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Module I (10 Lectures)

Inventory Concept: The technique of Simulation. : 1 class
Major application areas, concept of a  System. : 1 class
Environment. : 1 class
Continuous and discrete systems. : 1 class
Systems modeling, types of models. : 1 class
Progress of a Simulation Study. : 1 class
Monte Carlo Method. : 1 class
Comparison of Simulation and Analytical Methods. : 1 class
Numerical Computation Technique for discrete and continuous models. : 1 class
Continuous System Simulation. ;1 class
Revision 

Module II (12 Lectures)



Probability Concepts in Simulation: 2 classes 
Stochastic variables, Discrete and Continuous Probability Functions. 2 classes
Numerical  evaluation  of  continuous  probability  functions,  continuous  uniformly  distributed 
random numbers. : 2 classes
Random  Number  Generators  –  Linear  congruential  Generator,  Mid  Square  Method, 
Multiplicative Congruential generator, rejection Method. : 2 classes
Testing of random Numbers. : 2 classes
Generation of Stochastic variants. : 1 class
Arrival Patterns Service times. : 1 class
Revision 

Module III (10 Lectures)

Discrete System Simulation and GPSS: Discrete Events, Representation of Time, generation of 
arrival patterns. : 2 classes
Fixed time step versus next event simulation, Simulation of a 
Telephone System, Delayed calls . : 2 classes
Introduction to GPSS: Creating and moving transactions, queues. : 2 classes
Facilities  and storages,  gathering statistics,  conditional  transfers,  program control  statements, 
priorities and parameters. : 2 classes
Standard numerical attributes, functions, gates, logic switches and tests, Variables, Select and 
Count. : 2 classes
Revision 

Module IV (10 Lectures)

Simulation Languages and Practical Systems : 1 class
Continuous and discrete systems languages, factors in the section of discrete systems simulation 
language. ; 2 classes
Computer model of queuing, inventory and scheduling systems. : 2 classes
Design  and  Evaluation  of  simulation  Experiments:  Length  of  simulation  runs,  validation, 
variance reduction techniques. : 2 classes
Experimental layout, analysis of simulation output, 
Recent trends and developments. : 1 class 
Revision 

Books: 

1. System Simulation – Geoffrey Gordon, 2nd Edition, PHI
2. System Simulation with Digital computer – Narsingh Deo, PHI

    



Module-I
Objectives: 

 To give an overview of the course (Modeling & simulation). 
 Define important terminologies.
 Classify systems/models

System:
any set of interrelated components acting together to achieve a common objective.

Examples:

1. Battery
• Consists of anode, cathode, acid and other omponents. 

• These components act together to achieve one objective like preserving electricity.
2. University

• Consists of professors, students and employees.
• These objects act together to achieve the objective of teaching & learning process.

A system consists of 

• Inputs 
Elements that cause changes in the systems variables.

• Outputs 
Response 

• Systems (process)
Defines the relationship between the inputs and outputs

Some Possible Inputs
• Inlet flow rate

• Temperature of 
entering material



• Concentration of 
entering material
Some Possible Outputs

• Level in the tank
• Temperature of 
material in tank

• Outlet flow rate
• Concentration of material in tank

Qn: What inputs and outputs are needed when we want to model the Inventory 
Control System?

Model: A model describes the mathematical relationship between inputs and outputs. 
Simulation:  is  the process of using the mathematical  model  to determine the 
response of the system in different situations in a Computer system.

Classification of Systems

Systems can be classified based on different criteria:

• Spatial characteristics: lumped & distributed 
• Continuity of the time 
variable: Continuous, discrete-time 
• Quantization of dependent 
variable: Quantized & Non-
quantized 
• Parameter variation: time varying & fixed (time-invariant) 

• Superposition principle: linear & nonlinear

Continuous-time System:
• The signal is defined for all t in an interval [ti, tf]

Discrete-time System: 
• The signal is defined for a finite number of time points {t0, t1,…}

A system is linear:
• if it satisfies the super position principle. 
• A system satisfies the superposition principle if the following conditions are satisfied:

1. Multiplying the input by any constant, multiplies the output by the same constant.
2.  The  response  to  several  inputs  applied  simultaneously  is  the  sum  of  individual 
response to each input applied separately.



Quantized variable System: 
• The variable is restricted to a finite or countable number of distinct values.
Non-Quantized variable System: 
• The variable can assume any value within a continuous range.

Characteristics of Lumped Systems:
• Only one independent variable ( t )
• No dependence on the spatial coordinates
• Modeled by ordinary differential equations
• Needs a finite number of state variables
Distributed System:
• More than one independent variable
• Depends on the spatial coordinates or some of them.
• Modeled by partial differential equations
• Needs an infinite number of state variables.
Time variant Systems:
• Observes  the  change  of  state  of  the  variable  regularly and records  the 
related information  at that point of change.
Fixed-Time Event Systems: 
• Changes of the state of the variable occurs at some constant interval.

Models and types:
 Models  are  the  replica  of  systems  which  can  be  represented  physically  or 
mathematically.
All the physical and mathematical models can further be divided into categories 
like: static and dynamic.

 Simulation  models  may  be  either  deterministic  or  stochastic  (meaning  probabilistic).  In  a 
deterministic  simulation, all of the events and relationships among the variables are governed 
entirely  by  a  combination  of  known,  but  possibly  complicated,  rules.  The  advantage  of 
simulation is that you can still answer the question even if the model is too complicated to solve 
analytically. 
In  a  stochastic  simulation,  ‘‘random variables’’ are  included  in  the  model  to  represent  the 
influence of factors that are unpredictable, unknown, or beyond the scope of the model we use in  
the simulation.
.
In many applications, such as a model of the tellers in a bank, it makes sense to incorporate 
random variables into the model. In the case of a bank, we might wish to assume that there is a 
stream of anonymous customers coming in the door at unpredictable times, rather than explicitly 
modeling the behavior of each of their actual customers to determine when they plan to go to the 
bank.
It is worth noting here that it is well known in statistics that when we combine the actions of a 
large population of more-or-less  independently  operating entities (customers, etc.) the resulting 
behavior appears to have been randomly produced, and that the patterns of activity followed by 
the individual entities within that population are unimportant. For example, all of the telephone 
systems designed in the last 60 years are based on the (quite justified) assumption that the umber 



of calls made in fixed length time intervals obeys the Poisson distribution. Thus the generation 
and use of random variables is an important topic in simulation.

Static Versus Dynamic Simulation Models
Another dimension along which simulation models can be classified is that of time. If the model 
is used to simulate the operation of a system over a period of time, it is dynamic. The baseball 
example above uses dynamic simulation. On the other hand, if no time is involved in a model, it 
is static. Many gambling situations (e.g., dice, roulette) can be simulated to determine the odds 
of winning or losing. Since only the number of bets made, rather than the duration of gambling, 
matters, static simulation models are appropriate for them

Monte Carlo Simulation (named after a famous casino town1 in Europe) refers to the type of 
simulation  in  which  a  static,  approximate,  and  stochastic  model  is  used  for  a  deterministic 
system. 
Let us now look at an example of Monte Carlo simulation. Consider estimating the value of π by 
finding the approximate area of a circle with a unit radius. The first quadrant of the circle is 
enclosed by a unit square.
If pairs of uniformly distributed pseudo-random values for the x and y coordinates in [0, 1] are 
generated, the probability of the corresponding points falling in the quarter circle is simply the 
ratio of the area of the quarter circle to that of the unit square.

The above program is an example of  Monte Carlo integration,  by which definite integral of 
arbitrary but finite functions can be estimated. Consider the following integral: 

Such an integral can be partitioned into segments above or below the horizontal axis. Without 
loss of generality, let us assume f (x)≥0, a ≤ x ≤ b. We can then bound the curve with a rectangle 
with borders of x = a, x = b, y = 0, and y = y max, where y max is the maximum value of f (x) in 
the interval [a, b]. By generating random points uniformly distributed over this rectangular area, 
and deciding whether they fall above or below the curve f (x), we can estimate the integral.

Dynamic Simulation
In  the  remainder  of  chapter,  dynamic  stochastic  simulation  models  will  be  emphasized.  A 
dynamic simulation program that is written in a general purpose programming language (such as 
Turing) must:
i) keep track of ‘‘simulated’’ time,
ii) schedule events at ‘‘simulated’’ times in the future, and
iii) cause appropriate changes in state to occur when ‘‘simulated’’ time reaches the time at which 
one or more events take place.
The structure of a simulation program may be either time-driven or event-driven, depending on 
the nature of the basic loop of the program. In time-driven models (see Figure 2a), each time 
through the basic loop, simulated time is advanced by some ‘‘small’’ (in relation to the rates of 
change of the variables  in  the program) fixed amount,  and then each possible  event  type is 
checked to see which, if any, events have occurred at that point in simulated time. In  event-
driven  models  (see  Figure  2b),  events  of  various  types  are  scheduled  at  future  points  in 



simulated time. The basic program loop determines when the next scheduled event should occur, 
as the minimum of the scheduled times of each possible event. Simulated time is then advanced 
to exactly that event time, and the corresponding event handling routine is executed to reflect the 
change of state that occurs as a result of that event.

Constructing a Simulation Model
1. Identification of Components
Our first task is to identify those system components that should be included in the model. This 
choice depends not only on the real system, but also on the aspects of its behavior that we intend 
to  investigate.  The only complete  model  of  a  system is  the  system itself.  Any other  model  
includes assumptions or simplifications. Some components of a system may be left out of the 
system model  if  their absence is not expected to alter the aspects of behavior that we wish to 
observe. 
We assume that the bank automation problem specification includes the following information:
i) the times between successive arrivals of customers, expressed as a probability distribution,
ii) the distribution of the number of liters of gasoline needed by customers,
iii) the distribution of how long service at the pump takes as a function of the number of litres 
needed,
iv) the probability that an arriving customer will balk as a function of the number of cars already 
waiting
at the service station and the number of liters of gasoline he needs,
v) the profit per liter of gasoline sold, and
vi) the cost per day of running a pump (including an attendant’s salary, etc.).
2. Entities
Customers, resources, service facilities, materials, service personnel, etc., are entities. Each type 
of entity has a set of relevant attributes. In our service station example, the entities are cars, with 
the attributes ‘arrival time’ and ‘number of liters needed’, and pumps, with the attribute ‘time to 
the completion of service to the current customer’. 
3. Events
Events are occurrences that alter the system state. Here the events are the arrival of a customer at 
the station,  the  start-of-service  to  a  customer at  a  pump,  and the  completion-of-service  to  a 
customer at a pump. The first  arrival  event must be scheduled in the initialization routine; the 
remaining arrivals are handled by letting each invocation of the arrival routine schedule the next 
arrival event. The scheduling of a start-of-service event takes place either in the arrival routine, if 
there are no other cars waiting and a pump is available, or in the completion-of service routine, 
otherwise.  Each time the start-of-service routine is  invoked, the  completion-of-service  at that 
pump is scheduled.
Besides the types of events identified in the real system, there are two other pseudo-events that 
should be included in every simulation program. End-of-simulation halts the simulation after a 
certain amount of simulated time has elapsed, and initiates the final output of the statistics and 
measurements  gathered  in  the  run.  End-of  simulation  should  be  scheduled  during  the 
initialization of an event-driven simulation; for time-driven simulations, it is determined by the 
upper bound of the basic program loop. A progress-report event allows a summary of statistics
and measurements to be printed after specified intervals of simulated time have elapsed. These 
progress-report  summaries  can  be  used  to  check  the  validity  of  the  program  during  its 
development,  and also to  show whether  or  not  the system is  settling down to some sort  of 
‘‘equilibrium’’ (i.e., stable) behavior.
4.  Groupings



Similar entities are often  grouped  in meaningful ways. Sometimes an  ordering  of the entities 
within a group
is  relevant.  In  the  service  station  example,  the  groupings  are  available  pumps (that  are  not 
currently  serving  any  auto),  busy  pumps  (ordered  by  the  service  completion  time  for  the 
customer  in  service),  and  autos  awaiting  service  (ordered  by  time  of  arrival).  In  a  Turing 
program, such groupings can be represented as linked lists of records, as long as a suitable link 
field is included in the records for that entity type.
5.  Relationships
Pairs of non-similar entities may be related. For example, a busy pump is related to the auto that 
is being served. Relationships can be indicated by including in the record for one of the entities 
in a pair a link to the other entity. In some cases, it may be desirable for each of the entities in the 
pair to have a link to the other entity. For example, the relationship between a busy pump and the 
auto being served can be represented by a link from the pump record to the corresponding auto 
record.
6. Stochastic  Simulation
In a stochastic simulation, certain attributes of entities or events must be chosen ‘‘at random’’ 
from some probability distribution. In the service station example, these include the customer 
inter arrival times (i.e., the times between successive arrivals), the number of liters needed, the 
service time (based on the number of liters needed), and whether the customer decides to balk 
(based on the length of the waiting queue and the number of liters needed).
7.  Strategies
Typically,  a  simulation  experiment  consists  of  comparing  several  alternative  approaches  to 
running the system to find out which one(s) maximize some measure of system ‘‘performance’’. 
In the case of the service station, the strategies consist of keeping different numbers of pumps in 
service.
8. Measurements
The activity of the system will be reflected in  measurements  associated with entities, events, 
groups,  or  relationships.  Such  measurements  are  used  in  specifying  the  performance  of  the 
system. If the measurement is associated with an entity, it should be recorded in a field contained 
within  the  record  for  that  entity.  For  measurements  associated  with  events,  groupings  or 
relationships, additional variables or records must be declared to record the measured quantities.
In our example system, we might wish to measure the numbers of customers served, liters of 
gasoline sold, customers who balk, and liters of gasoline not sold to balking customers, the total 
waiting time (from which we can calculate average waiting time), the total service time (to get 
pump utilization), and the total time that the waiting queue is empty.
conditions due to customers left in the system when end-of-simulation is reached are handled 
properly. 
Advantages and disadvantages of simulation
Competition in the computer industry has led to technological breakthroughs that are allowing 
hardware companies to continually produce better products. It seems that every week another 
company announces its latest release, each with more options, memory, graphics capability, and 
power. 
What is unique about new developments in the computer industry is that they often act as a 
springboard for other related industries to follow. One industry in particular is the simulation 
software industry. As computer hardware becomes more powerful, more accurate, faster, and
easier to use, simulation software does too.
The number of businesses using simulation is rapidly increasing. Many managers are realizing 
the benefits  of  utilizing simulation for more than just  the one-time remodeling of a  facility. 
Rather, due to advances in software, managers are incorporating simulation in their daily



operations on an increasingly regular basis.
 Advantages:
For most companies, the benefits of using simulation go beyond just providing a look into the 
future. These benefits are mentioned by many authors [Banks, Carson, Nelson, and Nicol, 2000; 
Law and Kelton, 2000; Pegden, Shannon and Sadowski, 1995; and Schriber, 1991]
and are included in the following:

Choose Correctly. Simulation lets you test every aspect of a proposed change or addition
without  committing  resources  to  their  acquisition.  This  is  critical,  because  once  the  hard 
decisions have been made, the bricks have been laid, or the material-handling systems have been
installed, changes and corrections can be extremely expensive. Simulation allows you to test
your designs without committing resources to acquisition.

Time Compression and Expansion. By compressing or expanding time simulation allows you 
to speed up or slow down phenomena so that you can thoroughly investigate them. You can 
examine  an  entire  shift  in  a  matter  of  minutes  if  you  desire,  or  you  can  spend  two  hours 
examining all the events that occurred during one minute of simulated activity.

Understand "Why?"  Managers often want to know why certain phenomena occur in a real 
system. With simulation, you determine the answer to the "why" questions by reconstructing the 
scene and taking a microscopic examination of the system to determine why the phenomenon 
occurs. You cannot accomplish this with a real system because you cannot see or control it in its
entirety.

Explore Possibilities. One of the greatest advantages of using simulation software is that once 
you  have  developed  a  valid  simulation  model,  you  can  explore  new  policies,  operating 
procedures,  or  methods  without  the  expense  and  disruption  of  experimenting  with  the  real 
system.  Modifications  are  incorporated  in  the  model,  and  you  observe  the  effects  of  those 
changes on the computer rather than the real system.

Diagnose  Problems.  The  modern  factory floor  or  service  organization  is  very complex.  So 
complex that it is impossible to consider all the interactions taking place in one given moment. 
Simulation allows you to better understand the interactions among the variables that make up 
such complex systems. Diagnosing problems and gaining insight into the importance of these 
variables  increases  your  understanding  of  their  important  effects  on  the  performance  of  the 
overall system.
The  last  three  claims  can  be  made  for  virtually  all  modeling  activities,  queuing,  linear 
programming, etc. However, with simulation the models can become very complex and, thus, 
have a higher fidelity, i.e., they are valid representations of reality.

Identify Constraints. Production bottlenecks give manufacturers headaches. It is easy to forget 
that bottlenecks are an effect rather than a cause. However, by using simulation to perform
bottleneck analysis, you can discover the cause of the delays in work-in-process, information,
materials, or other processes.

Develop Understanding.  Many people operate with the philosophy that talking loudly, using 
computerized layouts,  and writing complex reports  convinces others that  a manufacturing or 
service system design is valid. In many cases these designs are based on someone's thoughts 
about the way the system operates rather than on analysis. Simulation studies aid in providing



understanding  about  how  a  system  really  operates  rather  than  indicating  an  individual's 
predictions about how a system will operate.

Visualize the Plan. Taking your designs beyond CAD drawings by using the animation features 
offered by many simulation packages allows you to see your facility or organization actually 
running. Depending on the software used, you may be able to view your operations from various 
angles and levels of magnification, even 3-D. This allows you to detect design flaws that appear 
credible when seen just on paper on in a 2-D CAD drawing.

Build Consensus. Using simulation to present design changes creates an objective opinion. You 
avoid having inferences made when you approve or disapprove of designs because you simply 
select  the  designs  and modifications  that  provided  the  most  desirable  results,  whether  it  be 
increasing production or reducing the waiting time for service. In addition, it is much easier to 
accept  reliable  simulation  results,  which  have  been  modeled,  tested,  validated,  and  visually 
represented, instead of one person's opinion of the results that will occur from a proposed design.

Prepare for Change. We all know that the future will bring change. Answering all of the "what-
if"  questions  is  useful  for  both  designing  new  systems  and  redesigning  existing  systems. 
Interacting with all those involved in a project during the problem-formulation stage gives you
an idea of the scenarios that are of interest. Then you construct the model so that it answers
questions pertaining to those scenarios. What if an automated guided vehicle (AGV) is removed
from service  for  an  extended  period  of  time?  What  if  demand  for  service  increases  by  10 
percent? What if....? The options are unlimited.

Wise Investment. The typical cost of a simulation study is substantially less than 1% of the total  
amount  being expended for the implementation of a design or redesign.  Since the cost  of a 
change or modification to a system after installation is so great, simulation is a wise investment.

Train  the  Team.  Simulation  models  can  provide  excellent  training  when  designed  for  that 
purpose. Used in this manner, the team provides decision inputs to the simulation model as it
progresses. The team, and individual members of the team, can learn by their mistakes, and learn 
to operate better. This is much less expensive and less disruptive than on-the-job learning.

Specify Requirements. Simulation can be used to specify requirements for a system design. For 
example, the specifications for a particular type of machine in a complex system to achieve a  
desired  goal  may  be  unknown.  By  simulating  different  capabilities  for  the  machine,  the 
requirements can be established.

B. Disadvantages
The disadvantages of simulation include the following:
Model Building Requires Special Training.  It is an art that is learned over time and through 
experience. Furthermore, if two models of the same system are constructed by two competent 
individuals, they may have similarities, but it is highly unlikely that they will be the same.

Simulation  Results  May  Be  Difficult  to  Interpret.  Since  most  simulation  outputs  are 
essentially  random variables  (they  are  usually  based  on  random inputs),  it  may be  hard  to 
determine whether an observation is a result of system interrelationships or randomness.

Simulation Modeling and Analysis Can Be Time Consuming and Expensive.



Skimping  on  resources  for  modeling  and  analysis  may result  in  a  simulation  model  and/or 
analysis that is not sufficient for the task.

Simulation May Be Used Inappropriately. Simulation is used in some cases when an analytical 
solution is possible, or even preferable. This is particularly true in the simulation of some waiting 
lines where closed-form queueing models are available, at least for long-run evaluation.

Pseudo-Random Number Generation
Probability  is used to express our confidence in the outcome of some random event as a real 
number between 0 and 1. An outcome that is impossible has probability 0; one that is inevitable 
has  probability  1.  Sometimes,  the  probability  of  an  outcome  is  calculated  by recording  the 
outcome for a very large number of occurrences of that random event (the more the better), and 
then taking the ratio of the number of events in which the given outcome occurred to the total 
number of events. 
It is also possible to determine the probability of an event in a non-experimental way, by listing 
all possible non-overlapping outcomes for the experiment and then using some insight to assign a 
probability to each outcome.
For example, we can show that the probability of getting ‘‘heads’’ twice during three coin tosses 
should be 3/8 from the following argument. First, we list all eight possible outcomes for the 
experiment (TTT, TTH, THT, THH, HTT, HTH, HHT, HHH). Next, we assign equal probability 
to each outcome (i.e., 1/8), because a ‘‘fair’’ coin should come up heads half the time, and the 
outcome of one coin toss should have no influence on another. (In general, when we have no 
other  information  to  go  on,  each  possible  outcome for  an  experiment  is  assigned  the  same 
probability.)
And  finally,  we  observe  that  the  desired  event  (namely  two  H’s)  includes  three  of  these 
outcomes, so that its
probability should be the sum of the probabilities for those outcomes, namely 3/8.
A  random variable  is  a  variable,  say  X,  whose value,  x,  depends on the outcome of some 
random event.  For  example,  we can  define  a  random variable  that  takes  on  the  value  of  1 
whenever ‘‘heads’’ occurs and 0 otherwise.

Generating Uniform Pseudo-Random Numbers
Since the result of executing any computer program is in general both predictable and repeatable 
the idea that a computer can be used to generate a sequence of random numbers seems to be a 
contradiction.  There  is  no  contradiction,  however,  because  the  sequence  of  numbers  that  is 
actually generated by a  computer  is  entirely predictable  once the algorithm is  known.  Such 
algorithmically generated sequences are called pseudo-random sequences because they appear 
to be random in the sense that a good pseudo-random number sequence can pass most statistical 
tests designed to check that their distribution is the same as the intended distribution. On the 
other hand, to call them ‘‘random’’ numbers is no worse than it is to label floating point numbers 
as ‘‘real’’ numbers in a programming language.
It is worth noting that the availability of pseudo-random (rather than truly random) numbers is 
actually  an  advantage  in  the  design  of  simulation  experiments,  because  it  means  that  our 
‘‘random’’ numbers are reproducible.
Thus, to compare two strategies for operating our service station, we can run two experiments 
with different numbers of pumps but with exactly the same sequence of customers. Were we to 
attempt the same comparison using an actual  service station,  we would have to  try the two 
alternatives one after the other, with a different sequence of customers (e.g., those that came on 
Tuesday instead of those that came on Monday), making it difficult to claim that a change in our 



profits was due to the change in strategy rather than the differences in traffic patterns between 
Mondays and Tuesdays.
In general, most pseudo-random number generators produce uniform values. (This does not lead 
to  a  loss  of  generality because,  as  we shall  see  in  the  next  section,  uniform values  can  be 
transformed into other distributions.)
Since only finite accuracy is possible on a real computer, we cannot generate continuous random 
variables. However, it is possible to generate pseudo-random integers, xk , uniformly between 0 
and some very large number (say m), which we use directly as a discrete uniform distribution, or 
transform  into  the  fraction  xk/m  to  be  used  as  an  approximation  to  a  uniform  continuous 
distribution between 0 and 1.
The most popular method of generating uniform pseudo-random integers is as follows. First, an 
initial value x 0, the seed, is chosen. Thereafter, each number,  xk , is used to generate the next 
number in the sequence, xk +1, from the relation

xk +1 := (a * xk + c) mod m
The only difficult part is choosing the constants a, c and m. These must be chosen both to ensure 
that the  period  of the random number generator (i.e., the number of distinct values before the 
sequence repeats) is large, and also to ensure that consecutive numbers appear to be independent. 
Note that the period can be at most  m, because there are only m distinct values between 0 and 
m−1.
 
Progress in a simulation study

1. Problem formulation. Every simulation study begins with a statement of the problem. If the 
statement is provided by those that have the problem (client), the simulation analyst must take 
extreme care to insure that the problem is clearly understood. If a problem statement is prepared 
by  the  simulation  analyst,  it  is  important  that  the  client  understand  and  agree  with  the 
formulation. It is suggested that a set of assumptions be prepared by the simulation analyst and
agreed to by the client. Even with all of these precautions, it is possible that the problem will 
need to be reformulated as the simulation study progresses.

2. Setting of objectives and overall project plan. Another way to state this step is "prepare a 
proposal." This step should be accomplished regardless of location of the analyst and client, viz., 
as an external or internal consultant.

The objectives indicate the questions that are to be answered by the simulation study. The project 
plan should include a statement of the various scenarios that will be investigated. The plans for 
the study should be indicated in terms of time that will be required, personnel that will be used, 
hardware  and  software  requirements  if  the  client  wants  to  run  the  model  and  conduct  the 
analysis,  stages  in  the  investigation,  output  at  each  stage,  cost  of  the  study  and  billing 
procedures, if any.

3.  Model  conceptualization.  The  real-world  system  under  investigation  is  abstracted  by  a 
conceptual model, a series of mathematical and logical relationships concerning the components 
and the structure of the system. It  is  recommended that modeling begin simply and that the 
model grow until a model of appropriate complexity has been developed. For example, consider 
the model of a manufacturing and material handling system. The basic model with the arrivals,  
queues and servers  is  constructed.  Then,  add the failures  and shift  schedules.  Next,  add the 
material-handling capabilities. Finally, add the special features. Constructing an unduly complex 
model will add to the cost of the study and the time for its completion without increasing the 



quality of the output. Maintaining client involvement will enhance the quality of the resulting 
model and increase the client's confidence in its use.

4. Data collection.  Shortly after  the proposal  is  "accepted" a  schedule of  data  requirements 
should be submitted to the client. In the best of circumstances, the client has been collecting the 
kind of data needed in the format required, and can submit these data to the simulation analyst in 
electronic format.  Oftentimes,  the client indicates that the required data are indeed available. 
However, when the data are delivered they are found to be quite different than anticipated. For 
example, in the simulation of an airline-reservation system, the simulation analyst was told "we 
have every bit of data that you want over the last five years." When the study commenced, the 
data delivered were the average "talk time" of the reservationist for each of the years. Individual 
values were needed, not summary measures. Model building and data collection are shown as 
contemporaneous in .  This is to indicate that the simulation analyst can readily construct the 
model while the data collection is progressing.

5. Model translation.  The conceptual model constructed in Step 3 is coded into a computer 
recognizable form, an operational model.

6. Verified? Verification concerns the operational model. Is it performing properly? Even with 
small textbook sized models, it is quite possible that they have verification difficulties. These 
models are orders of magnitude smaller than real models (say 50 lines of computer code versus 
2,000 lines of computer code). It is highly advisable that verification take place as a continuing 
process. It is ill advised for the simulation analyst to wait until the entire model is complete to 
begin the verification process. Also, use of an interactive run controller, or debugger, is highly 
encouraged as an aid to the verification process.

7.  Validated?  Validation  is  the  determination  that  the  conceptual  model  is  an  accurate 
representation  of  the  real  system.  Can the  model  be  substituted  for  the  real  system for  the 
purposes of experimentation? If there is an existing system, call it the base system, then an ideal
way to validate the model is to compare its output to that of the base system. Unfortunately, there
is not always a base system. There are many methods for performing validation.
8. Experimental design.  For each scenario that is to be simulated, decisions need to be made 
concerning the length of the simulation run, the number of runs (also called replications), and the 
manner of initialization, as required.

9. Production runs and analysis.  Production runs, and their subsequent analysis, are used to 
estimate measures of performance for the scenarios that are being simulated.

10. More runs? Based on the analysis of runs that have been completed, the simulation analyst 
determines if additional runs are needed and if any additional scenarios need to be simulated.

11. Documentation and reporting.  Documentation is necessary for numerous reasons. If the 
simulation model is going to be used again by the same or different analysts, it may be necessary 
to understand how the simulation model operates. This will enable confidence in the simulation 
model so that the client can make decisions based on the analysis. Also, if the model is to be 
modified, this can be greatly facilitated by adequate documentation. The result of all the analysis 
should  be  reported  clearly  and  concisely.  This  will  enable  the  client  to  review  the  final 
formulation, the alternatives that were addressed, the criterion by which the alternative systems 
were compared, the results of the experiments, and analyst recommendations, if any.



12. Implementation.  The simulation analyst  acts  as  a  reporter  rather  than an advocate.  The 
report prepared in step 11 stands on its merits, and is just additional information that the client 
uses to make a decision. If the client has been involved throughout the study period, and the 
simulation analyst has followed all of the steps rigorously, then the likelihood of a successful 
implementation is increased.

Example : An inventory control system is a process for managing and locating objects or 
materials. In common usage, the term may also refer to just the software components.
Modern inventory control systems often rely upon barcodes and radio-frequency identification 
(RFID) tags to provide automatic identification of inventory objects. Inventory objects could 
include any kind of physical asset: merchandise, consumables, fixed assets, circulating tools, 
library  books,  or  capital  equipment.  To  record  an  inventory  transaction,  the  system uses  a 
barcode scanner or RFID reader to automatically identify the inventory object, and then collects 
additional  information  from  the  operators  via  fixed  terminals  (workstations),  or  mobile 
computers.
The new trend in inventory management is to label inventory and assets with QR Code, and use 
smartphones to keep track of inventory count and movement. These new systems are especially 
useful for field service operations, where an employee needs to record inventory transaction or 
look up inventory stock in the field, away from the computers and hand-held scanners.



Module-II (12 Lectures)
Objective: To use the Probability concepts in Simulation 
Events that cannot be predicted precisely are often called random. Many if not most of the inputs 
to, and processes that occur in systems are to some extent random. Hence, so too are the outputs 
or predicted impacts, and even people’s reactions to those outputs or impacts.
Probability Concepts and Methods



The basic concept in probability theory is that of the random variable. By definition, the value of 
a random variable cannot be predicted with certainty. It depends, at least in part, on the outcome 
of a chance event. Examples are: (1) the number of years until the flood stage of a river washes 
away a small bridge; (2) the number of times during a reservoir’s life that the level of the pool 
will drop below a specified level; (3) the rainfall depth next month; and (4) next year’s maximum 
flow at a  gauge site  on an unregulated stream. The values of all  of these random events  or 
variables are not knowable before the event has occurred. Probability can be used to describe the 
likelihood that these random variables will equal specific values or be within a given range of 
specific values.
Distributions of Random Events
Given a set of observations to which a distribution is to be fit, one first selects a distribution 
function to serve as a model of the distribution of the data. The choice of a distribution may be  
based on experience with data of that type, some understanding of the mechanisms giving rise to 
the  data,  and/or  examination  of  the  observations  themselves.  One  can  then  estimate  the 
parameters  of  the  chosen  distribution  and  determine  if  the  fitted  distribution  provides  an 
acceptable model of the data. 
Stochastic Processes
Historical records of rainfall or stream flow at a particular site are a sequence of observations 
called a time series. In a time series, the observations are ordered by time, and it is generally the 
case that the observed value of the random variable at one time influences one’s assessment of 
the distribution of the random variable at later times. This means that the observations are not 
independent. Time series are conceptualized as being a single observation of a stochastic process, 
which is a generalization of the concept of a random variable.
Stochastic Variables, Discrete and Continuous Probability function:
The variables that can change with certain probability are called stochastic variables (random 
variables).
In discrete system simulation we use the probability mass function. If a random variable is a 
discrete variable, its probability distribution is called a discrete probability distribution.
An example will  make this  clear.  Suppose you flip  a  coin two times.  This simple statistical 
experiment can have four possible outcomes: HH, HT, TH, and TT. Now, let the random variable 
X represent the number of Heads that result from this experiment. The random variable X can 
only take on the values 0, 1, or 2, so it is a discrete random variable.
The probability distribution for this statistical experiment appears below.

Number of heads Probability
0 0.25
1 0.50
2 0.25
The above table represents a discrete probability distribution because it relates each value of a 
discrete random variable with its probability of occurrence. Binomial and Poisson distribution 
will also be covered here.
When variable being observed is continuous then an infinite number of possible values can be 
assumed by the function and we describe the variable by a  probability density function.  On 
integrating it within the range we get the cumulative distribution function.
Numerical evaluation of Continuous Probability function and continuous uniformly distributed 
random number:
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The purpose of generating a probability function into a simulation is to generate random numbers 
with that particular distribution. Customary way of organizing data derived from observations is 
to display them as a frequency distribution. Relative frequency distribution is a better approach.
By a continuous uniform distribution we mean that the probability of a variable, X, falling in any 
interval within a certain range of values is proportional to the ratio of the interval size to the 
range; that is, every point in the range is equally likely to be chosen.
Random number generators: Linear Congruential Generator, Mid Square Method, Multiplicative 
Congruential Generator, Rejection Method:

Linear  congruential  generator (LCG)  is  an algorithm that  yields  a  sequence  of  pseudo-
randomized  numbers  calculated  with  a  discontinuous piecewise  linear  equation.  The  method 
represents one of the oldest and best-known pseudorandom number generator algorithms. The 
theory behind them is relatively easy to understand, and they are easily implemented and fast, 
especially on computer hardware which can provide modulo arithmetic by storage-bit truncation.

The generator is defined by the recurrence relation:

where  is the sequence of pseudorandom values, and

 – the "modulus"
 – the "multiplier"
 – the "increment"

 – the "seed" or "start value"

are integer constants  that  specify  the  generator.  If c =  0,  the  generator  is  often  called 
a multiplicative congruential generator (MCG), or Lehmer RNG. If c ≠ 0, the method is called 
a mixed congruential generator. 

Mid-square method is  a method of generating pseudorandom numbers.  In practice it  is  not a 
good method, since its period is usually very short and it has some severe weaknesses, such as 
the output sequence almost always converging to zero. Here we take the mid of a number as the 
seed value and then square it to generate a random number and accordingly continue till we have 
not obtained the desired set of random numbers.
The  rejection  sampling  method  generates  sampling  values  from  an  arbitrary probability 
distribution function  by using an instrumental distribution , under the only restriction 
that  where  is an appropriate bound on .

Rejection sampling is usually used in cases where the form of  makes sampling difficult. 
Instead  of  sampling  directly  from  the  distribution ,  we  use  an  envelope 

distribution  where  sampling  is  easier.  These  samples  from  are 
probabilistically accepted or rejected.
Testing of Random Numbers:
Chi-square is a statistical test commonly used to compare observed data with data we would 
expect to obtain according to a specific hypothesis. For example, if, according to Mendel's laws, 
you expected 10 of 20 offspring from a cross to be male and the actual observed number was 8 
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males,  then you might  want  to  know about  the "goodness  to  fit"  between the observed and 
expected. Were the deviations (differences between observed and expected) the result of chance, 
or were they due to other factors. How much deviation can occur before you, the investigator, 
must conclude that something other than chance is at work, causing the observed to differ from 
the expected. The chi-square test is always testing what scientists call the null hypothesis, which 
states that there is no significant difference between the expected and observed result. 
The formula for calculating chi-square ( x2) is:
x2=  (o-e)2/e
That is, chi-square is the sum of the squared difference between observed (o) and the expected 
(e) data (or the deviation, d), divided by the expected data in all possible categories. Chi-squared 
distribution, showing X2 on the x-axis and P-value on the y-axis.

A chi-squared test, also referred to as test (or chi-square test), is any statistical hypothesis 
test in which the sampling distribution of the test statistic is a chi-squared distribution when the 
null hypothesis is true. Also considered a chi-squared test is a test in which this is asymptotically 
true, meaning that the sampling distribution (if the null hypothesis is true) can be made to 
approximate a chi-squared distribution as closely as desired by making the sample size large 
enough. The chi-squared (I) test is used to determine whether there is a significant difference 
between the expected frequencies and the observed frequencies in one or more categories. Does 
the number of individuals or objects that fall in each category differ significantly from the 
number you would expect? Is this difference between the expected and observed due to sampling 
variation, or is it a real difference?

Exact chi-squared distribution
One case where the distribution of the test statistic is an exact chi-squared distribution is the test  
that  the variance  of  a  normally distributed population  has  a  given value based on a  sample 
variance. Such a test is uncommon in practice because values of variances to test against are 
seldom known exactly.

Chi-squared test for variance in a normal population
If a sample of size n is taken from a population having a normal distribution, then there is a result 
which allows a test to be made of whether the variance of the population has a pre-determined 
value.  For example,  a manufacturing process might have been in stable condition for a long 
period, allowing a value for the variance to be determined essentially without error. Suppose that 
a variant of the process is being tested, giving rise to a small sample of n product items whose 
variation is to be tested. The test statistic T in this instance could be set to be the sum of squares 
about the sample mean, divided by the nominal value for the variance (i.e. the value to be tested 
as holding). Then T has a chi-squared distribution with n − 1 degrees of freedom. For example if 
the sample size is 21, the acceptance region for T for a significance level of 5% is the interval 
9.59 to 34.17.

Chi-squared test for independence and homogeneity in tables
Suppose a random sample of 650 of the 1 million residents of a city is taken, in which every 
resident of each of four neighborhoods, A, B, C, and D, is equally likely to be chosen. A null 
hypothesis says the randomly chosen person's neighborhood of residence is independent of the 
person's occupational classification, which is either "blue collar", "white collar", or "service". 
The data are tabulated:



Let  us  take  the  sample  proportion  living  in  neighborhood  A,  150/650,  to  estimate  what 
proportion of the whole 1 million people live in neighborhood A. Similarly we take 349/650 to 
estimate  what  proportion  of  the  1 million  people  are  blue-collar  workers.  Then  the  null 
hypothesis independence tells us that we should "expect" the number of blue-collar workers in 
neighborhood A to be

Then in that "cell" of the table, we have

The sum of these quantities over all of the cells is the test statistic. Under the null hypothesis, it 
has approximately a chi-squared distribution whose number of degrees of freedom is

If the test statistic is improbably large according to that chi-squared distribution, then one rejects 
the null hypothesis of independence.
A related issue is a test of homogeneity. Suppose that instead of giving every resident of each of 
the four neighborhoods an equal chance of inclusion in the sample, we decide in advance how 
many residents of each neighborhood to include. Then each resident has the same chance of 
being chosen as do all residents of the same neighborhood, but residents of different 
neighborhoods would have different probabilities of being chosen if the four sample sizes are not 
proportional to the populations of the four neighborhoods. In such a case, we would be testing 
"homogeneity" rather than "independence". The question is whether the proportions of blue-
collar, white-collar, and service workers in the four neighborhoods are the same. However, the 
test is done in the same way.

The Kolmogorov-Smirnov Test
The Kolmogorov-Smirnov test is designed to test the hypothesis that a given data set could have 
been drawn from a given distribution. Unlike the chi-square test, it is primarily intended for use 
with continuous distributions and is independent of arbitrary computational choices such as bin 
width.
Suppose that we had collected four data points and sorted them into increasing order to get the data 
set {1.2, 3.1, 5.1, 6.7}. From the pattern of our data alone, we might guess that, if we continued to 
collect data from this process, 0-25% of our observations would be less than or equal to 1.2, 25-
50% would be less than or equal to 3.1, etc.
Perhaps we would like to compare this empirical pattern to the pattern we would expect to observe 
if the data points were drawn from a given theoretical distribution; say, an exponential distribution 
with a mean of 5 (i.e., l = 1/5 = 0.2). If data points were drawn from this exponential distribution, 



what fraction would we expect to see below 1.2? Below 3.1? These figures can be computed from 
the cumulative distribution function for the exponential distribution:
F(1.2) = 1 - e-(0.2)(1.2) = 0.21
 
F(3.1) = 1 - e-(0.2)(3.1) = 0.46
 
F(5.1) = 1 - e-(0.2)(5.1) = 0.64
 
F(6.7) = 1 - e-(0.2)(6.7) = 0.74
 
We compare this to our empirical pattern in Figure 1. The first three rows contain the data points 
and our highest and lowest estimates of the fraction of the data that would fall below each point. 
The fourth row contains the result of plugging the data points into the theoretical distribution under 
consideration  (in  this  case,  the  exponential  distribution  with  a  mean  of  5).  These  values  are 
the theoretical estimate  of  what  fraction  should  fall  below  each  data  point.  The  fifth  row  is 
obtained by comparing the fourth row to the second and third rows. Is 0.21 near 0? Near 0.25? We 
take the absolute value of the larger of the two deviations. For example, in the first column, we get
|0 = 0.21| = 0.21
|0.25 - 0.21| = 0.04
so, the larger deviation is 0.21. This gives an idea of how far our empirical pattern is from our 
theoretical pattern.
FIGURE 1: Computing D for the Kolmogorov-Smirnov test.

Row 1: Data point x1 1.2 3.1 5.1

Row 2: Empirical  fraction  falling  below  data 
point (low estimate)

0 0.25 0.50

Row 3: Empirical  fraction  falling  below  data 
point (high estimate)

0.25 0.50 0.75

Row 4: F(x1) 0.21 0.46 0.64

Row 5: Largest deviation 0.21 0.21 0.14

Row 6: Overall largest deviation (D)    

 
Next, we look over the fifth row to find the largest overall deviation (D). The largest error, 0.26, is 
the value of our test statistic. Is this measure of "error" large or small for this situation? To make 
this judgment, we compare our computed value of this test statistic to a critical value from the 
table in Appendix A. Setting a=0.1 and noting that our sample size is n=4, we get a critical value 
of D4,1.0 = 0.565. Since our test statistic, D=0.26, is less than 0.565, we do not reject the hypothesis 
that our data set was drawn from the exponential distribution with a mean of 5.
In general,  we use the Kolmogorov-Smirnov test  to compare a  data  set  to  a given theoretical 
distribution by filling in a table as follows:
• Row 1: Data set sorted into increasing order and denoted as xi, where i=1,...,n.



• Row 2: Smallest empirical estimate of fraction of points falling below xi, and computed as (i-
1)/n for i=1,...,n (e.g. if n=4, this row contains 0, 0.25, 0.50, and 0.75).
•  Row  3: Largest  empirical estimate  of  fraction  of  points  falling  below xi and  computed 
as i/n for i=1,...,n (e.g., if n=4, this row contains 0.25, 0.50, 0.75, and 1.0).
•  Row  4: Theoretical estimate  of  fraction  of  points  falling  below xi and  computed  as F(xi), 
where F(x) is the theoretical distribution function being tested.
• Row 5: Absolute value of difference between row 2 and row 4 or between row 3 and row 4, 
whichever is larger. This is a measure of "error" for this data point.
• Row 6: The largest "error" from row 5, which gives the test statistic D.
Once this table has been completed, the test statistic D can be compared to the critical value from a 
statistical table. If the test statistic is larger than the critical value, then we reject the hypothesis 
that the data set was drawn from the given theoretical distribution; otherwise we do not reject the 
hypothesis.*

In  the  preceding  example,  the  parameter  of  the  theoretical  distribution  (i.e., l =  1/5)  was  not 
estimated from the data set. In most cases, the critical values in the Kolmogorov-Smirnov table are  
only valid for testing distributions whose parameters have not been estimated from the data. Had 
we, for example, used a maximum-likelihood estimate formula to compute l before testing the fit 
of the distribution, we could not have used the Kolmogorov-Smirnov test. Modified versions of the 
Kolmogorov-Smirnov test have been developed for testing the fit of a few theoretical distributions 
in the case where parameter values have been estimated from the data. While we will not cover 
these modified tests, the ideas behind them are similar to those we have discussed, and many 
popular statistical software packages perform them.
Generation of Stochastic Variants:
For simulation experiments (including Monte Carlo) it is necessary to generate random numbers 
(as  values  of  variables).  The  problem is  that  the  computer  is  highly deterministic  machine  - 
basically, behind each process there is always an algorithm, deterministic computation changing 
inputs to outputs, therefore it  is not easy to generate uniformly spread random numbers over a 
defined interval or set. 
Random number generator is a device capable of producing a sequence of numbers which can not 
be  "easily"  identified  with deterministic properties.  This  sequence  is  then  called Sequence  of 
stochastic numbers. 
The algorithms typically rely on pseudo random numbers, computer generated numbers mimicking 
true random numbers, to generate a realization, one possible outcome of a process. 
Methods for obtaining random numbers exist for a long time and are used in many different fields 
(like gaming).  However,  these  numbers  suffer  from certain  bias.  Currently  the  best  methods, 
expected  to  produce  truly  random sequences  are  natural  methods  that  take  advantage  of  the 
random nature of quantum phenomena.
Arrival Patterns Service Times:

Queuing models

Distribution of request inter-arrival times
The problem: Let us assume that we want to model a system consisting of many users and a server, 
and we are interested in the response time of the server which is the time between the moment that 
a user sends a request to the server to the moment when the server has completed its answer (we 



ignore any communication delays).
Now, let us assume that the service time of the server is a constant (1 second), that is, it always 
takes exactly 1 second to provide an answer to a request. This means the distribution of the service 
time is a delta-function with a peak at t = 1 second.
If the users organize themselves in such a way that the next request will be sent to the server only 
after the last answer was received, then the response time will always be equal to the service time. 
However, if the users do not coordinate their requests, it may happen that a user sends a request 
before the last answer was produced. This means that the server is busy when the request arrives 
and the request has to wait (in some kind of input queue) before it will be processed. Therefore the 
response time, in this case, will be larger than the service time (service time plus waiting time). We 
see that the arrival pattern of the request has an impact on the average response time of the system.
Poisson  inter-arrival  pattern: It  can  be  shown that,  if  there  are  very  many  users  without  any 
coordination among them, the inter-arrival time (that is, the time between the arrival of one request 
up to the arrival of the next request) has an exponential distribution of the form Pt = alpha * exp(- 
alpha * t) where alpha is the arrival rate. In fact, the average of this inter-arrival distribution is 
1/alpha which is the average time between two consecutive requests. We see that in this case there 
is a good probability that the inter-arrival time is  much smaller than the average.  Therefore it 
would be interesting to determine what the average waiting time of requests in the server input 
queue would be. An answer is given by the queuing models.
Important conclusion: One cannot say what the response time of a server is without knowing the 
inter-arrival  pattern  of  the  requests.  The  performance  guarantee  of  the  server  depends  on  the 
hypothesis about its environment (which determines the distribution of incoming requests).

Random variate
In the mathematical fields of probability and statistics, a random variate is a particular outcome 
of a random variable: the random variates which are other outcomes of the same random variable 
might have different values. Random variates are used when simulating processes driven by 
random influences (stochastic processes). In modern applications, such simulations would derive 
random variates corresponding to any given probability distribution from computer procedures 
designed to create random variates corresponding to a uniform distribution, where these 
procedures would actually provide values chosen from a uniform distribution of pseudorandom 
numbers.
Procedures to generate random variates corresponding to a given distribution are known as 
procedures for random variate generation or pseudo-random number sampling.
In probability theory, a random variable is a measurable function from a probability space to a 
measurable space of values that the variable can take on. In that context, and in statistics, those 
values are known as a random variates, or occasionally random deviates, and this represents a 
wider meaning than just that associated with pseudorandom numbers.

Definition
Devroye defines a random variate generation algorithm (for real numbers) as follows:

Assume that 
1. Computers can manipulate real numbers.
2. Computers have access to a source of random variates that are uniformly 
distributed on the closed interval .

Then a random variate generation algorithm is any program that halts almost surely and 
exits with a real number X. This X is called a random variate.

http://en.wikipedia.org/wiki/Luc_Devroye


(Both assumptions are violated in most real computers. Computers necessarily lack the ability to 
manipulate real numbers, typically using floating point representations instead. Most computers 
lack a source of true randomness (like certain hardware random number generators), and instead 
use pseudorandom number sequences.)
The distinction between random variable and random variate is subtle and is not always made in 
the literature. It is useful when one wants to distinguish between a random variable itself with an 
associated probability distribution on the one hand, and random draws from that probability 
distribution on the other, in particular when those draws are ultimately derived by floating-point 
arithmetic from a pseudo-random sequence.

Random Variate GenerationIt is assumed that a distribution is completely specified and we wish to generate samples from this distribution as input to a simulation model.Techniques
– Inverse Transformation
– Acceptance-Rejection
– ConvolutionAll these techniques assume that a source of uniform (0, 1) random numbers is available; R1, R2,..., where each Ri has:ì1 ,   0 £ x £ 1pdf: fR(x) = íî0 ,   otherwise  andì0 ,   x < 0cdf: FR(x) = íx ,   0 £ x £ 1 î1 ,   x > 1Note: The random variable may be either discrete or continuous.

If the random variable is discrete, ==>
x take on a specific value, and F(x) is a step Fn 
If F(x) is continuous over the domain x, ==>
f(x) = dF(x) / dx and
the derivative f(x) is called the pdf.
Mathematically, the cdf is:
F(x) = P(X ≤ x) =        , where F(x) is defined over the range 0 ≤ F(x) ≤1, and f(t) represents the 
value of the pdf of the variable x, when X = t.

Example #1
Generate random variates x with density function f(x) = 2x, 0 £ x £ 1



Solution:
F(x) =              = x2 , 0 £ x £ 1 
Now set F(x) = R ==> R = x2 
Next, solve for x, ==> x = F-1(R) = ÖR, 0 £ r £ 1
\Values of x with pdf f(x) = 2x can be generated by taking the square root of the random, R.
Example #2
Generate random variates x with density function
 

f(x) = λe-λx ,   0 ≤ x f(x) = í
 0 , x < 0

Solution:
F(x) =    

= 1 - e-λx ,   0 ≤ x
= 0 x < 0Now set F(x) = R

Next solve for x, ==>
1 - e-λx = R
      e-λx = 1 - R
     - λx = ln(1 - R)
          x = - {ln(1 - R)} / λ
or     = - {ln(R)} / λ

● Uniform Distribution
Consider a random variable X that is uniformly distributed on the interval [a, b]

pdf: f(x) = 1/ (b-a)  a ≤ x  ≤ b
 0 , otherwise

To generate random variates:
Step 1. F(x) = 0 x< a

 (x - a) / (b - a) , a ≤ x ≤ b 
1 x>b

Step 2. F(x) = (x - a) / (b - a) = R
Step 3. X = a + (b - a) R



Module III
Objective: Know about simulation Language like GPSS:

1. Discrete events
A model used in discrete system simulation has a number of numbers to represent the state of a 
system. A number used to represent some aspect of the system state is called a state descriptor.  
Some state descriptors range over values that have physical significance, such as the number 
representing the count of documents .As the simulation proceeds ,the state descriptors change 
value. A discrete event is a set of circumstances, that causes an instantaneous change in one or 
more system state descriptors. It is possible that two different events occur simultaneously, or are 
modeled  as  being  simultaneous,  so  that  not  all  changes  of  state  descriptors  occurring 
simultaneously necessarily belong to a single event.

2. Representation of time
The passage of time is recorded by a number referred to as a clock time.It is usually set to zero at 
the beginning of a simulation and subsequently indicates how many units of simulated time have 
passed since the beginning of the simulation. Here the simulation time means the clock time. 
Ratio of simulated time to the real time taken can vary enormously.
Two basic methods exist for updating clock time. One method is to advance the clock to the time 
at which the next event is due to occur. The other method is to advance the clock by small  
intervals of time and determine at each interval whether an event is due to occur at that time.  
Here the first method is called event oriented and the second method is called interval oriented. 
Discrete system simulation is usually carried out with the use of event oriented method whereas 
continuous system simulation uses interval oriented method. There is no firm rule to represent 
time in simulation

3.  Generation of arrival pattern
It is a important aspect of discrete system simulation. It is possible that an exact sequence of 
arrivals  has  been  specified  for  the  simulation.  Also  the  sequence  of  inputs  may have  been 
generated  from  observations  on  a  system.  Computer  system  designs  and  especially  the 
programming components of the system are often tested with a record, gathered from a running 
system that is representative of the sequence of operations the computer system will have to 
execute. This approach is called trace driven simulation.
When there is no interaction between the exogenous arrivals and the endogenous events of the 
system,a sequence of  arrivals in preparation for the simulation is created. Usually simulation 
proceeds by creating new arrivals as they are needed.
The exogenous arrival of an entity is defined as an event and the arrival time of the next entity is  
recorded as one of the event times. When the clock time reaches this event time, the event of  
entering the entity is calculated at once from the inter arrival time distribution.

4. Simulation of a telephone System
A telephony system has a number of telephones, connected to a switchboard by lines. Here the 
object of the simulation will be to process a given number of calls and determine what proportion 
are successfully completed, blocked, or found to be busy calls.

5.  Delayed calls
Suppose we assume that calls that cannot be connected are not lost. Instead, they wait until they 
can be connected. This case does not happen in a normal telephony system involving human 



beings talking to each other. But it can happen to messages in a switching system that has store 
and forward capability.

6. Priorities and parameters
A transaction has no particular identity. Each is treated by a block in the same manner as any 
other transaction. Each transaction has one of 128 levels of priority, indicated by the numbers 0 
to 127,with 0 being the lowest priority. At any point in the  block diagram, the priority can be set  
up or down to  any of the levels by the PRIORITY block. The block is coded by putting the 
priority in  field A of the block.
It is also possible to designate the priority at the time a transaction is created by putting the 
priority in the E field of the GENERATE block creating the transaction. If the field is left blank, 
the priority is set to 0.

A transaction has also parameters, which carry numerical data that can affect the way the 
transaction is processed by a block. The values are identified by the notation Pxn, where n is the 
parameter number, and x is the type. If no declaration is made, the transaction have 12 half word 
parameters.
All parameter values are zero at the time a transaction is created. A value is given to a parameter  
when a transaction enters an ASSIGN block. The number of the parameter is given in the field A 
of the ASSIGN block. The value of the parameter to be taken is given in the field B.

7. Standard Numerical Attributes
Every entity in a system has some attributes, for e.g. number of transactions in a storage or the 
length of a queue, which are made available to the program user. These attributes, collectively 
are called standard numerical attributes. Each type of SNA is identified by a one or two letter 
code and a number.
Many uses can be made of SNA’s. They provide the inputs to functions, and hence allow a great 
variety of functional relationships to be introduced into the model. Values of the SNA’s change as 
the simulation proceeds. The program does not continuously maintain current value; it completes 
value of SNA’s at the time they are needed. Some example of GPSS SNA are C1, CHn, Fn, Kn, 
M1 etc.

8.  General description of GPSS
The system to be simulated in GPSS is described as a block diagram in which the blocks 

represents  the  activities,  and  lines  joining  the  blocks  indicates  the  sequences  in  which  the 
activities can be executed.
The  approach  taken  in  GPSS is  to  define  a  set  of  48  specific  block  types,  each  of  which 
represents a characteristic action of systems. The program user must draw a block diagram of the 
system using only these block types.

Moving through the system being simulated that depends upon the nature of system. The 
sequence of events in real time is reflected in movement of transaction s from block to block in 
Fimulated time.

Transaction  are created  at  one  more GENERATE  blocks  and are removed from the 
simulation at TERMINATE  blocks . There can be many transactions simultaneously moving 
through the block diagram. Each transaction is always positioned at a block and most blocks can 
hold many transactions simultaneously. The transfer of transaction from one block to another 
occurs instantaneously at a specific time or when some change of system condition occurs.

9. Facilities and Storages     
A  facility is defined as an entity that can be engaged by a single transaction at a time.  A 

storage is defined as an entity that can be occupied by many transaction at a time, up to some 
predetermined  limits.  A  transaction  controlling  a  facility,  however  can  be  interrupted  or 
preempted  by  another  transaction.  In  addition,  both  facilities  and  storages  can  be  made 
unavailable again, as occurs when a repairs has made.



    There can be many instances of each type of entity to a limit set by the program 
(usually 300). Individual entities are identified by number, a separate number sequence being 
used for each type.
 Four block types, SEIZE, RELEASE, ENTER, and LEAVE, concerned with using facilities and 
storages. Field A in each case indicates which facility and storage intended, and choice is usually 
marked in the flag attached to the system of blocks. The SEIZE block allows a transaction to 
engage a facility if it is available. The RELEASE block allows the transaction to disengage the 
facility.  In  an  analogous  manner,  an ENTER block allows  a  transaction  to  occupy space  in 
storage, if it is available, and LEAVE block allows it to give up the space.

10.  Gathering Statistics  
Certain block types in GPSS are constructed for the purpose of gathering statistics about 

the system performance, rather then of representing system actions. The  QUEUE, DEPART, 
MARK, and  TABULATE blocks shown in fig 9-1 serve this purpose. They introduce two other 
entities of GPSS program, queues and tables. 

The QUEUE block increases and change is a unit change ; otherwise the value of field B 
(>=1) is used. The program measured the average and maximum queue lengths and, if required, 
the distribution of time spent on queue.

It is also described to measure the length of time taken by transaction to move through 
the system or parts of the system, and this can be done with MARK and TABULATE blocks.  
Each of these blocks types notes the time a transaction arrives at the block. The MARK block 
simply notes the time of arrival on the transaction. The TABULATE block subtracts the time 
noted by a MARK block from the time of arrival at the TABULATE block.     



Module-IV

Objective: To focus on the simulation languages, analysis and testing of simulation outputs 
and recent trends .

Simulation languages:

A simulation programming language (SPL) is a POL( Problem oriented language) with special 
features.  Simulation  being  a  problem-solving  activity  with  its  own  needs,  programming 
languages have been written to rake special features available.  General Purpose Simulation 
System (GPSS) (originally Gordon's Programmable Simulation System after creator Geoffrey 
Gordon; the name was changed when it was decided to release it as a product) is a discrete time 
simulation  general-purpose  programming  language,  where  a  simulation  clock  advances  in 
discrete steps. A system is modelled as transactions enter the system and are passed from one 
service (represented by blocs) to another. This is particularly well-suited for problems such as a 
factory. GPSS is less flexible than simulation languages such as Simula and SIMSCRIPT II.5 but 
it is easier to use and more popular.

The GPSS world view
The GPSS code may surprise many programmers with experience in procedural, object oriented 
or  functional  programming.  The  world  is  rather  simulated  with  entities  moving  through the 
model. These entities, called Transactions, are envisioned as moving from Block to Block, where 
a Block is a line of code and represents unit actions that affects the Transaction itself or other 
entities.
These other entities can be broadly classified in Resources, Computational entities and Statistical 
entities.Resources,  like  Facilities and  Storages represent  limited  capacity  resources. 
Computational entities, like  Ampervariables (variables),  Functions and random generators are 
used to represent the state of Transactions or elements of their environment. Statistical entities, 
like Queues or Tables (histograms) collect statistical information of interest.

Sample code
The following example, taken from Simulation using GPSS, is the "Hello world!" of GPSS and 
will illustrate the main concepts.
The aim is to simulate one day of operation of a barber shop. Customers arrive in a random 
constant flow, enter the shop, queue if the barber is busy, get their hair cut on a first-come first-
served basis, and then leave the shop. We wish to know the average and maximum waiting line, 
as well as the number of customers.
      SIMULATE               ; Define model
*
*  Model segment 1
* 
      GENERATE 18,6          ; Customer arrive every 18±6 mn

http://en.wikipedia.org/wiki/Simula


      QUEUE    Chairs        ; Enter the line
      SEIZE    Joe           ; Capture the barber
      DEPART   Chairs        ; Leave the line
      ADVANCE  16,4          ; Get a hair cut in 16±4 mn
      RELEASE  Joe           ; Free the barber
      TERMINATE              ; Leave the shop
*
*  Model segment 2
*
      GENERATE 480           ; Timer arrives at time = 480 mn
      TERMINATE 1            ; Shut off the run
*
*  Control cards
*
      START     1            ; Start one run
      END                    ; End model

The "program" is comprised between the  SIMULATE and  END statements, and is divided into 
"model segments" and "control cards".
The first segment models customers. The GENERATE block creates a flow of Transactions and 
schedules them to enter the model with an inter-arrival time uniformly distributed over the range 
18±6. It is the programmer's responsibility to interpret these transaction as customers and to 
understand that the time is to be counted in minutes. The Transactions start their existence in the 
GENERATE block and progress from Block to Block, according to certain rules, until they reach 
a TERMINATE which remove them from the model.
Normally transactions progress from one block to the next one, so the customer transactions will 
leave the GENERATE block to enter the QUEUE Chairs block. This block simulates a waiting 
line, and collects statistics accordingly. In the example, it materialize a line of chairs and, at the  
end of the simulation, we will know, among other things, the maximum queue size (how many 
chairs are needed) and the average waiting time. The  QUEUE block requires the name of the 
queue  as  a  parameter,  because  more  than  one  queue  may  exist  in  the  model.  Each  one  is 
associated with a  DEPART block,  which is  triggered when the transaction leaves the queue. 
GPSS remembers which transactions are in the queue, so that it possible to know the average 
time spent, and to check that no buggy transaction is leaving a queue without previously entering 
in it.
After the QUEUE chairs block, the transaction will try to proceed to the SEIZE Joe block, 
a  block simulating the  capture  of  the  Facility named Joe.  Facilities  model  single  servers  of 
capacity one. If the facility is busy, the SEIZE will deny the attempting transaction the right to 
enter. In the example, the customer will wait in the QUEUE block. If it is free, or as soon as it 
becomes available, the transaction will be allowed to capture the facility,  mark it  as busy to 
others  transactions  and  start  to  count  the  service  time  and  other  statistics,  until  the  same 
transaction passes the corresponding RELEASE Joe block.
The  SEIZE /  RELEASE pairs  are  linked  by  the  facility  name,  because  many  independent 
facilities may exist in the model. They can model operators, like a barber, a repairman, an agent, 
but also pieces of equipment, like a crane, a gas station, an authorization document, etc., in fact  
anything with capacity one. To simulate multiple parallel servers, like a team of five barbers, or 
an oven with a capacity of 10, GPSS uses entities named STORAGEs.



After a customer seizes Joe,  she proceeds to  the next  statement which is  ADVANCE 16,4, 
whose task is to freeze the entity for a prescribed length of time, here a random number picked 
between 16-4=12 and 16+4=20mn. Other service time distributions are available through GPSS 
FUNCTION (a somehow different notion than function in other programming languages). During 
that time, other transactions will be allowed to move through the model, blocking some other 
facilities that may exist in the model, but not Joe because this facility is busy with the frozen 
customer. After the prescribed time, the customer will wake up, proceed to the next statement, 
which will free Joe, and TERMINATE.
Then the next transaction on the previous block, that is a customer sitting on a chair, will be able 
to  SEIZE Joe. To select the "next" transaction, GPSS uses the first-come first-served basis, 
with priority. Other selection policies can be programmed by direct manipulation of the  future 
event chain entity.
In parallel  to  this  first  segment,  simulating  the  customer behavior,  a  second model  segment 
simulates  the  end  of  the  day.  At  time  480mn  =  8h  a  entity  is  GENERATEd,  which  will 
TERMINATE on the next block. This time, the  TERMINATE as a parameter of 1, meaning a 
special counter is decreased by 1. When that counter reaches 0, the program stops and the output 
is printed. This special counter is setup with the  START statement. In the example, it is set to 
one, thus the simulation will finish after one run of 480 mn in simulated time.
It indicates that Joe was busy 86.0% of the time, gave a hair cut to 26 customers and that hair cut  
took 15.88 minutes on the average. Incidentally, Joe was cutting the hair of customer number 26 
when the simulation was closed. No programming provisions were taken for the barber to finish 
the hair cut before to close the shop.
It  indicates  also that  a maximum of 1 customer was observed waiting his  turn,  in  facts  the 
number of waiting customer was on the average 0.160. A total of 27 customers did enter the 
queue, so that customer number 27 was still sitting, waiting his turn, when Joe closed the shop. 
Out of these 27 customers, 12 were served without having to wait. In facts, the queue was empty 
44.4% of the time. The average waiting time was 2.851 mn, and the average waiting time for the 
15=27-12 customers who did really wait was 5.133 m
Output Analysis in Stochastic Simulation

Once the simulation program has been completely written and carefully tested, the actual 
simulation experiment must be carried out. The idea of the experiment is to conduct one or more  
simulation ‘‘runs’’ from which measurements are collected. The output from these runs is used to 
assess the performance of the system (or sys-tems, if alternative strategies are being evaluated). 
For example,  one run from our service station simulator might have produced the following 
output:

This simulation run uses three pumps and the following random number seeds:
1 2 3 4Current Total NoQueue Car− >CarAverage NumberAverage Pump Total Lost



__________________________________________________________________________________________
__________________________________TimeCarsFractionTimeLitresBalkedWaitUsageProfi
tProfit
20000 382 0.529 52.356 34.342 67 54.877 0.875 221.34 46.62
40000 771 0.470 51.881 34.454 136 59.949 0.887 505.85 98.25
60000 1157 0.475 51.858 34.767 206 61.015 0.888 794.76

150.8
7

80000 1554 0.476 51.480 35.052 290 60.764 0.884
1088.2
6

213.5
110000

0 1967 0.475 50.839 34.974 379 60.524 0.884
1376.5
1

283.3
5120000 2351 0.477 51.042 34.957 451 60.753 0.882 1652.25 342.3814000

0 2760 0.473 50.725 34.824 539 61.889 0.883
1934.7
4

408.0
916000

0 3175 0.468 50.394 34.682 625 62.332 0.886
2225.0
5

467.8
618000

0 3574 0.464 50.364 34.753 696 62.592 0.888
2524.1
6

521.0
520000

0 3957 0.468 50.543 34.746 769 61.654 0.887
2807.6
8

569.6
1

2.9.1. Initial and Final Conditions

When calculating performance figures from a simulation run, care must be 
taken to ensure that the results obtained are not systematically distorted because 
of either the initial state of the system at the beginning of each simulation run or 
the final state of the system when end-of-simulation is encountered.

For example, suppose we were concerned with the time for an auto to fill up 
its tank during a busy time of day, such as afternoon rush hour before a holiday. If 
we ran the simulation for a long time, we might find that under those operating 
conditions an average of 15 autos are in the station having their tanks filled or 
waiting for a free pump. But if the initial state for the simulation did not have any 
autos in the service station, then it would be obvi-ous that the first few autos spent 
less time waiting than a ‘‘typical’’ auto would. Thus, our estimate for the mean 
system time would turn out too low unless we

i) ran our simulation for such a long time that the measurements from 
these first few customers had very little influence on the mean, 

ii) began  our  measurements  part  way  through  the  simulation  run,  by 
which  point  the  system  should  have  reached  a  state  that  is  more 
‘‘normal’’, or 

iii) used  the  average  values  from  one  simulation  run  as  the  initial 
conditions for the next simulation run so that, hopefully, the system is 
in a normal state throughout the entire run. 

In  the  output  from our  service  station  simulator,  the  effect  of  the  initial 
conditions (i.e.,  a  completely idle  sta-tion) are quite  evident.  Notice that  even 
though the first progress report was not printed until almost 400 cars had passed 
through our service station, we still see a downward trend in the fraction of time 
that the queue of waiting cars is empty, and an upward trend in both the average 
waiting time and the utilization of the pumps.

The end conditions of the simulation must also be checked before we can 
trust our calculated performance statistics. For example, the waiting times and 



service times for customers in the system when end-of-simulation is reached may 
or  may  not  be  counted,  depending  on  the  method  used  for  recording  these 
measurements. If such cus-tomers are not counted, then we risk underestimating 
the utilization of the server, because some customers who might have been part 
way through their service time are ignored. If such customers are counted, then 
we  risk  underestimating  the  mean  waiting  time  and  overestimating  the  mean 
service rate because, in effect, we may be claiming that these customers were 
served during our simulation run when in fact their service would not have been 
completed until later.

In the case of our service station simulator, notice that we are adding the 
service  times  for  each  car  to  the  total  service  performed  in  the  startService 
procedure. Thus, we are always overestimating the pump utilization: in effect, we 
are (optimistically) claiming that the entire service times for all cars not still in 
the waiting queue have been completed by the end of simulation — even those 
cars still  in service. If  the run length is short enough, this choice of stopping 
condition can lead to ‘‘impossibly good’’ results. For example, notice that in the 
following data (representing a short run with a heavily loaded service station) the 
pumps appear  to  be  busy more  than 100 percent  of  the  time at  the  first  few 
progress reports!

This simulation run uses two pumps and the following random number seeds:
1 2 3 4

Current Total NoQueue
Car−>Ca
r Average Number Average Pump Total Lost

! Time___ _ _Cars__ _  _ Fraction_____ _ _  _Time__ _ _  _ Litres____ _ _Balked____ _ 
_Wait__ _ _ _Usage___ _ Profit____ _ _Profit___ _ _ _ _ _ _ _ _ _
2000 39 0.072 51.282 31.508 11 182.897 1.002 -18.439.15
4000 82 0.039 48.780 31.037 28 184.429 1.004 2.70 20.93
6000 124 0.059 48.387 33.032 46 190.620 1.014 26.29 36.10
8000 162 0.068 49.383 34.455 62 190.959 1.005 50.97 48.57
10000 207 0.069 48.309 33.815 81 205.277 1.002 71.16 63.84
12000 240 0.067 50.000 34.090 92 204.176 1.005 92.20 72.33
14000 284 0.058 49.296 34.094 111 215.161 1.005 115.3886.68
16000 304 0.088 52.632 34.567 113 210.377 0.993 134.5388.18
18000 343 0.094 52.478 34.308 127 210.086 0.996 155.1399.06
20000 382 0.084 52.356 34.227 140 211.138 0.997 178.59108.28



Of course, we could easily replace the overestimate with an underestimate 
by moving the accumulation of service time to the departure routine. However, 
calculating the correct value for pump utilization is much trickier.

Another possibility that must be considered in assessing the end conditions 
of the simulation is whether or not  the system being simulated is  overloaded. 
Since only a finite period of simulated time elapses during each simula-tion run, 
the average waiting time will always be finite, even if the system is in fact so 
overloaded  that  the  customer  waiting  times  are  growing  without  bound  as 
simulated  time  advances.  Thus,  our  performance  statistics  are  unreli-able  if  a 
significant  proportion  of  the  customers  are  still  in  the  system  at  the  end  of 
simulation: either the simulation run was too short (and the effects of the initial  
and final conditions are large), or the system was overload.
 Confidence Intervals on the Mean of a Random Variable

Once  we  have  carried  out  one  or  more  simulation  runs,  and  convinced 
ourselves that the boundary conditions due to initial and final conditions have not 
spoiled our results,  we are left with the task of trying to conclude some-thing 
about  the values of  various random variables in the model,  such as the mean 
waiting  time  for  an  auto  in  our  service  station,  for  example.  It  is  simple  to 
calculate the sample mean
i.e., the average of the N measurements that we made of the value of the random 
variable X. Similarly, we can calculate the sample variance:

by averaging the squared differences between each measurement and the sample 
mean. But as we scan down the columns of measurements in the output, it  is 
obvious  that  these  sample  quantities  vary  as  a  function  of  (simulated)  time. 
Furthermore, if we repeat the experiment using different random number seeds, 
we  soon  see  that  the  measure-ments  also  vary  from  one  run  to  the  next. 
Consequently, we should  be  skeptical  of  concluding that  any of  these  sample 
means or variances are equal to the true mean and variance of X that we set out to  
find in the first  place.  And indeed to proceed further, we need to make some 
assumptions about the distribution of X.

As a first step, suppose a ‘‘helpful genie’’ were to tell us that the random 
variable X has a  Normal distribution  (i.e., a ‘‘bell-shaped’’ probability density 
function). In this case, knowledge of the Normal distribution would allow us to 
construct confidence intervals about the sample mean, say X* ± C, that contain 
the true mean, say M, a specified fraction of the time (the greater the fraction, the 
wider the resulting confidence interval about X+). This construction is based on 
the following two facts about the Normal distribution with mean M and variance 



σ2 . First, the proportion of measurements that fall within a distance of Kσ from 
M is known. For example, if we make a large number of measurements x  1 , x 
2 , . . . , then approximately 95 percent of them will fall within the interval M ± 
2σ.  The  key  observation  for  us  is  that,  since  the  distance  from  M  to  a 
measurement xj is the same as the distance from x j to M, we can turn this result 
around to say that 95 percent of the time M falls within the interval x j ± 2σ. A 
table of results in this form is shown below in Figure 5. Second, the average of N 
measurements taken from a Normal distribution with mean M and variance  σ2 

also has a Normal distribution, but with mean M and variance σ2 /N. Thus, if the 
confidence  interval  ends  up  too  wide,  it  can  be  tightened  by  averaging  in 
additional measurements. For example, using four times as many measurements 
cuts the width of the confidence interval in half.

Figure 5. Intervals about a measurement x that will contain the true mean a given 
fraction of the time, when the ran-dom variable has a Normal distribution with 
mean M and variance σ2

The problem with the result above is that even if we knew that the random 
variable had a Normal distribution,  we still  couldn’t write  down a confidence 
interval for M without knowing  σ2 (which depends on M). To get out of this 
circular chain of reasoning, we need a method of estimating σ2 that is based on 
X0 instead of M. Clearly the sample variance, defined above, is not a very good 
estimate, especially when the number of measurements is small. Indeed, if only 
one measurement is available, then the sample variance is always zero, indicating 
that we have not observed any variability in our measurements. But σ2 = 0 means 
something quite  different,  namely that  X is  not  a random variable at  all!  The 
solution is to use an ‘‘unbiased’’ estimate of the sample variance to represent σ2 , 
i.e.,

N23
σ2 ∼ 11N_−1_1_j

Σ
=11  xj − X4562 ,

and then simply go ahead and use the results described above in Table 1. (By 
dividing the sum by N −1 instead of N, it is clear that we cannot estimate σ2 from 
a single measurement.)

A more serious problem with the method outlined above is that the kinds of 
random variables that usually come up in simulation models, such as the mean 
time  in  system for  autos  at  our  service  station,  almost  never  have  a  Normal 
distribution! Fortunately, the  Central Limit Theorem in statistics tells us that 
under  fairly  general  cir-cumstances,  the  average  of  a  large  number  of 
measurements  does  have  a  Normal  distribution  even  if  the  individual 
measurements themselves do not have a Normal distribution. It follows that we 
can still find a confidence interval if we carry out K independent repetitions of the 
same simulation experiment and treat the K sample means X7j , j =1, . . . , K, as 
the measurements.

For  example,  suppose  we  ran  four  more  runs  of  the  service  station 
simulation with 3 pumps, giving us, in total, five independent measurements of 
the  mean  waiting  time.  The  last  line  of  output  from  each  of  these  runs  is 
reproduced in the following table:

Current Total 
NoQueue   Car−>Car   Average   Number   Average   PumpTotal

Lost
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Variance Reduction Techniques

In a simulation study, we are interested in one or more performance measures for some stochastic 
model.Methods that one can use to reduce the variance of the estimator W . We will successively 
describe the following techniques:

Common Random Numbers 

Antithetic Variables 

Control Variates 

Conditioning 

The first method is typically used in a simulation study in which we want to compare perfor-
mance measures of two different systems. All other methods are also useful in the case that we 
want to simulate a performance measure of only a single system.

Common Random Numbers

The idea of the method of common random numbers is that if we compare two different systems 
with some random components it is in general better to evaluate both systems with the same re-
alizations of the random components. Key idea in the method is that if X and Y are two random 
variables, then

Var.X − Y/ D Var.X/ C Var.Y/ − 2Cov.X; Y/:

Hence, in the case that X and Y are positively correlated, i.e. Cov.X; Y/ > 0, the variance of X − Y  
will be smaller than in the case that X  and Y  are independent. In general, the use of common 
random numbers leads to positive correlation of the outcomes of a simulation of two systems. As 
a  consequence,  it  is  better  to  use  common random numbers  instead of  independent  random 
numbers when we compare two different systems.

Let us illustrate the method using the following scheduling example. Suppose that a finite 
number of  N jobs has to be processed on two identical machines. The processing times of the 
jobs are random variables with some common distribution function F . We want to compare the 

completion time of the last  job,  Cmax,  under two different policies.  In the LPTF policy, we 
always choose the remaining job with the longest processing time first, in the SPTF policy we 
choose the remaining job with the shortest processing time first.



In Table 5 and Table 6 we compare for N D 10 and F .x / D 1 − e−x the estimators and confi-
dence intervals for E .Cmax

SPTF − Cmax
LPTF/ when we do not, resp. do, use common random 

numbers.
We conclude that in this example the use of common random numbers reduces the standard 

deviation of the estimator and hence also the length of the confidence interval with a factor 5.

30
# of runs m e a n st. dev. 95% conf. int.

1 0 0 0 0 . 8 1 3 8 2.5745 [0.645, 0.973]
1 0 0 0 0 0 . 8 2 9 3 2.4976 [0.780, 0.878]

1 0 0 0 0 0 0 . 8 4 8 7 2.4990 [0.833, 0.864]
1 0 0 0 0 0 0 0 . 8 3 9 8 2.4951 [0.835, 0.845]

Table 5: Estimation of E .Cmax
SPTF − Cmax

LPTF/ without using common random 
numbers

# of runs m e a n st. dev. 95% conf. int.
1 0 0 0 0 . 8 5 5 9 0.5416 [0.822, 0.889]

1 0 0 0 0 0 . 8 4 1 5 0.5230 [0.831, 0.852]
1 0 0 0 0 0 0 . 8 3 9 4 0.5164 [0.836, 0.843]

1 0 0 0 0 0 0 0 . 8 3 9 1 0.5168 [0.838, 0.840]

Table 6: Estimation of E .Cmax
SPTF − Cmax

LPTF/ using common random numbers

When we want to use common random numbers, the problem of synchronization can arise: 
How can we achieve that the same random numbers are used for the generation of the same 
random variables in the two systems?

In the previous example, this synchronization problem did not arise. However, to illustrate 
this problem, consider the following situation. In a G=G=1 queueing system the server can work 

at  two different  speeds,  v1 and  v2.  Aim of  the  simulation  is  to  obtain an  estimator  for  the 
difference of the waiting times in the two situations. We want to use the same realizations of the 
interarrival times and the sizes of the service requests in both systems (the service time is then 
given by the sizes of the service request divided by the speed of the server).  If  we use the 
program of the discrete event simulation of Section 3 of the  G=G=1 queue, then we get the 
synchronization problem because the order  in  which departure and arrival  events  take place 
depends on the speed of the server. Hence, also the order in which interarrival times and sizes of 
service requests are generated depend on the speed of the server.

The synchronization problem can be solved by one of the following two approaches:

% Use separate  random number  streams for  the  different  sequences  of  random variables 
needed in the simulation. 

% Assure that the random variables are generated in exactly the same order in the two systems. 

For the example of the G=G=1 queue, the first approach can be realized by using a separate 
random  number  stream  for  the  interarrival  times  and  for  the  service  requests.  The  second 
approach can be realized by generating the service request of a customer already at the arrival 



instant of the customer.

7.2 Antithetic Variables

The method of antithetic variables makes use of the fact that if U is uniformly distributed on .0; 

1/ then so is 1 − U and furthermore U and 1 − U are negatively correlated. The key idea is that, if

31



W1 and W2 are the outcomes of two successive simulation runs, then

Var
W 1  C W 2

D

1
V a r .W /

C

1
V a r .W /

C

1
Cov.W ; W / :

2 4 4 21 2 1 2   U
Hence, in the case that  W1 and  W2 are  negatively correlated the variance of  .W1 C W2/=2 will be 
smaller than in the case that W1 and W2 are independent.

The question remains how we can achieve that the outcome of two successive simulation 
runs will be negatively correlated. From the fact that U and 1 − U are negatively correlated, we 
may expect that, if we use the random variables U1; : : : ; Um to compute W1, the outcome of the 
first simulation run, and after that 1  − U1; : : : ; 1  − Um to compute  W2, the outcome of the 
second simulation run, then also W1 and W2 are negatively correlated. Intuition here is that, e.g., 
in the simulation of the  G=G=1 queue large realizations of the  Ui 's  corresponding to large 
service times lead to large waiting times in the first run. Using the antithetic variables, this gives 
small realizations of the 1 −Ui 's corresponding to small service times and hence leading to small 
waiting times in the second run.

We illustrate the method of antithetic variables using the scheduling example of the previous 
subsection.

# of runs m e a n st. dev. 95% conf. int.
1 0 0 0 5 . 0 4 5 7 1.6201 [4.945, 5.146]

1 0 0 0 0 5 . 0 4 0 0 1.6020 [5.009, 5.071]
1 0 0 0 0 0 5 . 0 4 8 7 1.5997 [5.039, 5.059]

1 0 0 0 0 0 0 5 . 0 5 5 9 1.5980 [5.053, 5.059]

Table 7: Estimation of E .Cmax
LPTF/ without using antithetic variables

# of pairs m e a n st. dev. 95% conf. int.
5 0 0 5 . 0 7 1 1 0.7216 [5.008, 5.134]

5 0 0 0 5 . 0 4 9 7 0.6916 [5.030, 5.069]
5 0 0 0 0 5 . 0 5 4 6 0.6858 [5.049, 5.061]

5 0 0 0 0 0 5 . 0 5 4 6 0.6844 [5.053, 5.056]

Table 8: Estimation of E .Cmax
LPTF/ using antithetic variables

In Table 7 and Table 8 we compare, again for N D 10 and F .x / D 1 − e
−x , the estimators and 

confidence intervals for E .Cmax
LPTF/ when we do not, resp. do, use antithetic variables. So,

for example, we compare the results for 1000 independent runs with the results for 1000 runs  
consisting of 500 pairs of 2 runs where the second run of each pair uses antithetic variables. We 
conclude that in this example the use of antithetic variables reduces the length of the confidence 
interval with a factor 1.5.

Finally, remark that, like in the method of common random numbers, the synchronization 
problem can arise. Furthermore, it should be noted that the method is easier to implement if all  
random variables  are  generated  using  the  inversion  transform  technique  (only  one  uniform 
random number is needed for the realization of one random variable) than if we use, e.g., the 
rejection method to generate random variables (a random number of uniform random numbers 
are needed for the realization of one random number).



Control Variates

The method of control variates is based on the following idea. Suppose that we want to estimate 
some unknown performance measure E . X / by doing K independent simulation runs, the i -th
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In the simulation of the production line of section 2, a natural control variate would be the  
long-term average production rate for the line with zero buffers.

Conditioning

The method of conditioning is based on the following two formulas. If X and Y are two arbitrary 
random variables, then E . X / D E .E . X jY // and Var. X / D E .Var. X jY // C Var.E . X jY // Var.E 
. X jY //. Hence, we conclude that the random variable  E . X jY / has the same mean as and a 
smaller variance than the random variable X .

How can we use these results to reduce the variance in a simulation? Let E . X / be the per-
formance measure that we want to estimate. If Y is a random variable such that E . X jY D y/ is 
known, then the above formulas tell us that we can better simulate Y and use E . X jY / than that 
we directly simulate X .

The method is illustrated using the example of an  M_=M_=1=N queueing model in which 
customers who find upon arrival  N other customers in the system are lost.  The performance 
measure that we want to simulate is E . X /, the expected number of lost customers at some fixed 
time t . A direct simulation would consist of K simulation runs until time t . Denoting by Xi the

N  D  P
K

number of lost customers in run i , then X . i D1 Xi /=K is an unbiased estimator of E . X /. However, 
we can reduce the variance of the estimator in the following way. Let Yi be the total amount of time in 
the interval .0; t / that there are N customers in the system in the i -th simulation

rate _, it follows that E . X 
Y

/

D



run. 
Since 
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s arrive 
accordin
g to a 
Poisson 
process 
with K Y /=K j  i
_Y Y Y .

i . Hence 
an 
improved 
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would be 
_ 

N
 , 

where N D N i D1   i t .
D 1000, 

the 
estimator

s
In Table 9 and Table 10 we compare, for _ D 0:5, _ D 1, 

P
D 3 and

and confidence intervals for  E . X / when we do not, resp. do, use conditioning. We conclude that

33
# of runs mean st. dev. 95% conf. int.

1 0 33.10 1 0 . 0 6 [26.86, 39.33]
1 0 0 34.09 9 . 2 1 [32.28, 35.90]

1 0 0 0 33.60 8 . 8 8 [33.05, 34.15]

Table 9: Estimation of E . X / without using conditioning

# of runs mean s t .  d e v . 95% conf. int.
1 0 33.60 7 . 1 6 [29.17, 38.05]

1 0 0 33.82 6 . 9 1 [32.46, 35.18]
1 0 0 0 33.36 6 . 5 7 [32.95, 33.76]

Table 10: Estimation of E . X / using conditioning

in this example the use of conditioning reduces the standard deviation of the estimator and hence 
also the length of the confidence interval with a factor 1.3.
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