is defined as

2 [I[p,q) ,a,}f) contains [l[r',s) | a) iff

9o [q,.:z) ~ % and 5 [p,.:;t,X) contains [r, g)

The idea is that M simulates the moves of P and D parallely on input w, and accepts w iff both P and D
accepts. That means, we want to show that

L(M)=L(P\NL(D)=LNR

We apply induction on n, the number of moves, to show that

((q},,qﬂ)%zu)%((p,q),e,)

(g (77, 6lanw) =0

Basic Case is 7=0. Hence © g?, =90 ¥ T %0 gnd W= _For this case it is trivially true

Inductive hypothesis : Assume that the statement is true for n -1.

Inductive Step : Let w = xa and

11

0p00) 23 (00) a. @)y ((pa))

n-1

[gp,x,z,])@[p’,tf,&) Sﬂ(g.mx) =g

By inductive hypothesis, and

From the definition of One and considering the n-th move of the PDA M above, we have

5, (v'\a,0)=(pey), Bpla'a) =4

»-1 1
(45720 > (.2, @) (p.£.7)

Sr,l (‘i'b'”’) - d

Hence and

= e 8 %
If F Fand ¥ € Fﬂ, then 4= 5" and we got that if M accepts w, then both P and D accepts it.

We can show that converse, in a similar way. Hence LR is a CFL (since it is accepted by a PDA M)
This property is useful in showing that certain languages are not context-free.
Example : Consider the language

L ={WE{|:I,E:',C}‘ | w coniaine equal number of a's, b's and c's]

Intersecting L with the regular set R=abe e get

LmR=Lrnad's
={a"t*c" | n 20}
Which is already known to be not context-free. Hence L is not context-free

B
Theorem : CFL's are closed under reversal. That is if L is a CFL, then so is L
G=[N,E,P,S] G“=|[N,E,P“,S:l

Proof : Let the CFG where

P={A—a|A—»a’eP)

We need to prove that

generates L. We construct a CFG

LA 4
. We now show that [j , thus proving the theorem.

k] k]
A= A=at
?ojff 7 .
The proof is by induction on n, the number of steps taken by the derivation. We assume, for simplicity (and of

course without loss of generality), that G and hence G are in CNF.
The basis is n=1 in which case it is trivial. Because & must be either # < z or BC with 8.Ce N.
1 1
A=a A=a
Hence % iff @

bl

A=
Assume that it is true for (n-1)-steps. Let ¥ . Then the first step must apply a rule of the form

A— BT gnd it gives

* + R
B?ﬁkan C=vy

1 n-1
A=E0= gy=o
7 7 d

where

By constructing of G/, 4 — CE & &'
Hence

1 »-1
B oaR _ R
ﬂ?CB?y At =

The converse case is exactly similar
Substitution :

Vaek , let L, be a language (over any alphabet). This defines a function S, called substitution, on Z which is

slal=1L
denoted as (a) 2 _forall @€ Z
This definition of substitution can be extended further to apply strings and langauge as well.

W= iy o

If ® where @ = z ,is a string in z , then

s(w) = s{aa, - ay) = s(a)s(a;) - s(a,)
Similarly, for any language L,
sl[.-f.) ={s|[w) | we L}

The following theorem shows that CFLs are closed under substitution.

* &l
Thereom : Let Lcx is a CFL, and s is a substitution on Z such that [) 2is a CFL for all # < Z , thus

s(L)is a CFL
= [N,E, P,S)

L =Ll
Proof : Let L = L(G) for a CFG and for every # = Z , ¢ [E)for some

G, =(N, %, P.58

ar-er ‘1) . Without loss of generality, assume that the sets of nonterminals N and N, 's are
disjoint.

¢ . iF
Now, we construct a grammar & , generating s(L), from G and ~2's as follows :

. G =(NZLP.S)
M=K lJ Na!_

N FEEZ
== =

. a!LéJE !

. Fconsists of

&
a!.
1. %2 and

2. The production of P but with each terminal a in the right hand side of a production replaced by

2everywhere.

LG we sl[ﬂ.)‘

W
We now want to prove that this construction works i.e. iff

=@, i, €L

we sl L
If Part : Let [)then according to the definition there is some string * # and

xS S[a")for 1=L2 0 nthat T AT R (=5[‘11)5[‘12)"'3[‘1xj)

S=w
We will show that %

From the construction of & , we find that, there is a derivation & corresponding to the string

R R (since lGrcontains all productions of G but every ai replaced with ~ * in the RHS of any
production).

A & , & - in G
Every % is the start symbol of and all productions of are also included in .
Hence

*

52 80 S, S,

*
?ﬁ xlgczg -y

#

b

= XXy X, TW
we LG
= L(T)

Therefore,
(Only-if Part) Let v . Then there must be a derivative as follows :
*

S=8 5, S ,
F 1 (using the production of G include in = as modified by (step 2) of the construction of <+ .)

R xel, N
Each @ (I L2, ’H) can only generate a string ! La? , since each % 'sand N are disjoin. Therefore,
we get
?
S22 805, e,
*
Y
= xS, 5 Sey g7 A

- il
1%
1" il . [rd
F 2 * since !

*
*

O
= R K, e 2 7 2
G s T e “2
:G.f” My Xy
=
= _ ! we sl L
The string W A% s formed by substituting strings % for each % “ and hence [)

Theorem : CFL's are closed under homomorphism

Proof : Let Lcx be a CFL, and his a homomorphism on Zie hii—=A for some alphabets & consider
the following substitution S:Replace each symbol @ = by the language consisting of the only string h(a), i.e.

slal={kla
[) { [)} for all %= Z . Then, it is clear that, h(L) = s(L). Hence, CFL's being closed under substitution
must also be closed under homomorphism.

Grammar

A grammar is a mechanism used for describing languages. This is one of the most simple but yet powerful
mechanism. There are other notions to do the same, of course.

In everyday language, like English, we have a set of symbols (alphabet), a set of words constructed from these
symbols, and a set of rules using which we can group the words to construct meaningful sentences. The
grammar for English tells us what are the words in it and the rules to construct sentences. It also tells us
whether a particular sentence is well-formed (as per the grammar) or not. But even if one follows the rules of
the english grammar it may lead to some sentences which are not meaningful at all, because of impreciseness
and ambiguities involved in the language. In english grammar we use many other higher level constructs like
noun-phrase, verb-phrase, article, noun, predicate, verb etc. A typical rule can be defined as

< sentence > —* < noun-phrase > < predicate >
meaning that "a sentence can be constructed using a 'noun-phrase’ followed by a predicate”.

Some more rules are as follows:
< noun-phrase > —* < article >< noun >

< predicate > — < verb >
with similar kind of interpretation given above.

If we take {a, an, the} to be <article>; cow, bird, boy, Ram, pen to be examples of <noun>; and eats, runs,
swims, walks, are associated with <verb>, then we can construct the sentence- a cow runs, the boy eats, an
pen walks- using the above rules. Even though all sentences are well-formed, the last one is not meaningful.
We observe that we start with the higher level construct <sentence> and then reduce it to <noun-phrase>,
<article>, <noun>, <verb> successively, eventually leading to a group of words associated with these
constructs.

These concepts are generalized in formal language leading to formal grammars. The word 'formal’ here refers
to the fact that the specified rules for the language are explicitly stated in terms of what strings or symbols can
occur. There can be no ambiguity in it.

Formal definitions of a Grammar

A grammar G is defined as a quadruple.
G=(NZP5

N is a non-empty finite set of non-terminals or variables,

Zisa non-empty finite set of terminal symbols such that Nnz=¢

ae N, is a special non-terminal (or variable) called the start symbol, and Fc [NUE)+ * [NUE)' is a

finite set of production rules.

The binary relation defined by the set of production rules is denoted by — , i.e. & ﬁiff [.::r, ﬁ) < P.
a— 8 ae(N L_JE)+

In other words, P is a finite set of production rules of the form and

Be(NUS)

, where

Production rules:

The production rules specify how the grammar transforms one string to another. Given a string day , We say
that the production rule & ﬁis applicable to this string, since it is possible to use the rule & ﬁto rewrite
the & (in day) to ﬁobtaining a new string 5ﬁy.We say that day derives o6y and is denoted as

aexy = A5y

Successive strings are dervied by applying the productions rules of the grammar in any arbitrary order. A
particular rule can be used if it is applicable, and it can be applied as many times as described.

L]

+
We write @= ﬁif the string ﬁcan be derived from the string ™ in zero or more steps; ﬂifﬁif ﬁcan be
derived from 2 in one or more steps.

By applying the production rules in arbitrary order, any given grammar can generate many strings of terminal
symbols starting with the special start symbol, S, of the grammar. The set of all such terminal strings is called
the language generated (or defined) by the grammar.

G=(N.ZP3)

Formaly, for a given grammar the language generated by G is

L(3) ={wez‘ | S:‘}w}

-

Thatis = LG) s s=w.

we L{G) 10 Sra=mgSa=s g =w

If , we must have for some # 2 , denoted as a

derivation sequence of w, The strings Sl N A are denoted as sentential forms of the
derivation.

G=(NLP5)

Example : Consider the grammar , where N = {S}, = ={a, b} and P is the set of the following

production rules
{S™ab, S ™ aSh}
Some terminal strings generated by this grammar together with their derivation is given below.
S = ab
S = aSb= aabb

S = aSb™ aaSbb ™ aaabbb

It is easy to prove that the language generated by this grammar is
L(G) ={a't' | 21
By using the first production, it generates the string ab (for i =1).

To generate any other string, it needs to start with the production S — aSh and then the non-terminal S in the
RHS can be replaced either by ab (in which we get the string aabb) or the same production S — aSh can be

used one or more times. Every time it adds an 'a' to the left and a 'b' to the right of S, thus giving the sentential
fcnd
ataE 2]

form . When the non-terminal is replaced by ab (which is then only possibility for generating a

inio o
. , . . 5
terminal string) we get a terminal string of the form ab, 12 1.

There is no general rule for finding a grammar for a given language. For many languages we can devise
grammars and there are many languages for which we cannot find any grammar.

L={a"t"| n 21

Example: Find a grammar for the language

It is possible to find a grammar for L by modifying the previous grammar since we need to generate an extra b

atB® w2l

at the end of the string . We can do this by adding a production S — Bb where the non-terminal B

iri o
N . .
generates : as given in the previous example.

Using the above concept we devise the follwoing grammar for L.

G=[N’E’P’S:]Where’]\7= { S,B },P={S*Bb,B*ab,B*aBb}

Parse Trees:

There is a tree representation for derivations that has proved extremely useful.
This tree shows us clearly how the symbols of a terminal string are grouped
into substrings, each of which belongs to the language of one of the variables of
the grammar. But perhaps more importantly, the tree, known as a “parse tree”

Construction of a Parse tree:

Let us fix on a grammar G = (V,T, P, S). The parse trees for G are trees with
the following conditions:

1. Each interior node is labeled by a variable in V.

2. Each leaf is labeled by either a variable, a terminal, or e. However, if the
leaf is labeled ¢, then it must be the only child of its parent.

3. If an interior node is labeled A, and its children are labeled
X1, X, Xi

respectively, from the left, then A - X, X, .- X} is a production in P.
Note that the only time one of the X’s can be ¢ is if that is the label of
the only child, and A — € is a production of G.

Example 5.10: Figure 5.5 shows a parse tree for the palindrome grammar of
Fig. 5.1. The production used at the root is P = 00, and at the middle child
of the root it is P — 1P1. Note that at the bottom is a use of the production
P — ¢. That use, where the node labeled by the head has one child, labeled e,
is the only time that a node labeled € can appear in a parse tree. O

Figure 5.5: A parse trce showing the derivation I’ = 0110

Yield of a Parse tree:

If we look at the leaves of any parse tree and concatenate them from the left, we
get a string, called the yield of the trec, which is always a string that is derived
from the root variable. The fact that the yield is derived from the root will be
proved shortly. Of special importance are those parse trees such that:

1. The yield is a terminal string. That is, all leaves are labeled either with
a terminal or with e.

2. The root is labeled by the start symbol.

Ambiguity in languages and grammars:

When a grammar fails to provide unique structures, it is sometimes possible
to redesign the grammar to make the structure unique for each string in the
language. Unfortunately, sometimes we cannot do so. That is, there are some
CFL’s that are “inherently ambiguous”; every grammar for the language puts

more than one structure on some strings in the language.
grammar lets us generate expressions with any sequence ot * and + operators,

and the productions £ =+ E + E | E x E allow us to generate these expressions
in any order we choose.

Example 5.25: For instance, consider the sentential form F + E = E. It has
two derivations from E:

lL. E=sFE+E=>EBE+ExE

2 E=FE+«E=FE+FExE
Notice that in derivation (1), the second E is replaced by E * E, while in

derivation (2), the first E is replaced by EF + E. Figure 5.17 shows the two
parse trees, which we should note are distinet trees.

AN N
N AN

E * E

(a) (b)

Figure 5.17: Two parse trees with the same yield
we say a CFG G = (V,T,P,S) is ambiguous if there is at least one string w
in T* for which we can find two different parse trees, each with root labeled S
and vield w. If each string has at most one parse tree in the grammar, then the
grammar is unaembiguous.

AL

MODULE-III

Push down automata:

Regular language can be charaterized as the language accepted by finite automata. Similarly, we can
characterize the context-free language as the langauge accepted by a class of machines called "Pushdown
Automata" (PDA). A pushdown automation is an extension of the NFA.

It is observed that FA have limited capability. (in the sense that the class of languages accepted or
characterized by them is small). This is due to the "finite memory" (number of states) and "no external memory"
involved with them. A PDA is simply an NFA augmented with an "external stack memory". The addition of a
stack provides the PDA with a last-in, first-out memory management cpapability. This "Stack" or "pushdown
store" can be used to record a potentially unbounded information. It is due to this memory management
capability with the help of the stack that a PDA can overcome the memory limitations that prevents a FA to

ath a2

accept many interesting languages like [|] . Although, a PDA can store an unbounded amount of
information on the stack, its access to the information on the stack is limited. It can push an element onto the
top of the stack and pop off an element from the top of the stack. To read down into the stack the top elements
must be popped off and are lost. Due to this limited access to the information on the stack, a PDA still has
some limitations and cannot accept some other interesting languages.

input tape

a da? =15 || cooooococooocooooocooooooooaooocaooa An

Read-only head

finite
- Q
control y—— X,
Ush/po
push/pop X;
X2
X
Vs

As shown in figure, a PDA has three components: an input tape with read only head, a finite control and a
pushdown store.

The input head is read-only and may only move from left to right, one symbol (or cell) at a time. In each step,
the PDA pops the top symbol off the stack; based on this symbol, the input symbol it is currently reading, and

its present state, it can push a sequence of symbols onto the stack, move its read-only head one cell (or
symbol) to the right, and enter a new state, as defined by the transition rules of the PDA.

PDA are nondeterministic, by default. That is, = - transitions are also allowed in which the PDA can pop and
push, and change state without reading the next input symbol or moving its read-only head. Besides this, there
may be multiple options for possible next moves.

Formal Definitions : Formally, a PDA M is a 7-tuple M = [Q .19, 4. Zo, F:I

where,

o e is a finite set of states,
. Eis a finite set of input symbols (input alphabets),
e ['is afinite set of stack symbols (stack alphabets),

Ox(Zu{g})xT

. y . =
. ﬁlsatran3|t|onfunct|onfrom tosubseton I

o do €

zpel

is the start state
, is the initial stack symbol, and

Flco .
. = Q is the final or accept states.

Explanation of the transition function, 5:

If, for any @ = z 5[q,a,z) - {'[pb /ﬁl) : '[P:u ’83) - [p**’ ﬁ")} . This means intitutively that whenever the

PDA is in state g reading input symbol a and z on top of the stack, it can nondeterministically for any i,
l=i=k

e go to state i
e pop 7 off the stack

*

e push A onto the stack (where ’Loi er) (The usual convention is that i

f A=EX X

, then

= will be at the top and = at the bottom.)
e move read head right one cell past the current symbol a.

faz€ then DM4:E:2)= {(7.8). (72 &), (P B} oans intitutively that whenver the PDA is in

state g with Z on the top of the stack regardless of the current input symbol, it can nondeterministically for any
Cl=isk
l’ b

e go to state i
e pop Z off the stack

e push ’gionto the stack, and
e |eave its read-only head where it is.

State transition diagram : A PDA can also be depicted by a state transition diagram. The labels on the arcs
indicate both the input and the stack operation. The transition

dip.a,z) ={(‘?=Cﬂ} for % EE"“I{E}’ pgeQ,zel and &= 1—‘is depicted by

a, z/a
m/—\
| P) | q)

Final states are indicated by double circles and the start state is indicated by an arrow to it from nowhere.

Configuration or Instantaneous Description (ID) :

A configuration or an instantaneous description (ID) of PDA at any moment during its computation is an

xZ' =" . : : . .
element of Gxz =l describing the current state, the portion of the input remaining to be read (i.e.
under and to the right of the read head), and the current stack contents. Only these three elements can
affect the computation from that point on and, hence, are parts of the ID.

The start or inital configuartion (or ID) on input ¥ is (4. @.2,) . That is, the PDA always starts in its
start state, 90 with its read head pointing to the leftmost input symbol and the stack containing only the

start/initial stack symbol, %o

The "next move relation" one figure describes how the PDA can move from one configuration to another
in one step.

Formally,

(g.a@za) |, (p. @ 6c)
o (2.8)ed(q.a.z]

'a' may be = or an input symbol.

i
Let I, J, K be IDs of a PDA. We define we write I '~ 2k, if ID I can become K after exactly i moves. The

L)

I

relations ™ #and F ¥ define as follows
0

¥k

®+l

» 1
= i EIK—suchthatl E¥gand K4 g

*

} ®
I =¥ i 3 n —Dsuchthatl =y

* *

Thatis, ™ #is the reflexive, transitive closure of = ¥ We say that / =¥ J if the ID J follows from the ID I in
Zero or more moves.

(Note : subscript M can be dropped when the particular PDA M is understood.)
Language accepted by a PDA M

There are two alternative definiton of acceptance as given below.

1. Acceptance by final state :

M= = 1,d Z, F
Consider the PDA [Q 25 dos L) . Informally, the PDA M is said to accept its input &' by final
state if it enters any final state in zero or more moves after reading its entire input, starting in the start

configuration on input %

Formally, we define L(M), the language accepted by final state to be

{@= E*| (90,2.20) - (2.5 ﬁ)forsomepEFand fe 1"‘}

2. Acceptance by empty stack (or Null stack) : The PDA M accepts its input # by empty stack if starting in the

start configuration on input & it ever empties the stack w/o pushing anything back on after reading the entire
input. Formally, we define N(M), the language accepted by empty stack, to be

(@ € E*| [gm'ﬂzﬂj I—;-f(pﬁ’ejlforsomePEQ}

Note that the set of final states, F is irrelevant in this case and we usually let the F to be the empty seti.e. F =

0.

M1N
ad |2l
Example 1 : Here is a PDA that accepts the language { |] .

M=(0.Z.T. 6,4, 2. F)
A

(@ b
{

a, &, z}

(a1 a4

&
z
T
F

, and ﬁconsists of the following transitions

1. 8(gqp,2,.2) ={(g,,42))
2. 8(gy.a.a) = {(g;.0a))
3. 8(g,.8,4) ={ (g5,€))

4. 8lgs.b,a) ={(g5.5))
5. 8(g,.€,2) ={ (g,.2))

The PDA can also be described by the adjacent transition diagram.

a, z/az

b a/e;%\e z/z

a, a/aa b s

Informally, whenever the PDA M sees an input a in the start state 41 with the start symbol z on the top of the
stack it pushes a onto the stack and changes state to 92 (to remember that it has seen the first 'a’). On state
92t it sees anymore a, it simply pushes it onto the stack. Note that when M is on state 92 , the symbol on the

top of the stack can only be a. On state 91if it sees the first b with a on the top of the stack, then it needs to
start comparison of numbers of a's and b's, since all the a's at the begining of the input have already been
pushed onto the stack. It start this process by popping off the a from the top of the stack and enters in state q3

(to remember that the comparison process has begun). On state q3’ it expects only b's in the input (if it sees
any more a in the input thus the input will not be in the proper form of anbn). Hence there is no more on input a

when itis in state 3. On state 7% it pops off an a from the top of the stack for every b in the input. When it
sees the last b on state g3 (i.e. when the input is exaushted), then the last a from the stack will be popped off
and the start symbol z is exposed. This is the only possible case when the input (i.e. on =-input) the PDA M

will move to state *which is an accept state.

we can show the computation of the PDA on a given input using the IDs and next move relations. For example,
following are the computation on two input strings.

Let the input be aabb. we start with the start configuration and proceed to the subsequent IDs using the
transition function defined

[ql,aabb,z) — [qz ,abb,c:;z) (

using transition 1)

— [fi'z Jbb,aaz

)(using transition 2)

= (‘3'3”5’“2) (using transition 3)

= =
2 [q3, ’Z) (using transition 4), = I[q4, ’Z)(using transition 5) , 94is final state. Hence , accept. So the
string aabb is rightly accepted by M

we can show the computation of the PDA on a given input using the IDs and next move relations. For example,
following are the computation on two input strings.

i) Let the input be aabab.

(g.aabab,z) | (g, abab,az)
 (a, bab,aaz)

— 'I‘i'zsﬂbsﬂz)
No further move is defined at this point.
Hence the PDA gets stuck and the string aabab is not accepted.

Example 2 : We give an example of a PDA M that accepts the set of balanced strings of parentheses [] by
empty stack.
The PDA M is given below.

M = ({q}{[]} {Z[} ? 5,q,z,|;25") where ‘ﬁis defined as

Informally, whenever it sees a [, it will push the] onto the stack. (first two transitions), and whenever it sees a]
and the top of the stack symbol is [, it will pop the symbol [off the stack. (The third transition). The fourth
transition is used when the input is exhausted in order to pop z off the stack (to empty the stack) and accept.
Note that there is only one state and no final state. The following is a sequence of configurations leading to the
acceptance of the string [[]1[1]1[]

(@.[010100).2) (@ L)L 0 2) = (g J01I0 L) (g [110).[2) (2. D10 D[[2)

= [gs]][]:[[Z:I — [qs][]![Z) — [qs[],Z:l = (g!]![Z:I — [qses Z:I = (g!E!E:]
Equivalence of acceptance by final state and empty stack.

It turns out that the two definitions of acceptance of a language by a PDA - accpetance by final state and empty
stack- are equivalent in the sense that if a language can be accepted by empty stack by some PDA, it can also
be accepted by final state by some other PDA and vice versa. Hence it doesn't matter which one we use, since

each kind of machine can simulate the other.Given any arbitrary PDA M that accpets the language L by final
state or empty stack, we can always construct an equivalent PDA M with a single final state that accpets
exactly the same language L. The construction process of M'from M and the proof of equivalence of M & M’
are given below.

There are two cases to be considered.

CASE | : PDA M accepts by final state, Let M=(Q.ET. 8.9, 2. F)

M= (Qu[qj] ,E,r,ﬁfrfhrzﬂ’{gf})

Let gf be a new state not in Q.

Consider the PDA where g as well as the following transition.

Flg.e) contains (qf’}{) vack

LMy =L(M")

and L1 itis easy to show that M and M'are equivalent i.e.

Let & EL(M) . Then [g”’m’zﬂj |_M|[q,E, y)forsome GEF g ¥ET

e (0 0020) g @2.7) g (87,57

Thus M accepts @

* 1
: : i S =S
Conversely, let M accepts @ie. @ €L(M") then (0. @.2) Y (2.£.%) M (qf y)for

(g0, @2) - 3 (2.8 7)

qEF A inherits all other moves except the last one from M. Hence for some

geF
Thus M accepts & . Informally, on any input M simulate all the moves of M and enters in its own final state
97 whenever M enters in any one of its final status in F. Thus M accepts a string & it M accepts it.

CASE Il : PDA M accepts by empty stack.

We will construct 4 from M in such a way that M simulates M and detects when M empties its stack.

M enters its final state 45 when and only when M empties its stack.Thus M win accept a string & iff M
accepts.

M- (@u{aa] ETO{X). 8.0, X ar])

transition of 5, as well as the following two transitions.

where %0> 97 # Qand X€ T and 4* contains all the

1.8'(g.€.X) ={|[ii'uszn*}f)}

and

2 &(g.6.%) ={[gf,E)] . Wge(

Transitions 1 causes ¥ to enter the initial configuration of M except that M will have its own bottom-of-stack
marker X which is below the symbols of M's stack. From this point onward M will simulate every move of M
since all the transitions of M are also in ¥~

If M ever empties its stack, then M when simulating M will empty its stack except the symbol X at the bottom.

At this point, M will enter its final state 9s by using transition rule 2, thereby (correctly) accepting the input.
We will prove that M and M are equivalent.

Let M accepts % . Then
a@ : g, &
'{%s =ZIZI) I—M{q’ :)forsomegEQ.Butthen

1
(9@ X) e (G0 @2 X) (by transition rule 1)

=2 [g,e, le(Since M includes all the moves of M)

1 JEE
= A (qf) (by transition rule 2)

Hence, M also accepts @ . Conversely, let M accepts & .

Then |Ifij‘l.'lll"::fj’ X) |—}|d‘ {qﬂ’m’zﬂ‘:r{) I—;;d" [q,E, X) |—}|d‘ (qI,E,E:I for some g = Q

@z, X e X
Every move in the sequence, (0. @20 X) -3 (9.5)were taken from M.

Hence, M starting with its initial configuration will eventually empty its stack and accept the input i.e.

(4, @2) - 3 (9.6, €)

Equivalence of PDA’s and CFG’s:
We will now show that pushdown automata and context-free grammars are equivalent in expressive power,

that is, the language accepted by PDAs are exactly the context-free languages. To show this, we have to prove
each of the following:

i) Given any arbitrary CFG G there exists some PDA M that accepts exactly the same language
generated by G.

i) Given any arbitrary PDA M there exists a CFG G that generates exactly the same language
accpeted by M.

(i) CFA to PDA

We will first prove that the first part i.e. we want to show to convert a given CFG to an equivalent PDA.

F=INZ P&
Let the given CFG is [T) Without loss of generality we can assume that G is in Greibach
Normal Form i.e. all productions of G are of the form .

A= BBy By where cezuie) and £ 20

From the given CFG G we now construct an equivalent PDA M that accepts by empty stack. Note that there is
only one state in M. Let

M=({q)}.Z.N.5,9.5.¢)

, Where

e gisthe only state

. Eis the input alphabet,
e Nis the stack alphabet ,
e g is the start state.

e Sis the start/initial stack symbol, and 5, the transition relation is defined as follows

A—cBB,---B eP (gB58, B)cdge A

. We now want to show

(G) we N(M)

For each production

that M and G are equivalent i.e. L(G)=N(M). i.e. for any W< z wel

WweE L[G:l

If , then by definition of L(G), there must be a leftmost derivation starting with S and deriving w.

N(M)

W *
Again if , then one sysmbol. Therefore we need to show that for any W= 2

SZv (g.ws) | (a.e€)

But we will prove a more general result as given in the following lemma. Replacing A by S (the start symbol)
and yby = gives the required proof.

®
. A=y
Lemma For any * yEZ Ve N and €N G 7 \ia a leftmost derivative iff

(7,5, 4) |3 (.0 ¥)

Proof : The proof is by induction on 7.

Basis:n=0

0
A=x _ _
& yiff A=7Y o x=ggpg ¥ =4

o (e 4)=(q.5.V]

o (g0 4) G (e y)

Induction Step :

n+l

A=xy
First, assume that ¥ via a leftmost derivation. Let the last production applied in their derivation is

B_}Cﬁforsome CEEU{E}and ’SEN .

Then, for some @EZ = N
1
H:G} mBa:?&rﬁa= xy

where * = @& gnd y=Fa

Now by the indirection hypothesis, we get,

(g aey, A) %, (g.00. Ba) 0
Again by the construction of M, we get

(¢.8)ed(g.c.B)

so, from (1), we get

(g, @y, 4) e (gov.Ba) 5, (a0, Ba]

]l

since * = @ and Fﬁa’we get (9.0,4) - M (g7 7)

B+l n+l

A=xy A
Thatis, if 7 , then (Q‘,l}’,) = ar (Q‘,}’,?). Conversely, assume that

]

[q,;{}f’,.ﬂ) — ar [q:y:?}}and let

reZu{e]

5 [E = *
(q’ !) (Gf, ﬁ}be the transition used in the last move. Then for some @EZ , and

ae I

[‘3'=ary=ﬂ) I—?.d'[q’q‘?’Ba) I—}ﬂ'[g’y’ﬁ&)where A=8Cang jlf:ﬁif'

Now, by the induction hypothesis, we get

X
A= oBa
via a leftmost derivation.

B>cf (2 8) € d(ar o B

Again, by the construction of M, must be a production of G. [Since

Applying the production to the sentential form @5 we get
] 1
ﬂ;c; a:rB::E:I; ak Jo = xy

2+l
A=y
ie. ©

via a leftmost derivation.
Hence the proof.

Example : Consider the CFG G in GNF

S—"aAB
A—*a/aA
B~7a/bB

The one state PDA M equivalent to G is shown below. For convenience, a production of G and the
corresponding transition in M are marked by the same encircled number.

(1) ST aAB
2Q)A a
(3)A7aA
(4)B *a
(5B —bB

M=({g} {ab} (5. 4B}, 8,q8%)

. We have used the same construction discussed earlier

Some Useful Explanations :
Consider the moves of M on input aaaba leading to acceptance of the string.
Steps

1]

H
1.(q, aaaba, s) ¥ (g, aaba, AB)
(2]

H
2. M (g,aba, AB)
&)
H
3. M (gq,ba,B)
(*]
H
4. M (g,a,B)
[5)
H
5. M (g,=,%) Accept by empty stack.

Note : encircled numbers here shows the transitions rule applied at every step.
Now consider the derivation of the same string under grammar G. Once again, the production used at every
step is shown with encircled number.

L (3] (2] 3] (4]
== = == =
S % aAB % aaAB % aaaB % aaabB % aaaba

Steps™ 1 2 —F 3 4 75

Observations:

e There is an one-to-one correspondence of the sequence of moves of the PDA M and the derivation
sequence under the CFG G for the same input string in the sense that - number of steps in both the
cases are same and transition rule corresponding to the same production is used at every step (as
shown by encircled number).

e considering the moves of the PDA and derivation under G together, it is also observed that at every
step the input read so far and the stack content together is exactly identical to the corresponding
sentential formi.e.
<what is Read><stack> = <sentential form>

Say, at step 2, Read so far = a

stack = AB
* S=xo
Sentential form = aAB From this property we claim that [q,x, S:I = & [q,e, ﬁE:I ifft 7 . If the claim is
_)t (gee) S=Zx xe N(M) xel(d
true, then apply with & == and we get (2.%.8) -3 (2.5,)iff " ort ()iff xe L)(by

definition)
Thus N(M) = L(G) as desired. Note that we have already proved a more general version of the claim
PDA and CFG:

We now want to show that for every PDA M that accpets by empty stack, there is a CFG G such that L(G) =
NM)

we first see whether the "reverse of the construction" that was used in part (i) can be used here to construct an
equivalent CFG from any PDA M.

It can be show that this reverse construction works only for single state PDAs.

e Thatis, for every one-state PDA M there is CFG G such that L(G) = N(M). For every move of the
PDA M \g. BBy By)e dlg, o, 4) A —cB BB

G=(N.Z P &)

we introduce a production in the

where N = T and S=Z':'.

grammar
we can now apply the proof in part (i) in the reverse direction to show that L(G) = N(M).
But the reverse construction does not work for PDAs with more than one state. For example, consider the PDA

{a"bd" |12 1)

M produced here to accept the langauge

(7. a).(0 5} {20 4.9.2.2.8)

F=(N. I, P 3

Now let us construct CFG using the "reverse" construction.

N={z,:,,ﬂ}, A=z,

(Note).
Transitions in M Corresponding Production in G
a,z, /A z, —» ad
a, AfAA A—=add
b, Afd A— b4
a, Afs A—=ua

We can drive strings like aabaa which is in the language.

§=z,= cui:; ﬂﬂﬂ.ﬂ:{: acxbﬂﬂ:t; aaba&ﬂ:; aabac

But under this grammar we can also derive some strings which are not in the language. e.g

g =z, = ad = abd = abadd = abaad = abaca

s=z,=> ald= aa aa,abaa L{M)

and But

Therefore, to complete the proof of part (ii) we need to prove the following claim also.

: NM)=NM
Claim: For every PDA M there is some one-state PDA M such that [:l [:] .

It is quite possible to prove the above claim. But here we will adopt a different approach. We start with any
arbitrary PDA M that accepts by empty stack and directly construct an equivalent CFG G.

PDA to CFG

We want to construct a CFG G to simulate any arbitrary PDA M with one or more states. Without loss of
generality we can assume that the PDA M accepts by empty stack.

The idea is to use nonterminal of the form <PAg> whenever PDA M in state P with A on top of the stack goes

to state 0. That is, for example, for a given transition of the PDA corresponding production in the grammar as
shown below,

g }:} &
And, we would like to show, in general, that % iff the PDA M, when started from state P with A on
the top of the stack will finish processing & , arrive at state q and remove A from the stack.
we are now ready to give the construction of an equivalent CFG G from a given PDA M. we need to introduce
two kinds of producitons in the grammar as given below. The reason for introduction of the first kind of
production will be justified at a later point. Introduction of the second type of production has been justified in the
above discussion.

M={Q.Z.T, 4, g5. 2y, &) G=(NZ, P, 5

Let be a PDA. We construct from M a equivalent CFG

Where

e Nis the set of nonterminals of the form <PAg> for p.aedd and A€ T and P contains the follwoing
two kind of production

S—{gzg) Vg
i @ BBy By)edig, a A

1.

G537

2. , then for every choice of the sequence

L z5isn+]
Include the follwoing production

<"i';1 I:i';»e+1>_“‘\ @ {‘5'1319'2 }{‘5'252'?3 }' ' <‘i':e3x'?x+1>

<fL1 QI}%

et
If n = 0, then the production is .For the whole exercise to be meaningful we want

{fLi fi’x+1>;,;m . - o g
means there is a sequence of transitions (for PDA M), starting in state g, ending in ##+1,

during which the PDA M consumes the input string & and removes A from the stack (and, of course, all other
symbols pushed onto stack in A's place, and so on.)

That is we want to claim that

L)

@ﬂq}:gmiﬁ (p.@ 4) _(g.5€)

t <q|:| ZD q}:(;mlff [qﬂ’ m’ ZU:I = (g’E’E)

If this claim is true, then let ¥ ~ 407 A=z, to ge for some

S—
€L Butforall ¥ €< we have l'{q':'zt'q)as production in G. Therefore,

1 *
S?{:@'nznf}'}?iff [qﬂ’ at, ZU) b= [q’E’E) S;I;W

ie. iff PDA M accepts w by empty stack or L(G) = N(M)

Now, to show that the above construction of CFG G from any PDA M works, we need to prove the proposed
claim.

S ig.z
Note: At this point, the justification for introduction of the first type of production (of the form {q” I3q>) in
the CFG G, is quite clear. This helps use deriving a string from the start symbol of the grammar.

Figh= R
Proof : Of the claim < ﬂq} g iff {P’W’ ﬂ) = Iiﬁir’E’E)forsome WEZ Al gng 0 ¢ e,

The proof is by induction on the number of steps in a derivation of G (which of course is equal to the number of
moves taken by M). Let the number of steps taken is .

The proof consists of two parts: ' if ' part and ' only if ' part. First, consider the ' if ' part

((Pow A (age), <Pﬂq}=gw.

Basis is n =1
Then (Pow, A) (g.5.€)

a production of G.

ez PAgh—=w.

. . W .
. In this case, it is clear that . Hence, by construction { is

Then

Inductive Hypothesis :

vi<n(Pow A) _{g.e€) (PAai=w

Inductive Step : (P’W’ _,-1) = [q,E,E)

EXE '
For n >1, let w = ax for some “ { } and £ 2 consider the first move of the PDA M which uses the

general transition [gl’ 55, ---B,JE 5[;9,(1,31) I:"v""{';l’ﬂ:|=
[p, Qax, *’q) - '[‘i'b x, BB, "'Bx) — '[‘5'=E=E)

consuming x in the remaining n-1 moves.

. Now M must remove 5By - By from stack while

A=08X

Let ® where 1927 Mg the prefix of x that M has consumed when Fin first appears at top of

the stack. Then there must exist a sequence of states in M (as per construction) 92-43:7 GnGue (with

EEN N p), such that

I[p,c;tx,xi:l I—[gl’ &, BIBE'“BM) =|{‘f1s A&y Ky, BIBE--.B:E:I
(g1 7. B - '{fi'g,'ff)]
(g2 %30 By) [q3,E,E)]

-x,, BB B
[giw SR Tt ") [This step implies

(95, xxyo 3y, ByBy o By) [This step implies

I—[g?w Ko Bﬁ)

- (Gene8)_(¢:52)

[Note: Each step takes less than or equal to n -1 moves because the total number of moves required assumed
to be n-1.]

That is, in general

(gis A, Bz':l I—(Q’msese), 1ZiZm+]

So, applying inductive hypothesis we get

B = x, _
<fi'z ;fi';+1> g " ,12i%m+1 Byt corresponding to the original move
[p’w’ﬂ:] = [psa'x:ﬂ:] — [ﬁ}'l, X, B].Bﬂ "'BH:]

in M we have added the following production in G.

We can show the computation of the PDA on a given input using the IDs and next move relations. For example,
following are the computation on two input strings.

i) Let the input be aabb. we start with the start configuration and proceed to the subsequent IDs using the
transition function defined

[gl,aczbb,z) — [qg ,cxbb,cxz:l — [gg ,E:'E:',cxcxz:l

(using transition 1), (using transition 2)

b =
- (g.0.02) (using transition 3), (45..2) (using transition 4)

=, 7
2 I{gq, ’)(using transition 5) , 94is final state. Hence, accept.

So the string aabb is rightly accepted by M.

we can show the computation of the PDA on a given input using the IDs and next move relations. For example,
following are the computation on two input strings.

i) Let the input be aabab.

[gl,czabczb,z) s [gg,czbab,azj

— [gg ,E:c;tf:,czcxz)

- (@.ab.az)
No further move is defined at this point.

Hence the PDA gets stuck and the string aabab is not accepted.

The following is a sequence of configurations leading to the acceptance of the string [[]1[]1]1[]-

(@ l[101100.2) = (a.L 1110 LIz) — (@ 1110 DLIZ)
(e 110 LI2) = (e 10 LI2) = (2. D100 2)

—ta.[1lz) (a.)[z) - (g.e.2) _(g.€.€)

Equivalence of acceptance by final state and empty stack.

It turns out that the two definitions of acceptance of a language by a PDA - accpetance by final state and empty
stack- are equivalent in the sense that if a language can be accepted by empty stack by some PDA, it can also
be accepted by final state by some other PDA and vice versa. Hence it doesn't matter which one we use, since
each kind of machine can simulate the other.Given any arbitrary PDA M that accpets the language L by final
state or empty stack, we can always construct an equivalent PDA M with a single final state that accpets
exactly the same language L. The construction process of M'from M and the proof of equivalence of M & M’
are given below

There are two cases to be considered.

M=(0.5.T.8.4, Z,, F)

CASE 1 : PDA M accepts by final state, Let . Let 97 be a new state not in Q.

M = (Qu[gf] ,E,r,ﬁa,gnrzﬂ’{gf})

Consider the PDA where 9" as well as the following transition.

5g.e X) I[qj,X) ¥ ogeEF

contains and £ €L 1tis easy to show that M and M are equivalent i.e.

Let mEL[M).Then [gﬂ’m’zﬂj |_;d|[q,E, y)forsome qEF and rex’

Then 180> @ %o) 1= 3¢ (4.5, %) - 2,0 ;v]'

Thus M accepts @ .

' * 1
Conversely, let 4" accepts @ i.e. @e L{M) then (@ @2) - M (7.57) ey (qI,E, ;V:] for some

: @,z MRS
gEF . M inherits all other moves except the last one from M. Hence [g”’ ’ ”) = &a [q’ ’ ;V) for some
geEF

Thus M accepts @ Informally, on any input M simulate all the moves of M and enters in its own final state

47 whenever M enters in any one of its final status in F. Thus M accepts a string & iff M accepts it.

CASE 2 : PDA M accepts by empty stack.

we will construct M from M in such a way that M simulates M and detects when M empties its stack.

M enters its final state 97 when and only when M empties its stack.Thus M wil accept a string @t iff M
accepts.

M’=(Ul gh.q, 0 ST X}, 5 .q0. X, * ,
Let ¢ [gu gf] (4.4 [q‘f])where d0. 97 & Qand A€l and 9" contains all

the transition of 5, as well as the following two transitions.

1.8 (g.6.4) ={'{G’u=zﬂ}fj}

and
2 &(g.6.%) ={[gf,E)] . Wge(

Transitions 1 causes ¥ to enter the initial configuration of M except that M will have its own bottom-of-stack
marker X which is below the symbols of M's stack. From this point onward M' will simulate every move of M

. . . .
since all the transitions of M are also in M

If M ever empties its stack, then M when simulating M will empty its stack except the symbol X at the bottom.

At this point M , will enter its final state 97 by using transition rule 2, thereby (correctly) accepting the input.
we will prove that M and M are equivalent.

Let M accepts ' .

Then

(%.@.7) (9.5, €) for some 7 = 2 But then,

1
(. @ %) M (. @.2X) (by transition rule 1))

g, X :
=3 I[q, ’)(since M include all the moves of M)

1
5
' (qf :I (by transition rule 2')

Hence, M aiso accepts at .Conversely, let M accepts @

a 1 * i
Then 190- @ X) e (0 @20 X) 4 (9.6 X) -y (qf’e’e)forsomeQ_

Every move in the sequence

*
[G’u:'ﬂzn}f) = M [g,e, ijere taken from M.

Hence, M starting with its initial configuration will eventually empty its stack and accept the input i.e.

(90 @.2) - e (2.5.€)

Deterministic PDA:

) we define a PDA P = (Q,X%,T,4, g9, Zo, F) to
be deterministic (a deterministic PDA or DPDA), if and only if the following
conditions are met:

1. 6(q,a,X) has at most one member for any ¢ in @, a in £ or a = ¢, and
X inT.

2. If 8(q,a, X) is nonempty, for some a in I, then §(q, €, X') must be empty.

Regular Languages and DPDA’s The DPDA’s accepts a class of languages that is in between the regular
languages and CFL’s.

Theorem 6.17: If L is a regular language, then L = L(P) for some DPDA P.

PROOF: Essentially, a DPDA can simulate a deterministic finite automaton.
The PDA keeps some stack symbol Zy on its stack, because a PDA has to have
a stack, but really the PDA ignores its stack and just uses its state. Formally,
let A=(Q,%,d04,q0,F) be a DFA. Construct DPDA

P = (Q, E,{Zﬂ}, 6P:q‘]3 ZU:F)

by defining dp(q,a, Zo) = {(p,Zo)} for all states p and ¢ in @, such that
64(0,0) = p A

We claim that (go,w, Zp) Ij:i= (p, €, Zp) if and only if d4(gp,w) = p. That is,
P simulates A using its state. The proofs in both directions are easy inductions
on |w|, and we leave them for the reader to complete. Since both A and P
accept by entering one of the states of F', we conclude that their languages are
the same. O

Deterministic Pushdown Automata (DPDA) and Deterministic Context-free Languages (DCFLs)

Pushdown automata that we have already defined and discussed are nondeterministic by default, that is , there may be two or
more moves involving the same combinations of state, input symbol, and top of the stock, and again, for some state and
top of the stock the machine may either read and input symbol or make an = - transition (without consuming any input).

In deterministic PDA , there is never a choice of move in any situation. This is handled by preventing the above mentioned two
cases as described in the definition below.

Defnition : Let 21 ~(@-Z.T.8.90, 2y, F)

satisfied.

be a PDA . Then Mis deterministic if and only if both the following conditions are

) A = ezl e
[q,cx,)has at most one element for any 9e0.a U{ } "and 4 €1 (this condition prevents multiple choice

any combination of 7% and A)
If JEQ’E’XJ - l;i'lﬂ‘and EEQ’G’XJ =9

2. for every € Z

(This condition prevents the possibility of a choice between a move with or without an input symbol).

Empty Production Removal

The productions of context-free grammars can be coerced into a variety of forms without
affecting the expressive power of the grammars. If the empty string does not belong to a language,
then there is a way to eliminate the productions of the form A— A from the grammar.

If the empty string belongs to a language, then we can eliminate A from all productions

save for the single production S — A. In this case we can also eliminate any occurrences of S from
the right-hand side of productions.

Procedure to find CFG with out empty Productions

Step (i): For all productions 4 — A. put 4 into V.
Step (ii): Repeat the following steps until no further variables are added to V.
For all productions|

B—> A4y 4,

Step (i): For all productions 4 — A, put 4 ito V.
Step (ii). Repeat the following steps until no further variables are added to V3.
For all productions|

B— 44, 4

n-:

where 4;.4,.45. A, are in V,, put B into V.
To find P, let us consider all productions in P of the form

A—=xxy oo x,.mz1

foreachx; eV UT.

Unit production removal
Any production of a CFG of the form

A— B

where 4. B €V is called a “Unit-production™. Having variable one on either
side of a production is sometimes undesirable.
“Substitution Rule” is made use of in removing the unit-productions.
Given G = (V, T. S, P), a CFG with no A-productions. there exists a CFG
G= (I} .T.5, }3) that does not have any unit-productions and that is equivalent
to G.

Let us illustrate the procedure to remove unit-production through example
2.4.6.

Procedure to remove the unit productions:
Find all variables B, for each A such that
A=B
This is done by sketching a “depending graph™ with an edge (C. D)
whenever the grammar has unit-production C — D. then 4 =5 holds

whenever there 1s a walk between 4 and B.

The new grammar G. equivalent to G 1s obtained by letting into P all
non-unit productions of P.

Then for all 4 and B satisfying A :*> B. we add to P

A=y ly, |y,

where B — 1| 1 |...... | v, 1s the set of all rules in P with B on the left.

Left Recursion Removal

A variable 4 1s left-recursive if it occurs i a production of the form
A— Ax

forany x e (Vv T) .

A grammar 1s left-recursive if it contains at least one left-recursive
variable.

Every content-free language can be represented by a grammar that is not
left-recursive.

NORMAL FORMS
Two kinds of normal forms viz., Chomsky Normal Form and Greibach Normal Form (GNF) are
considered here.

Chomsky Normal Form (CNF)

Any context-free language L without any A-production is generated by a grammar is

which productions are of the form A — BC or A— a, where A, BeVnN,andae V1.
Procedure to find Equivalent Grammar in CNF

(i) Eliminate the unit productions, and A-productions if any,

(i1) Eliminate the terminals on the right hand side of length two or more.

(ii1) Restrict the number of variables on the right hand side of productions to two.

Proof:

For Step (i): Apply the following theorem: “Every context free language can be generated by a
grammar with no useless symbols and no unit productions”.

At the end of this step the RHS of any production has a single terminal or two or more symbols.
Let us assume the equivalent resulting grammar as G = (V~N,VT,P ,S).

For Step (ii): Consider any production of the form

A= MYy cooiil Yy, m22

If v, 1s a terminal, sav ‘a’. then introduce a new variable B and a
g _1 a
production

B,—a
Repeat this for every terminal on RHS.

Let P’ be the set of productions in P together with the new productions

-,

B, — a. LetV,; be the set of variables inV,; together with B, s intfroduced for

every terminal on RHS.
The resulting grammar G, = (V;.V;.P’.S) is equivalent to G and every
production in P’ has either a single terminal or two or more variables.

For step (iii): Consider 4 — BB, B

where B,’s are variables and m = 3.
If m =2, then 4 — B,.B, 1s in proper form.

The production 4 — BB,B,, 1s replaced by new productions
A— BD,,
D, — B,D,,
‘Dm—2 — Bm—l‘Bm

where D[S are new variables.
The grammar thus obtained 1s G,, which 1s in CNF.

Example
Obtain a grammar in Chomsky Normal Form (CNF) equivalent to the grammar G with
productions P given

S — aAbB
A—adla
B — DB|b.

Solution

(1) There are no unit productions in the given set of P.
(ii) Amongst the given productions, we have

A—a,
B—b
which are in proper form.
For S — aAbB, we have
S — B, AB,B.
B,—a
B, —b.
For 4 — ad, we have

A— B, 4

For B — bB.we have

B — B,B.

(1) In P’ above, we have only

S — B, AB,B

not in proper form.
Hence we assume new variables D, and D, and the productions
S— B,D,
Dy — AD,
D, — B,B

Therefore the grammar in Chomsky Normal Form (CNF) 1s G, with the
productions given by
S— B,D,.
D, — AD,,
D, — B,B.
A— B, A,
B — B,B.
B, — a,
B, — b,
A— a,
and B —b.

Pumping Lemma for CFG

A “Pumping Lemma” is a theorem used to show that, if certain strings belong to a

language, then certain other strings must also belong to the language. Let us discuss a Pumping
Lemma for CFL. We will show that , if L is a context-free language, then strings of L that are at
least ‘m’ symbols long can be “pumped” to produce additional strings in L. The value of ‘m’
depends on the particular language. Let L be an infinite context-free language. Then there is some
positive integer ‘m’ such that, if S is a string of L of Length at least ‘m’, then

(i) S = uvwxy (for some u, v, w, X, y)

(i) lvwxl<m

(iii) | vxI =1

@(iv)uviwx iyeL.

for all non-negative values of i.

It should be understood that

(1) If S is sufficiently long string, then there are two substrings, v and x, somewhere in S.

There is stuff (1) before v, stuff (w) between v and x, and stuff (y), after x.

(i1) The stuff between v and x won’t be too long, because | vwx | can’t be larger than m.

(iii) Substrings v and x won’t both be empty, though either one could be.

(iv) If we duplicate substring v, some number (i) of times, and duplicate x the same number

of times, the resultant string will also be in L.

Definitions

A variable is useful if it occurs in the derivation of some string. This requires that

(a) the variable occurs in some sentential form (you can get to the variable if you start from §), and
(b) a string of terminals can be derived from the sentential form (the variable is not a “dead end”).
A variable is “recursive” if it can generate a string containing itself. For example, variable A is
recursive if

S :‘> uAdy

for some values of & and 1|
A recursive variable 4 can be either

(1) “Directly Recursive™, i.e., there is a production
A— x Ax,

for some strings x,.x, € (I WV) ,or

(1) “Indirectly Recursive”, i.e., there are variables x; and productions

Proof of Pumping Lemma

(a) Suppose we have a CFL given by L. Then there is some context-free Grammar G that generates
L. Suppose

(1) L is infinite, hence there is no proper upper bound on the length of strings belonging to L.

(i1) L does not contain 1.

(ii1) G has no productions or 1-productions.

There are only a finite number of variables in a grammar and the productions for each

variable have finite lengths. The only way that a grammar can generate arbitrarily long strings is if
one or more variables is both useful and recursive. Suppose no variable is recursive. Since the start
symbol is non recursive, it must be defined only in terms of terminals and other variables. Then
since those variables are non recursive, they have to be defined in terms of terminals and still other
variables and so on.

After a while we run out of “other variables” while the generated string is still finite. Therefore
there is an upper bond on the length of the string which can be generated from the start symbol.
This contradicts our statement that the language is finite.

Hence, our assumption that no variable is recursive must be incorrect.

(b) Let us consider a string X belonging to L. If X is sufficiently long, then the derivation of X must
have involved recursive use of some variable A. Since A was used in the derivation, the derivation
should have started as

S =udy

for some values of # and y. Since A was used recursively the derivation must
have continued as

*® *®
S = udy= uvAxy

Finally the derivation must have eliminated all variables to reach a string
X 1in the language.

* *® *
S = UAY = UvAXY S uvwxy = X

This shows that derivation steps

+

A=vAdx
*®
and A=w
are possible. Hence the derivation
A=vx

must also be possible.

It should be noted here that the above does not imply that a was used

.
recursively only once. The * of = could cover many uses of 4. as well as other
recursive variables.

There has to be some “last” recursive step. Consider the longest strings
that can be derived for v, w and x without the use of recursion. Then there is a
number ‘m” such that | vivx | < m.

Since the grammar does not contain any A-productions or umnit
productions, every derivation step either introduces a terminal or increases the

#*
length of the sentential form. Since 4 = v4x., 1t follows that | vx| > 0.
#* #*
Finally. since wv4xy occurs in the derivation. and 4 = v4x and 4 = ware

both possible. it follows that v wx " v also belongs to L.

This completes the proof of all parts of Lemma.

Usage of Pumping Lemma
The Pumping Lemma can be used to show that certain languages are not

context free.
Let us show that the language

L={a'b'c"|i>0}

15 not context-free.

Proof: Suppose L is a context-free language.
If string X € L, where | X'| > m, 1t follows that X=wvwxy, where | vwx| < m.

Choose a value i that i1s greater than m. Then. wherever vwx occurs 1n the
string a'b’¢’, it cannot contain more than two distinct letters it can be all a’s,
all s, all ¢’s, or it can be a’s and b’s, or it can be 5’s and ¢’s.

Therefore the string vx cannot contain more than two distinct letters: but
by the “Pumping Lemma” it cannot be empty. either, so it must contain at least
one letter.

Now we are ready to “pump”.
2

o 1 2 : . .
Since wvwxyisin L, #v wx” ymust also be in L. Since v and x can’t both be

empty,

v wx® i > [,

so we have added letters.
Both since vx does not contain all three distinct letters. we cannot have
added the same number of each letter.
2.2 .
Therefore, zvwx"y cannot be in L.
Thus we have arrived at a “contradiction”.

Hence our original assumption, that L is context free should be false. Hence the language L is not
con text-free.

Example

Check whether the language given by L = {a mbmcn: m <n £2m} is a CFL or not.
Solution

2 . . .
Let s =a"b"c™", n being obtained from Pumping Lemma.

Then s = wvwxy, wherel <|vwx|< .

Therefore, vx cannot have all the three symbols a. b. c.

If you assume that vx has only a’s and b’s then we can shoose 7 such that
v wx'y has more than 27 occurrence of a or b and exactly 2n occurences of .

Hence uv'wx' yg L. which is a contradiction. Hence L is not a CFL.

Closure properties of CFL — Substitution

Let ¥ be an alphabet, and suppose that for every symbol a in £, we choose a
language L,. These chosen languages can be over any alphabets, not necessarily
¥ and not necessarily the same. This choice of languages defines a function s
(a substitution) on X, and we shall refer to L, as s{a) for each symbol a.

If w=ayay- -a, is a string in *, then s(w) is the language of all strings
X1y -+ &y such that string x; is in the language s{a;), for i = 1,2,...,n. Put
another way, s(w) is the concatenation of the languages s(a;)s(a2) - - s(an).
We can further extend the definition of s to apply to languages: s(L) is the
union of s(w) for all strings w in L.

Theorem 7.23: If L is a context-free language over alphabet £, and s is a
substitution on ¥ such that s(a) is a CFL for each a in X, then s(L) is a CFL.

PROOF: The essential idea is that we may take a CFG for L and replace each
terminal a by the start symbol of a CFG for language s(a). The result is a
single CFG that generates s(L). However, there are a few details that must be
gotten right to make this idea work.

More formally, start with grammars for each of the relevant languages, say
G = (V,X,P,5) for L and G, = (V,,T,,P,,S,) for each e in . Since we
can choose any names we wish for variables, let us make sure that the sets of
variables are disjoint; that is, there is no symbol A that is in two or more of
V' and any of the V,’s. The purpose of this choice of names is to make sure
that when we combine the productions of the various grammars into one set
of productions, we cannot get accidental mixing of the productions from two
grammars and thus have derivations that do not resemble the derivations in
any of the given grammars.

We construct a new grammar G' = (V', T, P', §) for s(L), as follows:

e V' is the union of V and all the V,’s for a in X.
e 7" is the union of all the T},’s for @ in X.
e P' consists of:

1. All productions in any FP,, for a in X.

2. The productions of P, but with each terminal a in their bodies re-
placed by S, everywhere a occurs.

Thus, all parse trees in grammar G’ start out like parse trees in G, but instead
of generating a yield in X*, there is a frontier in the tree where all nodes have
labels that are S, for some @ in . Then, dangling from each such node is a
parse tree of G4, whose yield is a terminal string that is in the language s(a).

Applications of substitution theorem

Theorem 7.24: The context-free languages are closed under the following
operations:

1. Union.

2. Concatenation.

[

. Closure (*), and positive closure (7).

.

. Homomorphism.

PROOF: Each requires only that we set up the proper substitution. The proofs
below each involve substitution of context-free languages into other context-free
languages, and therefore produce CFL’s by Theorem 7.23.

1. Union: Let Ly and Ly be CFL’s. Then L; U Ly is the language s(L),
where L is the language {1, 2}, and s is the substitution defined by s(1) =
Ll and 8(2) = Lo.

2. Concatenation: Again let L; and Ly be CFL’s. Then L, L, is the language
s(L), where L is the language {12}, and s is the same substitution as in
case (1).

3. Closure and positive closure: If L, is a CFL, L is the language {1}*, and
s is the substitution s(1) = L, then LT = s(L). Similarly, if L is instead
the language {1}, then L = s(L).

4. Suppose L is a CFL over alphabet X, and h is a homomorphism on . Let
s be the substitution that replaces each symbol a in ¥ by the language
consisting of the one string that is h(a). That is, s(a) = {h(a)}, for all a
in £. Then h(L) = s(L).

Reversal

Theorem 7.25: If L is a CFL, then so is L,

PROOF: Let L = L(G) for some CFL G = (V,T,P,S). Construct GH =
(V, T, P%,S), where PR is the “reverse” of each production in P. That is, if
A — a is a production of G, then A — o is a production of G It is an easy
induction on the lengths of derivations in G and GR to show that L(GR) = LR.
Essentially, all the sentential forms of G are reverses of sentential forms of G,
and vice-versa. We leave the formal proof as an exercise. [

Inverse Homomorphism:

Theorem 7.30: Let L be a CFL and h a homomorphism. Then h~!(L) is a
CFL.

PROOF: Suppose h applies to symbols of alphabet ¥ and produces strings in
T*. We also assume that L is a language over alphabet T'. As suggested above,
we start with a PDA P = (Q,T,T, 4, qo, Zg, F') that accepts L by final state.
We construct a new PDA

P = (Qr, Z,J!,(Q[],'E),Z[),F X {E}) (71)

where:

1. @' is the set of pairs (g,) such that:

(a) ¢ is a state in @, and

(b) z is a suffix (not necessarily proper) of some string h(a) for some
input symbol a in .

That is, the first component of the state of P’ is the state of P, and the
second component is the buffer. We assume that the buffer will period-
ically be loaded with a string h{a), and then allowed to shrink from the
front, as we use its symbols to feed the simulated PDA P. Note that since
¥ is finite, and h(e) is finite for all a, there are only a finite number of
states for P'.

2. ¢’ is defined by the following rules:

(a) &' ((g,€),a, X) = {((q, h(a}),X) } for all symbols a in T, all states
g in @, and stack symbols X in I". Note that a cannot be € here.

When the buffer is empty, P’ can consume its next input symbol a
and place h(a) in the buffer.

(b) If é(q,b, X) contains (p,y), where bis in T or b = ¢, then
&' ((g,bz), €, X)

contains ((p,z),v). That is, P’ always has the option of simulating
a move of P, using the front of its buffer. If b is a symbol in T', then
the buffer must not be empty, but if b = ¢, then the buffer can be
empty.

3. Note that, as defined in (7.1), the start state of P’ is (go,€); i.e., P' starts
in the start state of P with an empty buffer.

4. Likewise, the accepting states of P’, as per (7.1), are those states (g,¢)
such that ¢ is an accepting state of P.

The following statement characterizes the relationship between P’ and P:

s (Qn:h(w)azn)ﬁ (p,€,7) if and only if ((go, €),w, Zo) l; ((p€),€,7).

MODULE-1IV
Turing machine:

Informal Definition:

We consider here a basic model of TM which is deterministic and have one-tape. There are many variations, all
are equally powerfull.

The basic model of TM has a finite set of states, a semi-infinite tape that has a leftmost cell but is infinite to the
right and a tape head that can move left and right over the tape, reading and writing symbols.

For any input w with |w|=n, initially it is written on the n leftmost (continguous) tape cells. The infinitely many
cells to the right of the input all contain a blank symbol, B whcih is a special tape symbol that is not an input
symbol. The machine starts in its start state with its head scanning the leftmost symbol of the input w. De-
pending upon the symbol scanned by the tape head and the current state the machine makes a move which
consists of the following:

e writes a new symbol on that tape cell,
moves its head one cell either to the left or to the right and
e (possibly) enters a new state.

The action it takes in each step is determined by a transition functions. The machine continues computing (i.e.
making moves) until

e it decides to "accept" its input by entering a special state called accept or final state or
e halts without accepting i.e. rejecting the input when there is no move defined.

On some inputs the TM many keep on computing forever without ever accepting or rejecting the input, in which
case it is said to "loop" on that input

Formal Definition :

M={0.5T,8,¢,BF)

Formally, a deterministic turing machine (DTM) is a 7-tuple , Where

e Qs a finite nonempty set of states.
e Disafinite non-empty set of tape symbols, callled the tape alphabet of M.
o zcl is a finite non-empty set of input symbols, called the input alphabet of M.

G0« = OxIx{Lx R}

is the transition function of M,

o @ = e is the initial or start state.

o B el Eisthe blank symbol
Fol.

. is the set of final state.

So, given the current state and tape symbol being read, the transition function describes the next state, symbol
to be written on the tape, and the direction in which to move the tape head (L and R denote left and right,
respectively).

Transition function :5

e The heart of the TM is the transition function, & because it tells us how the machine gets one step to
the next.
e when the machine is in a certain state q*= Q and the head is currently scanning the tape symbol

Xel andif dlg,x)=(p. 7. 1) , then the machine

1. replaces the symbol X by Y on the tape
2. goes to state p, and
3. the tape head moves one cell (i.e. one tape symbol) to the left (or right) if D is L (or R).

The ID (instantaneous description) of a TM capture what is going out at any moment i.e. it contains all the
information to exactly capture the "current state of the computations”.

It contains the following:

e The current state, ¢
The position of the tape head,
The constants of the tape up to the rightmost nonblank symbol or the symbol to the left of the head,
whichever is rightmost.

Note that, although there is no limit on how far right the head may move and write nonblank symbols on the
tape, at any finite

time, the TM has visited only a finite prefix of the infinite tape.

An ID (or configuration) of a TM M is denoted by 'Crgﬁwhere @, Bel and

e s the tape contents to the left of the head
e gisthe current state.

. ’Sis the tape contents at or to the right of the tape head

That is, the tape head is currently scanning the leftmost tape symbol of ’8. (Note that if 8 =E, then the tape
head is scanning a blank symbol)

If 90is the start state and w is the input to a TM M then the starting or initial configuration of M is onviously

denoted by do¥

Moves of Turing Machines

To indicate one move we use the symbol = Similarly, zero, one, or more moves will be represented by = A
move of a TM

M is defined as follows.

Let &Eq‘gﬁbeanlDowahere X,ZEI_" a, fel and qEQ_

0.0)=(p1.0) .,

Let there exists a transition
Then we write GZGgX B 1 pe g2l 8 meaning that ID &Zq‘gﬁyields azgl 8

8(g. X)=(p.Y.R]
2z 3

aigX 5 azfe g

is a transition of M, then we write which

azip A

e Alternatively , if

means that the ID yields

e In other words, when two IDs are related by the relation '_, we say that the first one yields the second
(or the second is the result of the first) by one move.

e |f IDj results from IDi by zero, one or more (finite) moves then we write l_(If the TM M is understand,
then the subscript M can be dropped from For l_)

Special Boundary Cases

] ={p.F L
e Let #¥*%peaniDand (g, x) [p, ’)
allowed to fall off the left end of the tape.

dig,x) = Iip,}",R:l

be an transition of M. Then . That is, the head is not

arg argh

o let g be an ID and then figure (Note that is equivalent to

)
o Let #%pe an ID and 5{9‘, x) - EP’B’ R)then figure

J{g.x)=(».8,1)

o let &ngbe an ID and then figure

M=(0,5T,5.45.B,F)

The language accepted by a TM , denoted as L(M) is

L(M)={w| WEZ and figure for some pE F and @ el }

L]
In other words the TM M accepts a string ¥= Z that cause M to enter a final or accepting state when started

in its initial ID (i.e. do¥). That is a TM M accepts the string W= z if a sequence of IDs,

Dy, dy, - D exists such that

. is the initial or starting ID of M
I 1 g fﬂm; 1=i <k

e The representation of IDk contains an accepting state.
The set of strings that M accepts is the language of M, denoted L(M), as defined above
More about configuration and acceptance

e AnlID agﬁofM is called an accepting (or final) ID if qEF

)
e AnlID &gxﬁis called a blocking (or halting) ID if [g’ x:l is undefined i.e. the TM has no move at this
point.

. IDJ' is called reactable from i, if D a EDJ'

o 9Yis the initial (or starting) ID if W< 2 is the input to the TM and 7=l is the initial (or start) state
of M.

On any input string WE Z

either

e M halts on w if there exists a blocking (configuration) ID, I such that 9o =2 I

There are two cases to be considered

e M accepts w if I is an accepting ID. The set of all W& z accepted by M is denoted as L(M) as
already defined

e M rejects w if isa blocking configuration. Denote by reject (M), the set of all W& z rejected by M.
or

e M loops on w if it does not halt on w.

Let loop(M) be the set of all W= Z on which M loops for.

It is quite clear that

*

L[M:l L rejec.ﬁl[M:I o, Eaap[Mj =z
That is, we assume that a TM M halts

e When it enters an accepting iy or

e When it enters a blocking Dy i.e. when there is no next move.

wet LIM)

However, on some input string, , , it is possible that the TM M loops for ever i.e. it never halts

The Halting Problem

The input to a Turing machine is a string. Turing machines themselves can be written as

strings. Since these strings can be used as input to other Turing machines. A “Universal Turing
machine” is one whose input consists of a description M of some arbitrary Turing machine, and
some input w to which machine M is to be applied, we write this combined input as M + w. This
produces the same output that would be produced by M. This is written as

Universal Turing Machine (M + w) = M (w).

As a Turing machine can be represented as a string, it is fully possible to supply a Turing

machine as input to itself, for example M (M). This is not even a particularly bizarre thing to do for
example, suppose you have written a C pretty printer in C, then used the Pretty printer on itself.
Another common usage is Bootstrapping—where some convenient languages used to write a
minimal compiler for some new language L, then used this minimal compiler for L to write a new,
improved compiler for language L. Each time a new feature is added to language L, you can
recompile and use this new feature in the next version of the compiler. Turing machines sometimes
halt, and sometimes they enter an infinite loop.

A Turing machine might halt for one input string, but go into an infinite loop when given

some other string. The halting problem asks: “It is possible to tell, in general, whether a given
machine will halt for some given input?” If it is possible, then there is an effective procedure to look
at a Turing machine and its input and determine whether the machine will halt with that input. If
there is an effective procedure, then we can build a Turing machine to implement it. Suppose we
have a Turing machine “WillHalt” which, given an input string M + w, will halt and accept the string
if Turing machine M halts on input w and will halt and reject the string if Turing machine M does not
halt on input w. When viewed as a Boolean function, “WillHalt (M, w)” halts and returns “TRUE” in
the first case, and (halts and) returns “FALSE” in the second.

Theorem

Turing Machine “WillHalt (M, w)” does not exist.

Proof: This theorem is proved by contradiction. Suppose we could build a machine “WillHalt”.
Then we can certainly build a second machine, “LooplIfHalts”, that will go into an infinite loop if
and only if “WillHalt” accepts its input:

Function LoopIfHalts (M, w):

if WillHalt (M, w) then

while true do { 1}

else

return false;

We will also define a machine “LoopIfHaltOnltSelf” that, for any given input M, representing a
Turing machine, will determine what will happen if M is applied to itself, and loops if M will halt in
this case.

Function LoopIfHaltsOnItself (M) :

return LoopIfHalts (M, M):

Finally, we ask what happens if we try:

Func tion Impos sible:
return LoopIfHaltsOnItself (LoopIfHaltsOnItself):

This machine, when applied to itself, goes into an infinite loop if and only if it halts when
applied to itself. This is impossible. Hence the theorem is proved.

Will this
program
halt?

Implications of Halting Problem

Programming

The Theorem of “Halting Problem™ does not say that we can never determine whether or not

a given program halts on a given input. Most of the times, for practical reasons, we could eliminate
infinite loops from programs. Sometimes a “meta-program” is used to check another program for
potential infinite loops, and get this meta-program to work most of the time.

The theorem says that we cannot ever write such a meta-program and have it work all of the
time. This result is also used to demonstrate that certain other programs are also impossible.

The basic outline is as follows:

(i) If we could solve a problem X, we could solve the Halting problem

(i1)) We cannot solve the Halting Problem

(iii) Therefore, we cannot solve problem X

A Turing machine can be "programmed," in much the same manner as a computer is
programmed. When one specifies the function which we usually call d for a Tm, he is really writing
a program for the Tm.

1. Storage in finite Control

The finite control can be used to hold a finite amount of information. To do so, the state is

written as a pair of elements, one exercising control and the other storing a symbol. It should be
emphasized that this arrangement is for conceptual purposes only. No modification in the definition
of the Turing machine has been made.

Example

Consider the Turing machine

Solution

T = (X, {0,1}{0, 1, B}, 8, [g0, B], F),

where K can be written as {gq,¢;} x {0, 1, B}. That is, K consists of the
pairs [go, O], [g0, 1), [90 BJ: [41, 0), [41, 1], and [g,, B]. The set F is {[¢:, B]}.
T looks at the first input symbol, records it in its finite control, and checks
that the symbol does not appear elsewhere on its input. The second com-
ponent of the state records the first input symbol. Note that T accepts a
regular set, but T will serve for demonstration purposes. We define 8 as

follows.

1. a) &([go, B, 0) = ([2,0}, 0, R)
b) 8([g0, Bl 1) = (41, 1} L, R)
(T stores the symbol scanned in second component of the state and moves
right. The first component of 77s state becomes g,.)

2' ﬂ) a([qls 0]3 1) = (EQI:; O], 19 R)
b) 8([¢:, 11, 0) = ([¢:, 1L 0, B)
(If T has a O stored and sees a 1, or vice versa, then 7 continues to move
to the right.)

3. a) 8([¢:,0], B) = ([¢:, B}, 0, L)
b) S({‘h! 1]& B} = ([Q‘h B]: 0: L)
(T enters the final state [g,, B] if T reaches a blank symbol without
having first encountered a second copy of the leftmost symbol.)

If T reaches a blank in state [¢;, 0] or [g;, 1], it accepts. For state [g;, 0]
and symbol O or for state [¢,, 1] and symbol 1, 8 is not defined, so if T ever
sees the symbol stored, it halts without accepting.

In general, we can allow the finite control to have £ components, all but
one of which store information,

2. Multiple Tracks

We can imagine that the tape of the Turing machine is divided into k tracks, for any finite k. This
arrangement is shown in Fig., with k = 3. What is actually done is that the symbols on the tape are
considered as k-tuples. One component for each track.

Example

The tape in Fig. can be imagined to be that of a Turing machine which takes a binary input

greater than 2, written on the first track, and determines if it is a prime. The input is surrounded by ¢
and $ on the first track.

Thus, the allowable input symbols are [¢, B, B], [0, B, B], [1, B, B], and [$, B, B]. These

symbols can be identified with ¢, 0, 1, and $, respectively, when viewed as input symbols. The blank

symbol can be represented by [B, B, B]

To test if its input is a prime, the Tm first writes the number two in binary on the second track

and copies the first track onto the third track. Then, the second track is subtracted, as many times as
possible, from the third track, effectively dividing the third track by the second and leaving the
remainder. If the remainder is zero, the number on the first track is not a prime. If the remainder is
nonzero, increase the number on the second track by one.

If now the second track equals the first, the number on the first track is a prime, because it cannot
be divided by any number between one and itself. If the second is less than the first, the whole
operation is repeated for the new number on the second track. In Fig., the Tm is testing to determine
if 47 is a prime. The Tm is dividing by 5; already 5 has been subtracted twice, so 37 appears on the
third track.

3. Subroutines

VII. SUBROUTINES. It is possible for one Turing machine to be a *“‘sub-
routine” of another Tm under rather general conditions. If 7; is to be a
subroutine of T, we require that the states of T} be disjoint from the states
of T, (excluding the states of Ty’s subroutine). To “call” T,, T, enters the
start state of 7;. The rules of T3 are part of the rules of T,. In addition,
from a halting state of T, T, enters a state of its own and proceeds.

UNDECIDABILITY

Design a Turing machine to add two given integers.
Solution:

Assume that m and n are positive integers. Let us represent the input as 0"B0".
If the separating B is removed and 0’s come together we have the required

output, 7 + » 1s unary.

(1) The separating B 1s replaced by a 0.
(11) The rightmost 0 is erased 1.e.. replaced by B.

Let us define M =({gy.9,.-9>-95-944-10}.{0.B}.0.q,.1q,}). O is
defined by Table shown below.

Tape Symbol

State 0 B
4o (40.0.R) (¢,.0.R)
41 (¢;.0.R) (¢,.8.L)
7 (¢5.8.L) —
as (¢5.0.1) (¢4.B.R)

M starts from ID ¢,0" B0", moves right until seeking the blank B. M

changes state to ¢,. On reaching the right end, it reverts, replaces the rightmost
0 by B. It moves left until it reaches the beginning of the input string. It halts at
the final state g,.

Some unsolvable Problems are as follows:

(1) Does a given Turing machine M halts on all input?

(i1) Does Turing machine M halt for any input?

(iii) Is the language L(M) finite?

(iv) Does L(M) contain a string of length k, for some given k?

(v) Do two Turing machines M1 and M2 accept the same language?

It is very obvious that if there is no algorithm that decides, for an arbitrary given Turing machine M
and input string w, whether or not M accepts w. These problems for which no algorithms exist are
called “UNDECIDABLE” or “UNSOLVABLE”.

Code for Turing Machine:

Our next goal is to devise a binary code for Turing machines so that each TM
with input alphabet {0, 1} may be thought of as a binary string. Since we just
saw how to enumerate the binary strings, we shall then have an identification of
the Turing machines with the integers, and we can talk about “the ith Turing
machine, M;.” To represent a TM M = (Q,{0,1},T,4,q, B, F) as a binary
string, we must first assign integers to the states, tape symbols, and directions
L and R.

e We shall assume the states are q1,4z,.--,gr for some r. The start state
will always be q;, and g2 will be the only accepting state. Note that, since
we may assume the TM halts whenever it enters an accepting state, there
is never any need for more than one accepting state.

e We shall assume the tape symbols are X, X»,..., X, for some s. X,
always will be the symbol 0, X; will be 1, and X3 will be B, the blank.
However, other tape symbols can be assigned to the remaining integers
arbitrarily.

e We shall refer to direction L as D; and direction R as D,.

Since each TM M can have integers assigned to its states and tape symbols in
many different orders, there will be more than one encoding of the typical TM.
However, that fact is unimportant in what follows, since we shall show that no
encoding can represent a TM M such that L{M) = Lg.

Once we have established an integer to represent each state, symbol, and
direction, we can encode the transition function 8. Suppose one transition rule
is 6(qi, Xj) = (qk, X1, D), for some integers ¢, j, k, I, and m. We shall code
this rule by the string 0°10710%10¢10™. Notice that, since all of 4, j, k, [, and m
are at least one, there are no occurrences of two or more consecutive 1’s within
the code for a single transition.

A code for the entire TM M consists of all the codes for the transitions, in
some order, separated by pairs of 1’s:

C111C511---Cp_;11C,

where each of the (s is the code for one transition of M.

Diagonalization language:

o The language Lg, the diagonalization language, is the set of strings w;
such that w; is not in L{M;).

That is, L4 consists of all strings w such that the TM M whose code is w does
not accept when given w as input.

The reason Ly is called a “diagonalization” language can be seen if we
consider Fig. 9.1. This table tells for all 7 and j, whether the TM M; accepts
input string w;; 1 means “yes it does” and 0 means “no it doesn’t.”! We may
think of the ith row as the characteristic vector for the language L(M;); that
is, the 1’s in this row indicate the strings that are members of this language.

J —
1 2 3 4 -
o\ 10
o2 NN o
3 lo 0NNl
&4101

Diagonal

This table represents language acceptable by Turing machine

The diagonal values tell whether M; accepts w;. To construct Lq, we com-
plement the diagonal. For instance, if Fig. 9.1 were the correct table, then
the complemented diagonal would begin 1,0,0,0,... . Thus, Ly would contain
w, = ¢, not contain w, through wy, which are 0, 1, and 00, and so on.

The trick of complementing the diagonal to construct the characteristic
vector of a language that cannot be the language that appears in any row,
is called diagonalization. It works because the complement of the diagonal is

Proof that L, is not recursively enumerable:

Theorem 9.2: L is not a recursively enumerable language. That is, there is
no Turing machine that accepts L.

PROOF: Suppose Lg were L(M) for some TM M. Since L, is a language over
alphabet {0,1}, M would be in the list of Turing machines we have constructed,
since it includes all TM’s with input alphabet {0,1}. Thus, there is at least
one code for M, say i; that is, M = M,.

NUW, ask if w; is in Lg4.

e Ifw; isin Ly, then M; accepts w;. But then, by definition of Ly, w; is not
in L4, because L4 contains only those w; such that M; does not accept
wj.

e Similarly, if w; is not in Lg, then M; does not accept w;, Thus, by defini-
tion of Ly, w; isin Ly.

Since w; can neither be in Ly nor fail to be in Lz, we conclude that there is a
contradiction of our assumption that M exists. That is, Ly is not a recursively
enumerable language. O

Recursive Languages:
We call a language L recursive if L = L{M) for some Turing machine M such
that:

1. If wis in L, then M accepts (and therefore halts).

2. If w is not in L, then M eventually halts, although it never enters an
accepting state.

A TM of this type corresponds to our informal notion of an “algorithm,” a
well-defined sequence of steps that always finishes and produces an answer.
If we think of the language L as a “problem,” as will be the case frequently,
then problem L is called decidable if it is a recursive language, and it is called
undecidable if it is not a recursive language.

Theorem 9.3: If L is a recursive language, so is L.

PROOF: Let L = L(M) for some TM M that always halts. We construct a ™
M such that I = L(M) by the construction suggested in Fig. 9.3. That is, M
behaves just like M. However, M is modified as follows to create M:

1. The accepting states of M are made nonaccepting states of M with no
transitions; i.e., in these states M will halt without accepting.

2. M has a new accepting state r; there are no transitions from r.
3. For each combination of a nonaccepting state of M and a tape symbol of

M such that M has no transition (i.e., M halts without accepting), add
a transition to the accepting state r.

———— A
o — = M ccept> <: Accept
—* Reject i

Reject

Since M is guaranteed to halt, we know that M is also guaranteed to halt.

Moreover, M accepts exactly those strings that M does not accept. Thus M
accepts L. 0O

Theorem 9.4: If both a language L and _its complement are RE, then L is
recursive. Note that then by Theorem 9.3, L is recursive as well.

PROOF: The proof is suggested by Fig. 9.4. Let L = L(M;) and T = L(M,).
Both M; and M, are simulated in parallel by a TM M. We can make M a
two-tape TM, and then convert it to a one-tape TM, to make the simulation
easy and obvious. One tape of M simulates the tape of M;, while the other tape
of M simulates the tape of My. The states of M; and M, are each components
of the state of M.

— Accept —™ Accept

— Accept — Reject

Figure 9.4: Simulation of two TM’s accepting a language and its complement

If input w to M is in L, then M, will eventually accept. If so, M accepts
and halts. If w is not in L, then it is in L, so M, will eventually accept. When
M> accepts, M halts without accepting. Thus, on all inputs, M halts, and

L(M) is exactly L. Since M always halts, and L(M) = L, we conclude that L
is recursive. O

Universal
Language: .

We define L., the universal language, to be the set of binary strings tl}at
encode, in the notation of Section 9.1.2, a pair (M, w), where M is a INI with
the bin:ary input alphabet, and w is a string in (0+1)*, such 1.:ha.t- wis in L(M).
That is, L, is the set of strings representing a TM and an mput. accepted _by
that TM. We shall show that there is a TM U, often called the universal Tu’r‘f.f.:,g
machine, such that L, = L(U). Since the input to U is a binary string, U is
in fact some M; in the list of binary-input Turing machines we developed in

Undecidability of Universal Language:

Theorem 9.6: L, is RE but not recursive.

PROOF: We just proved in Section 9.2.3 that L, is RE. Suppose L, were
recursive. Then by Theorem 9.3, L_u, the complement of L,, would also be
recursive. However, if we have a TM M to accept L, then we can construct a
TM to accept Ly (by a method explained below). Since we already know that
L4 is not RE, we have a contradiction of our assumption that L, is recursive.

Hypothetical — Accept —— Accept
w — | Copy ™ wlllw -= algorithm
Mfor L | w Reject = Reject
M’ for L,

Figure 9.6: Reduction of Ly to L,

Suppose L(M) = L. As suggested by Fig. 9.6, we can modify TM M into
a TM M’ that accepts Ly as follows.

1. Given string w on its input, M' changes the input to wlllw. You may,
as an exercise, write a TM program to do this step on a single tape.
However, an easy argument that it can be done is to use a second tape to
copy w, and then convert the two-tape TM to a one-tape TM.

2. M’ simulates M on the new input. If w is w; in our enumeration, then
M' determines whether M; accepts w;. Since M accepts Ly, it will accept
if and only if M; does not accept wy; i.e., w; is in Lg.

Thus, M’ accepts w if and only if w is in Lg. Since we know M' cannot exist
by Theorem 9.2, we conclude that L, is not recursive. U

Problem -Reduction :
If P, reduced to P,,
Then P, is at least as hard as P;.
Theorem: If P; reduces to P, then,
e If P, is undecidable the so is P,.
e [f P, is Non-RE then so is P,.

Post's Correspondence Problem (PCP)

[xi,yi), i=12".»

A post correspondence system consists of a finite set of ordered pairs "where

+
%, EZ for some alphabet Z .

B ,iq, 00 &L
Any sequence of numbers 172 &

is called a solution to a Post Correspondence System.

X ; e xS = ; Lottt A
oM R T My The Post's Correspondence Problem is the problem of determining whether a
Post Correspondence system has a solutions.

Example 1 : Consider the post correspondence system

{(aa,aab),(bb,ba),(abb,b)]

The list 1,2,1,3 is a solution to it.

Because

NI Aay T Vs

L i |l X | Y |
aaph gagbh = aabpagad e]
hoRo% K L A
aabbaaabb = qabbaaabb | 2 ” bb ” ba |

EN T b |

(A post correspondence system is also denoted as an instance of the PCP)

Example 2 : The following PCP instance has no solution

Ll x vy]
(1) ek || aa]
(2 & || bea |

Ii-’fzs.}’zj

This can be proved as follows. cannot be chosen at the start, since than the LHS and RHS would

1 1 x
differ in the first symbol (& in LHS and '#'in RHS). So, we must start with (7.21)

. The next pair must be
x
(%2.2) so that the 3 rd symbol in the RHS becomes identical to that of the LHS, whichis a . After this

x
step, LHS and RHS are not matching. If [1=J’1) is selected next, then would be mismatched in the 7 th symbol

x
(b in LHS and 2 in RHS). If I: ;,,}fg) is selected, instead, there will not be any choice to match the both side in
the next step.

Example3 : The list 1,3,2,3 is a solution to the following PCP instance.

L i L x Iy |
L Lt | tor |
L2 [1o | o |
L 8 Il o | u |

The following properties can easily be proved.

Proposition The Post Correspondence System
[(a"',af'j,(ai* o) .,(az'n i)]

dicsuch that i, = j, or
dkandisuch thati, > j, andi; < j;

has solutions if and only if

Corollary : PCP over one-letter alphabet is decidable.

|z 2
Proposition Any PCP instance over an alphabet Z with | | is equivalent to a PCP instance over an

alphabet I with |1"| =2

Proof : Let = {al’aﬂ""ﬂx}:k > 2

1
Consider { ’ } We can now encode every “any PCP instance over Z will now
have only two symbols, 0 and 1 and, hence, is equivalent to a PCP instance over r

4 el <k 101

Theorem : PCP is undecidable. That is, there is no algorithm that determines whether an arbitrary Post
Correspondence System has a solution.

Proof: The halting problem of turning machine can be reduced to PCP to show the undecidability of PCP. Since
halting problem of TM is undecidable (already proved), This reduction shows that PCP is also undecidable. The
proof is little bit lengthy and left as an exercise.

Some undecidable problem in context-free languages

We can use the undecidability of PCP to show that many problem concerning the context-free languages are
undecidable. To prove this we reduce the PCP to each of these problem. The following discussion makes it
clear how PCP can be used to serve this purpose.

X, X IR
Let {I: ! .}’1) [2 .}’3) [e :I} be a Post Correspondence System over the alphabet 2. We construct
two CFG's G, and G, from the ordered pairs x,y respectively as follows.

G (MEB8)

Z,=Z,=ZU{12- 4},
P=l8 —>xS5i 8, —>xif=12-n

g P, ={SJ, = 2S5 8, = yili= 1,2,---,-»3]

it is clear that the grammar % generates the strings that can appear in the LHS of a sequence while solving
the PCP followed by a sequence of humbers. The sequence of humber at the end records the sequence of

i
strings from the PCP instance (in reverse order) that generates the string. Similarly, ~* generates the strings
that can be obtained from the RHS of a sequence and the corresponding sequence of numbers (in reverse
order).

Now, if the Post Correspondence System has a solution, then there must be a sequence

iy, 0 &8

Tk, & THM, N
According to the construction of G and GJ’

Sxé X% Kyl - By and

-

Sy ?J’z‘,)’g IR R
o

In this case

XXy Kyl il TV, i b S wizay)

L

Hence,WE I: *

weL(G

) and "’) implying

L[ijﬂL[Gy]#gﬁ

we LG)NL[G,)

Conversely, let

-

. Wy E = . Iidp q-..Iq0, . .
Hence, w must be in the form w,w, where ! and w, in a sequence % %177 ""¥1(since, only that kind of

F
strings can be generated by each of % and %)

) W=xX X SV V-V)
Now, the string 1 “4"% DR is a solution to the Post Correspondence System.

It is interesting to note that we have here reduced PCP to the language of pairs of CFG,s whose intersection is
nonempty. The following result is a direct conclusion of the above.

L[GI)HL[GEJ =g

Theorem : Given any two CFG's G, and G, the question "Is " is undecidable.

Proof: Assume for contradiction that there exists an algorithm A to decide this question. This would imply that
PCP is decidable as shown below.

iF
For any Post Correspondence System, P construct grammars G and ~*by using the constructions

elaborated already. We can now use the algorithm A to decide whether and

L{GINL(G, = ¢

Thus, PCP is decidable, a contradiction. So, such an algorithm does not exist.

G,

iF
If “*and ~*are CFG's constructed from any arbitrary Post Correspondence System, than it is not difficult to

L [Gx :] L (GJ')
show that and are also context-free, even though the class of context-free languages are not
closed under complementation.

L(G,).L(G,) , o ,
and their complements can be used in various ways to show that many other questions
related to CFL's are undecidable. We prove here some of those.

O &
Theorem : Foe any two arbitrary CFG's ~* 27 the following questions are undecidable

L(G)=2"7
L(G)=L1(G)7

i Is

ii. Is

LG =¢7
Hence, it suffice to show that the question “Is [1) 7. is undecidable.

L=L(GUL(G

Fale; &
Since, ") and (y) are CFl's and CFL's are closed under union, :I is also context-

L=L(G)NL(G,)

free. By DeMorgan's theorem,

LiGg)=
If there is an algorithm to decide whether [lj l;giwe can use it to decide whether

L=L(G)NL(G,)=

or not. But this problem has already been proved to be undecidable.

L[Gl) =g

Hence there is no such algorithm to decide or not.
ii.

F
Let P be any arbitrary Post correspondence system and = and ~*are CFg's constructed from the pairs of
strings.

L=L(GIUL(G,

) must be a CFL and let G;generates L,. That is,

L=1(G)=L(G)UL(G) -2 (G)NL(5,)

we LG)NL[G,)

by De Morgan's theorem, as shown already, any string, represents a solution to the

LG
PCP. Hence, [1) contains all but those strings representing the solution to the PCP.

L(G) = (U2 a))

Let for same CFG G,

L =L{&
It is now obvious that [1:] [2:] if and only if the PCP has no solutions, which is already proved to be

LG =L
undecidable. Hence, the question “Is (&) (G) ?" is undecidable.

G EUL2-)

Let ~lbe a CFG generating the language
L(G)UL(G,)

and G, be a CFG generating

F
where % and ~*are CFG.s constructed from same arbitrary instance of PCP.

L(G)ci(F) if L[Gx)U‘E‘(Gy) =(EU{1=2="'”})*

i.e. iff the PCP instance has no solutions as discussed in part (ii).
Hence the proof.

Theorem : It is undecidable whether an arbitrary CFG is ambiguous.

&
Proof : Consider an arbitrary instance of PCP and construct the CFG's G and 7 from the ordered pairs of
strings.

F iF
We construct a new grammar G from ~* and ~ * as follows.

G=(NLP5)

where

N={55.5},

&
Z.is same as that of G, and *.

p={E.UBU(s—>5,]s,]

This constructions gives a reduction of PCP to the -------- of whether a CFG is ambiguous, thus leading to the
undecidability of the given problem. That is, we will now show that the PCP has a solution if and only if G is
ambiguous. (where G is constructed from an arbitrary instance of PCP).

Only if Assume that 12%2:" g 3 solution sequence to this instance of PCP.

. . VU (W SRR
Consider the following two derivation in "17"2* "%,

1 1 1
Ry = o =7, Sy = %%, Aoy
:G;’ TR Sp

1

:E; A, T ATy I

1 1 1
S:I; Sy :;y,-l Syil:gy:?, y,;qSyizz'l
?}’i,.}’iﬁ T 1}’;'1_,3;-3'&.-1 ik
1

=YY Y Yk

But ,

XXy Xy TV, T Vi SINCE LT ody

(57,5,)

is a solution to the PCP. Hence the same string of terminals has two derivations. Both these

derivations are, clearly, leftmost. Hence G is ambiguous.

If It is important to note that any string of terminals cannot have more than one derivation in ~* and

* Because, every terminal string which are derivable under these grammars ends with a sequence of integers

e TThig sequence uniquely determines which productions must be used at every step of the derivation.

. we LT o o
Hence, if a terminal string, [:] , has two leftmost derivations, then one of them must begin with the
step.

i
then continues with derivations under ~*

. , . B,y g >
In both derivations the resulting string must end with a sequence ¥ *1 "*lfor same 2= 1The reverse of
this sequence must be a solution to the PCP, because the string that precede in one case is
MKy KX R AT
172 ™ gpng N, in the other case. Since the string derived in both cases are identical, the

S SRS SR
sequence ¥ FLTR
must be a solution to the PCP.

Hence the proof

Class p-problem solvable in polynomial time:

A Turing machine M is said to be of time complezity T'(n) [or to have “running
time T'(n)”] if whenever M is given an input w of length n, M halts after making
at most T'(n) moves, regardless of whether or not M accepts. This definition
applies to any function T(n), such as T(n) = 50n? or T(n) = 3" + 5nt: we
shall be interested predominantly in the case where T'(n) is a polynomial in n.
We say a language L is in class P if there is some polynomial T'(n) such that
L = L{M) for some deterministic TM M of time complexity T'(n).
Non deterministic polynomial time:
A nondeterministic TM that never makes more than p(n) moves in any sequence of choices for some
polynomial p is said to be non polynomial time NTM.
e NP is the set of languags that are accepted by polynomial time NTM’s
e Many problems are in NP but appear not to be in p.
® One of the great mathematical questions of our age: is there anything in NP that is not in p?

NP-complete problems:
If We cannot resolve the “p=np question, we can at least demonstrate that certain problems in NP are

the hardest , in the sense that if any one of them were in P, then P=NP.
e These are called NP-complete.
¢ Intellectual leverage: Each NP-complete problem’s apparent difficulty reinforces the belief
that they are all hard.
Methods for proving NP-Complete problems:
e Polynomial time reduction (PTR): Take time that is some polynomial in the input size to
convert instances of one problem to instances of another.
e [fP1PTR to P2 and P2 is in P1 the so is P1.
e Start by showing every problem in NP has a PTR to Satisfiability of Boolean formula.
e Then, more problems can be proven NP complete by showing that SAT PTRs to them
directly or indirectly.

