COPYRIGHT IS NOT RESERVED BY AUTHORS.
AUTHORS ARE NOT RESPONSIBLE FOR ANY LEGAL
ISSUES ARISING OUT OF ANY COPYRIGHT DEMANDS
AND/OR REPRINT ISSUES CONTAINED IN THIS
MATERIALS. THIS IS NOT MEANT FOR ANY
COMMERCIAL PURPOSE & ONLY MEANT FOR
PERSONAL USE OF STUDENTS FOLLOWING SYLLABUS
PRINTED NEXT PAGE. READERS ARE REQUESTED TO

SEND ANY TYPING ERRORS CONTAINED, HEREIN.

Microcontroller and Embedded System (3-1-0)
Module-I (12 Hours)

THE 8051 MICROCONTROLLER: Microcontroller and Embedded Processors,
Overview of the 8051Family 8051 ASSEMBLY LANGUAGE PROGRAMMING:
Inside the 8051, Introduction to 8051 Assembly Programming, Assembling and
Running an 8051 Program, The Program Counter and ROM Space in the8051,
Data types and Directives, 8051 Flag Bits and the PSW Register, 8051 Register
Banks and Stack.

JUMP, LOOP, AND CALL INSTRUCTIONS: Loop and Jump Instructions, Call
Instructions, Time Delay

Generation and Calculation, I/0 PORT PROGRAMMING: Pin Description of the
8051, I/O Programming, Bit manipulation

8051 ADDRESSING MODES: Immediate and Register Addressing Modes,
Accessing Memory Using Various Addressing Modes

Module-Il (10 Hours)

ARITHMETIC INSTRUCTIONS AND PROGRAMS: Unsigned Addition and
Subtraction, Unsigned Multiplication and Division, Signed Number Concepts
and Arithmetic Operations, LOGIC INSTRUCTIONS AND PROGRAMS: Logic and
Compare Instructions, Rotate and Swap Instructions, BCD and ASCII Application
Programs.

Module-lll (10 Hours)

SINGLE- BIT INSTRUCTIONS AND PROGRAMMING: Single-Bit Instruction
Programming, Single-Bit

Operations with CY, Reading Input Pins vs. Port Latch, TIMER/COUNTER
PROGRAMMING IN THE

8051: Programming 8051 timers, Counter Programming, 8051 SERIAL
COMMUNICATION: Basics of

serial Communication, INTERRUPTS PROGRAMMING: 8051 Interrupts,
Programming Timer Interrupts.

Module-IV (8 Hours)

INTERFACING: Interfacing a Stepper Motor, 8051 /31 INTERFACING TO
EXTERNAL MEMORY:

Semiconductor Memory, Memory Address Decoding, 8031/51 Interfacing with
External ROM, Data Memory

Space, 8031/51 INTERFACING TO THE 8255: Programming the 8255, 8255
Interfacing, and Other Modes of the 8255

Text Book:

1. M.A. Mazdi & J.G. Mazdi; The 8051 Microcontroller and Embedded System,
Pearson Education India,

2005.

2. R. Kamal; EMBEDDED SYSTEMS Architecture, Programming and Design;
Tata McGraw-Hill Publishing Company Limited; 2003.

THE 8051 MICROCONTROLLER: Microcontroller and Embedded Processors:

The microprocessor is a programmable chip that forms the CPU of a
computer. Nowadays, many microprocessor chips are available in the
market for users to select from depending on the application.

In general, processor chips can be classified as general-purpose
microprocessors, microcontrollers, and DSP processors.

Microcontrollers are processor chips that generally have memory, input
ports, and output ports within the chip itself.

Therefore, they can also be called single-chip computers, computer-on-
a-chip, or system-on-a-chip.

Microcontrollers are used in machine control applications, where there
is no need to change the program.

Equipments that use microcontrollers include computer printers,
plotters, fax machines, Xerox machines, telephones, automotive engine
control mechanisms, and electronic instruments such as oscilloscopes,
multimeters, planimeters, IC testers, etc.

The major difference between microprocessors and microcontrollers is
that microcontrollers are comparatively faster because of reduced
external memory accessing.

Intel’s 8031, 8051, and 8096 and Motorola’s 68HC11 are examples of
microcontrollers.

Overview of the 8051 Family
Intel Corporation has many micro-controllers in both 8 bit and 16 bit

configuration.The 8 bit micro-controllers -in many part numbers -MCS —
51 as the family name.

The various MCS — 51 series micro-controllers. For example, 8XC51RD
comes with the internal ROM of 64KB while 8XC51FC comes with only 32KB
ROM.

64 KB
16 KB 3:3,3 ROM
4KB ROM ghaRo ROM
8xC52
SO poe SR CHC s

Device Number Data bus width RAM capacity ROM capacity
8031 8 128 bytes Nil
8051 8 128 bytes 4Kbytes
8751H 8 128 bytes 4Kbytes EPROM
8052AH 8 256 bytes 8Kbytes
8752BH 8 256 bytes 8Kbytes EPROM

Table.1 microcontroller architectures comparision

8051 ASSEMBLY LANGUAGE PROGRAMMING:

i) Introduction to 8051 architecture

With the basic idea on the architecture and the memory organization

of 8051 , it is easy to study the instruction set and its flexibility for

control applications. Unlike the 8085 instruction set, 8051 instruction
set has the instructions for bit manipulations. the 8051 instruction set

supports the addressing modes such as indexed addressing and

relative addressing

The main features -8051chips are

o 8bit CPU,

o 4Kbytes of on chip Program memory,

o 128 bytes of on chip data RAM,

o 4 ports of 8bit each,

o Two 16 bit timers,

o Full duplex serial port and

o On-chip clock oscillator.

In addition to the above features, the 8051 provide Boolean processing;

six interrupt capabilities and full-fledged CPU for control applications.

16 bit address bus

AL B pc || DPTR
CFEH
DPL
[| pow
AL
SFR'S
/ ROM
" - fmemory data -
general P
purpose control buffers
Rl REEH system
30 SBLUF interrupts/timers
bit SCON o
ol addressatle system timing
area TCOMN
o TMOD E&, ALE
1F BAMK 4 m—
PSEM
BAMNK 2 THO RESET
x®TaL 1 YTAL 2
BAMNK 2 L1
GHD Ve
oo | BANK 1 e
Internal RAM SFR Area

Fig 1. 8051 architecture

I D
@] —
2 &5
el cL
T o
@] —
= o
& 2
B &
|_
= Fr
= |8
I —
8]
= e
< @]
o i

ADO-aAD7

A8-4A15

/O
Interrupt
Counter
Serial data
RO/WMWER

/0

—————

VSs

1l

AAM ADOR
REGISTER

P

POO-POT7

4

DRIVERS

P20-P27

‘{ﬁzﬂlEjF}k

i

PORTO
LATCH

PORT 2
LATCH

—

SBUF

I1E

IP

INTERRUPT SERIAL
PORT AND TIMER
BLOCKS

| ROM
| C_ PROGRAM
ADDR
| REGISTER
STACK
| POINTER
BUFFER
| 4; PCON | scow | ™oD | Tcon
T2coN| THo | o | mH1
| T™MP2 TMP1
B TL1 TH2% TL2%| RCAP2HH
| REGISTER]

PSEN-&+
ALE < TIMING

PROGRAM
COUNTER

DPTR

AND
EA—+ CONTROL
RST—

XTAL1 XTAL 2

E“:T)

INSTRUCTION
REGISTER

Fig.2. Block diagram of 8051

» 8051 is an 8 bit micro-controller i.e. data bus within and outside the chip
is 8 bits wide. The address bus of the 8051 is 16 bits wide, so it can
address 64Kbytes of memory. The

P30-P37

—
=
=
=

1

2 pins of 8051 forms the multiplexed address and data bus.

lower order address bus
multiplexed with the data bus as in -8085 processors. The portO and port

T2/P1.0[7] ~7 [40] Ve
TE'E)(JP‘IJE [39] Po.0/ADO
ECIP1.2[3] [38] P0.1/AD1
CEXoP1.3[4] [37] Po.2/AD2
CEX1/P1.4[5] [36] Po.3/AD3
CEX2/P1.5[6 [35] Po.4/AD4
CEX3/P1.6[7] [34] Po.5/ADS
CEX4/P1.7 8] [33] Po.6/ADE
RsT[9 [32] Po.7/AD7
RxD/P3.0[10 IE_LIﬁI;E [31] EAvee
TxD/P3.1[11] PACKAGE [3q] ALE
NTO/P3.2[12 [29] PSEN
INTT/P3.3[13 28] P2.7/A15
To/P3.4[14 [27] P2.6iA14
T1/P3.5[15 2] P25ia13
Wr/P3.6[1g [25] P2.4/a12
ROP3.7[17 [24] P2.3/A11
XTAL2 18] 23] P2.21a10
xTaL1 [19 [22] p2.1/A9
Vss [20 [21] P2.0/A8

Fig. 3.Pin diagram of 8051

The 8051 is a 40-pin chip. The power supply +VCC and VSS takes two
pins and the built-in clock oscillator requires two pins (—XTAL1 and
XTAL2) for connecting the crystal.

The four control signals pins of 8051 are PSEN, ALE, EA and RST.
RST is an active high reset signal to restart the controller chip.

8051 responds to a RST high input only if the RST is held high for at least
two machine cycles. A machine cycle is the period taken by any
processor to fetch and execute one instruction.

In 8051, the maximum number of clock cycles taken for a machine cycle
is 12. So, the RST pin must be high for at least 24 clock periods.

PSEN, ALE, EA are the signals used in conjunction with the external
memory access of the 8051 .

MEMORY ORGANISATION:

In the 8051, the memory is organized logically into program memory and
data memory separately. The program memory is read-only type; the
data memory is organized as read—write memory.

Again, both program and data memories can be within the chip or
outside. The Intel 8051 has 128 bytes of RAM and 4 KB of ROM within
the chip.

The address bus of the 8051 is 16 bits wide. So it can access 64 KB of

memory.

! '

Fragran menany Diwtn reemwoey

| |
: , | l

intera { LK Exierasl (K] hrersl {18 byeal Exkwal (14K}

Fig .4 Memory Organization
INTERNAL RAM STRUCTURE:

The 8051 has 128 bytes of internal data RAM, which is accessible as
bytes or sometimes as bits.

The address of the internal RAM starts at 00H and occupies space up to
7FH. The RAM space is divided into three blocks—the register banks, the
bit-addressable memory, and the scratch pad memory.

The 8051 has four register banks of eight registers each, with addresses
from OOH to 1FH. In assembly language, they are addressed by the
names RO—R7.

1F R7
1E R6
1D RS
BANK 1€ R4
3 1B R3
1A R2
19 R1
18 RO
17 R7
16 R6
15 RS
14 R4
BANK2
13 R3
12 R2
11 R1
10 RO
BANK1 OF R7
OE R6
0D RS
0C R4
0B R3

2F

2E

2D

2C

2B

7F 78
77 70
6F 68
67 60
5F 58

7F

0A R2
09 R1
08 RO
07 R7
06 R6
05 RS
BANK 04 R4
0 03 R3
02 R2
01 R1
00 RO

2A

29

28

27

26

25

24

23

22

21

20

57 50
4F 48
47 40
3F 38
37 30
2F 28
27 20
1F 18
17 10
OF 08
07 00

30

Fig. 5. Internal RAM structure

The register banks are identified with 2 bits in the processor status word.

The PSW has two bits for identifying the register bank, i.e., 00 represents

bank 0, 01 represents bank 1, 10 represents bank 2, and 11 represents

bank 3.

In the 8051, bitwise operations are also possible with special instructions

using the bit addresses. The bit-addressable memory is both bit-
addressable (from 00H to 7FH) and byte-addressable (from 20H to 2FH).

Bit operations are helpful in many control algorithms.

Using general-purpose scratch pad memory, programmers can read and

write data at any time for any purpose. This memory ranges from the
byte address 30H to the address 7FH.

SPECIAL FUNCTION REGISTERS (SFRs):

SFR, which occupies upper 128 bytes of internal memory are the
registers, that control the entire processor

They can e accessed by DIRECT addressing.
The registers available in the 8051 are as follows :
Accumulators - Aand B

Process Status Word - PSW

I/O port registers - PO, P1, P2, P3

Data pointers - DPH and DPL

Serial data buffer register - SBUF

Stack pointer - SP

Timer registers - THO, TH1 and TLO, TL1
Timer Control Registers - TCON, TMOD
Power and Port control - PCON, SCON
Interrupt Control Registers - IP, IE.

Programmers should not use the addresses in the range 80H to FFH
(other than SFR) as it is used by INTEL CORPORATION for expansion
functions of 8051.

The 8051 has two accumulators -A register and B register.

The register B forms the accumulator for multiplication and division
instructions and for other instructions it can be accessed as a general
purpose register.

The stack in the 8051 is organized within the internal RAM area.

The stack pointer is eight bits wide and has to be initialized with an
address in the RAM area. When the 8051 is reset, the stack pointer is by

default set to 07H. The stack pointer is incremented before storing a
data in the stack.

Similarly, while reading data from the stack, the data is read first and
then the stack pointer is decremented.

Direct Addressed Memory Special Function
Address (SFR) Register
80 PO

81 SP

82 DPL

83 DPH

87 TCON
88 TMOD
89 TLO

8A TL1

8B THO

8C TH1

90 P1

98 SCON
99 SBUF
A0 P2

A8 IE

BO P3

B8 P

DO PSW

EO ACC

FO B

Fig.6. Special function registers
Processor Status Word:

The PSW contains all the flags of the 8051 and is eight bits wide.The PSW
is accessible fully as an 8-bit register, with the address DOH.

The bit pattern of this flag register is

PSW CY AC FO R51 | RS0 | OV - P
Bit address DTH DeH | D5H | DdH | D3H | D2ZH | DIH | DOH
Contents upon reset 0 0 0 0 0 0 X 0

Fig.7. Processor status word
e Parity bit (P)

It is set to 1 if the accumulator contains an odd number of 1s, after
an arithmetic or logical operation.

e Overflow flag (OV)

This flag is set during ALU operations, to indicate overflow in the
result. It is set to 1 if there is a carry out of either the D7 bit or the
D6 bit of the accumulator. Overflow flag is set when arithmetic
operations such as add and subtract result in sign conflict.

* The conditions under which the OV flag is set are as follows:
» Positive + Positive = Negative
* Negative + Negative = Positive

* Positive — Negative = Negative

* Negative — Positive = Positive
Register bank Select Bits(RS1 and RSO0)

These bits are user-programmable. They can be set by the programmer to
point to the correct register banks.

The register bank selection in the programs can be changed using these two
bits.

General-purpose flag (FO)

e This is a user-programmable flag; the user can program and store any bit
of his/her choice in this flag, using the bit address.

RS1 RSO Selected Bank Address Range
0 0 Bank O 00h to 07h
0 1 Bank 1 08h to OFh
1 0 Bank 2 10h to 17h
1 1 Bank 3 18h to 1Fh

* Auxiliary carry flag (AC)

e |t is used in association with BCD arithmetic. This flag is set when
there is a carry out of the D3 bit of the accumulator.

e Carryflag (CY)

» This flag is used to indicate the carry generated after arithmetic
operations. It can also be used as an accumulator, to store one of
the data bits for bit-related Boolean instructions.

The 8051 supports bit manipulation instructions.

This means that in addition to the byte operations, bit operations can
also be done using bit data.

For this purpose, the contents of the PSW are bit-addressable.

e 8051 supports bit manipulation instructions. -bit operations can also be
done using bit data.

* Similarly, the accumulator and B register contents -bit addressable.

* The bit addresses of all the bits of the accumulator and B registers are
given as

POWER DOWN MODE:

* The Power down mode is initiated by making PCON.1 bit to 1.

In this mode, the clock generator -switched off and only the internal
memory is active.

the supply voltage Vcc can be reduced to 2V and the power
consumption -reduced.

Only way to revoke the processor from power down mode -reset the
system.

ADDRESSING MODES OF 8051:

 The way by which a data in specified in an instruction is called as
addressing mode.

The data fetched for execution depends upon the addressing mode.
The instruction set of 8051 supports 5 addressing modes

i) Immediate Addressing Mode:
the data to be manipulated is directly given in the
instruction itself. The data is preceded by a # symbol.
E.g. ADD A, #80h.

i)

This instruction adds the data 80h to the contents of the
accumulator and the result is stored in the accumulator
itself. This addressing mode will be used when the data for
the arithmetic and logical operation is needed only once
and is a constant.

Register Direct Addressing:

The register, that contains the data to be manipulated, is specified in the

instruction.

E.g. ADD A, RO.

This instruction will add the contents stored in register RO with the

accumulator contents and store the result in accumulator.
The registers A, DPTR and RO to R7 are used in Register direct

addressing.

This addressing mode uses temporary registers which hold the data for

the operation.

ii)

Memory Direct Addressing:

The memory address that contains the data to be operated
is specified here in the instruction.

E.g. ADD A, 74h.

This instruction adds the data in accumulator with that
stored in memory address 74h.

All internal RAM addresses including that of special function
registers can be used in memory direct addressing
instructions.

This addressing mode is used when the data stored in
memory is to be used in arithmetic and logical instructions.
The data in memory used in the direct addressing can be
changed at any other point in the program.

Memory Indirect Addressing:

The register, which contains the actual memory address of
the data, is specified in the instruction.

The register specified is preceded by @ symbol in assembly
language format.

E.g. ADD A, @RO.

The value stored in the register RO is now the address of the
memory location of the data to be fetched from this
memory location, the data is fetched and the instruction is
executed. The data pointer register (DPTR) is used to access
the data in the external memory with 16-bit addresses.

The indirect addressing mode is very much useful for accessing data
which are continuously stored in memory and accessed consecutively in
program.

V) Indexed Addressing:
In this type of addressing, the instruction consists of two
parts - a base address and an offset.
This type of addressing is useful in relative memory
accessing and relative jumping.
The base address is stored in data pointer (DPTR) or any
other register.
The offset value is stored in Accumulator.
E.g. MOVC A, @A+DPTR.

This instruction adds the contents of the accumulator
with the contents of the data pointer and the result forms the actual
address of the data from where it is fetched. This data is moved on to
the accumulator.

The indexed addressing mode is useful in accessing data structures similar to
lookup tables. The base address will hold the address of the starting point of
the table and the offset will point the particular entry in the table.

INSTRUCTION SET OF 8051:

* Instruction supported by 8051 can be classified into different types
depending upon their operational functions.

* The instruction set classification is as followed.

i) Data Transfer Instructions:
As the name indicates, instructions in this set are used to transfer
data.

The data can be transferred from or to external RAM or within the
internal memory itself.

The instruction MOV is used to transfer the data between internal
registers/memory.

The general format is

a. MOV Reg destination, Reg source.

The source and destination registers within the 8051 chip can be
addressed by any one of the addressing modes except indexed
addressing mode discussed earlier.

Addressing Modes
Mnemonic|Operation
Direct|Indirect|Register|Immediate
MOV A,
A=<src> |V \'} vV)
<src>
MOV
<dest>=A |V \' '
<dest>, A
MOV
<dest> =
<dest>, ' \' V '
<src>
<src>
DPTR = 16-
MOV)
bit
DPTR, #|, . \'
immediate
data 16
data
PUSH INC SP: '/
<src>
src MOV
ll@SP"’

<scr>
MOV
POP <dest>,
u ”, \I
<dest> @SP”:
DEC SP
ACC and
XCH A,|<byte>
'/ \' \'
<byte> Exchange
Data
ACC and
Ri
XCHD A, @
. exchange \'
@Ri
low
nibbles
Copy 8 bit data
from the
MOVX |external RAM|Only Indirect Addressing
A, @Ri |location mode
pointed to by Ri
to register A
Copy 8-bit data
from register A .]
MOVX Only Indirect Addressing
. to the external
@ Ri, A _ |mode
RAM location
pointed to by Ri
MOVX |Copy 8-bit data|Only Indirect Addressing
A, @ |from the|mode

DPTR external RAM
location
pointed to by
the 16-bit DPTR
to register A
Copy 8-bit data
from register A
MOVX]]
to the external|Only Indirect Addressing
@ DPTR, .
A RAM location|mode
pointed to by
the 16-bit DPTR
MOVC |Read Program . .
Only Indirect Addressing
A, @A +|Memory at (A +
mode
DPTR DPTR)
MOVC |Read Program
8 Only Indirect Addressing
A, @A +|/Memory at (A +
mode
PC PC)

The instructions with the mnemonic MOVX is used to access data from

Table 2.Data transfer Instructions

external memory locations using indirect addressing only. —

MOVX instruction must use Accumulator (A) register as -destination or

source and the other is indirectly accessed external memory.

MOVX can be used -8 bit external memory address and 16 bit external
memory address. It can be noted that the external memory -interfaced

with 8051 with either 8 bit address or 16 bit address.

If the 8 bit address is used-internal register (any location in Internal
RAM) -hold the address of the memory. If 16 bit address is used-Data
Pointer (DPTR) is used to hold the address.

The instructions MOVC A,@A+DPTR and MOVC A,@A+PC are the two
instructions meaning MOVE CODE MEMORY and are used to transfer
data from program memory using indexed addressing.

The program memory addressing using MOVC instruction needs 16 bit
address. So, the Data Pointer register (DPTR) and Program Counter (PC) -
base registers -instructions.

Data can only be read from the program memory and not written into
because the program memory is generally ROM.

PUSH instruction is used to copy data in any internal RAM location to the
stack .

The POP instruction is used to copy data from the top of the stack to the
RAM location specified in the instruction.

XCHD is used to transfer only the lower-order nibble between the
accumulator and the indirectly addressed internal RAM.

XCHD is used to exchange the contents of the accumulator and a register
or the internal memory of the 8051.

ii) Arithmetic Instructions:
These instructions are used to do arithmetic operations.
The common arithmetic operations like addition, subtraction,
multiplication and division are possible with 8051
All the data used in arithmetic instructions must be available
inside the controller i.e. in the internal RAM area only.
ADD instruction is used to add any 8 bit data with Accumulator and the
result is stored in Accumulator (A) register. The carry generated if any is
stored in Carry flag of the processor status word.
The ADDC instruction is also used to add any 8 bit data with Accumulator
along with Carry bit.

The SUBB instruction -subtract contents of a register from the
Accumulator content and during this subtraction, the Carry bit is also
subtracted from the accumulator.

For ADD and SUBB instructions, one of the data must be in Accumulator
and the other data - in any direct addressed or indirect addressed
internal memory location or can be an immediate data.

In addition to - ADD, ADDC and SUBB instructions in 8085, -have
instructions MUL and DIV.

The register B is exclusively used for these two instructions. The
operands should be stored in the registers A and B for the MUL and DIV
instructions.

The MUL instruction multiplies the contents of A and B registers and
stores the 16 bit result in the combined A and B registers.

The lower order byte -result is stored in A register and the higher order
byte - stored in B register.

The DIV instruction upon execution will divide the contents of A register
by the contents of B register.

The quotient of the result - stored in A register and the remainder is
stored in B register.

A division by 0 i.e. 0 in the B register before executing DIV AB will result
in the overflow flag (OV) set to 1.

DA A instruction -to convert binary sum obtained after adding two BCD
numbers into BCD number.

Addressing Modes

Mnemonic Operatign]] s|(

Direct Indirgpct Register Immed
ADD
A, A=A+

v \4 \' \'
<byte <byte>
>
ADDC A=A+ \4 \4 \' \'
A,<by <byte>
te> +C

ate

SUBB

A=A-
A,
<byte> \ \4
<byte
—C
>
A=A+
INCA 1 Accumulator Only
A=A -
DECA 1 Accumulator Only
<byte>
DEC =Y
<byte - v v
<byte>
>
-1
MUL B:A= B
Accumulator Only
AB A
A = Int
A/B
DIV [A/B]
B = Accumulator Only
AB
Mod
[A/B]
Decimal
Adjust
DA A Accumulator Only
Accum
ulator

Table 3.Arithmatic instructions

Logical Instructions:

In addition to logical AND, OR and XRL operation, 8051 has additional
instructions - CLR, CPL. All the data for the logical instructions -available
in the internal RAM only.

The instruction CLR A -to clear the contents of A register, CPL is used to
complement or logically invert the contents of the A register and SWAP -

to swap the nibbles of A register.

8051 supports four rotate operations with the options —rotating left or

right and rotating through carry or not.

Mnemonic |Operation Addressing Modes
i rati
P Direct Indirect |Register Immediate
ANL A,|A = A AND
<byte> <byte> v v v v
<byte> =
ANL
byte>, A <byte> AND|V
A
ANL <byte> =
<byte>, #|<byte> AND|
data # data
ORL A, JA = A OR
<byte> <byte> v v v v
ORL <byte> = \/
<byte>, A |<byte> OR A
ORL <byte> =
<byte>, #|<byte> OR #|V
data data
A = A v v v
XRL A,
XOR v
<byte>
<byte>
XRL <byte> =
<byte>, <byte> v
A XOR A
WRL <byte> =
<byte>
<byte>, v
XOR #
data
data
CLR A A =00H Accumulator only
CLP A A = Accumulator only

NOT A

Rotate
ACC

RLA Accumulator only
Left 1

bit

Rotate
Left

RLCA Accumulator only
through

Carry

Rotate
ACC

RRA . Accumulator only
Right 1

bit

Rotate
Right

RRCA Accumulator only
through

Carry

Table 4. logical instructions

Branching Instructions:

8051 supports unconditional jumping and subroutine calling in three
different ways.

They are Absolute jump AIMP, ACALL, long jump LIMP, LCALL, and short
jump SIMP.

Un Conditional Branching Instructions

Maemonics Operation

SIMP el _adds Famp to (PC) + 2-bit rel_addr
ATMP 11-bat addr Famp to PC-addr.

LIMF addr Famp to addr.

VP @A + DFTR Famp to A + DPTE

ACATT 11-bat addr Call subdoutine at PC-addr
LCAT T addr Call sobsoutine at addr.

RET Femm from sobroutine.
RETI Return from infermopt.

NOP No operation

Conditional Branching Instructions

The syntax for short jump instruction- SIMP 8-bit address.

This 8 bit address is a relative address- to the program counter.

The branching address -by adding the address given in the instruction
with the program counter content.

The 8-bit address is a 2's complement number i.e., the most significant
bit -sign + or -. The remaining 7 bits - specify the address. using SIMP -
branch to anywhere between 127 bytes after the program counter
content and 128 bytes before it.(From (PC-128 bytes) to (PC+127 bytes))

For example,

8800: SIMP 06h
This instruction shift the execution to the location 8808h. The program
counter content after fetching the 2 byte - SIMP instruction is 8802h. So,
06h added to 8802H results in 8808h.
The syntax for LIMP -“LIMP 16-bit address”. After the execution of this
instruction the Program counter -loaded with the 16 bit address and the
execution shifts to that location.
The syntax for AJMP instruction is “AJMP 11 bit jump address”.
The destination branching address -absolute jumping is calculated -
keeping MSB 5 bits of the Program counter as it is and changing the LSB
11 bits to that as given -instruction.
For example,

8800: AJMP 7F0h

This instruction branch the execution address 8FFOh. After fetching-
program counter content will be 8802h. Keeping the MSB 5 bits of the
PC (10001) as it is, and changing the LSB 11 bits to that given in the
instruction (111 1111 0000) , the branching address becomes 8FFOh.

The micro controller 8051 -single instruction for counter operation to
decrement -result (DJNZ). -very useful in looping using a counter similar
to “for loop” in high level languages.

Similarly, jumping after checking the result of a comparison -done by a
single instruction (CJNE) -very useful for looping of instruction execution
based on a condition.

Used in programming constructs similar to “do while” in high level
languages.

Bit Manipulation Instructions

The special feature of the 8051 micro controller is that it can handle bit
data also like that of byte data.

The internal data memory map of 8051 has a bit- addressable area also.
The special function registers that have the address with 0 or 8 as last
digit in their hex address, are also bit addressable.

The bit manipulation instructions include logical instructions and
conditional branching .

Mnemonic Operation

ANL C,bit C=CAND bit
ANL C,/bit C=CAND (NOT bit)
ORL C,bit C=CORbit

ORL C,/bit C=COR (NOT bit)
MOV C,bit C =bit

MOV bit,C bit=C

CLRC C=0

CLR bit bit=0

SETB C c=1

SETB bit bit=1

CPLC C=NOTC

CPL bit bit = NOT bit

JCrel JumpifC=1

JNC rel JumpifC=0

JB bit,rel Jumpifbit=1

JNB bit,rel Jump if bit=0

JBC bit,rel Jump if bit =1 ; CLR bit

Table. 5. Bit Manipulation Instructions

The logical instructions - ANL and ORL. Conditional branching - JC, JNC,
JB, JNB, JBC. The other instructions available -CLR, SETB, CPL, and MOV.
There are no instructions for halting the machine execution.

Figure shows the flag bits affected by the various instructions.

Increment and decrement instructions do not affect the flag register.

Instructions that affect Flag bits

Instruction

Flags Affected

ov

AC

ADD

ADDC

SUBB

MUL

DIV

A ||| <

DA

RRC

RLC

SETB C

CLRC

CPLC

ANL C,bit

< RO |IRr || [0 o|s || <

ANL C,/bit

<

ORL C,bit

<

ORL C,/bit

MOV C,bit \

CJNE \

Table. 6. Instructions that affect Flag bits

Assembler Directives:
The assembler directives are special instruction to the assembler
program and are used to define specific operations .
these directives are not part of the executable program.
Some of the most frequently assembler directives are listed as follows:
ORG - OriGinate, defines the starting address for the program in
program (code) memory
EQU - EQUate, assigns a numeric value to a symbol identifier so as to
make the program more readable.
DB - Define a Byte, puts a byte (8-bit number) number constant at the
memory location specified.
DW - Define a Word, puts a word (16-bit number) number constant at
the memory location specified.
DBIT - Define a Bit, defines a bit constant, which is stored in the bit
addressable section of the Internal RAM.
END - This is the last statement in the source file to advise the assembler
to stop the assembly process.
Programming examples using 8051 instruction sets:
Program to fill a block of memory in internal RAM with a specific data
Following assembly language program is used to fill the block of
internal data memory with a particular DATA. The number of memory
locations to be filled is given as COUNT in the program itself. This
program uses indirect addressing of the memory location .
Program:
START: MOV R1, #HCOUNT ;load number count
MOV RO, #30 ;load starting address of memory
LOOP: MOV @RO, #DATA ;load data to memory location
pointed by RO
INC RO ;Point to next memory location
DJNZ R1, LOOP ;Check for count and loop

Following program uses direct addressing for memory location for
achieving the same for the memory locations from 30h to 34h.

MOV 30, #DATA

MOV 31, #DATA

MOV 32, #DATA

MOV 33, #DATA

MOV 34, #DATA
Example 2
Program to add three 8-bit numbers
The following program is developed assuming that the numbers are in
memory locations 30h, 31h and 32h of the internal data RAM and the
result is stored in memory locations in 50h and 51h of the internal RAM.
Algorithm:
1.The first byte is moved to the accumulator and the second byte is
added with it.

2.1f carry flag is set, register R1 is incremented.

3.The third byte is added with the intermediate result.

4.If carry flag is set, register R1 is again incremented.

5.The accumulator forms the least significant byte of the result and
register R1 forms the most significant byte of the result.

Program:
START: MOV R1, #00h ;Set a register for MISB for result
MOV RO, #30h ;Set starting address for memory
location
MOV A, @RO :Get a data
INC RO ;Point to next memory location
ADD A, @RO ;Add the data
JNC L1 ;check for carry
INC R1 ; If carry is present, increment MSB of
result

L1:INC RO ;Point to next memory location

ADD A, @RO ;Add the third data

JNC L2 :Check for carry
INCR1 ; If carry is p esent, increment MSB of result
L2: MOV 50h,A ; Save the result
MOV 51h,R1

e Example 3

e Program to add two BCD numbers
The following program is developed assuming that the BCD numbers are
in memory locations 30h, and 31h of the internal data RAM and the
result is stored in memory locations in 50h and 51h of the internal RAM
with the lower order sum in 50h and carry if any in 51h.

e Algorithm:
The first byte is moved to the accumulator and is added with the second
byte.
The accumulator is now decimal adjusted.
The value 00h is moved to the accumulator and is added with carry.
The result is stored in the memory locations 50h and 51h.

MOV A, 30h ;Get a data

ADD A, 31h ;Add the second data

DAA ;Decimal adjust accumulator
MOV 50h,A ;Save the sum

MOV A, #00h ;
ADDC A, #00h ;Get the MSB of sum to A register
MOV 51h,A ;Save that

 Example 4

e Program to add two 16 bit data

In this example, the data are assumed to be initially stored in the external
memory locations. First data is stored in locations 4000H and 4001H while
the second data is stored in locations 4002H and 4003H.

* Program:
MOV DPTR, #4000H ;Point to first data
MOVX A,@DPTR ;

MOV RO,A ;Get the LSB of first data to RO

INC DPTR ;Point to MSB of first data

MOVX A, @DPTR

MOV R1,A ;Get the MSB of first data to R1
INC DPTR

MOVX A,@DPTR ;Get the LSB of second data

ADD A, RO ; Add the LSB of two data

MOV RO,A ; Store the sum to the RO register
INC DPTR

MOVX A,@DPTR :Get the MSB of second data
ADDC A,R1 ;Add the MSBs of data along with

carry out of previous addition

MOV R1,A ;Store the MISB of sum to R1 register

The sum is stored in the RO and R1 registers at the end of the execution
of above program.

8051 Timers :

The 8051 comes -with two 16 bit timers, both of which may be
controlled, set, read, and configured individually. The 8051 timers have
three general functions:

Programming predefined length of time, and then issuing an interrupt
request.

Counting the transitions on an external pin,

Generating baud rates for the serial port.

Basically the timers are the digital counters which are incremented at
the pulses given to it. The timers can be controlled to -function through
four SFRs namely, TMOD, TCON, THO/TLO and TH1/TL1.

The timers will have overflow when it counts to full value and resets to 0
upon next count.

The overflow in the timers will set the two bits in the TCON SFR. This
overflow can be programmed to interrupt the microcontroller execution
and execute a predefined subroutine .

If the timer registers are incremented by the internal clock pulses from
the microcontroller, then the operation is termed as ‘Timing’ operation.

Meanwhile if the timer registers get their clock pulses from an external
device through the port 3 pins of 8051, then the operation is termed as
‘Counting’.

Timer 0 external input pin P3.4 (TO) is used give clock input to timer O to
act as counter.

Timer 1 external input pin P3.5 (T1) is used give clock input to timer 1.

The 8051 has two timers and each of them will have similar operations
and functions. The timer in 8051 is basically a 16-bit register which can
be incremented depending upon the clock pulses applied to it. These
timer registers are configured as the Special Function Registers.

These SFRs at any time has the timer/counter register content. So, the
timers can be stopped at any time and the contents can be read from
these registers .Since there are only two bytes devoted to the value of
each timer it is apparent that the maximum value a timer may have is
65,535.

If a timer contains the value 65,535 and is subsequently incremented, it
will reset to O with an indication of overflow.

One timer is TIMERO and the other is TIMER1. Each timer also has two 8
bit SFRs namely THO and TLO forming the higher and lower order bytes

of Timer0 and TH1 and TL1 forming the higher and lower bytes of
Timerl.

The TMOD SFR -used to control the mode of operation of both timers.
Each bit of the SFR gives the micro controller specific information -how
to run a timer. The higher order four bits (bits 4 through 7) relate to
Timer 1 whereas the low four bits (bits O through 3) perform the same
functions for timer O.

BIT Patterns for TMOD SFR:

]
Bit Name |Explanation of Function Timer

When this bit is set the timer will only run whenINT1 (P3.3)
D7 |GATEL! (is high. When this bit is clear the timer will run regardless of 1

the state of INT1.
When this bit is set the timer will count events on T1 (P3.5).
D6 |C/T1 |When thisbitis clear the timer will be incremented every 1
machine cycle.
D5 TIM1 |Timermode bit (see below) 1
D4 TIM0O |Timermode bit (see below) 1

When this bit is set the timer will only run when INTO (P3.2)
D3 | GATEO (is high. When this bit is clear the timer will run regardless of 0

the state of INTO.
When this bit is set the timer will count events on T0 (P3.4).
D2 |C/TO |When thisbitis clear the timer will be incremented every 0
machine cycle.
D1 |TOM1 Timermode bit (see below) 0
DO TOMO |Timermode bit (see below) 0

=]

Two bits are used for each timer to specify a mode of operation. So, each timer
can be operated in any one of four modes.

Table. 7 BIT Patterns for TMOD SFR

SFR that controls the two timers and provides valuable information
about them is TCON.

BIT Patterns for TCON SFR

Bit Name Bit Explanation Timer
Address of Function

7 TF1 8Fh Timer 1 1
Overflow.
The micro
controller
sets this bit
when
Timer 1

overflows.

6 TR1 8Eh

Timer 1
Run. When
this bit is
set Timer 1
is turned
on. When
this bit is
cleared
Timer 1 is
off.

5 TFO 8Dh

Timer 0
Overflow.
The micro
controller
sets this bit
when
Timer 0
overflows.

4 TRO 8Ch

Timer 0
Run. When
this bit is
set Timer 0
is turned
on. When
this bit is
cleared
Timer O is
off.

Table. 8 BIT Patterns for TCON SFR

TCON SFR:

Only 4 of the 8 bits of the TCON SFR is defined. the other 4 bits of the
SFR don’t have anything to do with timers. They are related with
Interrupts and they will be discussed in the chapter that addresses
interrupts.

Note that the individual bits of TCON register can be addressed
separately by their bit addresses. This allows the programmer to run the
timers using bit addressable instructions and check the overflow
independently.

The two 16 bit timers of 8051 can be operated in any one of the four
modes. The mode selection can be done by the setting the proper bits in
the TMOD SFR.

TxM1 TxMO Timer Mode Description of Mode

0 0 0 13-bit Timer.
0 1 1 16-bit Timer
1 0 2 8-bit auto-reload
1 1 3 Split timer mode

Table. 9 Mode selection in TMOD SFR.

Mode 0 - 13-bit Timer Mode

Timer mode "0" is a 13-bit timer. Out of 16 bits of Timers, only 13bits are
used. The 5 bits of lower order byte is used and 8 bits of the higher order
byte of the timers are used in ModeO0. Lower order byte TLO/1 will count
from 0 to 31.

When TLO/1 is incremented from 31, it will "reset" to 0 and increment
THO/1. So, the timer can only contain 8192 values from 0 to 8192.

The timer can be operated as timer with internal clock pulses or as a
counter with external clock pulses.

This selection is done by D2 bits of TMOD for Timer 0 and D6 bit of
TMOD for Timerl .The clock pulses selected by D2 and D6 bits of TMOD
is then controlled by programmer setting and connected to the Timer
registers. The control is by three different means.

First is the Timer Run control bits D4 and D6 of TCON register. The timer
will run only when Timer run control bits are set to 1.

The other controls for the timers are through the GATE control bits D4
and D7 of TMOD and the External inputs for timer. Setting GATE to 1
allows the timer to count only if the external control input INTO or INT1
is set to 1. Setting Gate to O will disable the corresponding external timer
control inputs INTO and INT1. Setting Timer to mode 0 will overflow back
to zero after 8192 counts. This will set the TF1 and TFO bits for timer 1
and timer O respectively.

Osc — < 12 ﬁControl

TLA (5bits) | TH1 (8bits) |-

TF1

T1 Pin "l

TR1 Bit
(zate Bit
INTT pin

Fig 8. Mode 0 operation

Dsc = 12 Control
Y
A TL1 (8bits) | TH1 (Bbits) = TF1
T1 Pin !
TR1 Bit
Gate Bit
INTT pin

Fig.9. Mode 1 operation

Mode 2 - 8-bit Timer Auto Reload Mode :

Only 4 of the 8 bits of the TCON SFR is defined. the other 4 bits of the
SFR don’t have anything to do with timers. They are related with
Interrupts and they will be discussed in the chapter that addresses
interrupts.

Note that the individual bits of TCON register can be addressed
separately by their bit addresses. This allows the programmer to run the
timers using bit addressable instructions and check the overflow
independently.

For example, let’s say THO holds the value FDh and TLO holds the value
FEh. Then at the next counting pulse, TLO will be incremented to FFh.
Then for the next pulse, the TLO will overflow and should have become
00.

But, as it is reload mode, the TLO will be loaded with THO i.e., FDh. The
value of THO will never be changed. THO/1 is set to a known value and
TLO/1 is the SFR that is constantly incremented.

The auto-reload mode is very commonly used for establishing a baud
rate for Serial Communications.

The control of gating and running the timer in mode 2 is similar to that

of mode 0.
Osc - 12 'Control
A | TL1 (8hits) ' TF1
T Pin ' i %, =

TR1 Bit A
mmmt%}ﬂﬁz>j_)

INT1 pin

TH1 @bits)

Fig.10. Mode 2 operation

Mode 3 - Split Timer Mode

Mode "3" of 8051 timer is a split-timer mode and is applicable only for
Timer 0. When Timer 0 is placed in mode 3, it essentially becomes two
separate 8-bit timers. That is, Timer 0 is TLO and Timer 1 is THO.

Both timers count from 0 to 255 and overflow back to O.

In mode 3, all the bits that are related to Real Timer 1 will simply hold its
count and will not run and the situation is similar to keeping TR1=0.

In Split Timer mode of Timer 0O, the real Timer 1 (i.e. TH1 and TL1) can
not be started or stopped since the bits that do that are now linked to
THO. The real timer 1, in this case, will be incremented every machine
cycle no matter what.

When two separate timers in addition to a baud rate generator is
required in an application, then real Timer 1 can be used as a baud rate
generator and THO/TLO can be used as two separate timers in mode 3.

| Osc H S 12 'Control

T0 Pin +

TRO Bit
ate Bit
INTO pin

112 Fosc : | THO (8bits) |-=| TF1 |

| TLO (Bbits) [-»{ TFO |

TR1 ‘

Fig.11 .Mode 3 operation of timer 0 of 8051
Timer Control and Operation

For timer operation (C/T = 0 in TMOD), the timer register counts the
divided-down clock. The timer register is incremented once every (FOSC

/ 12) in standard mode. If the clock frequency is 11,059,000KHz, then the
counter will be incremented at the rate of (11,059,000KHz/12) = 921,583
KHz.

This means the counter will be incremented 921,583 times in a second.
Thus to have delay of say 0.1 seconds, then the counter must be
initialized to the count value of (0.1*921,583) = 92158.

Following steps are the program steps to initialize and use a timer in
8051

Decide what mode the timer to be in.

Initialize the TMOD SFR.

Write the timer value to Timer register

Start the timer running by setting the TRO/1 bit in TCON register

Check for TFO/1 bit or program to handle timer overflow as interrupt
and execute interrupt subroutine.

Fig 12. steps in timer control

To set the bit TR1 of TCON (D6 bit), any one of the following two
commands can be used -MOV TCON, #40h OR SETB TR1

As, TR1 is a bit addressable location, SETB instruction is used and this has
the benefit of setting the TR1 bit of TCON without changing the value of
any of the other bits of the SFR.

There are two common ways of reading the value of a 16-bit timer;

1. Read the actual value of the timer as a 16-bit number from
THO/TLO or TH1/TL1

2. Detect when the timer has overflowed from the TFO/1
bits of TCON. If TFO is set, it means that timer 0 has overflowed; if
TF1 is set, it means that timer 1 has overflowed. This overflow can act
as an interrupt and can directly run an Interrupt service routine,
if enabled properly.

The timer can be programmed to give an interrupt after a predefined
count value. For example, after counting 12 objects in the conveyor or
after counting 12 pulses in the timer, an interrupt may be given to the
8051 system to give signal to some other action like packing the 12 items

It is important to note that the 8051 checks the P3.4 line each
instruction cycle (12 clock cycles). This means that if P3.4 is low, goes
high, and goes back low in 6 clock cycles it will not be detected by the
8051.

This also means the 8051 event counter is only capable of counting
events that occur at a maximum of 1/24th the rate of the crystal
frequency.

That is to say, if the crystal frequency is 12 MHz, it can count a maximum
of 500,000 events per second (12.000 MHz * 1/24 = 500,000).

If the event being counted occurs more than 500,000 times per second,
it will not be able accurately counted by the 8051.

Example:In the following program, we create a square wave of 50% duty
cycle (with equal portions high and low) on the P1.5 bit. Timer O is used
to generate the time delay. Analyze the program

MOV TMOD,#01 ;Timer 0, mode 1(16-bit mode)
HERE: MOV TLO,#0F2H ;TLO=F2H, the low byte
MOV THO,#0FFH ;THO=FFH, the high byte

CPL P1.5 ;toggle P1.5

ACALL DELAY

SIMP HERE

In the above program notice the following step.

1. TMOD is loaded.

2. FFF2H is loaded into THO-TLO.

3. P1.5 is toggled for the high and low portions of the pulse.
8051 interrupts:

8051 basically has following five interrupt sources so that any of the
following events will make 8051 to execute an interrupt service routine.

Timer O Overflow.

Timer 1 Overflow.

Reception/Transmission of Serial Character.
External hardware interrupt O.

External hardware interrupt 1.

Different interrupt sources have to be distinguished and 8051 must
execute different subroutines depending —interrupt triggered. This is
accomplished by jumping or calling to a fixed address when interrupt
occurs.

These addresses are called interrupt vector addresses or interrupt
handler addresses.

Interrupt Flag Interrupt Veci
Address

External O IEO 0003h

Timer O TFO 000Bh

External 1 IE1 0013h

Timer 1 TF1 001Bh

Serial RI/TI 0023h

Table. 10 Interruptsin 8051

Whenever Timer 0 overflows (i.e., the TFO bit is set), the main program
will be temporarily suspended and control will jump to O00BH.

It is assumed that service routine at address 0003H handles the situation
of Timer 0 overflowing.

Enabling and disabling the interrupts:

By default at power up, all interrupts are disabled. This means that even
if, for example, the TFO bit is set, the 8051 will not execute the interrupt.
Programming must be done specifically to enable interrupts.

Interrupt Enable Special Function Register IE SFR at the address A8h is
used to enable and disable interrupts by modifying its bits

The interrupts enabling can be handled individually by - bit addresses for
the individual bits of IE register.

Bit Patterns for the IE SFR (A8H)

Bit

position D7 | D6 D5 D4 |D3 D2 D1 DO

Bit

Addres | AF AC |AB |AA |A9 A8

S

Name |EA - - ES ET1 |EX1 |ETO [EXO

Explan | Glob | Undefi| Undefi | Enab | Enab | Enab | Enab | Enab
. al le le le le le

ation Interr | ned ned Seria | Time | Exter | Time | Exter

upt 1 r 1|nal 1|{r O|nal O

Enab Interr | Interr | Interr | Interr | Interr
le/

Disa upt upt upt upt upt
ble

Table. 11 Bit Patterns for the IE SFR (A8H)

Each of the 8051’s interrupts has its own bit in the IE SFR. A particular
interrupt can be enabled by -corresponding bit. For example, to enable
Timer 1 Interrupt, the one of the following instructions can be executed.

MOV IE, #08h OR SETBET1

However, before Timer 1 Interrupt (or any other interrupt) is truly
enabled, bit 7 of IE SFR must also be set. Bit 7, the Global Interrupt
Enable/Disable, enables or disables all interrupts simultaneously.

That is, if bit 7 is cleared then no interrupts will occur, even if all the
other bits of IE are set. Setting bit 7 will enable all the interrupts -
selected by setting other bits in IE.

Interrupt Priorities and Polling Sequence

The 8051 automatically evaluates whether an interrupt occurs after
every instruction. When checking for interrupt conditions, it checks
them in the following order:

a)External O Interrupt
b)Timer O Interrupt
c)External 1 Interrupt
d)Timer 1 Interrupt
e)Serial Interrupt

The above list -gives the interrupt priority.

So, whenever the External O interrupt and Timer 1 interrupt occurs at
the same instant, then 8051 microcontroller executes the interrupt
service routine corresponding to External O interrupt first.

Then 8051 microcontroller will return to the main program, execute one
instruction and then execute the interrupt service routine corresponding
to Timer 1 Interrupt.

If a Serial Interrupt occurs at the exact same instant that an External 0
Interrupt occurs, the External O Interrupt will be executed first and the
Serial Interrupt will be executed once the External O Interrupt has
completed.

The 8051 offers two levels of interrupt priority: high and low. By using
interrupt priorities, the above interrupts can be divided into two
separate interrupt priorities. So, the five interrupts can be again
prioritized.

Interrupt priorities are controlled by the IP SFR (B8h). For example, if the
Serial Interrupt is much more important than the Timer O interrupt, then
the Interrupt Priority register IP SFR at the address B8h can be properly
programmed to set the priority.

This is done by assigning a high priority to the Serial Interrupt and a low
priority to the Timer O Interrupt. By setting the D4 bit to 1, the serial
interrupt will be set to higher priority and making D1 bit to 0, the Timer
0 interrupt will be set to lower priority.

Note that the priority can be set individually by using the bit addresses
of the IP register. For example, the timer O interrupt priority can be
made high by setting the D1 bit of IP SFR. So, the following instructions
can be used for the same.

SETB PTO (or) SETB B9H (or) MOV IP, #82H

Bit Patterns for the IP SFR

Bit

positio D7 D6 D5 D4 D3 D2 D1 DO
n
Bit
Addres
BC BB BA B9 B8
S
Name | EA - - PS PT1 |[PX1 |PTO |PXO
Explan | Enabl
_ e
S Interr . .| Time | Exter | Time | Exter
Serial
upts - Interr r 1|nal 1|r O|nal O
Made | Undefi| Undefi I Interr | Interr | Interr | Interr
0 to .. |upt upt upt upt
disabl ned ned Priori Priori | Priori | Priori | Priori
e all ty
interr ty ty ty ty
upts

Table. 12 Bit Patterns for the IP SFR

When considering interrupt priorities, the following rules apply:

Nothing can interrupt a high-priority interrupt--not even another high

priority interrupt.

A high-priority interrupt may interrupt a low-priority interrupt.

A low-priority interrupt may only occur if no other interrupt is already

executing.

If two interrupts occur at the same time, the interrupt with higher

priority will execute first. If both interrupts are of the same priority the

interrupt which is serviced first by polling sequence will be executed
first.

The five interrupt sources are passed first - IE register, which decides the
enabling and disabling of interrupts.

The IP register - set two priority levels among the available interrupts.
This is shown in the figure as high priority and low priority blocks. The
bits ITO and IT1 can be set by TCON special function register and this is
used to select whether the hardware interrupt is level triggered or edge
triggered.

Programming timer interrupts:

Show the instructions to (a) enable the serial interrupt, timer 0
interrupt, and external hardware interrupt 1 (EX1),and (b) disable
(mask) the timer 0 interrupt, then (c) show how to disable all the
interrupts with a single instruction.

Solution:

(a) MOV IE,#10010110B ;enable serial,

;timer 0, EX1

Another way to perform the same manipulation is

SETB IE.7 ;EA=1, global enable

SETB IE.4 ;enable serial interrupt

SETB IE.1 ;enable Timer O interrupt

SETB IE.2 ;enable EX1

(b) CLR IE.1 ;mask (disable) timer O

;interrupt only

(c) CLR IE.7 ;disable all interrupts

Basics of serial communication
Computers transfer data in two ways:
i) Parallel:Often 8 or more lines (wire conductors) are
used to transfer data to a device that is only a few feet away.
ii)Serial:To transfer to a device located many meters
away, the serial method is used. The data is sent one bit at a time.

At the transmitting end, the byte of data must be converted to serial bits
using parallel-in-serial-out shift register At the receiving end, there is a serialin-
parallel-out shift register to receive the serial data and pack them into byte

When the distance is short, the digital signal can be transferred as itison a
simple wire and requires no modulation If data is to be transferred on the
telephone line, it must be converted from Os and 1s to audio tones.

Serial data communication uses two methods

i)Synchronous method transfers a block of

data at a time

ii)Asynchronous method transfers a single

byte at a time

It is possible to write software to use either of these methods, but the
programs can be tedious and long. There are special IC chips made by many
manufacturers for serial communications

UART (universal asynchronous Receivertransmitter)

USART (universal synchronous-asynchronous Receiver-transmitter)

If data can be transmitted and received,it is a duplex transmission. If data
transmitted one way a time, it is referred to as half duplex If data can go both
ways at a time, it is full duplex This is contrast to simplex transmission.

A protocol is a set of rules agreed by both the sender and receiver on
i)How the data is packed
ii)How many bits constitute a character
iii)When the data begins and ends
An interfacing standard RS$232 was set by the Electronics Industries Association

(EIA) in 1960 The standard was set long before the advent of the TTL logic
family, its input and output voltage levels are not TTL compatible.In R$232, a 1
is represented by -3 ~ -25 V,while a 0 bit is +3 ~ +25 V, making -3 to +3
undefined.

Interfacing Stepper motor

Stepper motors are used for position control applications, such
as for the control of the disk drives and in robotics. The most
common stepper motors have four stator windings that are
paired with a center tapped common shown in below Figure .

While the conventional motor shaft runs freely, the stepper
motor shaft moves in a fixed repeatable increment, which
allows one to move it to a precise position.

The typical stepper motor considered here has 50 teeth on the
rotor and 8 poles on the stator for a 1.82 step angle.

Supply +5V

Stepper motor é
PO.0
D R
W Uy
P0.2 & B N
WAN
g051 I\F—‘g’
B R I//l?
P03

Fig.13 connection of stepper motor to 8051

Interfacing 8255 to 8051

When the 8051 is connected to external memory, port 0 (PO) is used for
the lower-order address and data bus and port 2 (P2) is used for the
higher-order address bus.

Since the port 3 pins have an alternative function, the net result is that
only P1 is left for input and output operation.

One way to expand the number of I/O ports is to connect the 8255
programmable peripheral interface with the 8051.

The interfacing of the 8255 with the 8051 is done assuming the 8255 as
a memory location, because the 8051 supports only memory-mapped
1/0.

For accessing the external memory in the 8051, the MOVX instruction is
used.

The lower-order address bus and the data bus are multiplexed and are
available in the port 0 pins.

This is de-multiplexed using a latch and the ALE signal.

< PORT O\\, Lafch . l
%‘ A, -A
8051 > ALE 1T 8255
A0
Al
PORT2 A, -A,
CS WR RD
1\ ﬂ\
PORT] T
: Decoder
P3.6
N ¥ P3.7

N/

Fig.14 interfacing 8255 to 8051

The first step in the general interfacing method is to decide the
addresses for the port.

The 8051 uses 16-bit addresses and the most significant address lines
are used for decoding and selecting the device.

Here, the higher-order address bus from port 2 is given to a decoder
logic circuit.

From the decoder, the 8255 chip select signal is generated.

The 8255 needs four addresses for interfacing with any processor—three
for the ports A, B, and C and one for the control register.

The lower-order address lines AO and Al are connected to select one of
these four registers. The read and write control signals are available
from the port 3 pins P3.7 and P3.6.

Example:Program PC4 of the 8255 to generate a pulse of 50 ms with
50% duty cycle.

Solution:

To program the 8255 in BSR mode, bit D7 of the control word must be
low. For PC4 to be high, we need a control word of “Oxxx1001”.
Likewise, for low we would need “Oxxx1000” as the control word. The
x's are for “don’t care” and generally are set to zero.

MOV a,#00001001B ;control byte for PC4=1

MOV R1,#CNTPORT ;load control reg port

MOVX @R1,A ;make PC4=1

ACALL DELAY ; time delay for high pulse

MOV A, 000010008 ; control byte for PC4=0

MOVX @R1, A ;make PC4=0

ACALL DELAY

External Memory Interfacing in 8051

External memory interfaced to 8051 can be of two types -external
program memory and external data memory.

The external memory accesses are accomplished with the Ports 0 and 2
of 8051 as they serve as the multiplexed address/ data buses. The
external memory in 8051 is always accessed with 16 bit addresses.

The 8051 outputs the signal ALE (Address Latch enable) in order to
demultiplex the lower order address and data bus.

In addition, the micro-controller sends the control signals on the Port3
lines.

i)Program memory interfacing

The program memory can be placed outside the chip in addition to the
internal program memory. The complete program memory can be
placed outside the chip neglecting the internal program memory.

Applying proper the voltage level on the input line EA of 8051 can do the
selection of any of the above two methods.

Connecting EA to Ground will disable the internal program memory and
all program memory accesses are done to external memory. The Read
strobe signal given by the micro-controller is PSEN.

This active low signal is connected to the Read selection line of the
memory chips.

Do B D?
GND \
EA Ponﬁ Latch X A
s 8081 » STOROBE [Pate g
ROM
PORT 2 A - A
CS RD

U

Decoder

PSEN

Fig.15connecting external program memory to 8051

Connecting EA pin of 8051 to the logic 1 or +5V will program the
microcontroller to use the internal program memory for the addresses
starting from 0000. After the available internal memory, the external
memory is accessed.

If =0; The internal program memory is not accessed.

If
OFFF (or the available range) and external program memory is accessed

= 1; Then internal program memory is accessed for address 0000-

for addresses greater than OFFF.

D,-D,
Latch-74373

i)

EA porTO D, - ; -
O = O = 7
8051 AL »LEN O
27128 -
EPROM
PORT 2 Ag - Ass
PSEN A~
[OE
AM Aws A
= A 1>
> A0 y2 o—>
1y3 p—>
TR s
oE2 2Yl p—>
>B1 2y2h—»>
—>B0 2Y3 p—>

Fig. 16 Connecting EPROM IC 27128 to 8051

Accessing External Data Memory

The data memory in the system - be Random Access memory as it
should facilitate both read and write operation of data. The
external data memory is interfaced in the same way as the
program memory is interfaced.

The major difference is that the read and writes operations can be
done in Read /Write Random Access Memory.

The control signals for reading and writing to data memory are
available from the port3 pins. P3.6 pin gives data memory write
enable signal and P3.7 pin gives out the RAM read enable signal.

A decoder logic circuit is necessary to select the RAM chip based
on the higher order address lines.

= PORT D\\ Latch _
\ﬁ’ m [A-A 3
8051
ROM
PORT 2 . Aa = AIS
U CS WR RD
A A
PORT I
3 Decoder

P3.6
N\ Y P3.7

Fig. 17 connecting external data memory to 8051

b= O
GND Latch-74373
EA porTO D, - D, -
—— 8051 AL » EN i B
6264 -
RAM
PORT 2 A, - A
P3.6 P3.7 — = —
CS OE WE
AM A15 A A A
L)OEI Y0 p—>
= vl b—»
AD 2 p—>
y3 p—>
7M. 0
—>CE? 2yl b—>
e 2y2 >
—>R0 Y3 »

Fig. 18 Connecting RAM Chip 6264 to 8051

