Subject: B. Tech. PHYSICS-1(3-1-0)

Waves and Oscillations

Periodic & Oscillatory Motion:-

The motion in which repeats after a regular interval of time is called
periodic motion.

1. The periodic motion in which there is existence of a restoring
force and the body moves along the same path to and fro about a
definite point called equilibrium position/mean position, is
called oscillatory motion.

2. In all type of oscillatory motion one thing is common i.e each
body (performing oscillatory motion) is subjected to a restoring
force that increases with increase in displacement from mean
position.

3. Types of oscillatory motion:-

It is of two types such as linear oscillation and circular
oscillation.
Example of linear oscillation:-
1. Oscillation of mass spring system.
2. Oscillation of fluid column in a U-tube.
3. Oscillation of floating cylinder.
4. Oscillation of body dropped in a tunnel along
earth diameter.
5. Oscillation of strings of musical instruments.
Example of circular oscillation:-
1. Oscillation of simple pendulum.
2. Oscillation of solid sphere in a cylinder (If
solid sphere rolls without slipping).
3. Oscillation of a circular ring suspended on a
nail.




4. Oscillation of balance wheel of a clock.
5. Rotation of the earth around the sun.

Oscillatory system:-

1. The system in which the object exhibit to & fro
motion about the equilibrium position with a
restoring force is called oscillatory system.

2. Oscillatory system is of two types such as
mechanical and non- mechanical system.

3. Mechanical oscillatory system:-

e In this type of system body itself changes
its position.

e For mechanical oscillation two things are
specially responsible i.e Inertia &
Restoring force.

e E.g oscillation of mass spring system,
oscillation of fluid-column in a U-tube,
oscillation of simple pendulum, rotation
of earth around the sun, oscillation of
body dropped in a tunnel along earth
diameter, oscillation of floating cylinder,
oscillation of a circular ring suspended on
a nail, oscillation of atoms and ions of
solids, vibration of swings...etc.

4.Non-mechanical oscillatory system:-

In this type of system, body itself doesn’t change its
position but its physical property varies periodically.

e.g:-The electric current in an oscillatory circuit, the lamp of a body
which is heated and cooled periodically, the pressure in a gas through



a medium in which sound propagates, the electric and magnetic waves
propagates undergoes oscillatory change.

Simple Harmonic Motion:-

It is the simplest type of oscillatory motion.

A particle is said to be execute simple harmonic oscillation is the
restoring force is directed towards the equilibrium position and its
magnitude is directly proportional to the magnitude and displacement
from the equilibrium position.

If F is the restoring force on the oscillator when its displacement
from the equilibrium position is x, then

Foc —x

Here, the negative sign implies that the direction of
restoring force is opposite to that of displacement of body i.e towards
equilibrium position.

Where, k= proportionality constant called force constant.
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M

Here co=\/§ Is the angular frequency of the oscillation.

Equation (2) is called general differential equation of SHM.

By solving these differential equation

Where a, [ are two constants which can be determined from the
initial condition of a physical system.

Appling de-Moiver’s theorem
X= a(coswt+isinwt) + f(coswt-iSinwt)

x= (a+ B) coswt+ (a — B) sinwt

x= Ccoswt+Dsinwt ......... 4)
WhereC=a +
& D=a-p
Let assume,
C=Asin6
D=Acos 6

Putting these value in equation (4)
X=Asin 8coswt +Acos fsinwt
X=A (sin 8coswt + cos 8 sinwt)

x=Asin(wt+86)........... (5)

_ 2.2 _ -1.C
Where A=,/(C*+D?) &6 = tan )



Similarly, the solution of differential equation can be given as
x=Acos( 6 + wt) ......... (6)

Here A denotes amplitude of oscillatory system, (6 + wt) is called
phase and 6 is called epoch/initial phase/phase constant/phase angel.

Equation (5) and (6) represents displacement of SHM.
Velocity in SHM:-

x=Asin( wt + 0)
%:Aa)cos( wt + 0)

V=Awcos(wt +0) ............ (7)

The minimum value of v is 0(as minimum value of Asin( 6 + wt)=0
& maximum value is Aw. The maximum value of v is called velocity
amplitude.

Acceleration in SHM:-

a= -Awsin(wt +0) ............. (8)

The minimum value of ‘a’ is 0 & maximum value is Aw”. The
maximum valueof ‘a’ is called acceleration amplitude.

Also, a= w*x (from equation (5))
a X —y
It is also the condition for SHM.

Time period in SHM:-

The time required for one complete oscillation is called the time
period (T). Itis related to the angular frequency(w) by.



Frequency in SHM:-

The number of oscillation per time is called frequency or it is the
reciprocal of time period.

1@
U= = (10)

Potential energy in SHM:-

The potential energy of oscillator at any instant of time is,
U=-["Fdx
:-fox(—kx) dx
:% ka?
=~ kA%SIN*(0 + wt) ............ (11)

(By using equation (5)).

Kinetic energy in SHM:-

The kinetic energy of oscillator at any instant of time is,

_1 5 Axy2
K_z M(dt)

= MV?
2
K:% MA2w? cos?( 0 + wt) ....... (12)

(By using equation (7))

Both kinetic and potential energy oscillate with time when the kinetic
energy is maximum, the potential energy is minimum and vice versa.
Both kinetic and potential energy attain their maximum value twice in
one complete oscillation.

Total energy in SHM:-




Total energy= K.E+P.E
:% M A%m? 0052( 0 + wt) + % kAzsinz( 0 + wt)
:% kA’cos’( 8 + wt) +§ kAsin®( 6 + wt)
1, .2
Total energy = kA

Total energy :% MA e

The total energy of an oscillatory system is constant.

Graphical relation between different characteristics in SHM.
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COMPOUND PENDULUM (Physical pendulum):-

Compound /physical pendulum is a rigid body of any arbitrary shape
capable of rotating in a vertical plane about an axis passing through
the pendulum but not through the pendulum but not through centre of
gravity of pendulum.

The distance between the point of suspension the centre of gravity is
called the length of length of the pendulum &denoted by

When the pendulum is displaced through a angle 6 from the mean
position,a restoring torque come to play which tries to bring the
pendulum back to the mean position .But the oscillation continues due
to the inertia of restoring force.




Here the restoring force is -mgsin6. So the restoring torque about the
point of suspension “O” is

1=-mglsing .

If the moment of inertia of the body about “OA” is “I”, the angular
acceleration becomes,

=1/l
a=-mglsin@/I................... (1)

For very small angular displace “0 “, we assume that

Sin 6~0.

So, a=-mgl6/1.
a=-(mgl/1)0.......... (2)

Also a=d’0/dt’

Now we can write
d?0/dt*+ (mgl/H) 0 =0................. (3)
d?0/dt* +®°0=0................. (4)

Where, ®’=  mgl/l. And eq"(4) is the general equation of simple
harmonic.

T=2n(1/mgl)"?
T=2n( M(k? +L?)/Mgl)*.
T=2m( (KAN+D)IG) 2. (5).

Here $+I:L, Called as equivalent length of pendulum..

If a line which is drawn along the line joining the point of
suspension & Centre of gravity by the distance * k*/1”.we have



another Point on the line called centre of Oscillation is equivalent
Length of pendulum .

So,the distance between centre of suspension & centre of Oscillation
Is equivalent length of pendulum .If these two points are interchanged
then “time period” will be constant.

L.C CIRCUIT(NON MECHANICAL OSCILLATION ):-

R —
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=
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In this region,it is combination “L” &”C” with the DC source through
the key.If we Press the Key for a while then capacitor get charged &
restores the charge as “+Q” and”-Q” with the potential “v=q/c”
between the plates .When the switch is off the capacitor gets
discharged.

As capacitor gets discharged, g also decreases. So, current at that
situation is given by

I=dg/dt.



As (g decreases, electric field energy (Energy stored in electric field )
gradually decreases .This energy is transferred to magnetic field that
appears around the inductor. At a time,all the charge on the capacitor
becomes zero,the energy of capacitor is also Zero. Even though g
equals to zero,the current is zero at this time.

Mathematically, Let the potential difference across the two plates of
capacitor at any instance” V” is given by

In the inductor due to increases in the value of flow of current, the
strength of magnetic field ultimately the magnetic lines of force cut/
link with inductor changes. So a back emfdevelops which is given by

Now applying KVL to this LC circuit,

+V-e=0

ooooooooooooooooooooooooooooo

This represents the general equation of SHM,

Here there is periodic execution of energy between electric field of
capacitor & magnetic field of inductor.

Here this LC oscillation act as an source of electromagnetic wave.

Here, w’=1/ LC



1
0=/ JIc
T=22VLC

Damped oscillation:-

For a free oscillation the energy remains constant.
Hence oscillation continues indefinitely. However in real fact, the
amplitude of the oscillatory system gradually decreases due to
experiences of damping force like friction and resistance of the media.

The oscillators whose amplitude, in successive
oscillations goes on decreasing due to the presence of resistive forces
are called damped oscillators, and oscillation called damping
oscillation.

The damping force always acts in a opposite
directions to that of motion of oscillatory body and velocity
dependent.

Fdam:' bV

b= damping constant which is a positive quantity defined as
damping force/velocity,

I:net - I:res+ I:dam

Frei= -kX —bv

- ax
Fret= -Kx— bdt

d2x dx
M—+kx+ b—=0
dt2 dt

d2x b dx k
—+——+—x=0
dt2 Mdt M



d2 d
2Bt X =0 2)

Where = % IS the damping co-efficient & wq= \/% IS
called the natural frequency of oscillating body.
The above equation is second degree linear homogeneous equation.

The general solution of above equation is found out by assuming x(t),
a function which is given by

X(t) = Ae“t
% = Aae® = ax

Putting these values in equation
a’x + 2a2Bx + X =0
ol + 2a2[3 + @02 =0 eeeernnnn.. (3)

a = -B+/B2 —mo’, is the general solution of above
quadratic equation.

As we know,
X(t) =Ae*+ Aje®t
X(t) = Age(-B+V/B2=w02)t; A o (-B-/B2- w02)t
X(t) = e Bt (Ale\/ﬁ w02ty Aze—\/ﬁ @02ty (4

Depending upon the strength of damping force the quantity (Bz-cooz)
can be positive /negative /zero giving rise to three different cases.

Case-1:- if B<wy’=> underdamping (oscillatory)

Case-2:- if p>w,°=> overdamping (non-oscillatory)



Case-3:- if B=w,’ => critical damping (non-oscillatory)

Case-1: [Under damping w02>B2]
If [32<(002, then [32- (0022 -ve
let pP-wp’=-0% = \/,82——(1)02=i 1
wherem;= \ o>~ B* = Real quantity
So the general equation of damped oscillation/equation (1) becomes
X (t) = eP (A +Ae 1Y
By setting

A=t/ and A,= rl,e™
X(t): e—Bt[r /Zei(6+colt) +1/, e—i(e+w1t)]

:re—ﬁt[ei(6+m1t) + e-i(e+w1t)] /2

X()=reP cos(0+°Y......... V)

Here cos(0+ “;') represents the motion is oscillatory having angular
frequency ®; .The constant r and 6 are determined from initial
potion & velocity of oscillatior

T,=21/ o

T=2n/\ @’ P...... (vi) (time period of damped oscillator)
T,>T (where T= time period of undamped oscillator
Implies f,< f

Frequency of damped oscillator is less than that of the
undamped oscillator.

In under damped condition amplitude is no more  constant and
decreases exponentially with time, till the oscillation dies out.



Mean life time:The time interval in which the oscillation falls to 1/e
of its initial value is called mean life time of the oscillator. (1)

- 1
1/,a=aePm=> e Frm= -,

=> -B 7,,=log.1/e

il

Velocity of underdamped oscillation:

X(t)=re Ptcos(mt+ 0)

d ] ] .
= d—f = r[-Pe bt cos(m1t+ 0)-e Bt(ol sin( o4t+ 0)

dx _
dt

Now , Xx=0& t=0,

= v=-re " [Beos(wqt+ 0)+w; sin( w;t+ 0)...(vi)
X(t)= re™ cos(o;t+ 0)
= 0=re° cos(0+ 0)

=0 = cos0



Using the value of 6 & t=0 in the equation (vii) we have
Vo= T 0
Where value of Vgoin ...............

Calculation of Energy(instantaneous):

K.E = %mvz

KE = %m\/ze—zﬁ’:[[32(;052((01twL 0)+ (olzsinz(oaltJr 0)+ Bwlsin2(®1t+ 0)]
Potential Enegy:

P.E=2kx?
2

:%krze‘zﬁtcos2 (01t+ 6)
Total Energy:
T.E=K.E+P.E
:e_Zﬁt[(%mv2+§kr2)COSZ(colt+9)+%mrzoolzsinz(m1t+0)
+ %mvz Bwisin2(m,t+ 0)]
Total average energy:
<E >:%mr2 oy e 2Pt
=Eqe 2Pt
Where, Eq =Total energy of free oscillation

The average energy decipated during one cycle

< P(t) > =Rate of energy



-2 < E>
dt
=2PE
Decrement

The decrement measures the rate at which amplitude dies
away.

The ratio between amplitude of two successive maxima, is the
decrement of the oscillator.

re?/ reP = g
The logarithmic decrement of oscillator is ‘A’
A =log,ePt
= BT = 21BN 0y’ B
= 1 =log,ay/a;=logas/a=.......... =gPl=10
Rate of two amplitudes of oscillation whichare separated by one period

Relaxation time(t):

It is the time taken by damped oscillation by
decaying of its energy 1/e of its initial energy.

1 -
= ;80:806 2pt

e

=Loge'=loge ~2F"
=>-1=—2f7
= =1/23=m/b



Case-Il1:(over damping oscillation)
Here B2>oo02
\ BP-wo°=+ve quantity
= o (say)
X (1) = eP (Ae™ +A™). ... (viii)

Depending upon the relative values of a, B ,A;  Ax& initial position
and velocity the oscillator comes back to equilibrium position.
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The motion of simple pendulum in a highly viscous medium is an
example of over damped oscillation.

Quality factor:

Q_ZT[ Energy stored in system __ - <E> _2m
" Energy loss per period  <P>T T
= Q=wt

Critical damping:
Bz _ 0302
The general solution of equation (ii) in this case,
X() = (Ct+D) e (ix)

Here the displacement approaches to zero asymptotically for given
value of initial position and velocity  a critically damped oscillator
approaches equilibrium position faster than other two cases.

Example: The springs of automobiles or the springs of dead beat
galvanometer.



Curves of three Cases:
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Forced Oscillation

The oscillation of a oscillator is said to be forced oscillator or driven
oscillation if the oscillator is subjected to external periodic force.

If an external periodic sinusoidal force ‘Fcoswt’ acts on a damped
oscillator, its equation of motion is written as,

d
Fret= -kX- b d—’; +Fcosmt

dZ
m —+ = -kx b — X fFcosmt

dZ
dt

2+ ZB— + woX = fycosmt




(i)
Where pB=——" oo’=— and f, =— , and P and w,? respectively called as

ere B 0 =— 0=—,an B and mg p y
damping coefficient, natural frequency.

Equation (i) is also represented as

X+ 2Bx+ woX= fycosot

Equation (i) represents the general equation of forced oscillation.

Equation (i) is a non-homogenous differential equation with constant
co-efficient. For weak damping (0o° >B %) , the general equation
contains,

X(£) = Xc(t) + Xp(t)

Where x,(t) is called complementary solution and its value is
xo(D)=e Bt (AeVF~®o® 1 p,e~VB?~wo®y .. (i)
Now X,(t) is called the particular integral part.

Let us choose

Xp(t) = P cos (ot-0)

x(t)= -Pwsin(wt-9)

() =-POZCOS(OT-8). e eeveeeeeeeeeein, (1ii)

Putting x,(t) ,x(t) , ¥(t) in eq" (i) we get
- Po’cos (wt-0)-2BPw sin (wt-0) + oaochos(oat-S) = fycosmt

- Po’cos (ot-0)-2BPw sin (wt-0) + coochos(cot-S) = fycos (wt-0 + 9 )



- Poozcos((;)t-S)-2BP(o sin(mt-0) + ®02Pcos(c0t-8) = fo [ cos (wt-0 ) .cos
o — sin(®t-0 ) .sind |

Now, compairing the coefficient of cos(wt-0) and sin (®t-d) on both
sides,

(007 -0)P = FGCOSS e (iv)
2BPO =15SIN0  oviii e (V)
Squaring and adding eq" (iv) & (v)

{(0o™0’)PY +4 B P 20’ =f,’

Now dividing eq" (v) by (iv)

5=tan~! (2£22) L (vii)

X = fo
P 2
\/(w%—wz) +42w?

cos(wt-0) (steady state solution)

Now, X(t) = Xc(t) + Xp(t)

X(t) = e Pt (AreVF* @0’ + Ao VB —wo® ) + fo cos(mt-

(wE-w?) +4p2w?

0)

Steady state behavior:

Frequency:-The Oscillator oscillates with the same frequency as that
of the periodic force.

woand o are very close to each other then beats will be produced and
these beats are transient as it lasts as long as the steady state lasts. The
duration between transient beats is determined by the damping
coefficient ‘B’.



Phase: The phase difference ‘6’ between the oscillator and the driving
force or between the displacement and driving is
. _ 2w
o=tan 1 (F)

0

This shows that there is a delay between the action of the driving
force and response of the oscillator.

(In the above figure fo= wg and fo= o )

At o= , (|)=§, the displacement of the oscillator lags behind the
driving force by ~..

At ©<<wg then 6=0— 0=0

For @>> w, then o Z-% — -0=m

Amplitude: The amplitude of driven oscillator , in the steady state ,
IS given by

A: F/m — fO
\/(w%—wz)2+4/32w2 \/(wg—wz)2+4,82w2




It depends upon (my-®2). If it is very small, then the amplitude of
forced oscillation increases.

Case-1: At very high driving force i.e ®>>wm, and damping is small
(B 1s small) or ( B—0)

— fo
w*+0
A=l
W
F
A= >
maw

Amplitude is inversely proportional to the mass of the oscillator &
hence the motion is mass controlled motion.

Case-2: At very low driving force (0<<wg) and damping is small
(p—0),

2 2 2
1.C. MWy ~OW = g

So, when the low driving force is applied to oscillator, the
amplitude remains almost constant for low damping. The
amplitude of the forced oscillator in the region w<<wpand B< wg
Is inversely proportional to the stiffness constant (k) and hence
motion is called the stiffness controlled motion.



Case:-iii (Resistance controlled motion)

When angular frequency of driving force=natural
frequency of oscillator i.e.(®=wq)

A=fo/\/4B?%w? =fy/2Pw
A=t/bo=1/bw,
RESONANCE:-

The amplitude of vibration becomes large for small damping(p is less)
and the maximum amplitude is inversely proportional to resistive term
(b) hence called as resonance. It is the phenomenon of a body setting
a body into vibrations with its natural frequency by the application of
a periodic force of same frequency.

If the amplitude of oscillation is maximum when the driving
frequency is same as natural frequency of oscillator. (I.e. ® =wy).

‘A’ will be the max. Only the denominator of the expression

V(@2 — w?)? + 4B2w2is minimum i.e.

W@ = w7 + 45707 =0
_ 2, 4.3, 002 _
=>-4mnwy +40 +8B m=0

=>-mg +o°+2p=0

=>mn= \/(a)g — Zﬂz) :(Do\/(l - Zﬁz/wg)

It is the value of angular frequency, where ‘A’ will be maximum in
presence of damping force

But when damping is very small,
=00 (B—0)

The max value of ‘A ‘when damping is present



A=foly/[(w§ — @?)? + 4B2w?]
=foly/ [w§ — (@§ — 2B2)]2 + 4B(w§ — 2B2)
=fo//4B* + 4B%2w? — 8B4
=fo/y/ [4B2w§ — 4B*]
Arax=To/ 2B/ (wF — B?) =f/2mBy/(wf — %)

This is called amplitude Resonance.

Value of the frequency at which amplitude resonance occurs i.e.
amplitude becomes maximum.

Bi<B, f=w/2xn
=V(0%-2B%)/2n
Damping is small,
f=wo/2n
Here, fr’ is called resonant frequency.
Phase at resonance:-
®=n/2

Velocity of oscillator is in same phase with the driving force
.Therefore, the driving force always acts in the direction of motion
of oscillator. So energy transfers from driving force to oscillation
are max™.

Sharpness of resonance:-

The amplitude is maximum at resonance frequency which
decreases rapidly as the frequency increases or decreases from the
resonant frequency.



fA\sz\Jo \7

The rate at which the amplitude decreases with the driving frequency
on either side of resonant frequency is termed as ‘’sharpness of
resonance’’.

Different condition:-

(i) For o=wo+p, the amp. Becomes A=A, /v2.The width of resonance
curve i.e. the range of frequency over which the amplitude remains

more than A/V2.
Aw= (o +P)-(wo-P)=2p
Thus if B’ 1s small,Aw 1s small.
(i1) For f=0, A—w at o=y

(iii)If there is small ‘B’, amp. Resonance occurs lesser value amp is max at
0=y

(iv)If B’1s high, A’ is max but the peak moves towards left &max. amp
decreases.

(v)So resonance is sharp for low ‘B’ & flat for high “B’.
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Velocity:-

X=x,=foly/ [[(wE — 0?)? + 452w?] cos (wt — &)

V=-ofy/y/[(0? — w?)? + 4B2w?] sin (wt — &)

Vzcofol\/[(a)g — w?)? + 4B%w?] sin (ot — & + g)

Vmaxszol\/(a)g — w?)? + 4B%w?

*here also ‘v’is max. When wg=o.
(Vmax.amp):f/ b

Calculation of energy:-

X= o cos(wt — &)

\/(wg—wz)2+4ﬁzw2




Where o =A
\/(a)(z)—wz)2+4,82w2

V= Jo® cos(pt-8+m/2)
\/(a)(z)—wz)2+4ﬁzw2

Average potential energy:-

P.E=2 kx?
2

2
:% k o cos’(ot-8)
\/(w%—wz)2+4ﬁza)2

:é kA’cos*(ot-3)
<P.E>:i KA?

:imoooZA2
(average of cos’0=1/2)

Average kinetic energy:-

K.E== mv?
2
2,.2
=Im Jow cosX(wt-5+1/2)
2 (wi-w?) +4p2w?

:% mo’A’cos’(pt-6+1/2)
<K E>=L mw?A2

4

Total average energy:-

<eE>=<K.E> +<P.E>

1 1
= Z I'T](x)zA2 + Z I'T](L)OZA2



<e> =-mA? (wy? + w?)

POWER:-

i). Power absorption:

Pab = FPe' \Y4

fo(l)

=F Cos (wt — 8).«& -
Z-

(1)2)2 +482w2

=AF Cos (wt — 6) Sin (wt — §)

1

T2

AF Sin 2 (wt — &)

< Fabs > = [(wOZ—f122$2mj482w2]
= m A? B w?
P, .cabsorbed when w,

ii). Power dissipation:

Pais = l:"damp-V Or
dx
=+ R
b. e
=+Dbv?
Pais = 2m B v?
fo?w?
= Pgis = 2mp o~

[(wo?- w?)? +4B%w?]

W

Fresistive X Inst.velocity

B="/,

.Cos? (pt— 5 + g)

Cos (ot =8+ ™/5)



= < PdiS > = szAZ(A)Z X 1/2
=2 < Py > = mPBA%w?

Thus in the steady state of forced vibration, the average rate of power
supplied by the forcing system is equal to the average of work done

by the forced system against the damping force.

QUALITY FACTOR:-

Quiality factor is a measure of sharpness of resonance.

Q- Factor is defined as,

average energy stored per cycle

Q=2m X

average energy dissipated per cycle

Eav

=21 X
T.P,y

At w = w, , for weak damping

_ 2wg°

Q= 4(Bwo)
=> _ Wo
Q=25

BSmall, Q - Large, sharpness of resonance is more.



Again,

Q =

Resonant frequency g

width of resonance curve 28

Larger value of Quality factor (lessf3 ), sharper is the resonance.

System Q value
Earthquake 250 —
1400
Violin string 10°
Microwave 10°
resonator
Crystalosill 10°
Excetetation 10°

Amplitude Resonance Velocity Resonance




1. In amp. Resonance, the amp.
of oscillator is maximumfor
a particular frequency of the
applied force.

2. Amplitude resonance occurs
at w, = (wy — 2p2) 72

3. At applied frequency w =
0,the amp. of the freq.
oscillator is F/k

4. The phase of the forced
oscillator with respect to that

of applied force is ™/,

. The velocity amplitude of the

forced oscillator is the

maximum at a particular

frequency of applied force.

. Velocity resonance occurs at

W= w

. Applied frequency w = 0, the

velocity amplitude is zero.

. Phase of the forced oscillator

with respect to that of applied

forcels ....

Mechanical Impedance

The force required to produce unit velocity is called the mechanical

impedance of the oscillator.
Z= F/V

x = A el(@t=®)

dx .

V= — = wiAel(®t-9)
dt

—sy — Fel®t F _ mf
T imAel(@t-9) T jpAe—ie imAe~i®

mf
f
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INTERFERENCE
Coherent Superposition:

The superposition is said to be coherent if two waves having constant
phase or zero phase difference.

In this case, the resultant intensity differs from the sum of intensities
of individual waves due to interfering factor.

Le.l=1 +1,

Incoherent Superposition:

The superposition is said to be incoherent if phase changes frequently
or randomly.

In this case, the resultant intensity is equal to the sum of the
intensities of the individual waves.

Lel=1,+1,

Two Beam Superposition:

When two beam having same frequency, wavelength and different in
amplitude and phase propagates in a medium, they undergo principle
of superposition which is known as two beam superposition.



Let us consider two waves having different amplitude and phase
are propagated in a medium is given as
Y, = aqsin(kx — wt + ¢4)

(1)
Y, = a, sin(kx — wt + @,)
(2)
Applying the principle of superposition
Y = Y1+ ¢,

Y = a, sin(kx — wt + ¢1) + a, sin(kx — wt + ¢;)
= a, sin(kx — wt) cos ¢, + a, cos(kx — wt) sin @, +

a, sin(kx — wt) cos @, + a, cos(kx — wt) sin @,
= (a, cos ¢, + a, cos @,) sin(kx — wt) + (a, sin @, +
a, sin @,) cos(kx — wt) 3)
Let
a, Cos ¢4 + a, cosp, = Acos @
(4)
and a, sing; + a, sing, = Asinf
(5)

Y = Acos 0 sin(kx — wt) + Asin 8 cos(kx — wt)

= A[sin(kx — wt) cos 8 + cos(kx — wt) sin 0]
Y = Asin(kx — wt + 0)
(6)

Squaring and adding equation (4) and (5)

A? = (a, cos @, +a, cos ¢,)? + (a, sin @, + a, sin @,)?

= afcos’@, + a5cos?@, + 2a,a, cos ¢, cos ¢, + asin’¢,
+ aisin’¢, + 2a,a, sin ¢, sin @,

A? = a2 + a3 + 2a,a,[cos ¢ cos @, + sin @, sin @, ]

A% = a? + a5 + 2a,a, cos( @, — @)

A= \/a? + a2 + 2a,a, cos( @, — ;)

(7)
We know, I « A?

—pl = KA?



= K(a? + a% + 2a,a, cos( @, — ;)
—pl = Ka? + Ka3 + K2a,a, cos( ¢, — ¢1)
=@l =L + I + 2/I;\[I; cos( 92 — ¢1)
(8)
Dividing equation (5) by (4), we get,
a; sin @1 + a, sin @,

tan@ =
a4 COS 1 +a, cos @,

Coherent Superposition:

In coherent superposition, the phase difference remains constant
between two beams.

i.e.cos(¢@, —¢@q) =1lor—1

If cos(gr—¢1) =1

Now equation (7) and (8) becomes,

A= \/a% + a5 + 2a;a,

=g = (a; + a,)?

:>Amax = aq + a, and [ = 11 + 12 + 2 1112
=lnax = 11 + \/1_2)2

The two beams having same amplitude,
a,=a,=a

=0 Amax = 20

= Imax = 4lo

Again, if cos(p, — @) = —1

Amin = \/a% + a3 — 2a,a,
=>Amin = a1 — a
I=11+12_2 1112

Ipin = (\/1_1 - \/1_2)2
For same amplitude,
Amin =0

=Inin =0



Incoherent Superposition:
In incoherent superposition the phase difference between the waves
changes frequently or randomly, so the time average of the interfering

term(zm cos( ¢, — @4)) vanishes as the cos value varies from -1
to 1.

Here, A = \/a? + a3

gl =0 +1,

Multiple beam superpositions:

When a number of beams having same frequency, wavelength and
different amplitude and phase are undergoing the superposition, such
superposition is known as multiple beam superpositions.

Let Y, 0,03, Yq........... Y, be the number of beams having same
frequency, wavelength and different in amplitude and phase are
propagating in a medium are given as,

Y, = A;sin(kx — wt + ¢q)

Y, = A, sin(kx — wt + ¢@,)

Yy = Ay sin(kx — wt + @y)
According to principle of superposition,

Y =Y1.9203 Pannnnn Yn
N
= Z Y;
i=1
N

=>pY = Z A; sin(kx — wt + ;)
i=1
@y = Y, A;sin(kx — ot + ¢;) (1)

where A; = resultant amplitude of the it component.
¢; =Phase of the i" component.



Asing = YL, A; sin @; (2)
Acosg = YL, A; cos ¢ (3)

Squaring and adding (2) and (3) we get,

N N
A% = Z A? +2 Z AiAj cos(@; — ¢;)
=1 i=1
i#]
The phase angle is given as,
£V=1 A;sing;

tang =
N L A; cos ¢;

Coherent Superposition:
In this case the phase difference between the waves remains constant
l.e. (cosp;— @) =+1

N N
=A% = ZA% + 22AiAj
i=1 i=1

i#j
If all the beams having equal amplitudes.
I€A1 - AZ — = AN - Al

=A% = (NA,)? = N24?
Now, I = kA?

—pl = kN?A3

= | =N?l,

coherent —

Incoherent Superposition

In incoherent superposition, the phase difference between the beams
changes frequently or randomly due to which the time average of
factor < YV, A;A; cos(@; — @;) > vanishes as cos value varies from-
1to+1



KA2

incoherent —

KN YL, A
= KNA?

=1

incoherent —

Interference:

The phenomenon of modification in distribution of energy due
to superposition of two or more number of waves is known as

interference.

To explain the interference, let us consider a monochromatic source
of light having wavelength A and emitting light in all possible

directions.

According to Huygens’s principle, as each point of a given wavefront
will act as centre of disturbance they will emit secondary wave front
on reaching slit S; and S..

As a result of which, the secondary wave front emitted from slit S1

NI, = N = _cohernt

and S2 undergo the Principle of superposition.




During the propagation, the crest or trough of one wave falls upon the
crest and trough of other wave forming constructive interference,
while the crest of one wave of trough of other wave producing
destructive interference.

Thus, the interfering slit consisting of alternate dark and bright
fringes, which explain the phenomenon of interference.

Mathematical treatment:

Let us consider two harmonic waves of same frequency and
wavelength and different amplitude and phase are propagating in a
medium given as

Y =y1+>
= asin wt + b sin(wt + @)
= a sin wt + b sin wt cos ¢ + b cos wt sin @
= (a + b cos @) sin wt + b sin ¢ cos wt
Leta + bcosep = Acosb
bsing = Asin6
y = Acos 0 sin wt + A sin 6 cos wt
y = Asin(wt + 0)
Squaring and adding (2) and (3)
A%c0s?0 + A%sin?0 = (a + b cos ¢)? + b%sin’¢

A% = a? + b? + 2ab cos @

[A =\ a? + b? + 2ab cos<p]



As, | < A

[ = KA?

= K(a* + b? + 2ab cos @)

[I=1+1+ I+ cos ]

Dividing equation (3) by (2) we get,
b sin ¢

tan 0 =
a+ bcose

Condition for maxima:

The intensity will be maximum when the constructive interference
takes place i.e.

cosp = +1
COS @ = cos 2nm

@ =+2nmt ,n=0,1,2...

2T
==X path dif ference(Ax) = +2nm

[Ax = +nA]
le = Zn%]

The constructive interference is when ¢ difference is even multiple of

m or integral multiple of 27 and path difference is an integral

multiple of %

NoW, [I = Imax = 1 + I + 24/11 1]



[Imax = (\/E + \/1—2)2]

[Amax = a + b]

If the waves having equal amplitude,
[Amax = 2a]

Imax = KAfax

= K(2a)?

= K4a®

[lmax = 4ol

Condition for minima

The intensity will be minimum destructive interference takes place
l.e.cosp = —1

[¢p = £(2n + 1)mr] Wheren=0, 1, 2, 3...
21
= - X (Ax) =+(2n+ Dr

le =+(2n+1) %]

Thus destructive interference takes place when phase difference is

odd multiple of = and path difference is odd multiple of %
Now, [I = Iy = I + I, — 2\ 11 1]

[Imin = (\/1_1 - \/1_2)2]



[Amin = a — b]

Intensity distribution curve

If we plot a graph between phase difference or path difference along
X-axis and intensity along Y-axis, the nature of the graph will be

symmetrical on either side.

I Lemax =41, Amax=24

=y 0 '. 207 Lor 4571_7
Imax + Imin
lyve = 2 = 2I,

From the graph, it is observed that,
1) The fringes are of equal width
2) Maxima having equal intensities
3) All the minima’s are perfectly dark

The phenomenon of interference tends to conservation of energy i.e.
the region where intensity is 0, actually the energy present is maxima.
As the minima’s and maxima position changes alternatively so the
disappearance of energy appearing is same as the energy appearing in

other energy which leads to the principle of conservation of energy.



Sustained Interference

The interference phenomenon in which position of the maxima and

minima don’t changes with time is called sustained interference.

Condition for Interference

1) The two waves must have same frequency and wavelength.
2) The two source of light should be coherent.

3) The amplitude of wave may be equal or nearly equal.

Condition for good Contrast

l.
I.
[1.
V.
V.

The two slit must be narrow.

The distance between the two slit must be small.

The background should be perfectly dark.

The distribution between the slit and the screen should be large.
The two waves may have equal or nearly equal amplitude (for

sharp superposition).

Coherent Sources

The two sources are said to be coherent if they have same phase

difference, zero phase difference or their relative phase is constant

with respect to time.

Practical resolution of Coherent

Coherent sources from a single source of light can be realised as

follows

A narrow beam of light can be split into its number of component

waves and multiple reflections.



Component light waves are allowed to travel different optical path so

that they will suffer a path difference and hence phase difference.
21
KX
Methods for producing coherent sources/Types of interferences

lphase dif ference = — X path dif f erence]

Coherent sources can be produced by two methods

1) Division of wave front

2) Division of amplitude
Division of Wave front
The process of coherent source or interference by dividing the wave
front of a given source of light is known as division of wave front.
This can be done by method of reflection or refraction. In this case a

point source is used.

Examples
1. YDSE
2.Lylord’s single mirror method
3.Fresnel’s bi-prism
4.Bilet splitting lens method
DIVISION OF AMPLITUDE
The process of obtaining a coherent source by splitting the amplitude
of light waves is called division of amplitude which can be done by
multiple reflections.

In this case, extended source of light is used.



1.Newton’s ring method
2. Thin film method
3. Michelson’s interferometer

Young’sDouble Slit Experiment:

‘\
| .
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o
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In 1801 Thomas Young demonstrated the phenomenon of interference
in the laboratory with a suitable arrangement. It is based on the
principle of division of wavefront of interference. The experiential
arrangement consists of two narrow slits, S; and S, closely spaced,
illuminated by a monochromatic source of light S. A screen is placed
at a distance D from the slit to observe the interference pattern.

In the figure,
d — Slit separation

D — Slit and screen separation

2 —p Wavelength of light
Y —distance of interfering point from the centre of slit
Ax —Path difference coming from the light S; and S,

Optical path difference between the rays coming through
S;and S,



Now the path difference,
Ax = S,P — S, P
In figure, S,P = [S,C? + pCz]l/Z
= [D? + (v +§)2]1/2

Y+3)>2

=D[1+ D2

]1/2

v+5)?2 o
=D|1+ ZDZZ (Using binomial theorem)

d\2
+_
Szp =D+ (yZDZZ)
Similarly,
_4d\2
S]_P =D+ o 2)

2D

W +9? L, —d/2p?
2D 2D

=50+ - —d/27?]

Ax =D +

The alternative dark and bright patches obtained on the interference
screen due to superposition of light waves are known as fringe.

Condition for bright fringe



The bright fringe is obtained when the path difference is integral
multiple of 1i.e.

AX=nA
From equation (4) and (5), we get

d
yn5=n/1

Yn =% Wheren=20,1,2 ......

Condition for dark fringe

It will be obtained when the path difference 1s an odd multiple of A/2
I.e.

__(2n+1)
22

From (4) and (6), we get

Ax

ynd _ (2n+1)A

D 2
Yo =00 Wheren=0,1,2 ......
Fringe Width

The separation between two consecutive dark fringes and bright
fringes is known as fringe width.

If y,, and y,,_; be the two consecutive bright fringe.

,8 = Yn — Yn-1
_nAD  (n—1)AD
- d d

_AD
ﬁ_d



Similarly, is y,, and y,,_, be the two consecutive dark fringes.

AD AD
B = (2n+1)ﬁ—[2(n—1)+1]x—

2d
_AD D
2d 2d
)
B =

It is concluded that the separation between the two consecutive bright
fringes is equal to the consecutive dark fringes.

Sop =p

Hence bright and dark fringes are equispaced.

Discussion:
- , _AD
From the expression for § = ' = —
= ﬁOCA
= ,BocD
1
= ﬁoc p

If young double slit apparatus is shifted from air to any medium
having refractive index (W), fringe pattern will remain unchanged and
the fringe width decreases (1/u) as A decreases.

C=fAO

=f/10
fAm

_C
H=7

— 2

= A, p

If YDSE is shifted from air to water, the fringe width decreases3/4
times width in air.



AwD
pu =222

When YDSE is performed with white light instead of monochromatic
light we observed,

I.  Fringe pattern remains unchanged

I1. Fringe width decreases gradually
1. Central fringe is white and others are coloured fringes

overlapping
When YDSE is performed with red, blue and green light
Agr > g > Ap

S0 Br > B¢ > B

_ S
fAm
L= E
A
= [Am = IO
Wavelength of light in any given medium, decreases tol/u times of

wavelength in vacuum.

ﬁoclm
A, D

Bm = n:i
=2

So, it decreases 1/u times.



Newton’s Ring

The alternate dark and bright fringe obtained at the point of contact of
a Plano convex lens with its convex side placed over a plane glass
plate are known as Newton’s ring as it was first obtained by Newton.

ik

The formation of the Newton’s ring is based on the
principle of interference due to division of amplitude.

Experimental Arrangement
The experimental arrangement consist of

a) S: Monochromatic source of monochromatic light

b) P: A plane glass plate

c) L: A convex lens which is placed at its focal length to make the

rays parallel after refraction



d) G: A plane glass plate inclined at on 45° to make the parallel
rays travel vertically downwards

e) L’: A plane convex lens of long focal length whose convex side
kept in contact with plane glass plate

f) T: Travelling microscope mounted over the instrument to focus

the Newton’s ring.
Formation of Newton’s Ring

I. To explain the formation of Newton’s ring, let us consider a
plano-convex lens with its convex side kept in contact with a
plane glass plate.

Il. At the point of contact air film is formed whose thickness
gradually goes on increasing towards outside.
[1l.  When a beam of monochromatic light is incident on the

arrangement, a part of it get reflected from the upward surface
of the air film and the part of light get reflected from the lower

surface of the air film.

\f

—

I C |

IV. The light which reflected from glass to air undergoes a phase
change of ‘m’ and those are reflected from air glass suffers no

phase change.



V. As a result of which they super-impose constructively and
destructively forming the alternate dark and bright fringe at the

point of contact.
Condition for bright and dark fringe in Reflected light

In Newton’s ring experiment, the light travels from upper and lower
part of the air film suffers a path difference of A/2 (phase change of
m). Again, as the ray of light reflected twice between the air films

having thickness‘t’. Then the total path travelled by the light is given

as(2t + %).

Now, from the condition for bright ring, we have,

A
2t+§=n/'l
A
ZthA—E
A
2t=(2n-1)3

From the condition for the dark fringe we have,

TP
;= @nt+ D3

2
s2t=_(@n+1-1) =nl

= 2t = nAi

Newton’s ring in transmitted light

The Newton’s rings obtained in transmitted light are complementary
to that of Newton’s ring obtained in reflected light i.e.



In transmitted light, the condition for bright ring is,

2t = ni
And for dark ring is,
2t = (2n — 1)&
2
Newton’s ring in Reflected Light and Transmitted Light
In reflected light In transmitted light
(a)Condition for bright ring; (a)Condition for bright ring;
2t = (2n— 1) 2t =na
(b)  Condition for bright| ()~ Condition for dark
ring; ring:
2t = nA 2t = (2n—1)3

(C)Newton’s rings are more (C)Newton’s rings are less

intense. intense.

DETRMINATION OF DIAMETER OF NEWTON’S RING

LOL’ is the section of lens placed on glass plate AB. C is the centre
of curvature of curved surface LOL’. R is its radius of curvature and r

is the radius of Newton’s ring corresponding to film if thickness t.




From the property of circles,

PN X NQ = ON X NB
rXr=tX (2R -—1)
t = thickness of air film
r? = 2Rt — t*
r? = 2Rt(--tK< 1)
r2
" 2R

From the condition for bright Newton’s ring,

=t

A
2t = (Zn— 1)5

2><r2 on— 12
= —_— = — —
R en— D3

AR
=>7r?= (2n—1)7

DZ

= D2 = 2(2n — 1)AR
= DZ = 2(2n — 1)AR, For the n" ring.

Q) Show that diameter of Newton’s dark or bright fringe is

proportional to root of natural numbers.

D =+/2(2n — 1)AR



= J2AR x (2n — 1)

= constant X \/(2n—1)
= DpcV2n—1 ,n=1,2,3.......

Thus the diameter of Newton’s bright ring is proportional to square

root of odd natural numbers.

Similarly from the Newton’s dark ring,

2t = nA
2><r2 A
= —_— =
2R "
r2
= — =nl
B n
= r2 = nAR
DZ
= — =nAR
2 n
= D? = 4nAR
= D,, = V4nAR
= V4ARVn

= constant X Vn
D,, = constant X \n

D, .\n

Thus the diameter of Newton’s dark ring is proportional to square root

of natural numbers.



Determination of wavelength of light using Newton’s ring method

To determine the wavelength of light, let us consider the arrangement
which involves a travelling microscope mounted over the Newton’s

ring.

Apparatus, on focusing the microscope over the ring system and
placing the crosswire of the eye piece on tangent position, the
readings are noted. On taking readings on different positions of the
crosswire on various rings we are able to calculate the wavelength of

light used.
Let D,, and D) be the n and (n+p)™ dark ring, then we have,
D2 = 4nAR
Di\ipy = 4(n+ p)AR
Subtracting equation (1) from (2) we get,
D{\+py — D& = 4(n + p)AR — 4nAR

D(2n+p) - Drzl — 3
4PR

This is the required expression from the wavelength of light for

Newton’s ring method.

If we plot a graph between the orders of ring along X-axis and the
diameter of the ring along Y-axis, the nature of the graph will be a

straight line passing through origin.
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From the graph the wavelength of light can be calculated the slope of

the slope of the graph.

ﬁ Slope of the graph = wavelength of light

AB . D(2n+p) _ Drzl

=
CD P

D¢,y — D?

Slope = (+p1)3 -

Determination of refractive index of liquid by Newton’s ring

The liquid whose refractive index is to be determined is to be placed
between the gap focused between plane convex lens and plane glass
plate. Now the optical path travelled by the light is to be 2ut, instead
of 2t where p be the refractive index of the liquid from the condition

for the Newton’s ring we have,

2ut = na
X

= _— =
Hor =1
2

= u— =nl

R



R
s D? _nl
4R il
L p?— 4nAR
1
For n" ring, D? = 4”;R

Let D;,,,, and D}, be the diameter of the (n+p)™ and n" dark ring in

presence of liquid then

D2~ 4(n+ p)IR and D 4nAR
H H
Now ,
D?,-D?= 4(n+p)AR _4niR _ 4pAR (1)
H H H

If the same order ring observed in air then
D?,,-D? =4piR (2)
Dividing equation (2) by (1) ,we have

(D”2+9 B Df )air
D? -D?

n+p — —n )quuid

“

This is the required expression for refractive index of the liquid.



DIFFRACTION
Fundamental 1dea about diffraction:

» The phenomenon of bending of light around the corner of an
aperture or at the edge of an obstacle is known as diffraction

» The diffraction is possible for all types of waves

» The diffraction verifies the wave nature of light

» Diffraction takes place is due to superposition of light waves
coming from two different points of a single wave front

» Diffraction takes place when the dimension of the obstacle is
comparable with the wavelength of the incident light.
Explanation of diffraction:

To explain diffraction, let us consider an obstacle AB is placed
on the path of an monochromatic beam of light coming from a source
‘S’ which produces the geometrical shadow CD on the screen. This
proves the rectilinear propagation of light.

il
o at

- "(\



If the dimension or size of the obstacle is comparable with the

Types of Diffraction:

a. Fresnel Diffraction

b. Fraunhoffer Diffraction

wave length of the incident light, then light bends at the edge of the
obstacle and enters in to the geometrical shadow region of the
obstacle. According to Fresnel inside a well region, the destructive
interference takes place for which we get brightest central maxima,
which is associated with the diminishing lights on either side of the
shadow as the constructive interference takes place out side the well
region. This explains the diffraction phenomena.

Depending on the relative position of the obstacle from the source and
screen, the diffraction is of 2 types.

Fresnel’s Diffraction

Fraunhoffer Diffraction

(1) The type of diffraction
in which the distance of
either source or screen or
both from the obstacle is
finite, such diffraction is
known as Fresnel’s
diffraction.

No lenses are used to
make the rays converge or
parallel.

The incident wave
front is either cylindrical or
spherical.

Ex:The diffraction at the

straight edge.

()

3)

(1)

(2)

(3)

The type of diffraction
in which the distance of
either source or screen or
both from the obstacle is
infinite, such diffraction is
known as Fraunhoffer
diffraction.

Lenses are used to
make the rays converge or
parallel.

The incident
front is plane.

Ex:. The diffraction at the
narrow.

wave
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Fraunhoffer Diffraction due to a single slit:

Let us consider a parallel beam of monochromatic light
inside on a slit ‘AB’ having width ‘e’. The rays of the light
which are incident normally on the convex lens ‘L,’, they are

converged to a point ‘Py’ on the screen forming a central bright
image.

Fraunhoffer diffraction due to single slit
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Schematic digram for Fraunhoffer diffraction due to single
slit

The rays of light which get deviated by an angle ‘0’, they are
converged to a point ‘P,’, forming an image having lens
intensity.

As the rays get deviated at the slit ‘AB’ they suffer a path
difference. Therefore path difference, BK = AB Sinf

= ¢ sin0d

Therefore, Phase difference = %”esine

Let us divide the single slit into ’n’ no. of equal holes and a be
the amplitude of the light coming from each equal holes.

Then Avg. phase difference= 1 %”esine

n

Now the resultant amplitude due to superposition of waves is
given as



asin ﬂ asin (njlhesine asin Eesin9
R 2 ) _ 2)n 4 — A
sin(d] 12—ﬂesiné? sin(lﬂesinej
2 sin n A nAi

2

asina

Let o« = Zesing,then R=
A . a

SIn —
n

Since ¢« is very small and n is very large so £ is also very
n

small.

Therefore, sin%~ <

n n
ThUS, R —asina _nasina _ Asina whereA = an
a a o
n
Now the intensity is given as
2 ) A’sina _ sin‘a h
lo R® =1=KR*= 1=K =—5—==1,="= Where I, =ka

Condition for Central /principal maxima:

When a =0,

:%esinQ:O:sinG:O

=0=0

Thus, the condition for principal maxima will be obtained at
6 =oposition for all the rays of light.

Position for/Condition for minima:
The minimum will be obtained when sina =0 =sin(zmx)

= sina =sin(+mz)



=S a=tMmrx

T .
= zesme =+tmrx

—esind=+mi Where m=1234,.......

:>9:im—/I
e

Thus, the minimas are obtained at ii,izi,isi,ﬂi, ........
e e e e

Position/Condition for secondary maxima:

The maxima’s occurring in between two consecutive secondary
maxima is known as secondary maxima.

The positions for secondary maxima will be obtained as

a _,
da

sina| acosa —sina
=2l, { }:o

2

(04 (24

acCosa —Sina _
=R =0

2
(04

= acosa—Sina =0

= o=lana

This is a transdectional equation.It can be solved by graphical
method. Taking y=« and y=tana,where the two plots are
interests, this intersection points gives the position for secondary
maxima. Thus the secondary maxima’s are obtained at

% 5n  x

2 2 2



From the expression for amplitude we have

R:Asina_é a_3 _5 _7
a o 3| 5' 7| .............
2 4
‘éxo{l 0;—|+“—+ ................ }:A, since o « 1
a .

Thus the intensity at the central principal maxima is I,

Iy

- sin? (%)
Forocz7 , I =lp=—==10 2 =

a (3;;)2 22
2

. .01
. 2 Slnz(—)
!
Fora=>" | 1, =12 % =0 2 =2 andsoon......

(5;;)2 62
2

Intensity distribution curve:

The graph plotted between phase difference and intensity
of the fringes is known as intensity distribution curve. The
nature of the graph is as follows:
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Intensity distribution curve

From the nature of the graph it is clear that

1. The graph is symmetrical about the central maximum
2. The maxima are not of equal intensity

3. The maxima are of not equal width

The minima are of not perfectly dark

PLANE TRANSMISSION GRATING:

It is an arrangement consisting of large no.of parallel slits
of equal width separated by an equal opaque space is known as
diffraction grating or plane transmission grating.

Diffraction
grating

[ W '|}
I Llﬂ\u
[ Construction: It can be

constructed by drawing a large no. of rulings over a plane
transparent material or glass plate with a fine diamond point.



Thus the space between the two lines act as slit and the opaque
space will acts as obstacle.

N.B.Though the plane transmission grating and a plane glass
piece looks like alike but a plane transmission grating executes
rainbow colour when it exposed to sun light where as a plane
glass piece does not executes so.

Grating element:

The space occurring between the midpoints of two
consecutive slit in a plane transmission grating is known as
Grating element. It can be measured by counting the
no. of rulings present in a given length of grating.

Let us consider a diffraction grating having

e = width of the slit

d = width of the opacity
If “N” be the no. of rulings present in a given length of grating
“x”” each having width (e+d), then

N (e+d) = x
= (e+d) :ﬁ:Grating element

L'ﬁm Ck‘-\“%

\ /
-5 er - Ly vend
e . e a oY (=
‘X(S\S hzlg—\d);/(r‘ e
3 gos=
)
1

For example if a grating contain 15,000 lines per cm in a grating
then the grating element of the grating

Grating element, (e+d) :ﬁ:o.ooom%s cm

Diffraction due to plane transmission grating /Fraunhoffer
diffraction due to N-parallel slit:

Let us consider a plane wave front coming from an infinite
distance is allowed to incident on a convex lens “L” which is



placed at its focal length. The rays of light which are allowed to
incident normally on the lens are converged to a point “P,”
forming central principal maxima having high intensity and the
rays of light which are diffracted through an angle are “0” are
converge to a point “P;” forming a minima having less intensity
as compared to central principal maxima. Again those rays of
light which are diffracted through an angle “0” are undergoes a
path difference and hence a phase difference producing
diffraction.

Let AB- be the transverse section of the plane transmission
grating

ww - be a plane wave front coming from infinite distance

e = width of the slit

d = width of the opacity

(e+d) = grating element of the grating
N = be the no. of rulings present in the grating
Now the path difference between the deviated light rays is

S,K = 5,5,S1n0 = (e+d)Sine



Therefore, Phase difference = 27” X S,K :27”(e+d)3ine =25 (say)

where g = %(e+ d)Sing

Now the resultant amplitude due to superposition of “N” no .of
waves coming from “N” parallel slit is given as

3 ASinoz SINNg
a Sing

R

and intensity IS given as
A2 Sin’a Sin’Npg I Sina Sin®Ng
a? Sin’g " a? Sin?g

laR* = | = KR?* =K

where 1, Si”z“ =this is contributed due to diffraction at single slit
o

and S;?:l\'ﬂﬁ = this is contributed due to interference at ” N”

parallel slit

Position for central principal maxima /condition for central
principal maxima:

The principal maxima will be obtained when

Sing =0 =Sin(xmxr)
= f=tmzx

:»%(em)sme:imﬂ

= (e+d)Sind =+mA

where m=04123.... .This is called grating equation or condition
for central principal maxima.

Position for minima /condition for minima:

The minima will be obtained when



SinNg = o0 = Sin(£nrx)
= Nf ==xnx

= N%(eer)SinG:in;r

= N(e+d)Sind =+ni
Where n can take all the values except n=0+N,+2N +3N...........

This is the condition for minima due to diffraction at N-parallel
slit.

Position/Condition for secondary maxima:

The maxima’s occurring in between two consecutive secondary
maxima is known as secondary maxima.

The positions for secondary maxima will be obtained as

a _,
da

d | Sina Sin’Ng 0
da a®  Sin*g

- 2 - - _ -
o, Sin%a Sin Nﬂ[N cos NAsin 8 —sin N,Bcosﬂ} 0

a®  Sing sin? g

N N cos N,Bsin_,B—sin N cos =0
sin® g

= NcosNgsin f—sinNgcos 8 =0 = N cos NAsin 8 =sin NBcos
= NtanNg =tanNg

This is a transdectional equation. It can be solved by graphical
method. Taking y=tanNg and y = NtanNg,where the two plots are
interests, this intersection points give the position for secondary
maxima.Thus the secondary maxima’s are obtained at

3 S 1
,8—7,,3—7,,8—7 .........



Intensity distribution curve:

The graph plotted between phase difference and intensity
of the fringes is known as intensity distribution curve. The
nature of the graph is as follows:

Characteristics of the spectral lines or grating spectra:

1.The spectra of different order are situated on either side of
central principal maximum

2.Spectral lines are straight and sharp

3.The spectra lines are more dispersed as we go to the higher
orders.



4.The central maxima is the brightest and the intensity decreases
with the increase of the order of spectra.
Missing spectra or Absent spectra:

When the conditions for minima due to diffraction at
single slit and condition for central principal maxima due to
diffraction at N-parallel slit is satisfied simultaneously for a
particular angle of diffraction then, certain order maxima are
found to be absent or missed on the resulting diffraction pattern
which are known as missing spectra or absent spectra.

Condition for Missing spectra:
We have,

The condition for central principal maxima due diffraction at N-
parallel slit

(e+d)Sin@=+mA

esind =+nA

- (e+d)Sind _mi _m
esiné ni n

Special case:

1.1f d=e,=M-2—m=2n where n=123,....
n

I.e second order or multiple of 2 order spectra will found to be
missed or absent on the resulting diffraction pattern.

2. 1f :%,:ng:mzl.Sn ~1
n

I.e First order spectra will found to be missed or absent on the
resulting diffraction pattern.

3. If e=9,:>m:3:>m=3n
2 n



I.e Third order spectra or multiple of 3 spectra will found to be
missed or absent on the resulting diffraction pattern.

Dispersion:

The phenomenon of splitting of light wave into different order
of spectra is known as dispersion.

Dispersive power:

The variation of angle of diffraction with the wave length
of light is known as dispersive power. It is expressed as 3-?

Where do=¢,-0, = difference in angle of diffraction and
di = 4, - 2, =difference in wave length of light

Expression for dispersive power:
We have

(e+d)Sing=+mAa
i[(e +d)Sing =+mi]= i(mﬂ,)
da da

di

d /..
d)—(Sing)=
= (e+ )dxl( ing) m-

= (e+d)cos¢9d—9= m
di

do _ m
3 —
di (e+d)cosé

=29 o m
da




Determination of wave length of light using plane
transmission grating:

To determine the wave length of light let us consider a
plane transmission grating with its rulled surface facing towards
the source of light perpendicular to the axis of the spectrometer.
The parallel beam of monochromatic light coming from source
is allowed to incident on the transmission grating which are now
defracted by different angle of diffraction.Rotating the telescope
for different positions of the defracted ray the angles are
measured.

Using the grating equation ,
(e+d)Sing=+mA

_ (e+d)Sing
m

We can calculate the wave length of the monochromatic light.
Half period zone:
The space enclosed between two consecutive circles which

=1

are differing by phase of @ or by a path difference of % or a time

period of % iIs known as half period zone. As it was first

observed by Fresnel, these are also known as Fresnel half period
Zone.
Construction:

To construct the half period zone let us consider a plane
wave front of monochromatic source of light having wavelength



A coming from left to right. Let “P” be a point just ahead of the
plane wave front at a perpendicular distance “b” from the plane
wavefront. Taking “P” as centre and radii equal to OM;=
r,,OM,= r;,OM3= r5...0M,= 1, let us divide the plane wave
front into large no. of concentric circles such that light coming
from each consecutive half period zone will differ by a phase

difference of #.

These alternative circles which are now differing by a phase
change of w are known as half period zone. These half period
zones are known as Fresnel half period zone. The Fresnel’s first
half period zone is brighter than that of a second half period
zone and the two half period zone are differ by a phase change
of .

Properties of Half period Zone:

1. Phase of Half period Zone: Each half period zone are differ
by a phase change of

2. Area of half period zone:

The space enclosed between two consecutive half period
zones is called area of Half period zone.
Let A, and A, be the area of (n-1) ™ and n™ half period zone

Then, An-l =T (OMn-1)2: 7(PM 12 _OPZ) :ﬂl:[b—i' (n _Zl)lj bz:l

2 192
:ﬂ[b%(”_? A +2b(n_21)/1—b2}




= 7{(” _j)zﬂ“ +b(n —1)z}= m(n-1)bA

Since A¢ (1 S0 W (¢ (1 and hence neglected

and A, =1t (OM,)’=z(PM? —OP?) =7 (b+%) —bz:l

212
= b2+n/I

4

+2bM—b2}
2

—7{— +bnﬂ} nnbA

Since A¢ (1 S0 % ¢ (1 and hence neglected

Now the area of the half period zone
A=A, - An.1=nnbA-  (n-1) bA = wbA
Thus the area of half period zone is independent of order of zone
and the half period zones are equispaced
3. Radius of half period zone:
We have,
The area of first half period zone is b

A= mbA
Again, A=
= m2=TbA = r? =bi=r1 =1bA
Similarly, the radius of the second half period zone is r, =+/2ba
and the radius of the third half period zone is r,=+304,.......
r,=+/nba .
Thus it is found that radius of the half period zone is dependent
on order of zone and the radius of the half period zone is varies
directly proportional to the square root of the natural number.
Factors affecting amplitude of half period zones:
The factors affecting the amplitude are:
a. Area of half period zone (directly)



b. Average distance of half period zone (inversely)
c. Obliquity factor (directly)
Mathematically,
If ‘R’ be the radius of the half period zone, then
RaA

a(l+cosf)

1
a_

d

A(1+ cos )
d

Expression for amplitude of half period zone:
Let R;,RyRs....... R, be the amplitudes of 1%, 2™ 3" ... .n

half period zone respectively.

= Ra

Then the net amplitude due to the entire half period zone is
given by

=R, —-R, +R, —....+.R,  (If nis odd)
=R, —-R, +R; —.....+R_, (Ifniseven)
Since R,)R,,R,)R, SO We have
R,= 0 ;R3 and R, = " ;RS and so on

R= &—R2+& + &—R‘l—k& For Ro)'ifnis even
2 2 2 2 2

:(&—R2+&j+[&—R4+&j+ ......... (hj if nis odd
2 2 2

rR=P, R ifnis odd
2 2

:&+h If nis even
2 2

Rn—l & = —
AS n y»y and o= (a SO, R= >



Thus the net amplitude due to entire half period zone is equal to
half of the amplitude due to first half period zone.

Zone plate:

A special diffracting screen which obstructs the light from
alternate half period zone is known as zone plate.

Construction:

It can be constructed by drawing a series of concentric
circles on a white sheet of paper with radii proportional to
square root of natural number. The alternate half period zones
are painted black. A reduced photograph of this drawing is taken
on a plane glass plate. The negative thus obtained act as zone
plate.

Depending on the initial blackening the zone plate is of
two types

1. Positive zone plate: 2. Negative
zone plate: the
the center is bright

Working:

When a beam of monochromatic light is allowed to fall on
a zone plate, the light is obstructed from the alternate half period



zone through the alternate transparent zones. So,the rays of light
differ by a phase difference of .

Hence, the resultant amplitude is sum of the individual
amplitude due to light coming from alternate half period zones.
Thus for any point object situated at infinite produces a bright
image at a particular distance which is same as that of image
produced by a convex lens. Thus a zone plate is equivalent to
that of a convex lens.

Theory of zone plate:

Let us consider a transverse section of a zone plate placed
perpendicular to the plane of the paper. Let ‘O’ be a point object
placed at a distance ‘OP=u’ forms a real image ‘I’ at a distance
Pl =v’ from the zone plate.




Taking ‘P’ as center and radii equal to PM= r{,PM,= 1,,PM3=
rs...PMy= r, the entire plane of the paper is divided into large
no. of concentric circles such that the light coming from

alternate half period zone will differ by a path difference of % in

such a way that

OM,1 —OPI = *
2
oM, 1 —opPI = 24
2
oM, —opl = 3£
2
oM, 1 -opl = M
2
OM, +1—PM, I = % (1)

Now, in right angled AOPM,

oM, =[op? + PM?,

1 2 17 2
:[u2+r2nF=u{1+r2”} :u{1+ LA } , asrJu

:u{ljt r22}=u+r2" (2)

2u 2u

Similarly, in right angled APM,|

1

M, I =[M, 12 +PM2 |



L r’n 5_ r’n
=2 +r2 :v[l+ vz} —v{1+ +oines } , asryv

:v{1+;2}=v+r2” (3)

\; 2V

Using eq" (2) and eq" (3) in eq" (1) we get

I’Zn I’?'n nAi
+ V+— —(U+Vv)=—
2u 2v 2

= rzn(l-F%j: nA 4)

u+v
=r = u—v\/ﬁ

—r, =cons/n

=ran

Thus the radius of the zone plate is proportional to square to
natural number,

Expression for primary focal length:

From eq". (4) we have,

rzn(ljtl]: ni
u v

According to sign convention,



= rzn(—i-‘rlj: ni
u v

:»ﬁ(—]: N = f=1o (5)

This is the required expression for primary focal length
. 1

Again, fe— = &4 =constant

Area of zone plate:

The space enclosed between two consecutive zones is known as
area of zone plate.

Let A, and A, be the area of (n-1) " and n" zone

Then A= A, - Apy = ar?—rz,= WA _ NN DL - VA = oonetar
u+v u+v u+v

Thus, the area of zone plate is independent of order of zone i.e
the zones are equispaced.

Multiple foci of zone plate:

Now from the expression we have,

r2n (E-i-lj: ni

u v
If the object is situated at infinity (o), then the first image at
distance ,

v, = flzi

nAi
If we divide the half period zones into half period elements
having equal area, then the 1* half period zone will divided into

three half period zones,2" half period zone will divided into five
half period elements and so on

The second brightest image will at



The third brightest image will atv, = f,=

2
lflzli and so on....
5% 5n4

Thus it is conclude that the zone plate has multiple foci.

Comparison between the zone plate and the convex lens:

Similarities

1. Both form the real image.

2. The relation between consecutive distances is same for both.
3. In both the cases focal length depends on wave length of the

light.

Dissimilarities

Convex Lens Zone Plate
a) Image is formed by| a)lmage is formed by
refraction diffraction
b) It has a single focus. b) It has multiple foci
c) The focal length increases c) The focal length
with increase of wave length. decreases with increase of
d) Image is more intense wavelength

e) The optical path is constant

for all the rays of light.

d) Image is less intense

e) The optical path is
different for different rays
of light

Phase reversal Zone Plate:

The zone plate which is constructed in such a way that the
light coming from two successive zones differ by an additional




path difference of A/2, such zone plate is known as phase reverse
zone plate.

Huygens’s Principle:

About the propagation of the wave, Huygens suggested a theory
which is based on a principle known as Huygens’s principle.

It states that;-

1) Each point on a given wave front will act as centre of
disturbances and emits small wavelets called secondary wave
front in all the possible direction.

2) The forward tangent envelope to these wave lets gives the
direction of new wave front.

Explanation/construction of secondary wave front:

To explain Huygens’s principles let us consider a source of
light emits waves in all directions. Let AB be the wave front
at t=0. As the time advances each point on the given wave
front AB will act as centre of disturbance and emit wave lets
in all possible directions.

Taking a, b, ¢, d, e as centre and radii equal to ‘ct’ (c-
velocity of light &‘t” time), we can construct a large number
of spheres which represents a centre of disturbance for the
new wave. The length A;B; represents the direction of new
wave front.



N.B. The backward front is not visible as the intensity of the
backward wave front is very small since for the backward
wave front,

I =k (1+cos0) since for backward wave
front (6=180°)

I=k (1-1) =0

lhack=0

POLARISATION

The phenomenon of restricting the vibration of light in a particular
direction perpendicular to the direction of wave motion is called as
polarisation.

To explain the phenomenon of polarisation let us consider the two
tourmaline crystal with their optics axis placed parallel to each other
\When an ordinary light is incident normally on the two crystal plates
the emergence light shows a variation in intensity as T, is rotated.

| i
- . ) L L \
- . 8 | ) U l 1 ; | No light
' [ 4

The intensity is maximum when the axis of T, is parallel to that of T,
and minimum when they are at right angle. This shows that the light
emerging from T; is not symmetrical about the direction of



propagation of light but its vibration are confined only to a single line
in a plane perpendicular to the direction of propagation, such light is

called as polarised light.

Example:

Nonpolarized light vibrates in all directions

Horizontal ond vertical components

% S ¥ Vertical

A - through first polonzer
' m’m »~.. And the second

Vertical component

does not pass through

this second polarizer — i

Difference between Polarised and ordinary light:

Polarised light

Ordinary light

1. The vibrations are confined
in a particular direction.

2. The probability of
occurrence of vibration
along the axis of crystal is
not same in all position of
crystal

3. The intensity of light plate
is not same in all position of
the crystal plate.

1. The vibrations of light
particle are not confined in a
particular direction.

2. The probability of
occurrence  of  vibration
along the axis of the crystal
IS not symmetries for all
position of the crystal.

3. The intensity of light plate
Is same in all position of the
plate.

Polarised light:

The resultant light wave in which the vibrations are confined in a
particular direction of propagation of light wave, such light waves are
called Polarised light. Depending on the mode of vibration in a
particular direction, the polarised light is three types




Linearly Polarised /Plane polarised:

When the vibrations are confined to a single linear direction at
right angles to the direction of propagation, such light is called Plane
polarised light.

Plane Polarized Light

The light ray passes
through a filter which has a
single, preferred vibration
direction

Circularly polarised light:

When the two plane polarised wave superpose under certain
condition such that the resultant light vector rotate with a constant
magnitude in a plane perpendicular to the direction of propagation
and tip of light vector traces a circle around a fixed point such light is
called circularly polarised light.

Circular Polarization
The light ray passes
through a filter which
has two vibration
directions, such that
A =1/4A\.

Elliptically polarised light:

When two plane polarised light are superpose in such a way that
the magnitude of the resultant light vector varies periodically



during its rotation then the tip of the vector traces an ellipse such
light is called elliptically polarised light.

Elliptical Polarization

The light ray passes
through a filter which
has two vibration
directions, such that
A= 1/4)\,

Pictorial representation of polarised light:
Since in unpolarised light all the direction of vibration at right

angles to that of propagation of light. Hence it is represented by
star symbol.

- -
- LS
r .
'
Ordinary
light
S S -
nEn-Folarized
-
v
—_—
A/ '«
A
unpolarized
light

In a plane polarised beam of light, the polarisation is along
straight line, the vibration are parallel to the plane and can be

represented by



If the light particles vibrate along the straight line perpendicular
to the plane of paper, then they can be represented by a dot.

v ¥ B ® B % % ¥ ¥

Plane of vibration:
The plane containing the direction of vibration and direction of
propagation of light is called as plane of vibration.

Plane of vibration
A B
- .--_:_{_-- P

y fAE( YA
KT/ '

A
(0 Oy R
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Plane of polarisation:

The plane passing through the direction of propagation and
containing no vibration is called as plane of polarisation.

Since a vibration has no component of right angle, to its own
direction, so the plane of polarisation is always perpendicular to
the plane of vibrations.

Angle between plane of vibration and plane of polarisation is
90°.

Light waves are transverse in nature:

If the light waves are longitudinal in nature, they will show no
variation of intensity during the rotation of the crystal. Since
during the rotation of the crystal, the variation in intensity takes
place, this suggests that light waves are transverse in nature
rather longitudinal.

Production of polarised light:
The polarised light can be produced in four different ways such as
1. Polarisation by Reflection

2. Polarisation by Refraction



3. Polarisation by Scattering
4. Polarisation by Double refraction
1. Polarisation by reflection:

The production of the polarised light by the method of reflection from
reflecting interface is called polarisation by reflection.

When the unpolarised light incident on a surface, the reflected
light may be completely polarised, partially polarised or unpolarised
depending upon the angle of incidence. If the angle of incidence is 0°
or 90° the light is not polarised. If the angle of incidence lies in
between 0° and 90°, the light is completely plane polarised.

The angle of incidence for which the reflected component of
light is completely plane polarised, such angle of incidence is called
polarising angle or angle of polarisation or Brewster’s angle .It is

denoted by ip,.

At i, the angle between reflected ray and refracted or transmitted
ray is /2.

Explanation: To explain the polarisation by reflection, let us
consider an interface XY on which a ray AB which is unpolarised is
incident at an angle equal to polarising angle and get reflected along
BC which is completely plane polarised and the ray BD which is
refracted or transmitted is continues to be unpolarised. The incident
ulpolarised light contain both perpendicular and parallel component
of light.
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The parallel component of light is converted into perpendicular
component and gets reflected from the interface. The parallel
component of light is continues to vibrate and get refracted or
transmitted. As a result of which the reflected component is polarised.

Conclusion:

Hence, the reflected ray of light contains the vibrations of
electric vector perpendicular to the plane incidence. Thus the reflected
light is completely plane polarised perpendicular to plane of
incidence.

Brewster’s Law:

This law states that when an unpolarised light is incident at polarizing
angle ‘1, on an interface separating air from a medium of refractive
index “p” then the reflected light is fully polarized. 1.e. = tani,

To explain Brewster’s law, let XY be a reflecting surface on which;
AB = unpolarised incident light
BC= completely polarized
BD = partially polarized
i, =angle of incidence, angle of polarization

From fig.



<CBY+.DBY=90°
(90° —r')+(90° —r)=90°
= (90° i, )+(90° —r)=90°
= i +r=90°
=r =90 —r
From Snell’s law
_sini, _ sini, _sini

sinr sin(90° —i ) " cosi
Thus the tangent of the angle of polarization is numerically equal to
the refractive index of the medium.
NOTE: We can also prove in case of reflection at Brewster’s angle
reflected and refracted ray are mutually perpendicular to each other.
From Brewster’s law;

sini
We have u=tani, =—>°

cost,

According to Snell’s law;
sini,

sinr
From above equations
sinr =cosi, =sinr=sin(90° —i ) = r=90"-i = r+i, =90°
= 90° — ZCBY +90° — #DBY =90°
= +<CBY+.2DBY=90°
= CB L BD = ~CBD =90°
Thus, it is concluded that at polarizing angle or at Brewster’s angle,
the reflected light and the refracted light are mutually perpendicular to
each other.
2. Polarisation by Scattering:
When a beam of ordinary light is passed through a medium
containing particles, whose size is of order of wavelength of the
incident light, then the beam of light get scattered in which the light
particles are found to vibrate in one particular direction . This
phenomenon is called “Polarisation by scattering”.



Explanation:

Linearly &
polarized
Malecules behave like N
dipole radiators and \
scatter no energy along
the dipole axis.
Unpolarized
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o
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>
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>
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% light
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)
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E A polarized light
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‘-—4
] .
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To explain the phenomenon of scattering, let us consider a beam of
unpolarised light along z-axis on a scatter at origin. As light waves are
transverse in nature in all possible direction of vibration of
unpolarised light is confined to X-Y plane. When we look along X-
axis we can see the vibrations which are parallel to Y-axis. Similarly,
when we look along Y-axis the vibration along X-axis can be seen.
Hence, the light can be scattered perpendicular to incident light is
always plane polarized.

Polarisation by refraction:

The phenomenon of production of polarised light by the method
of refraction is known as polarisation by refraction.
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To explain the polarization by refraction, let us consider an ordinary
light which is incident upon the upper surface of the glass slab at an
polarizing anglei, or Brewster’s angle ¢,, so that the reflected light is

completely polarized while the rest is refracted and partially
polarized. The refracted light is incident at the lower face at an angle

€.

r.

Now,

sinr _ sinr _sinr_

cosr sin(90° —r) sini, Ha Ha

[3 2

Thus according to Brewster’s law, ‘r’ is the polarizing angle for the
reflection at the lower surface of the plate. Hence, the light reflected
at the lower surface is completely plane-polarised, while that
transmitted part is partially polarised. Hence, if a beam of unpolarised
light be incident at the polarizing angle on a pile of plates, then some
of the vibrations are perpendicular to the plane of incidence are
reflected at each surface and all those parallel to it are refracted. The



net result is that the refracted beams are poorer and poorer in the
perpendicular component and less partially polarised component.

Malus law:

It states that when a beam of completely plane polarized light
incident on the plane of analyser, the intensity of the transmitted light
varies directly proportional to the square of the cosine of the angle
between the planes of the polariser and plane of the analyser.

Mathematically,

lacos? @

Proof:

Let us consider a beam of plane polarised light coming from the plane
of the polariser is incident at an angle ‘¢ ’on the plane of the analyser.
The amplitude of the light vector ‘E’ is now resolved into two mutual
perpendicular component i.e. E, =E,cos¢ Which is parallel to the plane

of transmission and g, =g,sine Wwhich is perpendicular to the plane of

transmission. As we are able to see only the parallel component so the
intensity of the transmitted light coming from the plane of the
analyser is proportional to the parallel component only.

Thus,
loaE,> = | =kEZcos? @ =1,cos’6 , Where 1, = kE?

lcos? 6



Which is Mauls law

Double refraction:

The phenomenon of splitting of ordinary light into two
refracted ray namely ordinary and extra ordinary ray on passing
through a double refracting crystal is known as double refraction
Explanation:

To explain the double refraction, let us consider an ordinary
light incident upon section of a doubly refracting crystal

71¢

109 calcite E-ray

iifﬂ cr
HHHH

unpolarized light Osrag

When the light passing through the crystal along the optic axis
then at the optic axis the ray splits up into two rays called as
ordinary and extraordinary ray which get emerge parallel from
the opposite face of the crystal through which are relatively
displaced by a distance proportional to the thickness of the
crystal. This phenomenon is called as double refraction.

Difference between the Ordinary (O-ray)and Extra ordinary

ray(E-ray)

Ordinary ray Extraordinary ray




1.These ray obeys the law of
refraction 2.For ordinary ray
plane of vibration lies
perpendicular to
direction of
propagation
3.The vibration of particles are
perpendicular to the
direction of ray.
4. Plane of polarisation lies in
the
principal plane.
5. Refractive index is constant
along
optics axis.
6. It travels with the constant
speed in all direction.

the

1. These ray do not obey law of
refraction
2.For extraordinary ray the
plane of vibration parallel to
the direction of propagation
3. The vibration of particle is
parallel to

the direction of ray.
4. Plane of polarisation is
perpendicular to

its principal axis.
5. Refractive index varies along
optics

axis.
6.1t travels with different speed
in different direction .But it
travel with equal speed along
optics axis

Double refracting crystal:

The crystal which splits a ray of light incident on it into two
refracted rays such crystal are called double refracting crystal.It

is of two types
1. Uniaxial
2. Biaxial.

Uniaxial: The double refracting crystal which have one optic
axis along which the two refracted rays travel with same
velocity are known as uniaxial crystal

Ex: Calcite crystal, tourmaline crystal, quartz
Biaxial: The double refracting crystal which have two optic axis

are called as biaxial crystal

Ex: Topaz, Agromite




L)

L)

Optic axis: It is a direction inside a double refracting crystal
along which both the refracted behave like in all respect.

Principal section: A plane passing through the optic axis and
normal to a crystal surface is called a principal section

Principal plane:

The plane in the crystal drawn through the optic axis and
ordinary ray or drawn through the optic axis and the
extraordinary ray is called as principal plane these are two
principal plane corresponding to refracted ray

Polarisation by double refraction:

To explain polarisation by double refraction let us consider a
beam of light incident normally through a pair of calcite crystal
and rotating the second crystal about the incident ray as axis we
have the following situations as:

Case 1

When principal sections of two crystals are parallel then two
images O, and E; are seen.
The ordinary ray from the first crystal passes undeviated

through the 2" crystal and emerges as O; ray. The
extraordinary ray (E-ray) from the 1st crystal passes through the
2" crystal along a path parallel to that inside the 1% and
emerges as E; _ray. Hence the image O; and E; are seen
separately.

When the 2" crystal is rotated through an angle 45° with respect
to 1% , then the two new images O, and E, appear .As the
rotation is continued , O; and O, remained fixed while E; and
E, rotate around O, and O, respectively and images are found
to be equal intensities.

When the 2" crystal is rotated at an angle 90° w.r.t 1% the
original images O, and E ; have to vanish and all the new
images O, and E; have acquired the maximum intensity.



< When the 2" crystal is rotated at an angle 135° w.r.t the 1%, four
images once again appear with equally intense.

% When the 2nd crystal is rotated at an angle 180° w.r.t 1%, the O,
and E, vanishes and O, and E;have come together in the centre.

Optic . A Al r I 4
axis 1

DcC
(e) 6 = 180°

This is how we are able to produce the plane polarised light by
the method of double refraction.

Nicol Prism:



It is an optical device made from a calcite crystal for producing and
analysing plane polarised light.

Principle:

It is based on the principle that it eliminates the ordinary ray by total
internal so that the extraordinary ray became plane polarised emerges
out from it. It is based on double refraction.

Construction:

A calcite crystal about the three times as long as the wide is taken .Its
end faces are ground such that the angles in the principal section
become 68° and 112%instead of 71° and 109°.The crystal is cut apart
along a plane which is perpendicular to both the principal section .The
two cut surfaces are ground of polished optically flat. They are then
cemented together by Canada balsam whose refractive index is 1.55
for sodium light and the crystal is then enclosed in a tube blackened

inside.
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Action:



When a ray of unpolarised light is incident on the nicol prism it
splits up into two refracted ray as O & E ray. Since the refractive
index of the canabalsum 1.55 is less than the refractive index of
calcite for the ordinary ray (O- ray), so the O- ray on reaching the
Canada balsam get totally reflected and is absorbed by the tube
containing the crystal while E-ray on reaching the Canada balsam is
get transmitted. Since E- ray is plane polarised then the light
emerging from the nicol is plane polarised in which vibration are
parallel to the principal section.

Uses:
The nicol prism can be used both as apolariser and also an analyser.

When a ray of unpolarised light is incident on a nicol prism, then the
ray emerging from the nicolprism is plane polarised with vibration in
principal section. As this, ray falls on a second nicol which is parallel
to that of 1%, its vibration will be in the principal section of 2" and
will be completely transmitted and the intensity of emergent light is
maximum, thus the nicol prism behaves as a polariser.

Polariser P Analyser A
e,

(a)

If the second nicol is rotated such that its principal section is
perpendicular to that of 1% then the vibration in the plane polarisation
may incident on 2" will be perpendicular to the principal section of
M



Hence the ray will behave as a ray inside the 2™ and will lost by total
reflection at the balsam surface.

If the second nicol is further rotated to hold its principal section again
parallel to that of 1% the intensity will be again maximum then the 1%
prism acts as apolariser and the 2" prism acts as an analyser.

Limitations:
1. The nicol prism works only when the incident beam is
slightly convergent or slightly divergent.
2. The angle of incidence must be confined with 14°.
Quarter wave plate: A double refracting crystal plate having a

thickness such as to produce a path difference of % or a phase
difference of% between the ordinary and extra ordinary wave is called

as quarter wave plate or % plate .

Construction: It can be constructed by cutting a plane from double
refracting crystal such that its face parallel to the optic axis.

Plane polarized ——»4
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Working:



When a beam of monochromatic light incident on the plate it
will be broken up into O-ray and E-ray which will perpendicular to
the direction of wave propagation and vibrating in the direction of
incidence respectively.

Let us consider a doubly refracting crystal

Let t= thickness of crystal plate
u, be the refractive index of the crystal for O-ray

u. be the refractive index of the crystal for O-ray

ut = optical path for O ray
u.t = optical path for E ray

then the path difference between the waves is (x, — u )t
if the plate acts as quarter wave plate ,

then (uo —u )t = N4

A

Ao — He)

This is for positive crystal. The crystal in which the O-ray
travels with a less velocity than E-ray called positive crystal.

=>t=

Optical Axis

For positive crystal Vo (Ve gng #e) 4o
Ex: calcite, tormulaline etc.



The crystal in which the O-ray travels with a greater velocity
than E-ray called positive crystal.
For a-ve crystal and Vo )\Ve anq #e ¢ o

EX: quartz, ice

Optical Axis

t

B 4(ﬂE - /uo)
Uses:

1. It is used for producing circularly and elliptically polarised
light.

g G A = &
N
1

. gt
4 Waveplate

2. In addition with nicol prism it is used for analysing all kind of
polarised light.

Half wave plate
A double refracting crystal plate having a thickness such as its

produces a path difference of A/2  between the ordinary and
extraordinary wave is called half wave plate.



Construction: It can be constructed by cutting a plane from double
refracting crystal such that its face parallel to the optic axis.

Plane polarized —>
light T Optic axis
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Working:

When a beam of monochromatic light incident on the plate it
will be broken up into O-ray and E-ray which will perpendicular to
the direction of wave propagation and vibrating in the direction of
incidence respectively.

FAST
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Let us consider a doubly refracting crystal

Let t= thickness of crystal plate
u, be the refractive index of the crystal for O-ray
u. be the refractive index of the crystal for O-ray
uot = optical path for O ray
u:t = optical path for E ray
then the path difference between the waves is (o — ) t
If the plate acts as quarter plate, then (g — ) t =A/2



2

_Z(ﬂo_ﬂE)

This is for positive crystal. The crystal in which the O-ray
travels with a less velocity than E-ray called positive crystal.

=1t

Optical Axis

For positive crystal Vove gng e ) #o

Ex: calcite, tormulaline etc.

The crystal in which the O-ray travels with a greater velocity
than E-ray called positive crystal.

For a-ve crystal and Vo). gnq #e ¢ o

Ex: quartz, ice

Optical Axis

B 2(pe — 1)
Uses: 1.1t is used in polarimeter as half shade devices to divide
the field of view into two halves presented side by side
2.1t is used to produce the plane polarised light.

ion

aidmiior 272 Waveplate

M4 plate A2 plate




1.1t produces a path difference
of A /4 between O and E wave
2. The light emerging from a A
/4 plate maybe circularly
elliptically or plane polarised.

3. In this case nicol may give a
non zero minimum.

4. It is used for production of all
type polarised light.

1.1t produces a path difference
of A /2 between O and E ray.

2. The light emerging from a A
/2 plates is plane polarised for
all orientation of the plate.

3. In this case nicol may give a
zero minimum always.

4. 1t is used in polarism for
half shade device.

Production and Analysis Polarised Light
1. Production of plane polarised light:

To produce plane polarised light a beam of ordinary light is sent
through a Nicol prism in a direction almost parallel to the long
edge of the prism. Inside the prism the beam is broken upto two

components ‘O’ and ‘E’ ray.

The ‘O’ component is totally

reflected at the Canada balsam and is absorbed.

M
T

The ‘E’ component emerges out which is plane polarised with
vibration parallel to the end faces of the Nicol.

\

2. Production of circularly polarised light:
The circularly polarised light can be produced by allowing

plane-polarised light

obtained from the Nicol to fall normally on a quarter wave plate

such that the




direction of vibration in the incident plane polarised light makes
an angle of 45° with
the optic axis of the crystal.
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Inside the plate the incident waves of amplitude A is divided
INt0 E = Acos45°

O = Asin45° with a phase difference % between them.

Let Acos45°= Asin45° Asin 45%°=a of the axis of x
Let x=asin(wt + %) =acoswt and y =asinwt
Eliminating t from both the equation, we have

x? +y? =a? Which represents a circle.
Hence the light emerging from 4/4 plate is circularly polarised.

3. Production of elliptically polarised light:

The elliptically polarised light can be produced by allowing plane
polarised light normally in a quarter wave plate such that the direction
of vibration in the incident plane polarised light makes an angle other
than 0°,45° and 90° with the optical axis which is 30°.

In this case the incident wave is divided inside the plate into E and O
components of unequal amplitude Acos30° and Asin30° respectively

which emerge from the plate with a phase difference of%.



Optic axis

E-ray travels fast
O-ray travels slow

If we take Acos30°= a and Asin30°= b,then the emerging component
can be written as,

X = asin(wt + %): acoswt and y =bsinwt

Now eliminating ‘t” from both the equation we have

X2

2
?+g—2=1 which the equation of an ellipse. Hence the emerging

light coming from
A/4 plate is elliptically polarised

Analysis of different polarised light:

The whole analysis of different type of polarised light can be
represented in algorithm form with figure as follows:
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VECTOR CALCULUS

The electric field(E), magnetic induction(B), magnetic intensity (H),
electric displacement (D), electrical current density (3), magnetic

vector potential (A)etc. are, in general, functions of position and time.
These are vector fields.

Scalar quantities such as electric potential, electric charge density,
electromagnetic energy density etc. are also function of position and
time. They are known of as fields.

Time Derivative of a Vector Field

If At) >time dependent vector field, then the Cartesian coordinates
A(t) = A, (t) + JA, (1) +KA, (1)

dA_-0A() , A0 LA
dt ot ot ot

Notes: E(Ax é):Axd_B+(d—A)x§
dt dt  dt

Gradient of a Scalar Field

The change of a scalar field with position is described in terms
of gradient operator.

~ OV 0V ~0V
rad =VW=—+|—+k—
grad(V) ™ Jay p=

Where Vv =i

21724k %  isdel operator or nabla
ox "oy o

vV is a vector. The gradient of a scalar is a vector.

Divergence of a VVector Field




The divergence of a vector field Ajg given by

V.A=( J%+k—)('Ax+JA\/+kAz) (Lt g;y e

Q)|Q)

Divergence of a vector field is a scalar.

Notes:

e

» V.(A+B)=V.A+V.B

> V.V A) = (VV). ALV (V.A) where V is a scalar field

> If the divergence of a vector field vanishes everywhere, it is
called a solenoidal field.

» Divergence of a vector field is defined as the net outward flux of
that field per unit volume at that point.

Curl of a Vector Field

The curl of a vector field is given by

0
_I(ﬁAz Ay) (5AA 5AZ) (Ay 5&)

Curl AZ%xK: A
9
3

o P —
o > .

> Curl of a vector field is a vector
> If Vis a scalar field, Aand B are two vector fields, then

e T S

Vx (A+ B) =Vx A+VxB

Vx(V A) = (VV) x A+V (Vx A)
> If curl of a vector field vanishes, then it is called an irrotational
field.

Successive Operation of the i operator




(i)

(ii)

(iii)

Laplacian
NN R . R R . 2 2 2
AR (LA SR S Lk P A
ox "oy o0z ox "oy o0z ox° oy° oz
5 02 2 2 2
v 5_+5_2 5_
ox* oy* or’
This is called Laplacian Operator

Curl of gradient of ascalar
N LV A3V

VV =1 —+ j— +k—
OX oy 0z
Where V is a scalar field
0., N, 0.0V
Vx(VV) =1[(=)(—) - (=) )]+ () () - () (= +K[(—=)(=) = (D) (—
(VW)= '[(ay)(a) (a )(ay)] J[( )( ) ( )( )] [( )(8y) (ay)( )]
I T
-,-?x(ﬁV)zi o 90
OX OX OX
NN
OoX OX ©OX
X (TV) = f(ﬂ_ﬂ) (62\/ 82V)+ (62V azv) 0

o0yoz oroy O0LOX OXOr OXoy  OyoX
Thus Curl of gradient of a scalar field is zero.
Note:

e IfvxA=0, then Acan be expressed as gradient of a scalar

field i.e. A=vv
e Conversely if a vector field is gradient of a scalar then
its curl vanishes.
Diverqence of Curl of a Vector Field

> - a

2 g (A Ay f%\ k&
V.Vx A= (8x+ & a)[(( ) ( ) k( )]
SVxA= 2@ T, LA aAZ) (GAV a/3*)

oy 0z° oy 0z OXx 07 OX

NN 2 82 2 2 62 2
v uxAlOA _OA OA TA TA TA
OX0y  OXor ayaz ayax 0LoX  ozoy
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I.e. divergence of curl of a vector is zero.

Conversely, if the divergence of a vector field is zero, then
the vector field can be expressed as the curl of a vector.

> o5 >

(V)  VxVxA=V(V.A)-V?A

V) V.(AxB)=B.(VxA)—A.(VxB)

Line Integral of a Vector
The line integral of a vector field between two points a and b,
along a given path is

b, o
I, =[Ad

dl > elemental length along the given path between a and b.
The line integral of a vector field is a scalar quantity.

I, :T (A, + JA, +KA,).(idx + jdy + kdz) :T (Adx+Ady+Adz)

Notes:
> If the integral is independent of path of integration between a
and b, then the vector field is conservative field.

> The line integral of a conservative field A along a closed path
vanishes

i.e.fjA.di =0
» In general, the line integral depends upon the path between a
and b.

Surface integral of a Vector
The surface integral of a vector field A, over a given surface s is
I, =[Ads

S

Where ds —elemental area of surface S



The direction of dsis along the outward normal to the surface.
Writting ds=nds, where a is unit vector normal to the surface at a
given point.
SO I,=[Ads=[Ands=[Ads

S S n

where A —An, normal to the component of the vector at the area

element.

So, surface integral of a vector field over a given area is equal to
the integral of its normal component over the area.

Surface area of a vector field is a scalar.

Example: ¢. = [E.ds

Volume integral of a Vector
The volume integral of a vector field Aover a given volume V is
|, = [ Adv

\

Where dV is the elemental volume (a scalar)

Volume integral of a vector field is a vector.

Gradient, Divergence and Curl in terms of Integrals

The gradient of a scalar field ¢ is the limiting value of its surface

integral per unit volume, as volume tends to zero

. ) [j]¢ds
l.E.Vg=lim
aV—0 AV

The divergence of a vector field A is the limiting value of its
surface integral per unit volume, over an area enclosing the
volume, as volume tends to zero.

L fka

A A= lim &
AV—0 AV

The curl of a vector field is the limiting value of its line integral
along a closed path per unit area bounded by the path, as the area
tends to zero,
Ax A= lim

AS—0  AS
wherenis the unit vector normal to the area enclosed.




Gauss Divergence Theorem

The volume integral of divergence of a vector A over a given
volume V is equal to the surface integral of the vector over a closed
area enclosing the volume.

[V.Adv =[] AdS

\Y S

This theorem relates volume integral to surface integral.
Stokes Theorem

The surface integral of the curl of a vector field A over a given
surface area S is equal to the line integral of the vector along the
boundary C of the area

[(Vx A).dS =[fjAdr
S C

For a closed surface C=0. Hence surface integral of the curl of a
vector over a closed surface vanishes.
Green’s Theorem
If there are two scalar functions of space f and g, then Green’s
theorem is used to change the volume integral into surface integral.
This theorem is expressed as

j(fvzg—gvzf)dv=j(ng—gi)ds

\Y S

V- volume enclosed by surface S.

Electric Polarization (P )

Electric polarization P is defined as the net dipole moment ( p)
induced in a specimen per unit volume.

po N
Il
<|lo!

Unit is 1 coul/m®
The dipole moment is proportional to the applied electric field.

SO p=c«E, a — proportionality cons tant, known as polarizability



If N is the number of molecules per unit volume then polarization
IS given by

B:NaE

Electric Displacement Vector b

The electric displacement vector Dis given by

where is the p polarization vector

- = ampere xsec

In linear and isotropic dielectric,
P S )
Comparing equations (1) and (2), we get

- -

& E=P+gE
=P=g(s, -1)E

Electric Flux (¢g)

The number of lines of force passing through a given area is known as
electric flux.
It is given by

P =

7 L S—
mi
3.

N x m?
Coul

Unit of flux-1

Gauss’ Law in Electrostatic:
Statement: The total electric flux (¢g) over a closed surface is equal to

1 times the net charge enclosed by the surface.

&y

g = [E.dS = e
S

&o

Here S is known as Gaussian surface.



In a dielectric medium Gauss’ law is given by

¢E:IE.d§:%
S

¢ - Permittivity of the medium.
In terms of displacement vector Gauss’ law is given by

¢E = I Bd—é = Qet
s

Notes:
» The charges enclosed by the surface may be point charges or
continuous charge distribution.
» The net electric flux may be outward or inward depending upon
the sign of charges.
» Electric flux is independent of shape & size of Gaussian
surface.
» The Gaussian surface can be chosen to have a suitable
geometrical shape for evaluation of flux.
» Limitation of Gauss’ Law
(@)Since flux is a scalar quantity Gauss’ law enables us to find
the magnitude of electric field only.
(b) The applicability of the law is limited to situations with
simple geometrical symmetry.

Gauss’ Law in Differential form

Gauss’ law is given by
[E.ds = T

S &
For a charge distribution

Oret = Ip dv where p — volume charg e density
\

Using Gauss divergence theorem
JE.dS=[V.Eav
S \Y

So ijpdV:ﬁ.Edv
\%

v



Or [(v.E-2)dv =0

E=£
&o

This is the differential form of Gauss’ law.
Magnetic Intensity (H) and Magnetic Induction (g)

The magnetic intensity (H)is related to the magnetic field induction
(8)by

<!

=

N

(H)=L)

Ho
Unit: in SI system (H)is in amp/m and (B)in tesla.
Magnetic Flux ()

The magnetic flux over a given surface area S is given by
(4) = [B.dS = [ BdS cosx

where «a — angle between magnetic field § and normal to the surface
Unit of flux: 1 weber in SI
1 maxwell in cgs(emu)
So 1T=1 weber/m’
1 gauss= Imaxwell/cm?
Gauss’ Law in magnetism
Since isolated magnetic pole does not exist, by analogy with Gauss’
law of electrostatics, Gauss’ law of magnetism is given by

fB.ds =0
S

Using Gauss divergence theorem

fB.dS=[V.BdV =0

S \%

= %g =0
This is the differential form of Gauss’ law of magnetism.
Ampere’s Circuital law




Statement:-The line integral of magnetic field along a closed loop is
equal to pytimesthenetelectriccurrentenclosedbyloop.

-

fB.di = sl
C

Where 1 — netcurrentenclosed by the loop

c —closed path enclosing the current (called ampere loop).

In terms of magnetic intensity

—

gjﬁ.d|=|
C

Ampere’s Law in Differential form

Ampere’s law is

—

JBudl = gl =memmmmemm e (i)

Using Stoke’s theorem, we have

Using (ii) and (iii) in equation (i) we have
j(ex g)d; = ,uojjdz :I(yo E)CTS
= VxB= i, J
This is Ampere’s circuital law in differential form.

Faraday’s Law of electromagnetic induction




Statement :-The emf induced in a conducting loop is equal to the
negative of rate of change of magnetic flux through the surface
enclosed by the loop.

So from the above

N

- or2>
E.dl=——|B.d
Jed=gle

This is Faraday’s law of electromagnetic induction in terms of Eand

—

B

Differential form of Faraday’s Law

Now using Stokes’ theorem



N

Or  [(VxE+Z2).ds-0
) o

N
- >

= VxE+ﬁ:O
ot

This is differential form of Faraday’s law electromagnetic
induction.

Equation of Continuity

The electric current through a closed surface S is

N

Izmj.ds
S

Using Gauss divergence theorem

RN

| =[fid.ds = [V.J dV =emmmemmmmenes (i)
S \%

Where S is boundary of volume V.

Now | =—Zt—q — rate of decrease of charge fromthevolumethroughsurface S
= | —ij VA L2V —— (i)
oty v ot

From (i) and (ii)

- > 6,0
JdVv =—|—=—=dVv
[riov=T5

= [(v.3+%Pyav =0
ot

<e—,

.3+8—:O
ot

<!

=

This is equation of continuity.

Displacement Current




Maxwell associated a current (known as displacement current) with
the time varying electric field.

A parallel plate capacitor connected to a cell is considered.
During charging field E between varies.

Let g— instantaneous charge on capacitor plates.
A— area of each plate

We know that the electric field between the capacitor plates is

-9
A

dE _ 1 dq
dt eoAdt

dE dq

EA—=—
dt dt

= 1, =gOA(jj—|f where 1, —displacement current between the plates

|4 exists till E varies with time.

In general, whenever there is a time-varying electric field, a
displacement current exists,

I :gogj.ﬁ.&:go%
S

Where 4. is electric flux.

Modification of Ampere’s circuital law

Taking displacement current into account Ampere’s Circuital law is
modified as

[Cﬁ (1+1,)



This law is sometimes referred as Ampere- Maxwell law.

The corresponding differential form is given as,

_ o[- oE
VxB= J+e —
u{ oat}

By using
B

&E=D,—=H
Ho

—

Here ¢ % = J, — displacement current density

Distinction between displacement current and conduction current

Conduction current Displacement current
(i) Due to actual flow of| (i) Exists in vacuum or any
charge in conducting medium even in absence of
medium. free charge carriers.
(i) It obeys ohm’s law. (i) Does not obey ohm’s law.
(iii) Depends upon V and R (iii) Depend upon € and Z_’j

Relative magnitudes of displacement current and conduction current

Let E =E,Sinwt —alternating field
Then current density
J =cE =cE,Sinot ————————— (i)

Displacement current density

J, =80%=80§(E08ina)t)=a)goE0COSa)t ————————— (ii)




Thus there is a phase difference of%between current density and
displacement current density.

The ratio of their peak values

(J)max O-EO _ o

(34),m C we,E, ws,

It means this ratio depends upon frequency of alternating field.

Notes:

. R 19
e [or copper conductor the ratio is ~ 107
a

e For £>10%°° Hz, displacement current is dominant. So normal
conductors behave as dielectric at extremely high frequencies.

Maxwell’s Equations

The Maxwell’s electromagnetic equations are

S T - (1)
V.B=0 e (2)
- a__@ __________________
VxE=—— (3)
> > 66 -

VXH—E—J (4)

Notes:

» Equation (1) is the differential form of Gauss’ law of

electrostatics.
» Equation (2) is the differential form of Gauss’ law of

magnetism.
» Equation (3) is the differential form of Faraday’s law of

electromagnetic induction.



» Equation (4) is the generalized form of Ampere’s circuital law.

» Equations (2) and (3) have the same form in vacuum and
medium. They are also unaffected by the presence of free
charges or currents. They are usually called the constraint
equation for electric and magnetic fields.

» Equations (1) and (4) depend upon the presence of free charges
and currents and also the medium.

» Equations (1) and (2) are called steady state equations as they do
not involve time dependent fields.

Maxwell’s Equations in terms of E and B

VE=Z e (1)

o
V.B=0 e (2)
oo 9B
VXE__E (3)
exé_ﬂg%z,ﬁ ------------------- (4)

In absence of charges

VE=0 e (1)

V.B=0  mmeeeemmemeee- (2)

- > ag

VxE+—==0 (3)
- - 6E

Vx B—,uogog—o (4)

Maxwell’s Equations in Integral Form

T YA (1)

& v




fB.ds=0 e (2)
[Edi=-2fBdS e 3)
C at S
> E
E[B. I /uo.!( +gog (4)
Physical Significance of Maxwell’s Equation
(i) Maxwell equations incorporate all the laws of

(ii)
(iii)
(iv)

(V)

electromagnetism.

Maxwell equations lead to the existence of electromagnetic
waves.

Maxwell equations are consistent with the special theory of
relativity.

Maxwell equations are used to describe the classical
electromagnetic field as well as the quantum theory of
interaction of charged particles electromagnetic field.
Maxwell equations provided a unified description of the
electric and magnetic phenomena which were treated
independently.

Electromagnetic Waves

Wave Equation of electromagnetic wave in free space

In vacuum, in absence of charges, Maxwell’s equations are

VE=0 e (1)
V.B=0 e (2)



oE

Vx B :,UOEOE --------------

Taking curl of equation (3)

N

VxVx E =—3x@:—é(§x§)
ot ot

Using equation (4)

- 5, OE 52 E
VXVXE:_&(%,UOE)Z_SO,UO?
- > - - 2_)

= V(V.E)—VZE:—gOyO%t—E

-

. -> > > - 62 E
Sincev(v.E) =0, szng%?
Taking ol :Ciz,where ¢ — velocity of light
g 2%
We have sz=126 ZE
c” ot

This is the wave equation forE.

Now taking curl of equation (4)

> o5 o> -

B - LD

Using equation (3)

0B 5°B
(—E) ==&l ?

- o> - 0

VxVxB :go,uoa

- o o - azg
= V(V.B)—Vsz—goy()?



- = - - 2_>
Sincev(v.B) =0, VZB:(S‘O,uO@at—B

2

Taking Eolly = Ciz,where ¢ — velocity of light

1B
2

We have v?B==2_
c ot

This is the wave equation fors.

The general wave equation in vacuum can be written as

VY =

129
¢ ot

N

Where ¥ -E or B

For charge free non-conducting medium, the general equation will be

1029
2

VY = -
ve ot

&l :Viz,where v — velocity of light in medium$S

Magnetic Vector Potential

The vector potential in a vector field is defined as when the
divergence of a vector field is zero the vector can be expressed as the
curl of a potential called vector potential (A).

We know that  v.B=0 (Maxwell equation)
Then B=vxA (asdiv.ofcurl of avector is zero)

The vector Ais called magnetic vector potential. The vector A can be
chosen arbitrarily as addition of a constant vector or gradient of a
scalar do not change the result.

Scalar Potential




The scalar potential in a scalar field is defined as when the curl of a
field is zero the vector can be expressed as the negative gradient of a
potential called scalar potential ().

We have  VxE = —% (Maxwell’s equation 3)
Puttinge=vxA in above we get

%xE:—é(ex K)

IS

:6{@%}0
ot

We know that curl of grad of a scalar is zero. So we can write

—

= O0A < . i .
E+ X —V¢ where gisascalar functioncalled the scalar potential .

So E:—@—%
ot

—

For atimeindependent field %t—Azo; SO

E=-Vg hereg—electrostatic potential

Wave equation in terms of scalar & vector potential

Let us consider the Maxwell’s equations,

In free space and absence of
charge

Writing E :—V¢—% . A —>vector potential



We have

I oA

-5 vo- 20
2. 0 (5%

orv ¢+5(V.A)=O

Using Lorentz gauge condition

—_——

FA-- 170
ot

We have V%—%a—qj =0

This is the wave equation in terms of scalar potential.

OA
Putting E=-V¢——
g ¢ p

B=VxA inequation (2) we get
§x(§><A) go,uoa( ¢——]

== o o*A

= V(V.A)-V*A= g, — (v¢) oty
Y 0 - &°A

:V(V.A+go,uo a—szva—go,uO?

The LHS vanishes by Lorentz gauge condition.

2
So VZA—EO/JOaat—;A=O

This is the wave equation in terms of vector potential.

Lorentz gauge potential

V2 A+ %% =0 (Lorentz gauge condition)
C

V.A=0 (Coulomb gauge condition)

Transverse nature of elecromagnetic wave




The plane wave solution of wave equation for E and Bare
E(rt)=eEe® ™ ——mmmmm 1)
B(r.t)=bBe™ )~ (2)

where e,b — unitvector along E and B respectively.
E,, B, — amplitudes of E and B respectively.

k — wave propagation vector
@ — angular frequency

Using V.E=0in equation (1) we have
V. e =0

= eV Eg“ |+ Ve[ B |=0

fas 9.(vA)=(W) A+ A

Since ¢ constant, v.¢=0

e V[ B =0

or eikEe' ™ =0

Since E, #0, €' 20,

This shows the transverse nature of electric field.
Similarly, from Maxwell’s equation

V.B=0

We have

v, BB | =0

BT[R5 Bt 0] =0

Since b - constant, v.5=0



Bﬁ[BOei(R.Lm)J -0
or bikBe®" =0

Since B, #0, e »0,

This shows the transverse nature of magnetic field.

Mutual orthogonality of E, B and k

Now from Maxwell’s 3™ equation we have

Vx [éEoei(R.F—a)t)] —_ % [BBoei(lz.F—wt)]

Using vx(AV) =V (VxA)+(VV)x A, We have

Ux[EE 7] = E /7 (Vx 8) + [V(E,e * )] x 6
Since e is a constant unit vector, (vxe)=oand
V(E,e®" ) = E ke *" - we get

Vx[EE 0] = E, ke % x 8 = E,je! 0 (K x¢)

Now %[BBOe“R'F‘”‘)] = bB, g{e““ﬂ)} =bB,e'*" (—iw)
Then from egn. 5

Egie' " (K xe) = —bB,e'* (~iw) = bByice!

= E, (K xe) = BBOa)

B,
EO

:>(|Zxé): b

So b is perpendicular to bothk and e.

Thus electric field, magnetic field and propagation vector are
mutually orthogonal.



Relative magnitudes of E and B

Now taking magnitudes

‘(Exé)‘ =

By
EO

B,

=k=

> — =
0

EO
E %:c, where ¢ — velocity of light

1

\ oo

Now using B, = «,H,

C=

_H_o
0

E, e 1
=0 = o C= pty———="2
H, VHeEy &

The quantity z,has the dimension of electrical resistance and it is
called the impedance of vacuum.

Phase relation betweenE and B

In an electromagnetic wave electric and magnetic field are in phase.

Either electric field or magnetic field can be used to describe the
electromagnetic wave.

Electromagnetic Energy Density

The electric energy per unit volume is

uE=%E.B= gE? Q

N[

The magnetic energy per unit volume is

Ug=2B.H =ZuH? ——ommm- @



The electromagnetic energy density is givenby

Uewm :%(5E2 +uH?)
Invacuum

1
Uewm =E(‘5‘0E2 +4H?)

Poynting VVector

The rate of energy transport per unit area in electromagnetic wave is
described by a vector known as Poynting vector (s ) which is given as

W

Ex
Y7

S=ExH =

Poynting vector measures the flow of electromagnetic energy per unit
time per unit area normal to the direction of wave propagation.

Waztt in SI.
m

Unit of s -1

Poynting Theorem

We have the Maxwell equations

LHS = V.(ExH)



- - o 2
H. O_B_ H .M=g(ﬂ)
ot ot 2

Similarly
> oD > a(gE) 0 cE?

E'at ot at(z)

Then from (iii)

> o o 0 gEZ ﬂHZ - -

V.(ExH)=—— -E.J

(ExH)=-2(=-+—)

= v.g=-Qem g B2 uH’
Ty & aSExH =5 and ug, =‘= +#

2 2

This is sometimes called differential form of Poynting theorem.

Taking the volume integral of above

[v Sdv = jﬂdv jE.jdV
\

Using Gauss divergence theorem to LHS we have

—

fsd A= jﬂdv jE.de
A \

This represents Poynting theorem.

LHS of the equation — rate of flow of electromagnetic energy
through the closed area enclosing the

given volume

1% term of RHS - rate of change of electromagnetic energy in
volume

1% term of RHS — work done by the electromagnetic field on the
source of current.



Thus Poynting theorem is a statement of conservation of energy in
electromagnetic field.

In absence of any source, J=0

ey _

then §§+ =0

This is called equation of continuity of electromagnetic wave.

Poynting Vector & Intensity of electromagnetic wave

Since E and H aremutually perpendicular

—

S EB

—EH=—
Y7

Here E and H are instantaneous values.

SinceEand I—T arein phase

E_E_
H H, *
2
or S:E—
uc

If E =E,sinat, thenaveragevalueof Poynting vector is
EZsin® ot 2
<S>=< 0 >= E

HC 2uc

2

S> _ ceky

as<sin2a>t> :%

E
_ 2 _ 0
=c¢E askE, . =—&

rms \/E

The average value of Poynting vector is the intensity (I) of the
electromagnetic wave,

—

| = <S> =ceE?

rms



QUANTUM PHYSICS
Need for quantum physics: Historical overview

> About the end of 19" century, classical physics had attained
near perfection and successfully explains most of the observed
physical phenomenon like motion of particles, rigid bodies, fluid
dynamics etc under the influence of appropriate forces and leads
to conclusion that there is no more development at conceptual
level.



» But some new phenomenon observed during the last decade of
19" century which is not explained by classical physics. Thus to
explain their phenomena a new revolutionary concept was born
which is known as Quantum physics developed by many
outstanding physicists such as Planck, Einstein, Bohr, De
Broglie, Heisenberg, Schrodinger, Born, Dirac and others.

> The quantum idea was 1% introduced by Max Planck in 1900 to
explain the observed energy distribution in the spectrum of
black body radiation which is later used successfully by Einstein
to explain Photoelectric Effect.

» Neils Bohr used a similar quantum concept to formulate a model
for H-atom and explain the observed spectra successfully.

» The concept of dual nature of radiation was extended to Louis
De Broglie who suggested that particles should have wave
nature under certain circumstances. Thus the wave particle
duality is regarded as basic ingredient of nature.

» The concept of Uncertainty Principle was introduced by
Heisenberg which explains that all the physical properties of a
system cannot even in principle, be determined simultaneously
with unlimited accuracy.

» In classical physics, any system can be described in any
deterministic way where as in quantum physics it is described
by probabilistic description.

» Every system is characterized by a wave function y which
describes the state of the system completely and developed by
Max Born.

» The wave function satisfies a partial differential equation called
Schrodinger equation formulated by Heisenberg.

» The relativistic quantum mechanics was formulated by P.A.M.
Dirac to incorporate the effect of special theory of relativity in
guantum mechanics.

In this way, this leads to the development of quantum field
theory which successfully describes the interaction of radiation



with matter and describes most of the phenomena in Atomic
physics, nuclear physics, Particle physics, Solid state physics
and Astrophysics.

The Quantum Physics deals with microscopic phenomena
where as the classical physics deals with macroscopic bodies.
All the laws of quantum physics reduces to the laws of classical
physics under certain circumstances of quantum physics are a
super set then classical physics is a subset.

I.e., lim,,_,, Quantum physics = Classical physics

lim Classical physics = Quantum physics

n—>00

PARTICLE ASPECTS OF RADIATION

The particle nature of radiation includes/are exhibited in
the phenomena of black body radiation, Photoelectric effect,
Compton scattering and pair production.

BLACK BODY RADIATION

> A black body is one which absorbs all them radiations
incident on it.

» The radiations emitted by black body is called black body
radiation.

» The black body emits radiation when it is heated at a fixed
temperature and it contains all frequencies ranging from
zero to infinity.

» The distribution of radiant energy among the various
frequencies components of the black body radiation
depends on its temperature.

The energy distribution curve for black body radiation
shows the following characteristics such as
v At a given temperature the energy density has
maximum value corresponding to a value of
frequency or wavelength.




v’ The frequency corresponds to maximum energy
density increases with increase of temperature.

v' The energy density decreases to zero for both higher
and lower values of frequency or wavelength.

v' The energy density corresponding to a given
frequency or wavelength increases with increase of
temperature.

Many formulations are formulated to explain the above
experimental observations like Stefan-Boltzmann law,
Wein’s displacement law and Planck’s radiation formula.
Out of which Planck’s radiation formula successfully
explains the facts of black body radiation.

PLANCK’S RADIATION FORMULA

According to Planck the black body was assumed to be cavity
which consists of a large no. of oscillations with frequency v and
the empirical formula for energy distribution in the spectrum of

black body radiation is given as

8mhv3 1
u(v)dv = —— o dv
(1)
8mh
u(D)dA = 22— dA 2)
In low frequency,
Lim(v— 0) [v= % dv = ;—;'dz = A—id/l]

r.ev—> 0

th/kT — 1 _I_ﬂ

kT



gmvd 1
Therefore, u(v)dv = —; T
2
u(v)dv=""-kTdv

which is called Rayleigh-Jeans law.
In high frequency lim(v— o)

. hv
Lev — 00, — 00,e™/KT — 1 = ghv/kT

v Therefore, u(v)dv =
T=5500K R
800 |- 8mhv3 —hv/KkT ) )
- — e dv, which s
__ 600 [ . .o
E O called Wein’s radiation formula.
< 400 -
200 -—
0 f YR
0 500 1000 1500 2000
A [nm]
8 !
= N Rayleigh-Jeans
& I : 2 :
g h Weins formula
o
B |
g 1
0 1x¢10'} 2X310M 3X10'"  4x10™

Frequency, v (Hz)



PHOTOELECTRIC EFFECT
The phenomenon of emission of electron from surface of certain

substance when a light of suitable frequency or wavelength incident
on it is called Photoelectric effect.
Experimental Arrangement

The experimental arrangement consists of the following parts.
(m anachrom atic j
light zource

evacuated fube

Ammeter
4+

glectrode A electrode B

direction of

positive current (—_—W
|:";;~, |

—|— -

|. Woltm eter ]

Experimental results are represented graphically as follows

Threshold Frequency

/e

4 F
,  Frequency

/
4

Stopping Potential




Current
High intensity

Low intensity

Applied potential
difference

photoelecrton
current (l)

>

intensity of incident EMR
(number of photons/second)

Photo electric
Current

Saturated Current

Effect of frequencies

Laws of Photoelectric effect

» It is an instantaneous process.
> It is directly proportional to intensity of incident light.

» Photocurrent is independent of frequency of incident light.



» Stopping potential depends upon the frequency but independent
of intensity.

» The emission of electrons stops below certain minimum
frequency called threshold frequency.

» Saturation current is independent of frequency.

Einstein’s Theory of Photoelectric Effect

According to Einstein, when light of frequency v is incident on a
metallic surface, each photon interacts with one -electron and
completely transfers its energy to the electron, this energy is utilized
in two ways.
I. A part of this energy is used to the free electron from the atom
and away from the metal surface n overcoming the work
function(W).

il.  The other part is used in giving K.E to the electron (%mvz).

Thus according to the law of conservation of energy,
hv = %mv2 + W,
(1)
of the frequency of the incident light v, is required to remove the
electron, then
hvy = W, (2)

using eq" (2) in eq"(1), we get

hv = Emvz + hv,



h(v —vy) = %mv2

3)

Calculation of stopping Potential (v,)

To neutralize the K.E of the emitted electron, we have

1
Emvz = eV,

(4)
Using eq" (4) in eq"(1), we get
hv = eV, + W,

implies that Vg = gv - %

(5)

Stopping

Potential Vg

Slope= h/e

en f
Frequ
wW. / q cy

Calculation of threshold frequency

We have

h W,
Vo ==V ——
e e

We have



Wo _ Wo
e/h eh
(6)
Substituting eq"(2) in eq"(6) we get.
Y —intercept hv,
h ~h

—interceptin
=y, = y ; ptiny,

Vo

Calculation of work function

_W .
2 if we

From the plot of vo~v we have slope of the done is

multiply ‘e’ with the intercept, we get

W
— X e =W,
e
e Wy, =y — intercept invy~v X e

Calculation of Planck Constant (h)

If we multiply the slope of plot of stopping potential vy~v with ‘¢’

we get ‘h’
e h = slope of vo~Vv X e
h
h=—-Xe
e

Q. Is wave nature of radiation successfully explains the Compton
effect? Justify your answer.
Ans. No

Compton effect




The phenomena in which a beam of high frequency radiation like x-

ray &y-ray is incident on a metallic block and undergoes scattering is

called Compton effect.

The component whose wavelength is same as that of incident
radiation is called unmodified line (Thomson component)

The component whose wavelength is greater than the incident
wavelength is called modified line (Compton component)

The increase of wavelength in the Compton component is called
Compton Shift (AL).

It depends on the angle of scattering (angle between the
scattered & incident x-ray).

It is independent of the wavelength of the incident x-ray.

Scattered
photon, A’ tr
S A\)\\J w
Incident photon, ~ DN o
AN A AL P |
"""" TR BT S e R
N |
\\ 7 @
Scattered ™o,

electron

*Wave nature of radiation is unable to explain Compton shift as the

Compton shift depends on angle of scattering and wavelength of

scattered x-ray is different from that of the incident x-rays.

Comptons Explanation:-




Let us consider a photon of energy hv collide with an electron which
is at rest. Though the electron is closely bound with the nucleus, but a
small fraction of energy is used to free the electron. During the
collision the photon gives a fraction of energy to the free electron and
the electron gain K.E and recoils at an angle ¢ to the incident photon
direction after collision and the photon with decrease energy hv' will

emerges at an angle 0 to the initial direction after collision.

] .\k\‘:{‘: J = h i_f.
E=mye™ * p=hv'lec
incident Ejlmhm p=>0 g

E = hy @
p=hvle target
electron : 3 4. 338
E=~/mge +p-ec”
p=p
scattered -

electron

Applying law of conservation of energy, we have
hv + myc? = hv' + mc? (1)

The relativistic variation of mass is given as

mo

/1—”2/(:2 @

According to law of conservation of momentum,

hv_I_O:hw

m =

— — cosf + mvcosg (3)

=>0+0 =%sin0—mvsinq§

(4)

From equation (3)



mvccos ¢ = hv — hv' cos

()

and from equation (4)
muvcsing = hv'sin 6
(6)
Squaring and adding equation (5) and (6) we get
m?v?c? = (hv — hv' cos )% + (hv'sin 0)?
=h2v? — 2h?v' cos 0 + h? v'?cos?6 +
h?v'%sin?0
= h?v? — 2h?vv'cos@ + h?V'?
=> m2v2c? = hK2(v2 +v'* — 2w'cos0) (7)
From eq"(1), we get
mc? = h(v —v') + myc?
=>m?c* = h2(v2 = 2w’ +v'?) + 2h(v — v)mgc? + m3c*  (8)
Subtracting eq"(7) from eq"(8)
m?c* — m?v?c? = —2h?vv'(1=¢059) L 2h(v — v I)myc? + m3c*
=> m?c?(c? — v?)
= —2h?*wW'(1 — cos8) + 2h(v — v')mgc? + mic*
mic?
-V,

= mgc* =—2h*vv'(1-cos @)+ 2h(v —v')m,c? + mic*

=

(¢? —v?)==2h*vv(1-cos 6) + 2h (v —v")m,c® +mec*

= 2h(v—v")mc? =2h*vv'(1-cos§)



:g—gzl(l—cose)
v' v mg

—a-a="(1-cos0)
m,C

= Ai=2,(1-cosd)

Where Al=1'-1

=Compton shift

A = mlc =Compton wavelength
0

6.62x107**JS
-31 8 m
(9.11x10 kg)x(3x10 A)
=2.426x10"?m
A, =0.0242A°

2. =has dimension of length

* The Compton wavelength for any other particles is

* When o¢=0[a1=0/]=There is no scattering or Compton shift

along the incident direction.

9:%’ A=,

0 = z,AL =22 (Maximum shift)

Pair Production:

The phenomenon in which some y-rays are converted into electron-

positron pair on passing near an atomic nucleus is called Pair

production.



Atonuc¢ 8 "’v"
Nucleus \
,/\\
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- |
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Incident photon Sseeo
(Energy) AR f

Pair Production - Energy Converstion to Mass

> It is an example of conservation of energy and momentum in the
nature.

» Pair production is not possible if the y-rays are treated as EM
waves for which the pair production is not possible in vacuum.

» For pair production the suitable condition is hv >2m.c?.

» The minimum frequencyv,of y-rays for which hy, =2mc?and the
pair production takes place is called threshold frequency.

* Pair production takes place for high frequency EM wave. (y-ray)
Compton effect takes place for intermediate frequency value. (x-
ray)

Photoelectric effect takes place for frequency corresponding to
UV-waves.

Matter waves and De-Broglie Hypothesis

The waves associated with all material particles are called Matter

waVves.



According to De-Broglie hypothesis, the wavelength A of
matter wave associated with a moving particle of linear momentum P

IS given by

or, | 1=—

For a non-relativistic free particle of kinetic energy E, we have
_P

~2m

= P=+2mE

h

¢2mE

E

SA=

If g=charge of a particle
m=mass of the particle

V=potential difference

2
Then,g—m:qv: P = f2mqv

h

ajquv

If T=absolute temperature, then

2
P T = p=amkT
2m 2

SA=

h

\/3ka

For a free relativistic particle,

= A=




* Experimental confirmation of matter wave was demonstrated by
Davision-Germer experiment.

* The wave nature of electron was demonstrated by division and
Germer.

Heisenberg’s Uncertainty Principle:

It states that it is impossible to measure simultaneously the position
and the corresponding component of its linear momentum with
unlimited accuracy.

If Ax=uncertainty in x-component of the position of a particle

Apy= uncertainty in x-component of its linear momentum
h
then, Axap, 2=
Similarly for y and z-component
n n
AYIAp, > —, AZlAp, > —
yOAD, = =, AZIAD, > o

Again uncertainty in energy and time is given by

AtLAE > h
2

Application of the uncertainty principle:

I.  Ground state enerqgy of harmonic oscillator

The energy of the 1-D harmonic oscillator is given as

_ 1 2,2
E—2m+2ma)x (1)



Let us assume that in the ground state, the linear momentum P and
position x of the oscillator are of the order of their uncertainties.

l.eAP PandAx( x

According to principle

h
AX.AP, > —
Py 5

= AX.Ap, U A
= pxUn

h

Using eq"(2) in eq"(1),we get

2
E= Z:ixz +%ma)zx2 (3)

Since the energy E of the oscillator is minimum in the ground state, so

5.
OX Jyex,y

(an —i? )
=0=— =—— +Mo"X,
OX Jyex,  MXg

:Xézi (4)

Mo

Where x,corresponds to the ground state.
Using eq" (4) in eq" (3), we get
E0=h+2+1ma)2i=ha) (5)
2m(hj 2 Mo
M

Thus the minimum energy of 1-D harmonic oscillator cannot be zero.

Il.  Non-existence of electron in the nucleus




Let us assume that the electron is inside the nucleus whose
uncertainty in position is given as

Ax[110™m
From the principle
n
AXAp —
P32
-34
— poapn g 562x107 s _53x102KgM
2AX  2x2x3.14x107"'m S

The minimum energy of the electron in the nucleus is

E = (mZc* + pic?
= {(9-1><10‘31kg ) (3x10° %)4 +(5.3x1o-21 "9‘%)2 «(3x10° f%)z}

e

E=1.6x10"J =10MeV

As energy of the electrons emitted in f-decay process is much less
than this estimated value, so the electrons cannot be a part of the
nucleus.

ii.  Ground State energy of the H-Atom
The energy of the H-atom is given as

2 2

_pP__¢
2m A4reyr

1)

Let Ar—Uncertainty in position of the electron in the orbit of radius r
in the ground state.

Ap — Uncertainty in momentum of the electron in the ground state.

Then using principle,

fi
Ar.Ap > —
P 2

= Ar.Apllh
=r.plh



= pD? (2)
Now using eq" (2) in eq" (1), we get

E- h? _ e’ (3)

2mr?®  4reyr

As the ground state energy Ey is minimum, so

(@_E) o
or oy

—h? e
= st 2 =0
mr° A4re,r
r=ry

Are i’

;
0 me?

Thus eq" (3) becomes,

me*

° T 3247 el

Examples:

1) Heisenberg’s gamma-rays Microscope:
If Ax be the uncertainty in position of the electron decided by

Resolving power of the microscope, then
1.222
2sin@

AX=R.P=

",
*,

by
Objective
Z /{ ;"!x'f; / 'T?—_J-—f
I

Electron



As the scattered y-ray photon enter the objective of the microscope, so
its linear momentum can be resolved into component along its x-axis
which is given as,

2h .
Ap, =—sSing
P A

X

According to principle,

1224 20 o =1.20
2sin@ A

- [53,=1

Which agrees with the uncertainty relation.

AX.Ap, =

X

2) Electron Diffraction:
Let a be the width of the slit through which the electron beam is
diffracted along y-direction. Then diffraction condition is,
asing =14 (1)

l

Let apbe the uncertainty in momentum along y-direction, then
Ap, =2psin@ (2)
Now multiplying eq"(1) and eq"(2), we get

Ay.Ap, =a(2psing)=2p(asino)



:2p/1:2p.2:2h
p

h
= |Ay.Ap, 2 >

which satisfies the uncertainty principle.

Transition from deterministic to probabilistic

In classical physics, the physical properties of a system can be
specified exactly in principle. If the initial conditions of a system are
known, its subsequent configurations can be determined by using the
relevant laws of physics applicable to the system. Thus classical
physics is deterministic in nature. But this deterministic description is
inconsistent with observation. In quantum mechanics every physical
system is characterized by a wave function which contains all the
information’s for the probabilistic description of a system. This
probabilistic description is the basic characteristic of quantum physics
and is achieved by the wave function.

Wave function

e The state function which contains all information’s about a
physical system is called wave function y (r,t).

e It describes all information’s like amplitude, frequency,
wavelength etc.

e Itis not a directly measurable quantity.

e It is a mathematical entity by which the observable physical
properties of a system can be determined.

Characteristics

e Itis a function of both space and time co-ordinate.
i.e.(//(F,t):w(x, y,z;t)

e Itis a complex function having both real and imaginary part.

e Itis asingle valued function of its arguments.



e The wave function yand its first derivative %—‘/’are continuous at
X

all places including boundaries.
e Itisasquare integrable function i.e.|y|" dv=1.
e The quantity || represents the probability density.

o [t satisfies the Schrodinger’s equation.

Superposition principle

This principle states that “Any well behaved state of a system can be
expressed as a linear superposition of different possible allowed states
in which the system can exists.”

If v, v,.v,...De the wave functions representing the allowed states,
then the state of the system can be expressed as

V=YY, t Y e, = D G,

Probability density

The probability per unit volume of a system being in the state yis
called probability density.

i.e.p:|://|2

As the probability density is proportional to square of the wave
function, so the wavefunction is called “probability amplitude”.

The total probability is,

Ipdv = I|z//|2dv =1

As the total probability is a dimensional quantity, so it has dimension
[ L*]and the wavefunction has dimension [L%}

e Dimension of 1-D wave function iS[L%}.



e Dimension of 2-D wave function is[u].

Observables

The physical properties associated with the wave function provides
the complete description of the system state or configuration are
called observables.

EX: energy, angular momentum, position etc.

Operators

The tools used for obtaining new function from a given function are
called operators.

If Abe an operator and f(x) be a function, then Af(x)=g(x); g(X)=new
function

Ex: energy operator, momentum operator, velocity operator etc.

Physical Quantity Operator
Energy-E ih%
Momentum- p —inv
Potential Energy(V) V
Kinetic Energy( p%m) ;—’ivz

Eigen States:

The number of definite allowed states for the system are called
eigen states.

Eigen Values:




The set of allowed values of a physical quantity for a given
system is called eigen

values of the

quantity.

For any operator Ahaving eigen values o, corresponding to the eigen
states y, the eigen value

equation is |Ay, = a,

Expectation VValues:

The expectation values of a variable is the weighted average of the
eigen values with their

relative

probabilities.

are the eigen values of a physical quantity Q and they

If o,.0,.0,.....
occur with probabilities

IS

PG+ P+ _ 2 Polh

Q) PP DR,

Since the total probability is 1, SO p,+p, + p,+.....

o (Q)= P+ Pl +..= D PG,
In general if A be a physical quantity, then

<A>zj0{|t//|2 dv

= _[ v aydv

<A>:IV/*A1//dV Ay =ay




For normalized wave function.

* For any function to be normalized is given as

ﬂl//(F,t)r dv =1

* The expectation value of energy,
Bordv — [ [inl
(E)= [y Apav = [y (Ihat]t//dV

:ihjw*%'/’dv

Schrodinger’s Equation:-

The partial differential equation of a wave function involving the
derivatives of space and time coordinates is called Schrodinger equation.

Time-dependent Schrodinger equation

Let the wave function be represented by

l//(X, t) _ Aei(kx—(ut)

= v = ikl//,a—l// =—loy

OX ot (1)
= 82_1,// =—k?

ox? v

The energy and momentum are given as

E=hv=how

We have E=P

=hw= S (2)

Using eq"(1) in eq"(2),



oy —h oy
Ry "t YV
ot 2m ox° (3)

This is the time-dependent Schrodinger equation for a free particle in 1-
dimension.

If the particle is in a potential V(x), then

E-P 1v
2m

Oy —h’ 0’
=" = am o VY *)

Similarly along Y and Z-axis is given as

Time-dependent Schrodinger equation in 3-D:

32 2 2 2
iha—‘/lz h (8 +8 +a—jw+V1//

ot 2mlox* oy* o7’

oy W,

ih——=—Vi+V 5
o VYV (5)

Time-independent Schrodinger equation:

If the energy of the system does not change with time then
E = hwremains constant

Now from eq" (1),

ih%’” =in(-ioy)=hoy = Ey

By = _2—7:;V2l// +Vy [fromeq” (5)]



This is time-independent Schrodinger equation in 3-D.

Potential step:

The physical situation in which the potential energy of a particle
changes from one constant value (V;) to another constant value (V)
when the particle changes from one region to another is called potential

step.

V(X):
® % ®

The potential step can be given as
V(x)=0,x<0

=V, x>0

Let us consider the particle incident on the potential step from left to
right. According to the classical physics if the particle has energy less
than the potential step, the particle cannot move beyond x=0 and will
rebound into region-1. If the energy of the particle is greater than the
height of the potential step the particle will go to the region-2.

Case-1:(E>Vy)



Let y,and y, be the wave function in region-1 and region-2 then time
dependent Schrodinger equation is given as

dd;/jl +;le =0 , x<0, (region-1)
(1)
dz‘/’z 2_m _ _ inN-
St (E-V, )y, =0,x>0,(region-2)
(2)
9 e, o (3)
dx2 7t
And dd;”; Ky, = (4)
Where k = 2;an (5)
2m
k=~ (E-V) (6)

The general solution of eq"(3) and eq"(4) is given as
p,(x) = A+ Be ™ (7)
w,(x) =Ce** + De ™ (8)

Where  aAe™-incident wave=y,

Be ™ -reflected wave=y

ce**-transmitted wave=y,,,

De **-wave incident from right to left in region-2 for which it is
zero.

Thuseq" (8) becomes

W, (X) = Ce'" (9)



Using boundary condition,

l//l(x)‘XZo =¥, (X)

Oyl 0w,
OX |, OX

x=0

We have A+B=C and ik (A-B)=ik,e

kl_kZ
k, +K,

=B=
(10)
Thus it is observed that

1. R+T=1, which follows from the conservation of flux.

2. It explains wave nature of particles by the fact that the
probability of particle is not zero in the region-2 which
iscontradictory to classical physics.

3. If barrier height V<E(incident energy) then incident particle do
not see the potential step and are almost transmitted as per the
classical physics.

4. If Vo= E , then the quantum effect become prominent and the
reflection is appreciable.

Case-2: (E<Vy)
Now the Schrodinger equation in region-2 is given as

d? 2m
d2
d)lfzz _a2W2 =0 (1)

Where a = ;—rzn(vO ~E)

Thus the solution of the equation is given as
w,(x) =Ce ™ + De™

And c = 2k, A
k, +K,




V,
? : V(x
incident wave “im“llllgtj ( )

=

reflected

—_—

Reflection Coefficient

It is defined as the ratio of reflected flux to incident flux of the particle.

2

Vl l//ref
Vl |l//inc

I.eR = V, =L

e

_ l//:ef W ret _ |B|2 _ (kl _kz )2
Witmwmc |A|2 (k1 + k2 )2

(EEW)
(VB E)

Transmission Coefficient:-

It is defined as the ratio between transmitted flux to incident flux.

Transmittedflux

LeT = Incidentflux

_ VZ |!r//tran|2
=—7 ,V,
Vl |l//inc|2

_ Pk,
m

kzl//tT'anl//tran — k2 |C|2
kll//;cl//i nc kl | A|2

1o Akk, _ 4EJE-V,

(k+ke) (VE+(EY, )




AS x — o0,y — 0= De™* — o ,fOr which D=0
So v, (X)=Ce™ (2)

Which indicates that the probability of finding of particle in region-2 is
not zero which is classically forbidden as there is some particles on
region-2 according to quantum mechanics.

Potential barrier:-

The physical situation in which the potential of a region varies between
zero and maximum outside and inside the confined region is known as
potential barrier.

The potential of such region is given by, V(x) =0, x<0 and x>a

:Vo, OSXS&
AV(xX)
]
(1) (1) (1)
— v,
—
i "1"1 “’(;
——————= S
x=0 x=a

Let us consider a particle is travelling from left to right. As per the
classical physics the particle cannot cross the barrier if E<V, but
according to quantum mechanics there is non-zero probability of the
particle of crossing the barrier even if E<V,.

Case-1(E<Vy)

Lety,be the wave function of the particle describes the motion of the
particles in the region-1, then



d’, 2mE
2 + 2
dx h

y, =0

2
:%m,,l:o (1)

XZ

2mE

h2

wherek =

In region-2, Schrodinger wave equation is given as

=2ty - 2)

In region-3,

d? 2m
vl

d 2W3

= v +k%y, =0 (3)

The general solution of Schrodinger equation in the three region is given
by

w,(x)=Ae™ +Be ™ (4)
v, (x)=Ce™ + De ™ (5)
W, (X) = Fe™ +Ge™ (6)

Where ae™, Be™ — the incident and reflected waves in region-1

Fe*— Transmitted wave in region-2



Ge*—wave incident from right in region-3
=0
sy, = Fe (7
The wave function y,andy, and their derivatives continuous at x=0.

Similarly w,and y,and their derivatives should be continuous at x=a. But

in the region-2 the wave function is non-zero. Thus at the boundary x=a,
continuity wave function v, =y, requires that v, is non-zero at region-3.

Thus there is non-zero probability of finding the particles in region-3
even if the incident particle energy is less than the barrier height.

Quantum mechanical tunneling:

The phenomena in which the particles penetrate through the barrier is
called quantum mechanical tunneling.

Ex: Emission of a-particle, nuclear fission, tunnel diode, Josephson
junction, scanning tunneling microscope.

The transmission probability increases with decrease in height V, and
width ‘a’ of the barrier. The transmission co-efficient is given as

T :16E[1—Eje“a

0 0

AT N
DAVATH | it

Case-2(E>Vy)




According to quantum mechanics if E>V,, all particles should be
transmitted to the region-3 without any reflection but it is not possible
for all the values of incident energy.

The transmission coefficient is one, for these values for which

% 2m(E—VO) =nr, n=1,2,3, ......

As =D inthe region-2.
P J2m(E-V,)
So, @=n7z
A
2
=|la=nN—
2
VA

Energy
o

Particle in a one dimensional box:

The physical situation in which the potential between the boundary wall
Is zero and is infinite at the rigid walls is called one dimensional box or
one dimensional infinite potential well.

The potential function for the situation is given as

V(x)=0,0<x<a

=, x<0andx>a



Viz) < Box
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Particle
Now Schrodinger equation inside the well is given as

dw 2m
v, Me, o
w2

2
=SV iy <o (1)

The general solution of eq"(1) is given as
p(x)=Ce" +Ce™
= Asin kx+ B coskx (2)

Where A and B are to be determined from the boundary condition at x=0
and x=a.

Thus eq"(2) becomes, 0=[Asinkx+Bcoskx]  =0+B

=[B=0]

Thus the wave function inside the well is given as

w(x) = Asinkx (0<x<a) 3)

Enerqy eigen Values:-

From eq"(3),

0=[Asinkx] ~=Asinka at X=a

x=0



= |ka=nz| n=1,2,3....

Thus allowed bound states are possible for those energies for which the
width of the potential well is equal to integral multiple of half wave
length.

Since Kz = 2ME

hZ

2mEa® g

= k?a’ = p

2_2
_hrt

=|E, = 5
2ma

n

Thus the energy of the particle in the infinite well is quantized.

» The ground state energy is Elzgz—”zwhich IS the minimum energy

a2
of the particle and is called the zero point energy.
> The energy of the higher allowed levels are multiple of E; and

proportional to square of natural numbers.
» The energy levels are not equispaced.

E )

Eigen Functions




The eigen functions of the allowed states can be obtained as
[l dx=1
:>:T|A|zsin2 kxdx =1 (0<x<a)

:|A|2J'1_CZSZkX 1
0

2 a [sin2kx |
= b | =8

0

= A% =

2 .1
v, (X)= ’gsmgx

2 . 2rx
w,(X)= /5S|n?x

v, (X)= Esin:a—ﬁxetc.

a
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Fig. 3.1. The wave functions for

the One-dimensional particle-in-
a-box

Fig. 3.2. The probability densities in One-
dimensional particle-in-a-box



