
 

 

 

 

 

 

Lecture Notes On Analogue Communication Techniques 
(Module 1 & 2) 

Topics Covered: 

1. Spectral Analysis of Signals 
2. Amplitude Modulation Techniques 
3. Angle Modulation 

  



Module-I (12 Hours) 

Spectral Analysis: Fourier Series: The Sampling Function, The Response of a linear System, 
Normalized Power in a Fourier expansion, Impulse Response, Power Spectral Density, Effect of 
Transfer Function on Power Spectral Density, The Fourier Transform, Physical Appreciation of the 
Fourier Transform, Transform of some useful functions, Scaling, Time-shifting and Frequency shifting 
properties, Convolution, Parseval's Theorem, Correlation between waveforms, Auto-and cross 
correlation, Expansion in Orthogonal Functions, Correspondence between signals and Vectors, 
Distinguishability of Signals. 

Module-II (14 Hours) 

Amplitude Modulation Systems: A Method of frequency translation, Recovery of base band Signal, 
Amplitude Modulation, Spectrum of AM Signal, The Balanced Modulator, The Square law 
Demodulator, DSB-SC, SSBSC and VSB, Their Methods of Generation and Demodulation, Carrier 
Acquisition, Phase-locked Loop (PLL), Frequency Division Multiplexing. Frequency Modulation 
Systems: Concept of Instantaneous Frequency, Generalized concept of Angle Modulation, Frequency 
modulation, Frequency Deviation, Spectrum of FM Signal with Sinusoidal Modulation, Bandwidth of 
FM Signal Narrowband and wideband FM, Bandwidth required for a Gaussian Modulated WBFM 
Signal, Generation of FM Signal, FM Demodulator, PLL, Preemphasis and Deemphasis Filters. 

Module-III (12 Hours) 

Mathematical Representation of Noise: Sources and Types of Noise, Frequency Domain Representation 
of Noise, Power Spectral Density, Spectral Components of Noise, Response of a Narrow band filter to 
noise, Effect of a Filter on the Power spectral density of noise, Superposition of Noise, Mixing 
involving noise, Linear Filtering, Noise Bandwidth, Quadrature Components of noise. Noise in AM 
Systems: The AM Receiver, Super heterodyne Principle, Calculation of Signal Power and Noise Power 
in SSB-SC, DSB-SC and DSB, Figure of Merit ,Square law Demodulation, The Envelope 
Demodulation, Threshold 

Module-IV (8 Hours) 

Noise in FM System: Mathematical Representation of the operation of the limiter, Discriminator, 
Calculation of output SNR, comparison of FM and AM, SNR improvement using preemphasis, 
Multiplexing, Threshold in frequency modulation, The Phase locked Loop. 

Text Books: 

1. Principles of Communication Systems by Taub & Schilling,2nd Edition.Tata Mc Graw Hill. Selected 
portion from Chapter1, 3, 4, 8, 9 & 10 

2. Communication Systems by Siman Haykin,4th Edition, John Wiley and Sons Inc. 

References Books: 

1. Modern digital and analog communication system, by B. P. Lathi, 3rd Edition, Oxford University 
Press. 

2. Digital and analog communication systems, by L.W.Couch, 6th Edition, Pearson Education, Pvt. Ltd. 

  



Spectral Analysis of Signals  

A signal under study in a communication system is generally expressed as a function of time or as a 
function of frequency. When the signal is expressed as a function of time, it gives us an idea of how that 
instantaneous amplitude of the signal is varying with respect to time.  Whereas when the same signal is 
expressed as function of frequency, it gives us an insight of what are the contributions of different 
frequencies that compose up that particular signal. Basically a signal can be expressed both in time 
domain and the frequency domain. There are various mathematical tools that aid us to get the frequency 
domain expression of a signal from the time domain expression and vice-versa. Fourier Series is used 
when the signal in study is a periodic one, whereas Fourier Transform may be used for both periodic as 
well as non-periodic signals.  

Fourier Series 

Let the signal x(t) be a periodic signal with period T0.  The Fourier series of a signal can be obtained, if 
the following conditions known as the Dirichlet conditions are satisfied: 

1. x(t) is absolutely integrable over its period, i.e. 

  
(t) 0x dt






  

2. The number of maxima and minima of x(t) in each period is finite. 

3. The number of discontinuities of x(t) in each period is finite. 

A periodic function of time say v(t) having a fundamental period T0 can be represented as an infinite 
sum of sinusoidal waveforms, the summation being called as the Fourier series expansion of the signal.  
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Where A0  is the average value of v(t) given by: 
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And the coefficients An and Bn are given by  

0

0

/ 2

0 0/ 2

2 2(t) cos dt
T

n
T

ntA v
T T





 
  

 
  

0

0

/ 2

0 0/ 2

2 2(t) sin dt
T

n
T

ntB v
T T





 
  

 


 

 

 

Alternate form of  Fourier  Series is 



 

 

 

 

 

 

The Fourier series hence expresses a periodic signal as infinite summation of harmonics of fundamental 

frequency 0
0

1f
T

 . The coefficients nC are called spectral amplitudes i.e. nC is the amplitude of the 

spectral component 
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 at frequency nf0. This form gives one sided spectral 

representation of a signal as shown in1st plot of Figure 1. 

 

Exponential Form of Fourier Series 

This form of Fourier series expansion can be expressed as : 
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The spectral coefficients Vn and V-n have the property that they are complex conjugates of each other 
*

n nV V . This form gives two sided spectral representation of a signal as shown in 2nd plot of Figure-
1. The coefficients Vn  can be related to Cn  as : 
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The Vn’s are the spectral amplitude of spectral components 02j ntf
nV e 
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The Sampling Function 

The sampling function denoted as Sa(x) is defined as: 
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And a similar function Sinc(x) is defined as : 
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The Sa(x) is symmetrical about x=0, and is maximum at this point Sa(x)=1. It oscillates with an 
amplitude that decreases with increasing x. It crosses zero at equal intervals on x at every x n  , 
where n is an non-zero integer. 

 

Figure 1 One sided and corresponding two sided spectral amplitude plot 
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Figure 2 Plot of Sinc(f) 

Fourier Transform 

The Fourier transform is the extension of the Fourier series to the general class of signals (periodic and 
nonperiodic). Here, as in Fourier series, the signals are expressed in terms of complex exponentials of 
various frequencies, but these frequencies are not discrete. Hence, in this case, the signal has a 
continuous spectrum as opposed to a discrete spectrum. Fourier Transform of a signal x(t) can be 
expressed as: 
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(t) X(f)x     represents a Fourier Transform pair 

The time-domain signal x(t) can be obtained from its frequency domain signal X(f) by Fourier 
inverse defined as: 
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When frequency is defined in terms of angular frequency   ,then Fourier transform relation 
can be expressed as: 
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Properties of Fourier Transform 

Let there be signals x(t) and y(t) ,with their Fourier transform pairs: 

(t) X(f)
y(t) Y(f) then,
x 


  

1. Linearity Property 
(t) by(t) aX(f) bY(f)ax     , where a and b are the constants 

 
2. Duality Property 
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3. Time Shift Property 
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4. Time Scaling Property  
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5. Convolution Property: If convolution operation between two signals is defined as: 

   (t) y(t)x x x t d  
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6. Modulation Property 
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7. Parseval’s Property 
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8. Autocorrelation Property: If the time autocorrelation of signal x(t) is expressed as: 
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9. Differentiation Property: 

(t) 2 (f)d x j fX
dt

   

Response of a linear system 

The reason what makes Trigonometric Fourier Series expansion so important is the unique 
characteristic of the sinusoidal waveform that such a signal always represent a particular frequency. 
When any linear system is excited by a sinusoidal signal, the response also is a sinusoidal signal of 
same frequency. In other words, a sinusoidal waveform preserves its wave-shape throughout a linear 
system. Hence the response-excitation relationship for a linear system can be characterised by, how the 
response amplitude is related to the excitation amplitude (amplitude ratio) and how the response phase 
is related to the excitation phase (phase difference) for a particular frequency. Let the input to a linear 
system be : 
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Then the filter output is related to this input by the Transfer Function (characteristic of the Linear 

Filter):      nj
n nH H e       ,  such that the filter output is given as 
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Normalised Power 

While discussing communication systems, rather than the absolute power we are interested in another 
quantity called Normalised Mean Power. It is an average power normalised across a 1 ohm resistor, 
averaged over a single time-period for a periodic signal. In general irrespective of , if it is a periodic or 
non-periodic signal, average normalised power of a signal v(t) is expressed as : 
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Energy of signal 

For a continuous-time signal, the energy of the signal is expressed as: 
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A signal is called an Energy Signal  if  
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A signal is called Power Signal if 
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Normalised Power of a Fourier Expansion 

If a periodic signal can be expressed as a Fourier Series expansion as: 
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Then, its normalised average power is given by : 
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Integral of the cross-product terms become zero, since the integral of a product of orthogonal signals 
over period is zero. Hence the power expression becomes: 
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By generalisation, normalised average power expression for entire Fourier Series becomes: 
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In terms of trigonometric Fourier coefficients An‘s, Bn‘s, the power  expression can be written as: 
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In terms of complex exponential Fourier series coefficients Vn’s, the power  expressions becomes: 
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Energy Spectral Density(ESD) 

It can be proved that energy E of a signal x(t) is given by : 
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    Parseval’s Theorem for energy signals 

So, (f)E df
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  ,  where 
2(f) (f)X    Energy Spectral Density 

The above expression says that (f)  integrated over all of the frequencies, gives the total energy of the 
signal. Hence Energy Spectral Density (ESD) quantifies the energy contribution from every frequency 
component in the signal, and is a function of frequency. 

Power Spectral Density(PSD) 

It can be proved that the average normalised power P of a signal x(t),such that (t)x  is a truncated 

version of x(t) such that (t);
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So, S(f)P df
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    Power Spectral Density 

The above expression says that S(f)integrated over all of the frequencies, gives the total normalised 
power of the signal. Hence Power Spectral Density (PSD) quantifies the power contribution from every 
frequency component in the signal, and is a function of frequency. 

 



Expansion in Orthogonal Functions 

Let there be a set of functions 1 2 3(x), g (x), g (x), ..., g (x)ng , defined over the interval 1 2x x x   and 
any two functions of the set have a special relation: 

2

1

(x) g (x) dx 0
x

i j
x

g   . 

The set of functions showing the above property are said to be orthogonal functions in the interval  
1 2x x x  . We can then write a function (x)f  in the same interval 1 2x x x  , as a linear sum of 

such g (x)n ’s as: 

1 1 2 2 3 3(x) (x) g (x) g (x) ... g (x)n nf C g C C C      , where Cn’s are the numerical coefficients 

The numerical value of any coefficient Cn can be found out as: 
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In a special case when the functions g (x)n in the set are chosen such that 
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n
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g =1, then such a 

set is called as a set of orthonormal functions, that is the functions are orthogonal to each other and each 
one is a normalised function too. 

  



Amplitude Modulation Systems 

In communication systems, we often need to design and analyse systems in which many independent 
message can be transmitted simultaneously through the same channel. It is possible with a technique 
called frequency multiplexing, in which each message is translated in frequency to occupy a different 
range of spectrum. This involves an auxiliary signal called carrier which determines the amount of 
frequency translation. It requires either the amplitude, frequency or phase of the carrier be 
instantaneously varied as according to the instantaneous value of the message signal. The resulting 
signal then is called a modulated signal. When the amplitude of the carrier is changed as according to 
the instantaneous value of the message/baseband signal, it results in Amplitude Modulation. The 
systems implanting such modulation are called as Amplitude modulation systems. 

Frequency Translation 

Frequency translation involves translating the signal from one region in frequency to another region. A 
signal band-limited in frequency lying in the frequencies from f1 to f2, after frequency translation can be 
translated to a new range of frequencies from f1

’ to f2
’ . The information in the original message signal at 

baseband frequencies can be recovered back even from the frequency-translated signal. There are so 
many benefits which are satisfied by the frequency translation techniques: 

1. Frequency Multiplexing: In a case when there are more than one sources which produce band-
limited signals that lie in the same frequency band. Such signals if transmitted as such 
simultaneously through a channel, they will interfere with each other and cannot be recovered 
back at the intended receiver. But if each signal is translated in frequency such that they 
encompass different ranges of frequencies, not interfering with other signal spectrums, then 
each signal can be separated back at the receiver with the use of proper band-pass filters. The 
output of filters then can be suitably processed to get back the original message signal. 

2. Practicability of antenna: In a wireless medium, antennas are used to radiate and to receive the 
signals. The antenna operates effectively, only when the dimension of the antenna is of the 
order of magnitude of the wavelength of the signal concerned. At baseband low frequencies, 
wavelength is large and so is the dimension of antenna required is impracticable. By frequency 
translation, the signal can be shifted in frequency to higher range of frequencies. Hence the 
corresponding wavelength is small to the extend that the dimension of antenna required is quite 
small and practical. 

3. Narrow banding: For a band-limited signal, an antenna dimension suitable for use at one end of 
the frequency range may fall too short or too large for use at another end of the frequency 
range. This happens when the ratio of the highest to lowest frequency contained in the signal is 
large (wideband signal). This ratio can be reduced to close around one by translating the signal 
to a higher frequency range, the resulting signal being called as a narrow-banded signal. 
Narrowband signal works effectively well with the same antenna dimension for both the higher 
end frequency as well as lower end frequency of the band-limited signal. 

4. Common Processing: In order to process different signals occupying different spectral ranges 
but similar in general character, it may always be necessary to adjust the frequency range of 
operation of the apparatus. But this may be avoided, if by keeping the frequency range of 
operation of the apparatus constant, every time the signal of interest is translated down to the 
operation frequency range of the apparatus. 

 



Amplitude Modulation Types: 

1. Double-sideband with carrier (DSB+C) 
2. Double-sideband suppressed carrier (DSB-SC) 
3. Single-sideband suppressed carrier (SSB-SC) 
4. Vestigial sideband (VSB) 

 

Double-sideband with carrier (DSB+C) 

Let there be a sinusoidal carrier signal (t) AC os(2 f t)cc  , of frequency fc . With the concept of 
amplitude modulation, the instantaneous amplitude of the carrier signal will be modulated (changed) 
proportionally according to the instantaneous amplitude of the baseband or modulating signal x(t). So 
the expression for the Amplitude Modulated (AM) wave becomes: 

  (t) (t) (2 f t) E(t)Cos(2 f t)c cs A x Cos       

 (t) A x(t)E     

The time varying amplitude E(t) of the AM wave is called as the envelope of the AM wave. The 
envelope of the AM wave has the same shape as the message signal or baseband signal. 

 

Figure 3 Amplitude modulation time-domain plot 

Modulation Index (ma): It is defined as the measure of extent of amplitude variation about unmodulated 
maximum carrier amplitude.  It is also called as depth of modulation, degree of modulation or 
modulation factor. 
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On the basis of modulation index, AM signal can be from any of these cases: 

I. 1am   : Here the maximum amplitude of baseband signal exceeds maximum carrier 

amplitude, max
(t)x A . In this case, the baseband signal is not preserved in the AM envelope, 

hence baseband signal recovered from the envelope will be distorted. 
II. 1am   : Here the maximum amplitude of baseband signal is less than carrier amplitude 

max
(t)x A . The baseband signal is preserved in the AM envelope. 

 
Spectrum of Double-sideband with carrier (DSB+C) 

        Let x(t) be a bandlimited baseband signal with maximum frequency content fm. Let this signal 
modulate a carrier (t) AC os(2 f t)cc  .Then the expression for AM wave in time-domain is given by: 

  (t) (t) (2 f t)
ACos(2 f t) x(t) Cos(2 f t)

c

c c

s A x Cos 

 
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Taking the Fourier transform of the two terms in the above expression will give us the spectrum of the 
DSB+C AM signal. 
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So, first transform pair points out two impulses at cf f   , showing the presence of carrier signal in 
the modulated waveform. Along with that, the second transform pair shows that the AM signal 
spectrum contains the spectrum of original baseband signal shifted in frequency in both negative and 
positive direction by amount cf . The portion of AM spectrum lying from cf to c mf f in positive 
frequency and from cf to c mf f   in negative frequency represent the Upper Sideband(USB). The 
portion of AM spectrum lying from c mf f to cf in positive frequency and from c mf f  to cf  in 
negative frequency represent the Lower Sideband(LSB). Total AM signal spectrum spans a frequency 
from c mf f to c mf f , hence has a bandwidth of 2 mf . 

Power Content in AM Wave 

By the general expression of AM wave: 

(t) ACos(2 f t) x(t)Cos(2 f t)c cs     

Hence, total average normalised power of an AM wave comprises of the carrier power corresponding to 
first term and sideband power corresponding to second term of the above expression. 
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In the case of single-tone modulating signal where (t) V (2 f t)m mx Cos   : 
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Where, ma is the modulation index given as m
a

Vm
A

 . 

Net Modulation Index for Multi-tone Modulation: If modulating signal is a multitone signal  
expressed in the form: 

 1 1 2 2 3 3(t) V (2 f t) V (2 f t) V (2 f t) ... V (2 f t)n nx Cos Cos Cos Cos          

Then, 
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Generation of DSB+C AM by Square Law Modulation 

Square law diode modulation makes use of non-linear current-voltage characteristics of diode. 
This method is suited for low voltage levels as the current-voltage characteristic of diode is highly non-
linear in the low voltage region. So the diode is biased to operate in this non-linear region for this 
application. A DC battery Vc is connected across the diode to get such a operating point on the 
characteristic. When the carrier and modulating signal are applied at the input of diode, different 
frequency terms appear at the output of the diode. These when applied across a tuned circuit tuned to 
carrier frequency and a narrow bandwidth just to allow the two pass-bands, the output has the carrier 
and the sidebands only which is essentially the DSB+C AM signal. 



 

Figure 4 Current-voltage characteristic of diode 

 

 

Figure 5 Square Law Diode Modulator 

The non-linear current voltage relationship can be written in general as: 

2i av bv    

In this application (t) x(t)v c    

So 
2

2 2 2

2 2
2

[ACos(2 f t) x(t)] b[ACos(2 f t) x(t)]

ACos(2 f t) x(t) Cos (2 f t) x (t) 2 x(t)Cos(2 f t)

ACos(2 f t) x(t) Cos(2 (2 f ) t) x (t) 2 x(t)Cos(2 f t)
2 2

c c

c c c

c c c

i a

i a a bA b bA
bA bAi a a b bA

 

  

  

   

     

      

  

Out of the above frequency terms, only the boxed terms have the frequencies in the passband of the 
tuned circuit, and hence will be at the output of the tuned circuit. There is carrier frequency term and the 
sideband term which comprise essentially a DSB+C AM signal. 

 



Demodulation of DSB+C by Square Law Detector 

It can be used to detect modulated signals of small magnitude, so that the operating point may be 
chosen in the non-linear portion of the V-I characteristic of diode. A DC supply voltage is used  to get a 
fixed operating point in the non-linear region of diode characteristics. The output diode current is hence 

 

Figure 6 Square Law Detector 

given by the non-linear expression: 

2(t) b (t)FM FMi av v    

Where (t) [A (t)]Cos(2 f t)FM cv x    

This current will have terms at baseband frequencies as well as spectral components at higher 
frequencies. The low pass filter comprised of the RC circuit is designed to have cut-off frequency as the 
highest modulating frequency of the band limited baseband signal. It will allow only the baseband 
frequency range, so the output of the filter will be the demodulated baseband signal. 

Linear Diode Detector or Envelope Detector 

This is essentially just a half-wave rectifier which charges a capacitor to a voltage to the peak voltage of 
the incoming AM waveform. When the input wave's amplitude increases, the capacitor voltage is 
increased via the rectifying diode quickly, due a very small RC time-constant (negligible R) of the 
charging path. When the input's amplitude falls, the capacitor voltage is reduced by being discharged by 
a ‘bleed’ resistor R which causes a considerable RC time constant in the discharge path making 
discharge process a slower one as compared to charging. The voltage across C does not fall appreciably 
during the small period of negative half-cycle, and by the time next positive half cycle appears. This 
cycle again charges the capacitor C to peak value of carrier voltage and thus this process repeats on. 
Hence the output voltage across capacitor C is a spiky envelope of the AM wave, which is same as the 
amplitude variation of the modulating signal. 



 

Figure 7 Envelope Detector 

 

Double Sideband Suppressed Carrier(DSB-SC) 

If the carrier is suppressed and only the sidebands are transmitted, this will be a way to saving 
transmitter power. This will not affect the information content of the AM signal as the carrier 
component of AM signal do not carry any information about the baseband signal variation. A DSB+C 
AM signal is given by:  

 (t) ACos(2 f t) x(t)Cos(2 f t)DSB C c cs       

So, the expression for DSB-SC where the carrier has been suppressed can be given as: 

 (t) x(t)Cos(2 f t)DSB SC cs    

Therefore, a DSB-SC signal is obtained by simply multiplying modulating signal x(t) with the carrier 
signal. This is accomplished by a product modulator or mixer.  

 

Figure 8 Product Modulator 

Difference from the the DSB+C being only the absence of carrier component, and since DSBSC has 
still both the sidebands, spectral span of this DSBSC wave is still c mf f to c mf f , hence has a 
bandwidth of 2 mf .  

Generation of DSB-SC Signal 



 A circuit which can produce an output which is the product of two signals input to it is called a product 
modulator. Such an output when the inputs are the modulating signals and the carrier signal is a DSBSC 
signal. One such product modulator is a balanced modulator. 

Balanced modulator:  
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2

(2 f t) x(t)
(2 f t) x(t)

c

c

v Cos
v Cos




 
 

 

For diode D1,the nonlinear v-i relationship becomes: 

2 2
1 1 1 [ (2 f t) x(t)] b[ (2 f t) x(t)]c ci av bv a Cos Cos         

Similarly, for diode D2, 

2 2
2 2 2 [ (2 f t) x(t)] b[ (2 f t) x(t)]c ci av bv a Cos Cos         

Now, 3 4 1 2( ) R
2 [ax(t) 2bx(t)Cos(2 f t)]

i

i c

v v v i i
v R 
   

  
 (substituting for i1 and i2) 

This voltage is input to the bandpass filter centre frequency fc and bandwidth 2fm. Hence it allows the 
component corresponding to the second term of the vi, which is our desired DSB-SC signal. 

Demodulation of DSBSC signal 

Synchronous Detection: DSB-SC signal is generated at the transmitter by frequency up-translating the 
baseband spectrum by the carrier frequency fc . Hence the original baseband signal can be recovered by 
frequency down-translating the received modulated signal by the same amount. Recovery can be 
achieved by multiplying the received signal by synchronous carrier signal and then low-pass filtering. 



 

Figure 9 Synchronous Detection of DSBSC 

Let the received DSB-SC signal is : 

r(t) x(t)Cos(2 f t)c   

So after carrier multiplication, the resulting signal: 

 
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
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The low-pass filter having cut-off frequency fm will only allow the baseband term 1 x(t)
2

, which is in the 

pass-band of the filter and is the demodulated signal. 

Single Sideband Suppressed Carrier (SSB-SC) Modulation 

The lower and upper sidebands are uniquely related to each other by virtue of their symmetry about 
carrier frequency. If an amplitude and phase spectrum of either of the sidebands is known, the other 
sideband can be obtained from it. This means as far as the transmission of information is concerned, 
only one sideband is necessary. So bandwidth can be saved if only one of the sidebands is transmitted, 
and such a AM signal even without the carrier is called as Single Sideband Suppressed Carrier signal. It 
takes half as much bandwidth as DSB-SC or DSB+C modulation scheme. 

For the case of single-tone baseband signal, the DSB-SC signal will have two sidebands : 

The lower side-band: (2 (f f )t) (2 f t) (2 f t) (2 f t)Sin(2 f t)c m m c m cCos Cos Cos Sin         

And the upper side-band: (2 (f f )t) (2 f t) (2 f t) (2 f t)Sin(2 f t)c m m c m cCos Cos Cos Sin        

 

 



If any one of these sidebands is transmitted, it will be a SSB-SC waveform: 

(t) (2 f t) (2 f t) (2 f t)Sin(2 f t)SSB m c m cs Cos Cos Sin       

Where (+) sign represents for the lower sideband, and (-) sign stands for the upper sideband. The 

modulating signal here is (t) (2 f t)mx Cos   , so let (t) Sin(2 f t)h mx   be the Hilbert Transform 

of (t)x  . The Hilbert Transform is obtained by simply giving  
2
  

 
 to a signal. So the expression 

for SSB-SC signal can be written as: 

(t) (t) (2 f t) (t)Sin(2 f t)SSB c h cs x Cos x    

Where (t)hx is a signal obtained by shifting the phase of every component present in (t)x  by 
2
  

 
. 

Generation of SSB-SC signal 

Frequency Discrimination Method: 

 

Figure 10 Frequency Discrimination Method of SSB-SC Generation 

The filter method of SSB generation produces double sideband suppressed carrier signals (using a 
balanced modulator), one of which is then filtered to leave USB or LSB. It uses two filters that have 
different passband centre frequencies for USB and LSB respectively. The resultant SSB signal is then 
mixed (heterodyned) to shift its frequency higher. 

Limitations: 

I. This method can be used with practical filters only if the baseband signal is restricted at its 
lower edge due to which the upper and lower sidebands do not overlap with each other. Hence 
it is used for speech signal communication where lowest spectral component is 70 Hz and it 
may be taken as 300 Hz without affecting the intelligibility of the speech signal. 

II. The design of band-pass filter becomes quite difficult if the carrier frequency is quite higher 
than the bandwidth of the baseband signal. 

Phase-Shift Method:  



 

Figure 11 Phase shift method of SSB-SC generation 

The phase shifting method of SSB generation uses a phase shift technique that causes one of the side 
bands to be cancelled out. It uses two balanced modulators instead of one. The balanced modulators 
effectively eliminate the carrier. The carrier oscillator is applied directly to the upper balanced 
modulator along with the audio modulating signal. Then both the carrier and modulating signal are 
shifted in phase by 90o and applied to the second, lower, balanced modulator. The two balanced 
modulator output are then added together algebraically. The phase shifting action causes one side 
band to be cancelled out when the two balanced modulator outputs are combined. 

Demodulation of SSB-SC Signals: 

The baseband or modulating signal x(t) can be recovered from the SSB-SC signal by using 
synchronous detection technique. With the help of synchronous detection method, the spectrum of an 
SSB-SC signal centered about ߱ = ±߱௖ , is retranslated to the basedand spectrum which is centered 
about ߱ = 0. The process of synchronous detection involves multiplication of the received SSB-SC 
signal with a locally generated carrier. 

 

                                           cos߱௖ݐ 

   Incoming SSB-SC                                  ݁ௗ(ݐ)                                         ݁଴            x(t) 

 

The output of the multiplier will be 

                ݁ௗ(ݐ) = ௌௌ஻(ݐ)ݏ . cos߱௖ݐ 

or           ݁ௗ(ݐ) = (ݐ)ݔ] cos߱௖ݐ ± (ݐ)௛ݔ sin߱௖ݐ] cos߱௖ݐ 

or            ݁ௗ(ݐ) = ݐcosଶ߱௖(ݐ)ݔ ± (ݐ)௛ݔ sin߱௖ݐ cos߱௖ݐ 

or            ݁ௗ(ݐ) = ଵ
ଶ
1](ݐ)ݔ + cos (2߱௖ݐ)] ± ଵ

ଶ
(ݐ)௛ݔ sin 2߱௖ݐ 

or            ݁ௗ(ݐ) = ଵ
ଶ
(ݐ)ݔ + ଵ

ଶ
[(ݐ2߱௖) cos(ݐ)ݔ] ± (ݐ)௛ݔ sin 2߱௖ݐ] 

Multiplier Low Pass 
Filter (LPF) 



When ed(t) is passed through a low-pass filter, the terms centre at c  are filtered out and the output 

of detector is only the baseband part i.e. 1 (t)
2

x  . 

Vestigial Sideband Modulation(VSB) 

SSB modulation is suited for transmission of voice signals due to the energy gap that exists in the 
frequency range from zero to few hundred hertz. But when signals like video signals which contain 
significant frequency components even at very low frequencies, the USB and LSB tend to meet at 
the carrier frequency. In such a case one of the sidebands is very difficult to be isolated with the help 
of practical filters. This problem is overcome by the Vestigial Sideband Modulation. In this 
modulation technique along with one of the sidebands, a gradual cut of the other sideband is also 
allowed which comes due to the use of practical filter. This cut of the other sideband is called as the 
vestige. Bandwidth of VSB signal is given by : 

( ) ( )c v c m m vBW f f f f f f        

Where mf  bandwidth of bandlimited message signal 

vf width of the vestige in frequency 

 

 

 

  



Angle Modulation 

Angle modulation may be defined as the process in which the total phase angle of a carrier wave is 
varied in accordance with the instantaneous value of the modulating or message signal, while amplitude 
of the carrier remain unchanged. Let the carrier signal be expressed as: 

(t) ACos(2 f t )cc      

Where 2 f tc      Total phase angle 

    phase offset 

cf   carrier frequency 

So in-order to modulate the total phase angle according to the baseband signal, it can be done by either 
changing the instantaneous carrier frequency according to the modulating signal- the case of Frequency 
Modulation, or by changing the instantaneous phase offset angle according to the modulating signal- the 
case of Phase Modulation. An angle-modulated signal in general can be written as 

( ) ( ( ))u t ACos t  

where, (t)  is the total phase of the signal, and its instantaneous frequency (t)if  is given by 

   1
2i

df t t
dt



   

Since u(t) is a band-pass signal, it can be represented as 

      2    cu t ACos f t t     

and, therefore, 

   1
2i c

df t f t
dt



    

If m(t) is the message signal, then in a PM system we have 

     pt k m t    

and in an FM system we have 

     1  
2

=i c f
df t f k m t t
dt



    

where kp and kf  are phase and frequency deviation constants. From the above relationships we have: 



 
 

(t)dt2 FM
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k m t

k m
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t



    
   

  

The maximum phase deviation in a PM system is given by: 

 max maxpk m t    

And the maximum frequency deviation in FM is given by: 

 
 

max max

max max
2

f

f

f k m t

k m t 

 

 
  

 

Single Tone Frequency Modulation 

The general expression for FM signal is    (t)dtfcs t ACos t k m     

So for the single tone case let    mm t VCos t   

Then 

 

(t)

(t)

( )

( )

f
m

m

f m

c

c

k V
Sin ts ACos t

s ACos m Sin tt










 

  
 
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Here f
f

m m

k V
m 

 


  Modulation Index  

Types of  Frequency Modulation 

High frequency deviation =>High Bandwidth=> High modulation index=>Wideband FM 

Small frequency deviation => Small Bandwidth=> Small modulation index=>Narrowband FM 

Carson’s Rule 

It provides a rule of thumb to calculate the bandwidth of a single-tone FM signal. 

   2 2 1m f mBandwidth f f m f       

If baseband signal is any arbitrary signal having large number of frequency components, this rule can be 
modified by replacing fm by deviation ratio D. 



ܦ  = ௉௘௔௞ ி௥௘௤௨௘௡௖௬ ௗ௘௩௜௔௧௜௢௡ ௖௢௥௥௘௦௣௢௡ௗ௜௡௚ ௠௔௫௜௠௨௠ ௣௢௦௦௜௕௟௘ ௔௠௣௟௜௧௨ௗ௘ ௢௙  ௠(௧)
ெ௔௫௜௠௨௠ ௙௥௤௨௘௡௖௬ ௖௢௠௣௢௡௘௡௧ ௣௥௘௦௘௡௧  ௜௡ ௧௛௘ ௠௢ௗ௨௟௔௧௜௡௚ ௦௜௚௡௔௟ ௠(௧)

 

Then the bandwidth of FM signal is given as: 

  max2 1Bandwidth D f   

 

 


