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Syllabus: 

Module – I 

1. Mechanisms: Basic Kinematic concepts & definitions, mechanisms, link, 

kinematic pair, degrees of freedom, kinematic chain, degrees of freedom for 

plane mechanism, Gruebler’s equation, inversion of mechanism, four bar chain & 

their inversions, single slider crank chain, double slider crank chain & their 

inversion.(8) 

Module – II 

2. Kinematics analysis: Determination of velocity using graphical and analytical 

techniques, instantaneous center method, relative velocity method, Kennedy 

theorem, velocity in four bar mechanism, slider crank mechanism, acceleration 

diagram for a slider crank mechanism, Klein’s construction method, rubbing 

velocity at pin joint, coriolli’s component of acceleration & it’s applications. (12) 

Module – III 

3. Inertia force in reciprocating parts: Velocity & acceleration of connecting rod by 

analytical method, piston effort, force acting along connecting rod, crank effort, 

turning moment on crank shaft, dynamically equivalent system, compound 

pendulum, correction couple, friction, pivot & collar friction, friction circle, 

friction axis. (6) 

4. Friction clutches: Transmission of power by single plate, multiple & cone 

clutches, belt drive, initial tension, Effect of centrifugal tension on power 

transmission, maximum power transmission(4). 

Module – IV 

5. Brakes & Dynamometers: Classification of brakes, analysis of simple block, band 

& internal expanding shoe brakes, braking of a vehicle, absorbing & transmission 



dynamometers, prony brakes, rope brakes, band brake dynamometer, belt 

transmission dynamometer & torsion dynamometer.(7) 

6. Gear trains: Simple trains, compound trains, reverted train & epicyclic train. (3) 

Text Book: 

Theory of machines, by S.S Ratan, THM 

 

 

Mechanism and Machines 

 

Mechanism:  If a number of bodies are assembled in such a way that the motion of one 

 causes constrained and predictable motion to the others, it is known as a 

 mechanism. A mechanism transmits and modifies a motion. 

 

Machine: A machine is a mechanism or a combination of mechanisms which, apart 

 from imparting definite motions to the parts, also transmits and modifies the 

 available mechanical energy into some kind of desired work. 

It is neither a source of energy nor a producer of work but helps in proper 

utilization of the same. 

The motive power has to be derived from external sources. 

A slider - crank mechanism converts the reciprocating motion of a slider into 

rotary motion of the crank or vice versa. 

 

 
Figure-1 

(Available) force on the piston → slider crank + valve mechanism → Torque of the 

crank shaft (desired). 

Examples of slider crank mechanism → Automobile Engine, reciprocating 

pumps, reciprocating compressor, and steam engines. 

Examples of mechanisms: type writer, clocks, watches, spring toys. 

Rigid body: A body is said to be rigid if under the action of forces, it does not suffer any 

distortion. 



Resistant bodies: Those which are rigid for the purposes they have to serve. 

Semi rigid body:  Which are normally flexible, but under certain loading conditions act 

as rigid body for the limited purpose. 

Example: 1. Belt is rigid when subjected to tensile forces. So belt-drive acts as a 

resistant body. 2. Fluid is resistant body at compressive load. 

Link: A resistant body or a group of resistant bodies with rigid connections preventing 

 their relative movement is known as a link. 

 A link may also be defined as a member or a combination of members of a 

 mechanism, connecting other members and having motion relative to them. 

 A link is also known as kinematic link or element. 

 Links can be classified into binary, ternary, quarternary, etc, depending upon their 

ends on which revolute or turning pairs can be placed. 

 

Figure-2 

Kinematic pair:  

A kinematic pair or simply a pair is a joint of two links having relative motion 

between them. 

Types of kinematic pairs:   Kinematic pairs can be classified according to 

(i) Nature of contact 

(ii) Nature of mechanical constraint 

(iii) Nature of relative motion 

Kinematic pairs according to nature of contact 

(a) Lower pair:  A pair of links having surface or area contact between the 

members is known as a lower pair. Example: – Nut and screw, shaft rotating 

in bearing, all pairs of slider crank mechanism, universal joint etc. 

(b) Higher pair: When a pair has a point or line contact between the links, it is 

known as a higher pair. Example: – Wheel rolling on a surface, cam and 

follower pair, tooth gears, ball and roller bearings. 



Kinematic pairs according to nature of mechanical constraint 

(a) Closed pair : When  the elements of a pair are held together mechanically, it is  

known as a closed pair. The contact between the two can be broken only by 

destruction of at least one of the member. 

(b)  Unclosed pair : When two links of a pair are in contact either due to force of 

gravity or some spring action, they constitute an unclosed pair. 

Kinematic pairs according to nature of relative motion: 

(a) Sliding pair: If two links have a sliding motion relative to each other, they 

form a sliding pair. 

(b) Turning pair: When one link has a turning or revolving motion relative to the 

other, they constitute a turning or revolving pair. 

(c) Rolling Pair: When the links of a pair have a rolling motion relative to each 

other, they form a rolling pair. 

(d) Screw pair: If two mating links have a turning as well as sliding motion 

between them, they form a screw pair. Ex – lead screw and nut. 

(e) Spherical pair: When one link in the form of a sphere turns inside a fixed link, 

it is a spherical pair. Ex – ball and socket joint. 

Degrees of freedom: 

An unconstrained rigid body moving in space can describe the following 

independent motions. 

1. Translational motion along any three mutually perpendicular axes x, y, z  and  

2. Rotational motions about these axes. Thus, a rigid body possesses six degrees 

of freedom. 

 
  Figure - 3 



 Degrees of freedom of a pair are defined as the number of independent 

relative motions both translational and rotational. A pair in space can have, 

  DOF = 6 – number of restraints. 

Classification of kinematic pairs: 

Depending upon the number of restraints imposed on the relative motion of the 

two links connected together, a pair can be classified as 

 

 

 

      

A particular relative motion between two links of a pair must be 

independent of the other relative motions that the pair can have. A screw and nut 

pair permits translational and rotational motions. However as the two motion 

cannot be accomplished independently, a screw and nut pair is a kinematic pair of 

the fifth class. 

Class Number of 

restraints 

Form Restraint on Kinematic pair Figure - 4 

Translatory   Rotary 

I 1 1
st 

1 0 Sphere – plane a 

II 2 1
st
 2 0 Sphere – cylinder b 

2
nd 

1 1 Cylinder – plane c 

III 3 1
st 

3 0 Spheric d 

2
nd

 2 1 Sphere – slotted 

cylinder 

e 

3
rd 

1 2 Prism – plane f 

IV 4 1
st
 3 1 Slotted – spheric g 

2
nd

 2 2 Cylinder – cylinder h 

V 5 1
st 

3 2 Cylinder – collar i 

2
nd

 2 3 Prismatic bar in 

prismatic hole 

j 



 

Figure – 4 

Kinematic chain: 

A kinematic chain is an assembly of links in which the relative motions of the 

links is possible and the motion of each relative to the other is definite. 

Non – kinematic chain:  

 In case the motion of a link results in definite motions of other links, it is a non–

kinematic chain. 

A redundant chain: A redundant chain does not allow any motion of a link 

relative to the other. 

Linkage:  

 A linkage is obtained if one of the links of a kinematic chain is fixed to the 

ground. If motion of any of the movable links results in definite motions of the 

others the linkage is known as a mechanism. 

If one of the links of a redundant chain is fixed, it is known as a structure. 

Mobility of mechanisms:  



According to the number of general or common restraints a mechanism may be 

classified into different order. 

A sixth order mechanism cannot exist since all the links become stationary and no 

movement is possible. 

Degrees of freedom of a mechanism in space can be determined as follows. 

Let  N = total number of link in a mechanism 

 F = degree of freedom. 

 P1 = number of pairs having one degree of freedom. 

 P2 = number of pairs having two degree of freedom 

In mechanism one link is fixed 

Number of degrees of freedom of (N-1) movable links = 6(N-1) pair having one 

degree of freedom imposes 5 restraints on the mechanism reducing its degrees of 

freedom by 5P1.  

Thus,   F = 6(N‒1) ‒ 5P1 ‒ 4P2 ‒ 3P3 ‒ 2P4 ‒ 1P5 

For plane mechanisms, the following relation may be used to find the degree of 

freedom. 

     → Gruebler’s criterion. 

If the linkage has single degree of freedom then P2 = 0, Hence 

     

Most of the linkage are expected to have one degree of freedom. 

1

1

1 3( N 1) 2P

2P 3N 4

   

  
   

As P1 and N are to be whole numbers, the relation can be satisfied only if as 

follows 

N = 4,  P1 = 4 

N = 6,  P1 = 7 

N = 8,  P1 = 10 

Thus with the increase in the number of links, the number of excess turning pairs 

goes on increasing. To get required number of turning pairs from the required 

number of binary links not possible. Therefore the excess or the additional pairs 

or joints can be obtained only from the links having more than two joining points 

1F 3( N 1) 2P  

 

1 2F 3( N 1) 2P 1P   

 



Equivalent Mechanisms: 

It is possible to replace turning pairs of plane mechanisms by other type of pairs 

having one or two degrees of freedom, such as sliding pairs or cam pairs. 

1. Sliding pair can be replaced as a turning pair with infinite length of radius. 

 

   Figure - 5 

2. Two sliding pair can be replaced as two turning pair if their sliding axises 

intersect. 

3. The action of a spring is to elongate or to shorten as it becomes in tension or 

in compression. A similar variation in length is accomplished by two binary 

links joined by a turning pair. 

 

    Figure - 6 

4. A cam pair has two degrees of freedom 



 

    Figure - 7 

1 2F 3( N 1) 2P 1P      

A cam pair can be replaced by one binary link with two turning pairs at each 

end.    

The Four- bar chain: 

A link that makes complete revolution is called the crank. The link opposite to the 

fixed link is called coupler and the fourth link is called lever or rocker if it 

oscilates  or another crank if rotates. Condition for four‒bar linkage is   

   d < a + b + c  

 

Figure - 8 

Let a > d, then three extreme situations can be possible 
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(i) d + a < b + c   

(ii) d + c < a + b 

(iii) d + b < c + a   

Adding (i) and (ii)  2d < 2b   d < b   

Adding (ii) and (iii) 2d < 2a   d < a  

Adding (iii) and (i)  2d < 2c  d < c 

 Thus the necessary conditions for the link ‘a’to be a crank are that the 

shortest link is fixed and the sum of the shortest and the longest link is less than 

the sum of other two links. 

 If ‘d’ is fixed then a and c can rotate around d and also b; this is called drag 

– crank mechanism or rotary – rotary converter, or crank – crank or double crank 

mechanism. 

 B will rotate about a , if ABC  is greater than 180
0
 in any case, and b will 

rotate about c if DBC  is more than 180
0
 in any case. 

Different mechanisms obtained by fixing different links of this kind of chain will 

be as follows (known as inversion). 

1. If any of the adjacent links of link d i.e. a or c is fixed, d can have full 

revolution and link opposite to it oscillates. It is known as crank – rocker or 

crank- lever mechanism or rotary – oscillatory converter. 

2. If the link opposite to the shortest link, i.e. link b is fixed and the shortest link 

d is made coupler, the other two links a and c would oscillate. The mechanism 

is called rocker – rocker or double – rocker or double ‒lever mechanism or 

oscilating – oscilating converter. 



Shortest + longest < sum of other two   →  class‒I four bar linkage. 

Shortest + longest > sum of other two   →  class‒II fourbar linkage. 

All inversion s of class‒II four bar linkage will give double rocker mechanism. 

The above observations are summarized in the Grashof’s law, which states that 

 a four bar mechanism has at least one revolving link if the sum of the lengths of 

the largest and the shortest links is less than the sum of the lengths of the other 

two links. 

Special cases when shortest+ longest = sum of other two. 

Parallel – crank four bar:  If b // d (two opposite links are parallel) 

then all the inversions will be crank – crank mechanism. Ex : Parallel mechanism 

and anti parallel mechanism. 

Deltoid linkage:  If shortest link fixed → a double – crank mechanism is obtained, in 

 which one revolution of the longer link causes two revolutions of the other 

 shorter links. 

If any of the longer links is fixed two crank – rocker mechanisms are obtained. 

Mechanical advantage:  

The mechanical advantage of a mechanism is the ratio of the output force or 

torque to the input force or torque at an instant. Let friction and inertia forces are 

neglected. 

out put force/torque
M .A.

input force/torque
  

Power input = power output    (If loss is zero) 

T2ω2 = T4ω4  

4 2

2 4

T
M .A. ratiprocal of velocity ratio

T




     

In case crank rocker mechanism ω4 of the output link is zero at extreme positions, 

i.e. when input link is in line with coupler link or γ = 0
0
 or 180

0
, the mechanical 

advantage is infinity. Only a small input torque can overcome a large output 

torque load. The extreme positions of the linkage are known as toggle positions. 

Transmission angle:  



The angle μ between the out put link and the coupler is known as transmission 

angle. The torque transmitted to the output link is maximum when the 

transmission angle μ is 90
0
 . If μ = 0

0
, 180

0
 , the mechanism would lock or jam. 

If μ deviates significantly from 90
0
 the torque on output link decreases. Hence μ 

is usually kept more than 45
0
 . 
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Applying cosine law to triangles ABD and BCD, 

a
2
 + d

2
 – 2ad cosθ = k

2
  

b
2
 + c

2
 – 2bc cosμ = k

2
 

      a
2
 + d

2
 – 2ad cos θ = b

2
 + c

2
 ‒ 2bc cos μ 

      a
2
 + d

2
 – b

2
 – c

2
 – 2ad cos θ + 2bc cos μ = 0 

The maximum or minimum values of transmission angle can be found out by 

putting dμ / dθ equal to zero. Differentiating with θ 

 

d
ad sin bc sin 0

d

d ad sin

d bc sin


 



 

 

   

 
  

d

d




 is zero when θ = 0

0
 or 180

0
. 
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The slider crank chain: 

When one of the turning pairs of four bar chain is replaced by a sliding pair, it is 

called as single – slider crank chain or slider crank chain. 

When two of turning pairs of four bar chain is replaced by two sliding pair, it is 

called as double slider – crank chain. 

If the sliding path line passes parallel with the fixed pivot point with some offset 

then it is called offset slider crank chain. 

Inversions of single slider crank chain: 

Different mechanisms obtained by fixing different links of a kinematic chain are 

known as its inversions. 

1
st
 Inversion: The inversion is obtained when link 1 is fixed and links 2 and 4 are 

made the crank and the slider respectively. 

 

  Figure - 12 

Applications:  1. Reciprocating engine. 

   2. Reciprocating compressor. 

2
nd

 Inversion: Fixing of link 2 of a slider – crank chain results in the second 

inversion. When its link 2 is fixed instead of link 1, link 3 along with the slider at 

its end B becomes a crank. This makes link 1 to rotate about o along with the 

slider which also reciprocates on it. 



 

   Figure - 13 

Applications:  1. White worth quick- return mechanism 

   2. Rotary engine. 

3
rd

 Inversion: By fixing link 3 of the slider crank mechanism, third inversion is 

obtained. Here link 2 again acts as a crank and link 4 oscillates. 

 

   Figure - 14 

Applications:  1. Oscillating cylinder engine 

 
    Figure - 15 

   2. Crank and slotted – lever mechanism. 

4
th

 Inversion:  If link 4 of the slider – crank mechanism is fixed the fourth 

inversion is obtained. Link 3 can oscillate about the fixed pivot B on link 4. This 



makes end A of link2 to oscillate about B and end o to reciprocate along the axis 

of the fixed link 4. 

Applications: Hand pump.   

 

  Figure - 16 

Inversion of double slider – crank chain:  

First inversion: The inversion is obtained when link 1 is fixed and the two 

adjacent pairs 23 and 34 are turning pairs and the other two pairs 12 and 41 

sliding pairs. 

Application: Elliptical trammel. 

 

   Figure - 17 

Second Inversion: If any of the slide – blocks of the first inversion is fixed, the 

second inversion of the double – slider – crank chain is obtained. When link 4 is 



fixed, end B of crank 3 rotates about A and link 1 reciprocates in the horizontal 

direction. 

Application : Scotch yoke.  

 

   Figure - 18 

Third Inversion: This inversion is obtained when link 3 of the first inversion is 

fixed and link 1 is free to move. 

Application: Oldham’s coupling. 

 

   Figure - 19 

Oldham coupling is used to connect two parallel shafts when the distance 

between their axes is small. 

Velocity Analysis 

Analysis of mechanisms is the study of motions and forces concerning their 

different parts. 

The study of velocity analysis involves the linear velocities of various points on 

different links of a mechanism as well as the angular velocities of the links. 

When a machine or a mechanism is represented by a skeleton or a line diagram, 

then it is commonly known as a configuration diagram. Velocity analysis can be 

done two methods. 1. Analytical and 2. Graphically. Analytical method more 

convenient by computers. Graphical method is more direct and accurate to an 



acceptable degree. This graphical approach is done by two methods, i.e. (a) 

relative velocity method and (b) Instantaneous method. 

Vector and vector addition/substraction: 

baV


 =  

 

Velocity of a body B relative to A. 

bo ba ao

ba bo ao

V V V , ob oa ab;

V V V

  

  

    

  
 

        

  Figure – 20    Figure - 21 

Motion of a link: 

Let a rigid link OA, of length r, rotate about a fixed point o with a uniform 

angular velocity ω rad/s in the counter – clockwise direction. OA turns through a 

small angle δθ in a small interval of time δt . Then A will travel along the arc as 

shown in figure. 

 

  Figure - 22 

a 

b 



Velocity of A relative to O = 
ArcAA'

t
 or ao

r
V

t







  = ωr 

The direction of  aoV


 is along the displacement of A. Also, as δt approaches zero 

(δt→0), AA′ will be perpendicular to OA. Thus velocity of A is ωr and is 

perpendicular to OA. This can be represented by a vector oa. 

Consider a point B on the link OA.  

Velocity of B = ω . OB (perpendicular to OB). 

If ob represents the velocity of B, it can be observed that  

ob OB OB

oa OA OA




   i.e. b divides the velocity vector in the same ratio as B divides 

the link. 

Four – link mechanism: 

In the four – link mechanism ABCD, AD is fixed, so a & d will be one fixed 

point in velocity diagram. It is required to find out the absolute velocity of C. 

Writing the velocity vector equation, 

Vel. of C rel. to A = Vel. of C rel. to B + vel. of B rel. to A= Vel. of C rel to D 

 

  Figure - 23 

ca cb ba cdV V V V    

dc bc ab

ac bc bc

  

  
 

baV


 or ab = ω.AB;    to AB 

cbV


 or bc is unknown in magnitude;   to BC. 



cdV


 or dc is unknown in magnitude;   to DC. 

Intermediate point: 

For point E on the link BC , 
be BE

bc BC
 , ae represents the absolute velocity of E. 

Offset point: 

Write the vector equation for point F, 

fb ba fc cdV V V V
   

    

ba fb cd fcV V V V
   

    

ab bf cf   

The vector baV


 and cdV


 are there on the velocity diagram. 

fbV


 is   BF; draw a line   BF through b. 

fcV


 is CF ; draw a line   CF through c. 

The intersection of the two lines locates the point f. af indicates the velocity of F 

relative to A or absolute velocity of F. 

Velocity Images 

 Triangle bfc is similar to triangle BFC in which all the three sides bc, cf, fb 

are perpendicular to BC, CF, and FB respectively. The triangles such as bfc are 

known as velocity images. 

1. Velocity image of a link is a scaled reproduction of the shape of the link 

in a velocity diagram, rotated bodily through 90
0
 in the direction of 

angular velocity. 

2. Order of letter is same as in configuration diagram. 

3. Ratios of different images of different links are different. 

Angular velocity of links: 

1. Angular velocity of BC : 

(a)  Velocity of C relative to B, cbV


(upward). 

Thus C moves in the counter clockwise direction about B. 

cb cbV BC


   

cb

cb

V

CB




  



(b)  Velocity of B relative to C, bcV


(downward) 

i.e. B moves in the counter – clockwise direction about C. 

bc

bc

V

BC




  

2. Angular velocity of CD: 

Velocity of C relative to D, cdV


(clockwise) 

cd

cd

V

CD




  

Velocity of rubbing: 

The rubbing velocity of the two surfaces will depend upon the angular velocity of 

a link relative to the other. 

Pin at A : Let ra = radius of the pin at A. 

Then the velocity of rubbing = ra. ωba 

Pin at D : Let rd = radius of the pin at D. 

Velocity of rubbing = rd . ωcd 

Pin at B: ωba = ωab  = ω(clockwise), ωbc = ωcb = cbV

BC



  ( counter clockwise). Since 

the directions of the two angular velocities of links AB and BC are in the opposite 

directions the angular velocity of one link relative to other is sum of the 

velocities. 

Let rb = radius of thepin at B , Velocity of rubbing = rb(ωab + ωbc) 

Pin at C:  ωbc = ωcb (counter clockwise) 

  ωdc = ωcd (clockwise) 

  rc = radius of pin at C. 

Velocity of rubbing = rc (ωbc + ωdc) 

Slider – crank Mechanism: 

Figure shows a slider – crank mechanism in which OA is the crank moving with 

uniform angular velocity ω rad/s in the clockwise direction. At point B, a slider moves 

Figure - 24 



on the fixed guide G. AB is the coupler joining A and Bm. It is required to find out the 

velocity of slider at B. 

 

  Figure - 25 

Velocity of B relative to O = Velocity of B relative to A + velocity of A relative to O 

bo ba aoV V V
  

    

Take the vector aoV


 which is completely known. 

aoV OA;


     to OA 

baV AB,


  draw a line parallel to the motion of B. 


boV // OG. Through g, draw a line parallel to the motion of B. 

The intersection of two lines locates ‘b’. boV


 the slider velocity with respect to G. 

The coupler AB has angular velocity in counter clockwise direction =
baV

AB



 

Crank and slotted lever mechanism: 

A crank and slotted – lever mechanism, in which OP is the crank rotating at an 

angular speed ω rad/s in the clockwise direction about center O. A slider P is 

pivoted which moves on an oscillating link ASR. P and Q are coincident points. 

As the crank rotates there is relative movement of the points P and Q along AR. 

 



  Figure - 26 

Writing the velocity vector equation for the mechanism OPA.  

Velocity of Q relative to O = velocity of Q relative to P + velocity of P relative to O. 

qo qp poV V V
  

    

qa po qpV V V
  

    

poV OP,


    to OP 

qpV


 is unknown in magnitude;  to AR. 

qaV


 is unknown in magnitude;   to AR. 

Construction of velocity diagram: 

Draw  po qpV ,V AR
 

 through P 

qaV AR,


 draw a line   AR through a. 

 The intersection point is ‘q’.  qpV


 shows the velocity of sliding of the block on 

link AR. The point r will lie on vector ‘aq’ produced such that
ar AR

aq AQ
 . To find 

the velocity of ram S, the velocity vector equation is 

 so sr roV V V
  

  , 

sg ro srV V V
  

    

roV


 is already in the diagram. Draw a line through r perpendicular to RS for vector srV


 

and a line of motion of the slider S on the guide G, for the vector sgV


. So S is located. 

sgV


 = velocity of the slider. 

rs

rs

V

RS




  (clockwise). 

s

s

V max( cutting ) c r

V max( returning ) c r





 ,  

 Where    c = distance between fixed center, 

  and   r = crank length. 



Instantaneous center: 

The body can be imagined to rotate about some point on the line perpendicular to the 

velocity vector passing through that point. 

 The intersection point of two different lines is called instantaneous center of 

rotation (I – center). An I – center is a center of rotation of a moving body relative to 

another body. It is named as Ipq and it will be in ascending order of the alphabets or 

digits. 
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 Number of I–centers in a mechanism 
n( n 1)

N
2


    where   n = number of links. 

Kennedy’s theorem: 

If three plane bodies have relative motion among themselves, their I‒center must lie on 

a straight line. 

 

  Figure - 28 

Locating I‒centers: 

A four‒link mechanism ABCD has 4 links named 1,2,3,4. The number of I‒centers is  



n( n 1) 4( 4 1)
N 6

2 2

 
    

 

   Figure - 29 

I‒center 12 and 14 are fixed I‒centers. 

I‒center 23 and 34 are permanent but not fixed I‒centers. 

I‒center 13 and 24 which are neither fixed nor permanent can be located easily by 

applying Kennedy’s theorem as explained below. 

I‒center 13: 

 As the three links 1, 2, 3 have relative motions among themselves, their I‒centers 

lie on a straight line. Thus I‒center 13 lies on the line joining 12 and 23. 

Similarly I‒center 13 lies on the line joining 14 and 34. The intersection of the 

two lines locates the I‒center 13. 

I‒center 24:  Considering two sets of links 2, 1, 4 and 2, 3, 4, the I‒center would lie on 

the lines 12‒14 and 23‒34. The interaction locates the I‒center 24. 

Rules to Locate I‒centers by inspections: 

1. In a pivoted joint, the center of the pivot is the I‒center for the two links. 

2. In a sliding motion, the I‒center lies at infinity in a direction perpendicular to the 

path of motion of the slider. 

3. In a pure rolling contact of the two links, the I‒center lies at the point of contact at 

the given instant. 

Acceleration Analysis 



 The rate of change of velocity with respect to time is known as acceleration and 

acts in the direction of the change in velocity. A change in the velocity requires any of 

the following conditions to be fulfilled. 

(i) A change in the magnitude only 

(ii) A change in direction only 

(iii) A change in both magnitude and direction. 

Acceleration: Let a link OA, of  length  r , rotate in a  circular  path  in the  clockwise   

direction  as shown  in figure  . It has instantaneous  angular velocity  ω  and  an angular  

acceleration  α  in the same  direction  , i.e the angular  velocity increases  in the clock 

wise direction.  Tangential  velocity of  A  , va= ωr  .  In  short interval of time  δt  , let 

OA assume  the  new  position  OAʹ by rotating  through a  small  angle  δθ  . 
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 Angular velocity of  OA′  , ωa′ =ω+α·δt  .  

 Tangential velocity of A′, Va′ =(ω+α·δt)r .  

The tangential velocity of  A′  may be  considered  to have  two components ; one  

 perpendicular  to OA  and the other parallel  to  OA  .  

Change of velocity perpendicular to OA:  

Velocity of A   to OA =  Va  

Velocity of Aʹ  to OA = Vaʹ cos δθ 

Change of velocity = Vaʹ cos δθ – Va  

Acceleration of A   to OA =
 t r cos r

t

    



  
 

In the limit, as δt→0, cos δθ→1 



  Acceleration of A  to OA =
r r t r d d( r ) dv

r r
t dt dt dt

     




 
     

This represents the rate of change of velocity in the tangential direction of the 

motion of A relative to O and thus is known as the tangential acceleration. 

Change of velocity parallel to OA: 

Velocity of A parallel to OA = 0 

Velocity of Aʹ parallel to OA = Vaʹsin δθ 

Change of Velocity = Vaʹ sin δθ – 0 

Acceleration of A parallel to OA =
2

2d V
r r r

dt r


        

This represents the rate of change of velocity along OA, the direction being from 

A towords O or towards the center of rotation. It is known as centripetal 

acceleration and denoted by 
c

aof . 

Four – link mechanism: 

Let α = angular acceleration of AB at this instant assumed positive, i.e. the speed 

increases in the clockwise direction. 

Acceleration of C relative to A = Acceleration of C relative to B + Acceleration 

of B relative to A.  

ca cb ba
f f f
  

   

cd ba cb
f f f
  

   

Each of these accelerations may have a centripetal and a atangential component. 

Thus the equation can be expanded as below, 

c t c t c t

cd cd ba ba cb cbf f f f f f
     

      
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Set the following table: 

S.N. Vector Magnitude Direction Sense 

1. c

ba 1 af or a b
 

  
2

ab

AB
 

AB  A  

2. t

ba a 1f or b b
 

 
AB  

1 a
to ABor a b

 

  → b 

3. c

cb 1 bf or b c
 

  
2

bc

BC
 

BC  → B 

4. t

cb b 1
f or c c
 

 
— 

1 b
to BC or b c

 

  — 

5. c

cd 1 df or d c
 

  
2

dc

DC
 to DC



 → D 



6. t

cd d 1f or c c
 

 
— 

1 dto DC or d c
 

  — 

 

 

Construction of the acceleration diagram: 

(a) Select the pole point a1 or d1. 

(b)  Take the first vector from the above table, i.e. take a1ba to a convenient scale 

in the proper direction and sense. 

(c)  Add the second vector to the first and then the third vector to the second. 

(d)  For the addition of the fourth vector, draw a line perpendicular to BC through 

the head cb of the third vector. The magnitude of the fourth vector is unknown 

and c1 can lie on either side of cb. 

(e)  Take the fifth vector from d1. 

(f)  For the addition of the sixth vector to the fifth, draw a line perpendicular to 

DC through head cd of the fifth vector. The intersection of this line with the 

line drawn in step (d) locates the point c1. 

Total acceleration of B =a1b1 

Total acceleration of C relative to B = b1c1 

Total acceleration of C = d1c1 

Angular acceleration of links:    It can be observed that the tangential component of 

acceleration occurs due to the angular acceleration of a link. 

Tangential acceleration of B relative to A is 

t

baf AB


   

t

ba
ba

f

AB
   

Similarly  
t

cb
cb

f

CB
   

   
t

cd
cd

f

CD
   



Acceleration of intermediate and offset points: 

The acceleration of intermediate points on the links can be obtained by dividing 

the acceleration vectors in the same ratio as the points divide the links. For point 

E on the link BC is 1 1

1 1

b eBE

BC b c
  

Offset points:   The acceleration of an offset point on a link, such as F on BC can 

be determined by applying any of the following method. 

(1) Writing the vector equation 

fb ba fc cdf f f f
   

    

Or      ba fb cd fcf f f f
   

    

Or c t c t

ba fb fb cd fc fcf f f f f f
    

      

Or 
1 1 1 b b 1 1 1 1 c c 1a b  + b f  + f f  = d c  + f f  + f f
     

 

The equation can be easily solved graphically as shown. 1 1a f


represents the 

acceleration of F relative to A or D. 

(2) Writing the vector equation, 

fa fb baf f f
  

   

 ba fbf f
 

   

 c t

ba fb fbf f f
 

    

Or  1 1 1 1 1 b b 1a f a b b f f f
   

    

baf


 already exists on the acceleration diagram. 

S.N. Vector Magnitude Direction Sense 

1. c

fbf


  
2

c

fb

bf
f

BF



  
 to BF → B 



2. t

fbf


 t

fb fbf FB


   

     cb FB   

     
t

cbf
FB

CB



   

  to FB b → f 

 

fb cb  , because angular acceleration of all the points on the link BCF about the 

point B is the same (counter ‒ clockwise). 

In this way faf


 can be found. 

Acceleration of slider‒crank mechanism : 

Writing the acceleration equation, 

Acc. of B rel. to  O = Acc. Of B rel. to A + Acc. Of A rel. to O 

  
bo ba aof f f
  

  ; 

  
c t

bg ao ba ao ba baf f f f f f
    

      

  1 1 1 1 1 a a 1g b o a a b b b
   

    

 

     Figure - 32 

The crank OA rotates at a uniform velocity, therefore, the acceleration of A 

relative tyo O has only the centripetal component. Similarly, the slider moves in a 

linear direction and thus has no centripetal component.  

Setting the vector table: 



S.N. Vector Magnitude Direction Sense 

1. 
ao 1 1f or o a
 

 
 

2
oa

OA
 

OA  → O 

2. 
c

ba 1 af or a b
 

 
 

2
ab

AB
 

AB  → A 

3. t

ba a 1f or b b
 

 
— AB — 

4. 
bg 1 1f or g b
 

 —  to line of 

motion of B  

— 

Construct the acceleration diagram as follows: 

1.    Take the first vector
aof


. 

2.    Add the second vector to the 1
st
. 

 3.    For the third vector, draw as line   to AB through the head ba of the    

        second vector. 

 4.    For the fourth vector, draw a line through g1 parallel to the line of motion 

        of the slider.  

This completes the velocity diagram. 

Acceleration of the slider B = g1b1 

Total acceleration of B relative to A = a1b1. 

Note that if the direction of the acceleration of slider is opposite to that of the 

velocity, then the slider decelerates. 

Coriolis Acceleration Component: 

Coriolis component exists only if there are two coincident points which have 

linear relative velocity of sliding and angular motion about fixed finite centres of 

rotation. 
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Let a link AR rotate about a fixed point A on it. P is a point on a slider on the 

link. At any given instant, Let 

 ω = Angular velocity of the link 

 α = Angular acceleration of the link 

 v = Linear velocity of the slider on the link 

 f = Linear acceleration of the slider on the link 

 r = Radial distance of point P on the slider 

In a short interval of time δt let δθ be the angular displacement of the link and δr 

the displacement of the slider in the outward direction. 

After the short interval of time δt , let 

ω′ = ω + α ∙ δt   = angular velocity of the link. 

v′ = v + f∙ δt   = Linear velocity of the slider on the link. 

r′ =r + δr   = Radial distance of the slider. 

Acceleration of P Parallel to AR: 

Initial velocity of p along AR = v = vpq 

Final velocity of p along AR = v′cos δθ ‒ ω′r′sinδθ 

Change  of velocity along AR = (v′ cos δθ ‒ ω′r′sinδθ) ‒ v 

Acceleration of P along AR = 
    v f t cos t r r sin v

t

     



    
 

In the limit, as δt → 0, cos δθ → 1 and sin δθ → δθ 



Acceleration of P along AR = 
d

f r
dt


  

        = f r   

        = f ‒ ω
2
r 

        = Acc. of slider – cent.acc. 

This is the acceleration of P along AR in the radially outward direction. 

Acceleration of P perpendicular toAR:  

Initial velocity of P  to AR = ωr 

Final velocity of P   to AR = v′sin δθ + ω′r′ cos δθ 

Change of velocity   to AR = (v′sinδθ + ω′r′cosδθ) ‒ ωr 

Acceleration  of  P   to AR = 
    v f t cos t r r cos r

t

      



    
 

In the limit, as δt → 0, cosδθ → 1and sinδθ → δθ. 

Acceleration of P   to AR = 
d dr

v r
dt dt


    

       = vω + ωv +αr  

       = 2ωv + αr  

The component 2ωv is known as the Coriolis acceleration component. It is 

positive if   

(i) the link AR rotates clockwise and the slider moves radially outwards, 

(ii) the link rotates counter – clockwise and the slider moves inwards, 

 The direction of the coriolis acceleration component is obtained by rotating the 

radial velocity vector v through 90
0
 in the direction of rotation of the link. 

Coriolis component exist only if there are two coincident points which have,(i) 

linear relative velocity of sliding and, (ii) angular  motion about fixed finite 

centers of rotation. 

Let Q be a point on the link AR immediately beneath the point P at the instant, 

then , 

Acc. Of P = Acce. Of P || to AR + Acceleration of P   to AR. 

)2()( 2  rvrff
pa




  

       =  2f r r 2 v      

       =Acc. of P rel. to Q + Acc. of Q rel to A + coriolis acceleration 

component 

       = ' cr

pq qaf f f   

Sometimes for sake of simplicity, it is convenient to associate the coriolis 

acceleration component crf  with '

pqf  and writing the equation in the form, 

       =  ' cr

pq qaf f f   



       = pq qaf f
 

  

Crank and slotted lever mechanism: 

The configuration and the velocity  diagrams of a slotted lever mechanism is 

shown in the figure. The crank OP rotates at uniform angular velocity of ω rad/s 

clockwise. 
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Writing the vector equation, 

pa pq qaf f f
  

 
 

po qa pqf f f
  

   

      = c t s cr

qa qa pq pqf f f f
   

    

        o1p1 = a1qa + qaq1 + q1pq + pqp1 

Let us set the above vectors in vector table. 

S.N. Vector Magnitude Direction Sense 

1. 
po 1 1f or o p
 

 
ω × op to op  O  

2. c

qa 1 af or a q
 

  
2

aq

AQ
 

to AQ  → A 

3. t

qa a 1f or q q
 

 
__   to AQ  __ 



or
1 aa q


 

4. s

pq 1 qf or q p
 

 
__ to AR  __ 

5.  cr

pq q 1f or p p
 

 
1 pq

aq
2 v 2 qp

AQ


 
  

 
 
 to AR  * 

 

* → The direction is obtained by rotating the vector vpq (or qp


) through 90
o
 in the 

direction of ω1. 

Construction of acceleration diagram as follows: 

1. Draw the first vector pof


 which is completely known. 

2. Draw the second vector from the point a1(or  o1). This vector is completely 

known. 

3. Only the direction of the third vector t

qaf


 is known. Draw a line   to AQ  

through the head qa of the second vector. 

4. As the head of third vector is not available, the fourth vector cannot be added 

to it. Draw the last vector cr

pqf


which is completely known. Place this vector in 

proper direction and sense so that p1 becomes the head of vector. 

5. For the fourth vector, draw a line parallel to AR  through the point pq of the 

fifth vector. 

The intersection of this line with the line drawn in step 3 locates the point q1. 

Total acc. of P rel. to Q, pq 1 1f q p
 

 ;  

Total acc. of Q rel. to A, qa 1 1f a q
 

 , 

The acc. of R rel. to A is given on 
1 1a q


produced such that 1 1

1 1

a r AR

AQa q




 . 

6. Join a1 and q1 and extend to r1. 

Writing the vector equation 

so sr rof f f
  

   

or sg ro srf f f
  

   

      c t

ro sr srf f f
 

    

or 1 1 1 1 1 r r 1g s o r r s s s
   

    

Let us set above vectors in vector table 



S.N. Vector Magnitude Direction Sense 

6. 
ro 1 1f or o r
 

 Present in 

diagram 

  

7. c

sr 1 rf or r s
 

  
2

rs

RS
 

to RS  → R  

8. t

sr r 1f or s s
 

 
__  to RS  __ 

9. 
sg 1 1f or g s
 

 
__ to guide bed __ 

  

rof


 is already available on the acceleration diagram. Complete the vector 

diagram as usual. 

7. Draw c

sr 1 rf or r s
 

through the head r1 which is known. 

8. For the vector t

sr r 1f or s s
 

, draw a perpendicular line with c

sr 1 rf or r s
 

 through 

the head s1. 

9. For the vector sg 1 1f or g s
 

, draw a horizontal line through g1 The intersection 

point of t

srf


 and sgf


 will be the s1. 

Angular acceleration of RS is 
t

sr
rs

f

RS






 . 

If the direction of 1 1g s


 is opposite to the direction of motion of the slider S 

then it indicating that the slider is decelerating. 

 

Algebraic Method: 

Vector approach: 

   Let there be a plane moving body having its motion relative to a 

fixed coordinate system xyz. Also let as moving coordinate system x′y′z′ be attached to 

this moving body. Coordinates of the origin A of the moving system are known  relative 

to the absolute reference system. Assume that the moving system has an angular 

velocity ω. 
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Let  

i , j,k
  

  are the unit vectors of absolute system 

l ,m,n
  

  are the unit vectors for the moving system. 




  angular velocity of rotation of the moving system, 

R


  vector relative to fixed system, 

r


  vector relative to moving system 

     Let a point P move along path ' "P PP  relative to the moving coordinate system x′y′z′ . 

At any instant, the position of P relative to the fixed system is 

   R a r
  

      where r x' l y' m z' n
   

    

   R a x' l y' m z' n
    

      

 Taking the derivatives with respect to time to find velocity, 

      ˆ ˆˆ ˆ ˆ ˆR a x' l y' m z' n x' l y' m z' n        

 The term a indicates velocity of origin of moving system. 

 The second term is known as relative velocity of P with relative to the 

coincident point Q which is fixed to the moving system. It may be denoted by 

vpq or v
R
.  

Thus   R
pqv or v x l y m z n

   

      

 The third term can be simplified as below: 

   ˆ ˆl l  , ˆ ˆm m  , ˆ ˆn n   

  ˆ ˆ ˆx' l y' m z' n x l y m z n r 
    
          

 
 

This is the velocity of Q relative to A and is denoted as qav


. Then we can write 



   R a x l y m z n r
   
        

 
 

    R

p av v v r     

    po ao pq qav v v v    

    po pq qa aov v v v    

    po pq qov v v   

Thus absolute velocity of point P moving relative to a moving reference system is 

equal to the velocity of the point relative to the moving system plus the absolute 

velocity of a coincident point fixed to the moving reference system. 

Acceleration analysis 

We know from above discussion that 

  R

p av v v r     

Differentiating this equation with respect to time to obtain the acceleration of P, 

   R

p av v v r r        

   R

p af f v r r        

Where   is the angular acceleration of rotation of the moving system. 

   Rv x l y m z n
   

      

Differentiating it w.r.t. time, 

    R ˆ ˆ ˆv x l y m z n x l y m z n
   
           

 
 

      x l y m z n x l y m z n
        
              

   
 

     R Rf v    

d
r x' l y' m z' n

dt
 

   
     

 
 

  ˆ ˆ ˆx l y m z n x' l y' m z' n
    
          

  
 

  Rv r        

Thus we may write 

   R R R

p af f f v r v r                  

     R R

af f 2 v r r             

Now as  qaf r r        

Thus we can write 

 R R

p a qaf f f 2 v f      

Or cr

po ao pq qaf f f f f     



      cr

pq qa aof f f f     

We can write 

 
cr

pa ao pq qa aof f f f f f      

  cr

pa pq qaf f f f    

Klein’s Construction: 

 In Klein’s consrtruction, the velocity and the acceleration diagrams are made on 

the configuration diagram itself. The line that represents the crank in the configuration 

diagram also represents the velocity and acceleration of its moving end in the velocity 

and acceleration diagrams respectively. For the slider crank mechanism, the procedure 

to make the Klein’s construction is described below. 

Slider Crank Mechanism 
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 In the figure OAB represents the configuration of a slider – crank mechanism. Its 

velocity and acceleration diagrams are shown. Let r be the length of the crank OA. 

Velocity diagram:  

 For velocity diagram, let r represents Vao  to some scale. Then for the velocity 

diagram, length oa= ωr = OA. From this, the scale for the velocity diagram is known. 

 Produce BA and draw a line perpendicular to OB through O. The inter section of 

two lines locates point b. The figure oab is the velocity diagram which is similar to the 

velocity diagram which is similar to the actual velocity diagram rotated through 90
0
 in a 

direction opposite to that of the crank. 

Acceleration diagram: 

 For acceleration diagram, let r represents fao  



  o1a1 = ω
2
r = OA 

This provides the scale for the acceleration diagram. 

Make the following construction: 

1. Draw a circle with ab as the radius and a as the center. 

2. Draw another circle with AB as diameter. 

3. Join the points of intersections C and D of the two circles. Let it meet OB at b1 

and AB at E. 

4. Then o1a1bab1 is the required acceleration diagram which is similar to the  

actual acceleration diagram rotated through 180
0
 

The proof is as follows: 

Join AC and BC . AEC and ABC are two right – angled triangles in which 

angle CAB is common. Therefore, the triangles are similar. 

  
AE AC

AC AB
  or  

 
2

AC
AE

AB
   or  

 
2

c

1 a ba

ab
a b f

AB
   

  Thus, this acceleration diagram has all the sides parallel to that of 

acceleration and also has two sides o1a1 and a1ba representing the 

corresponding magnitudes of the acceleration. Thus, the two diagrams are 

similar. 

Dynamic Force Analysis: 

Dynamic forces are associated with accelerating masses. In situations where 

dynamic forces are dominant or comparable with magnitudes of external forces 

and operating speeds are high, dynamic analysis has to be carried out. 

D’ Alembert’s Principle:   The inertia forces and couples and the external 

forces and torques on a body together give statical equilibrium. 

Inertia is a property of matter by virtue of which a body resists any change in 

velocity. 

   Inertia force   Fi = −mfg 

Where m = mass of body, fg = acceleration of center of mass of the body. 

 Negative sign indicates that the force acts in the opposite direction to that of 

acceleration.  



 The force acts through center of mass of the body. 

Similarly, an inertia couple resists any change in the angular velocity. 

Inertia couple,  Ci = –Igα 

Where  Ig = moment of inertia about an axis passing through center of mass 

G and perpendicular to plane of rotation of the body. 

  Α = angular acceleration of the body. 

Let 1 2 3F F F F     = external forces on the body. 

and 1 2 3T T T T     =  external torques on the body about the center of  mass 

G. According to D’ Alembert’s principle,  

 ` iF F 0   and    T Ci 0   

Thus , a dynamic analysis problem is reduced to one static problem. 

Dynamic analysis of slider – crank mechanism : 

Velocity and Acceleration of Piston: 

Figure shows a slider crank mechanism in which the crank OA rotates in the 

clockwise direction. l and r are the lengths of the connecting rod and the crank 

respectively. 
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Let  x = displacement of piston from inner – dead center. At the moment when 

the crank has turned through angle θ from the inner – dead center, 

1 1x B B BO B O    

    1 1 1BO B A A O    

      l r l cos cos      

      nr r nr cos r cos        (taking l n
r
 ) 



      r n 1 ncos cos        

Where   
2

2

2

y
cos 1 sin 1

l
      

 
2

2

r sin
1

l


   = 

2

2

sin
1

n


  

2 21
n sin

n
   

          2 2x r n 1 n sin cos      
  

 

    2 2r 1 cos n n sin      
  

 

If the connecting rod is very large as compared to crank, n
2
 will be large and the 

maximum value of sin
2
θ can be unity. Then 2 2n sin   will be approaching 2n  

or n, and   x r 1 cos   

 This is the expression for simple harmonic motion. Thus the piston 

executes a simple harmonic motion when the connecting rod is large. 

 

Velocity of piston: 

 

dx dx d
v

dt d dt




   

      
1

22 2d d
r 1 cos n n sin

d dt


 



     
  

 

        
1

22 21
r 0 sin 0 n sin 2 sin cos

2
    

 
      

 
 

2 2

sin2
r sin

2 n sin


 



 
  

 
 

If 2n  is large compared to 
sin2

v r sin
2n


 
 

  
 

 

If 
sin 2

2n


 can be neglected (when is quite large). 

   v r sin   

Acceleration of Piston: 



  
dv dv d

f
dt d dt




   

  
d sin2

r sin
d 2n


  



  
   

  
 

2cos 2
r cos

2n


  
 

  
 

 

2 cos 2
r cos

n


 

 
  

 
 

If n is very very large, 

    2f r cos   as in case of SHM 

When 00   i.e. at IDC, 2 1
f r 1

n


 
  

 
 

When 0180 ,  i.e. at ODC, 2 1
f r 1

n


 
   

 
 

At 0180 ,   when the direction of motion is reversed, 2 1
f r 1

n


 
  

 
 

 Note that this expression of  acceleration has been obtained by differentiating the 

approximate expression for the velocity. It is, usually, very cumbersome to differentiate 

the exact expression for velocity. 

 

Angular velocity and angular acceleration of connecting rod: 

As y = l sinβ = r sinθ 

  
sin

sin
n


          ln

r
  

Differentiating with respect to time, 

 
d 1 d

cos cos
dt n dt

 
   

or  c
2 2

cos

1
n n sin

n


 







 

where              ωc  is the angular velocy of the connecting rod 



or  c
2 2

cos

n sin


 





 

Let  c  = angular acceleration of the connecting rod 

    c cd d d

dt d dt

  


   

 
1

22 2d
cos n sin

d
   





  
  

 

       
3 2 1 2

2 2 2 2 21
cos n sin 2sin cos n sin sin

2
      

  
       

 
 

 

 

2 2 2

2

3
2 2 2

cos n sin
sin

n sin

 
 



 
 

 
 

  

 

 

2
2

3
2 2 2

n 1
sin

n sin

 



 
  

 
  

 

The negative sign indicates that the sense of angular acceleration of the rod is such that 

it tends to reduce the angle β. 

Engine Force Analysis: 

An engine is acted upon by various forces such as weight of reciprocating masses and 

connecting rod, gas forces, forces due to friction and inertia forces due to acceleration 

and retardation of engine elements, the last being dynamic in nature. The analysis is 

made of the forces neglecting the effect of the weight and the inertia effect of the 

connecting rod. 

(i) Piston Effort ( effective driving force): 

 Piston effort is termed as the net or effective force applied on the piston. In 

reciprocating engines, the reciprocating masses accelerate during the first half of the 

stroke and the inertia force tends to resist the same. Thus the net force on the piston is 

decreased. During the later half of the stroke, the reciprocating masses decelerate and 

the inertia force opposes this deceleration or acts in the direction of the applied gas 

pressure and thus, increases the effective force on the piston. 

 In vertical engine, the weight of the reciprocating masses assists the piston during 

the down stroke, thus, increases the piston effort by an amount equal the weight of the 

piston. During the upstroke, piston effort is decreased by the same amount. 



Let  A1 = area of the cover end 

 A2  = area of the piston rod end 

 p1  = pressure on the cover end 

 p2 = pressure on the rods end 

 m = mass of the reciprocating parts 

Force on the piston due to the gas pressure, Fp = p1A1 – p2A2 

Inertia force, 2

b

cos 2
F mf mr cos

n


 

 
   

 
. It is opposite direction to that of the 

acceleration of the piston.  

Resistant force = Ff 

Net effective force on t5he piston, F =Fp – Fb
 
‒ Ff  

In case vertical engines, the weight of the piston or reciprocating parts also acts. 

Force on the piston, F =Fp +mg – Fb
 
‒ Ff  

(ii) Force (thrust) along rthe Connecting rod:  

Let Fc = Force in the3 connecting rod 

Then equating the horizontal components of vforces, 
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 cF cos F   or c

F
F

cos
  

(iii) Thrust on the Sides of Cylinder 

It is the normal reaction on the cylinder walls. 

  n cF F sin F tan    

(iv) Crank Effort 



Force is exerted on the crank pin as a result of the force on the piston. Crank effort is 

the net effort applied at the crank pin perpendicular to the crank which gives the 

required turning moment on the crankshaft. 

Let Ft = crank effort 

As   t cF r F r sin        

           
F

sin
cos

 


   

(v) Thrust on the Bearings 

The component of Fc along the crank (in the radial direction) produces a thrust on the 

crankshaft bearings. 

     r c

F
F F cos cos

cos
   


     

 Turning moment on Crankshaft: 

   tT F r   

         
F Fr

sin r sin cos cos sin
cos cos

     
 

      

  
1

Fr sin cos sin
cos

  


 
  

 
 

  
2 2

sin 1
Fr sin cos

1n
n sin

n


 



 
 

  
 
 

 

  
2 2

2 sin cos
Fr sin

2 n sin

 




 
  

 
 

  
2 2

sin2
Fr sin

2 n sin






 
  

 
 

Also as  r sin ODcos     

  tT F r   

      
F

r sin
cos

 


   



     
F

ODcos
cos




  

    F OD   

Dynamically Equivalent System: 

As neither the mass of the connecting rod uis uniformly distributed nor the motion is 

linear, its inertia cannot be found as general manner. 

 Usually, the inertia of the connecting rod is taken into account by considering a 

dynamically ‒ equivalent system. 

 Dynamically‒equivalent system means that the rigid link is replaced by a link 

w2ith tw2o point masses in such a way that it has the same motion as the rigid link 

when subjected to the same force i.e. the center of mass of the equivalent link has the 

same linear acceleration and the link has the same angular acceleration. 
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 Figure 39 (a) shows a rigid bnody of mass ‘m’ with center of mass at G. Let a 

force F is acting on body and the line of action is e distance from the C.G.. 

As we know  F m f
 

   

 and  F e I 
 

    

Acc. of G,  
F

f
m




  

Angular acc. , 
F e

I



 
  

Where,   e = perpendicular distance of F from G. 



   I = moment of inertia of the body about  perpendicular axis  

        through G. 

Now to have the dynamically equivalent system, let the replaced massless link has two 

point masses (m1 at B and m2 at D) at distances b and d respectively from the center of 

mass G. 

1. To satisfy same acceleration, the sum of the equivalent masses m1 amd m2 has 

to be equal to m. 

1 2m m m    

2. To  satisfy same angular acceleration 
F e

I




 should be same. 

(i) F


 is already taken same, thus e has to be same which means that the 

combined center of mass of the equivalent system remains at G. This is 

possible if  1 2m b m d    

(ii) To have the same moment of inertia of the equivalent system about 

perpendicular axis through their combined center of mass G, we must have 

   2 2

1 2I m b m d     

Thus any distributed mass can be replaced by two point masses to have the same 

dynamical properties if the following conditions fulfilled. 

(a) The sum of two masses is equal to the total mass. 

(b) The combined center of mass coincides with that of rod. 

(c) The moment of inertia of two point masses about perpendicular axis through 

their combined center of mass is equal to that of the rod. 

Inertia of the connecting rod: 

Let the connecting rod be replaced by an equivalent massless link with two point 

masses as shown. 

 Let m be the total mass of the connecting rod and one of the masses be located at 

the small end B. Let the second mass be placed at D. 
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 mb = mass at B, md = mass at D 

Take   BG = b and  DG = d 

Then  b dm m m   

  b dm b m d    

From above these two equations we can get 

  
b b

b
m m m

d

 
  
 

 

   
b

b
m 1 m

d

 
  

 
 

   
b

b d
m m

d

 
 

 
 

   
b

d
m m

b d



 

Similarly 
d

b
m m

b d



 

Hence  2 2

b dI m b m d   

    2 2d b
m b m d

b d b d
 

 
 

    
b d

mbd
b d

 
  

 
 

    mbd  



Let  k = radius of gyration of the connecting rod about an axis through center of mass 

G perpendicular to the plane of motion. 

  2mk mbd  

     2k bd  

 This result can be compared with that of an equivalent length of a simple 

pendulum in the following manner : 

The equivalent length of a simple pendulum is given by 

  
2k

L b d b
b

     

Where b is the distance of the point of suspension from center of mass of the body and 

the k is the radius of gyration. Thus , in the present case ,  d b L   is the equivalent 

length if the rod is suspended from point B, and d is the center of oscillation or 

percussion. 

 However, in the analysis of the connecting rod, it is much more convenient if the 

two point masses are considered to be located at the center of the two end bearings i.e. 

at A and B.  

Let  ma = mass at A, distance AG = a 

   a bm m m   

   
a

b b
m m m

a b l
 


 

Similarly 
b

a a
m m m

a b l
 


 

  I mab   

Assuming ,  a d ,  I I   

This means that by considering the two masses at A and B instead of at D and B, the 

inertia torque is increased from the actual value T ( I ). The error is corrected by 

incorporating a correction couple. 

Then correction couple is 

   cT mab mbd    

        cmb a d   



         cmb a b b d        

       cmb l L      (taking b d L  ) 
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This correction couple must be applied in the opposite direction to that of the applied 

inertia torque. As the direction of the applied inertia torque is always opposite to the 

direction of the angular acceleration, the direction of the correction couple will be the 

same as that of angular acceleration i.e. in the direction of decreasing angle  . 

Pivots and Collars: 

When a rotating shaft is subjected to an axial load the thrust (axial force) is taken 

either by a pivot or a collar. 

Collar Bearing: A collar bearing or simply a collar is provided at any position 

along the shaft and bears the axial load on a mating surface. The surface of the 

collar may be plane (flat) normal to the shaft or of conical shape. 

Pivot bearing:  When the axial load is taken by the end of the shaft which is 

inserted in a recess to bear the thrust, it is called a pivot bearing or simply a pivot. 

It is also known as foot step bearing. The surface of the pivot can also be flat or 

of conical shape. 

Uniform pressure and uniform wear: 

 Friction torque of a collar or a pivot bearing is calculated, usually on the 

basis of two assumptions. In one case it is assumed that the intensity of pressure 

on the bearing surface is constant, where as in 2
nd

 case, it is the uniform wearing 

of the bearing surface. 

For uniform pressure :- 



   
axial force

Pressure = 
cross sectional area

  

   
 2 2

0 i

F
P

R R



 

For uniform wear:- 

Let  p1 = normal pressure between two surfaces at radius r1 

 p2 = normal pressure between two surfaces at radius r2 

 b = width of the surface at radii r1 and r2 

 1 1 2 2p area at r p area at r        

 1 1 2 2p 2 r b p 2 r b        

 1 1 2 2p r p r   

  pr  constant C    

 Thus in case of uniform weariness of the two surfaces, product of the 

normal pressure and the corresponding radius must be constant. Pressure on an 

elemental area at radius r can be found as given below. 

Axial force, F = 

o

i

R

R

Axial force on the elemental area  

    
o

i

R

R
Pressure on the element Area   

    
o

i

R

R
p 2 r dr    

    
o

i

R

R

C
2 rdr

r
   

    
o

i

R

R
2 Cdr    o

i

R

R
2 Cr   o i2 C R R   

     o i2 pr R R   

     
 o i

F
p

2 r R R
 


 

Collars and pivots, using the above two theories have been analysed below. 

Collars: 



(i) Flat collars: 

Let p = uniform normal pressure over an area 

 F = axial thrust 

 N = speed of the shaft 

 μ = coefficient of friction between two surfaces 

Consider an element of width δr of the collar at radius r . Friction on the element 

 F axial force    

       p area of the element    

       p 2πr δr    

Friction torque about the shaft axis 

 T F r    

     p 2 r r r       

   22 p r r    

Total friction torque  
o

i

R
2

R
T 2 p r dr    

(a) With uniform pressure theory: Pressure is uniform 

 over the whole area and is given by 
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(b) With uniform wear theory pressure p at a radius r of the collar is given by 
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    bearing collar the of radius mean F    

   

(ii) Conical collar (Frustrum of cone)  

Consider an elementary area of width δr at a radius r of the bearing. Normal force on 

the elementary area 

                              = 
Axial force

sin α
 

Normal pressure on the elementary area 

                                          = 
Axial force 1

×
sin surface area

  

              =
αrδrπα sin2

1
×

sin

force Axial
 

             =
rδrπ2

force Axial
 

           =
force axial  the  to⊥ Area

force Axial
 

          = Axial pressure (P) 

i.e. normal pressure on the surface is equal to the axial pressure on a flat collar surface. 

Friction force on the element 

                            δF = µ×P× area of the element 

                                 =
α

rδ
rπpμ

sin
2××   

Friction Torque about the shaft axis  

        δT = δF×r 

              = rδ
α

πp

sin

r2µ 2

    

Total Friction torque 

      

22
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o
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R
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T r

 



   

(a) With Uniform pressure Theory 

Figure - 43 
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i.e. the torque is increased in the ratio 
sin

1
 from that for flat collars. 

(b) With Uniform wear Theory  
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i.e. the torque is increased by 
sin

1
 times from that for flat collars. 

Pivots:  

Expressions for torque in case of pivots can directly be obtained from the expressions 

for collars by inserting the values Ri = 0 and Ro = R 

(i) Flat Pivot   

(a) uniform Pressure theory , T =  
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(b) Uniform wear theory,  T = =  

(ii) Conical Pivot 

(a) uniform Pressure theory, T =  

(b) Uniform wear theory, T =  

The above equation reveals that the value of the friction torque is more when the 

uniform pressure theory is applied. In practice, however it has been found that the value 

of the friction torque lies in between that given by the two theories. To be on the safe 

side, out of the two theories, one is selected on the basis of use. Thus clutch will surely 

be transmitting torque given by the uniform wear theory. 

On the other hand , while calculating the power loss in a bearing, it is to be on the basis 

of uniform pressure theory. 

Friction clutch  

 A clutch is a device used to transmit the rotary motion of one shaft to another when 

desired. The axes of the two shafts are coincident. 

In friction clutches the connection of the engine shaft to the gear box shaft is affected by 

friction between two or more rotating concentric surfaces. The surfaces can be pressed 

firmly against one another when engaged and the clutch tends to rotate as a single unit. 

1. Disc clutch ( single – plate clutch) 

A disc clutch consist of a clutch plate attached to a splined hub which is free to 

slide axially on splines cut on the driven shaft. The clutch plate is made of steel 

and has a ring friction lining on each side. The engine shaft supports a rigidly 

fixed fly wheel. 

 



A spring loaded pressure plate presses the clutch plate firmly against the flywheel 

when clutch is engaged. When disengaged, the spring press against a cover 

attached to the fly wheel. Thus both the fly wheel and pressure plate rotate with 

the input shaft. The movement of the clutch plate is transferred to the pressure 

plate through a throat bearing. 

 
   Figure - 45 

 

Figure - 45 shows the pressure plate pulled back by the release levers and the 

friction linings on the clutch plate are no longer in contact with the pressure plate 

or the fly wheel. The fly wheel rotates without driving the clutch plate and thus 

the driven shaft. 

 

When the foot is taken off from the clutch pedal, the pressure on the throat 

bearing is released. As a result the spring become free to move the pressure plate 

to bring it in contact with the clutch plate. The clutch plate slide on the splined 

hub and is tightly gripped between the pressure plate and the fly wheel. The 

friction between the lining on the clutch plate and the fly wheel on one slide and 

the pressure plate on the other cause the clutch plate and hence the driven shaft to 

rotate. In case the resisting torque on the driven shaft exceeds the torque at the 

clutch, clutch slip will occur.  

2. Multiple plate clutch 

In multiple clutch, the number of frictional lining s and the metal plates are 

increased which increases the capacity of the clutch to transmit torque. Fig shows 

simplification diagram. 

 

The friction rings are splined on their outer circumference and engage with 

corresponding splines on the flywheel. They are free to slide axially. The friction 



material thus, rotates with the fly wheel and the engine shaft. The number of 

friction rings depends upon the torque to be transmitted. 

The driven shaft also supports disc on the splines which rotate with the driven 

shaft and can slide axially. If the actuating force on the pedal is removed, a spring 

presses the discs into contact with the friction rings and torque is transmitted 

between the engine shaft and the driven shaft. 

 
   Figure - 46 

 

If n1 is the number of plates on diving and n2 is the number of plates on driven 

shaft the number of active surfaces will be n = n1 + n2 ‒ 1 

Cone clutch  

In a cone clutch, the contact surfaces are in the form of cones. In the engaged position, 

the friction surfaces of the two cones A and B are in complete contact due to spring 

pressure that keeps one cones pressure against the other all the time. 

 

   Figure -47 

When the clutch is engaged the torque is transmitted from the diving shaft to the driven 

shaft through the flywheel and the friction cones. 



For disengaged the clutch, the cone B is pulled back though a lever system against the 

force of the spring. 

The advantage of a cone clutch is that the normal forces on the contact surfaces is 

increased. If F is the axial forces, Fn is the normal force and  is the semi cone angle of 

the clutch, then for a conical collar with uniform wear theory. 
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Where b is the width of the cone face. Remember as pr is constant in case of uniform 

wear theory which is applicable to clutches be on the safer side, P is to be normal 

pressure at the radius considered i.e. at the inner radius ri it is Pi and at the mean radius 

Rm it is pm . 

We know, 
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Engagement force is required 

1 cosnF F F     

     = Fnsin  + µFncos  

     = Fn (sin +µcos ) 

Fe  =  Fn (sin +µcos ) 

Fd = Fn (µcos - sin ) 

Friction circle  



Boundary friction occurs in heavily loaded, slow running bearings. In the type of 

friction, the frictional force is assumed to be proportional to the normal reaction. 

When a shaft rest in the bearing, its weight W acts through its center of gravity. The 

reaction of the bearing acts in line with W in the vertically upward direction. The shaft 

rests at the bottom of the bearing at A and metal to metal contact between the two. 

When a torque is applied to the shaft it rotates and the seat of pressure creeps or climbs 

up the bearing in a direction opposite to that of rotation. Metal to metal condition still 

exits and boundary friction criterion applies as the oil film will be of molecular 

thickness .The common normal at B between the two surfaces in contact passes through 

the centre of the shaft.  

Let    Ro = normal ( radial ) reaction at B 

    µRn = Frictional force, tangential to the shaft. 

The normal reaction and the friction force can be combined into a resultant reaction R 

inclined at an angle ϕ to Rn . 

Now the shaft is in equilibrium under the following forces 

(i) Weight W, acting vertically downwards and  

(ii) Reaction R. 

For equilibrium, R must act vertically upwards and must be equal to W. How ever the 

two forces W and R will be parallel and constitute couple. 

Let OC =  perpendicular  to R from O 

 

   Figure - 48 

Friction couple (Torque)  = Wr sin ϕ 



= Wr tan ϕ 

= W r µ 

The couple must act opposite to the torque producing motion. 

A circle drawn with OC  or r sin   r   as radial is known as the friction circle of the 

journal bearing. 

Friction axis of a link  

 In a pin jointed mechanism, usually, it is assumed that the resulting thrusts axial 

force in the link act along the longitudinal axes of the friction at pin joint acts in the 

same way as that for a journal revolving I a bearing. In a journal bearing, the resultant 

force on a journal is tangential to the friction circle. Similarly in pin joint links, the line 

of thrust on a link is tangential to the friction circles at the pin joints. The net effect of 

all this is to shift the axes along which the thrust acts. The new axis is known as the 

friction axis of the link. 

Slider-Crank mechanism  

Fig shows a slider – crank mechanism in 

which F is the thrust on the slider. If the 

effect of friction is neglected the force F 

will induce a thrust Fc in the connecting rod 

along its axis will be along a tangent to the 

friction circles at the joints A and B. 

 

ra = radiuosof pin at A 

rb =radius of pin at B 

µa = coefficient of friction at A 

µb = coefficient of friction at B. 

therefore, 

 the radius of friction circle at A = µa ra 

the radius of friction circle at  = µb rb 

  Now there are four possible 

ways of drawing a tangent to these circles. 

Figure - 49 



To decide about the right one, remember that a friction couple is opposite to the couple 

or torque producing the motion of a link. Thus while drawing a tangent to a friction 

circle see that the friction couple or torque so obtained is opposite to the direction of 

rotation of the link. Thus the position of right tangent depends upon 

1. The direction of external force on the link. 

2. The direction of the motion of the link relative to the link to which it is 

connected. 

 

Gear Trains 

A gear trains is a combination of gears use d to transmit motion from one shft to 

another. It becomes necessary when it is required to botain large speed reduction within 

a small space. 

The following are the main types of gear trains: 

1. Simple gear trains  

2. compound gear trains 

3. reverted gear train 

4. planetary or epicyclic gear trains. 

In simple gear trains each shaft support one gear. In compound gear train each shaft 

support two gear wheels except the first and the last. In a reverted gear trrain, the 

driving and the driven gears are co acial or coincident. In all these there types the axes 

of rotation of the wheel are fixed in position and the gears rotate about their respective 

axes.  

In planetary or epicyclic gear trains the axes of soe of the wheels are not fixed bt rotate 

around the axes of other wheels with useful to transmit very high velocity ratios with 

gears of smaller sizes in a lesser space. 

Simple gear trains  

A series of gears, capable of receiving and transmitting motion from one gear to another 

is called a simple gear train. In it all the gears axes remain fixed relative to the frame 

and each gear is on a separate shaft. 



 

     Figure - 50 

 

In simple gear train, 

1. two external gears of a pair always move in opposite direction and two in which 

one external gear meshing with another internal gear will move in same 

directions. 

2. Speed ratio = 
eldriven whe of speed

 wheeldriving of speed
 

Train ratio = 
ratio speed

1
 

Let,  

              T = number of teeth on a gear 

             N = speed in rpm. 
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So intermediate gear have no effect on train values so they are called idle gears. 

Compound gear trains  

When a series of gears is connected in such a way that two or more gears rotate about an 

axis with the same angular velocity, it is known as compound gear train. 
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Reverted Gear Train   

If the axis of first and last wheel of a compound gear coincide it is called a reverted gear 

train. 
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Also if r is the pitch circle radius of a gear  

                      r1+ r2 = r3 + r4 

Planetary or Epicyclic gear train 

In an epicyclic train, the axis of at least one of the gears also moves reltive to the frame. 

Epicyclic trains usually have comply motion.there fore comeratively simple methods 

are used to analyse them which do not require account visualization of the motion. 

 

Figure - 52 



 

     Figure - 53 

Assume that the arm a is fixed. S turns through ‘x’ revolutions in the anti clock wise 

direction. Assume anti clock wise motion as +ve and clock wise motion is –ve. 

Revolution made by a =0 

Revolution made by s = x 

Revolution made by p = s

p

T
x

T
  

Now, if mechanism is locked together and turned through a number of revolutions, the 

relative motions between a, s and p will not alter. Let the locked system is tuned 

through y revolutions in the anti clockwise direction. The 

Revolution made by a = y 

Revolution made by s = y+ x 

Revolution made by P = y  x
p

s

T

T
                                               (relative to fixed axis s) 

Thus, if revolution made by any of the two elements are known, x and y can be solved 

and the revolutions made by the third or others can be determined. 

 



 

   Figure - 54 

Note that the number of revolution of the wheel P given in the 1
st
 row is the number of 

revolutions in space or relative to fixed axis of s and not about its own axis. 

It is shown that p rotates through one revolution as the arm turns through one 

revolution. However the rotation of P is in space of about own axis. Thus if the arm 

makes y revolutions about o the wheel p also rotates through y revolutions of p about its 

own axis can be obtained by subtracting the number of revolution of the arm from the 

total number of revolution so p. 

Revolution of p about its own axis = to total revs about axis of arm – revs of the arm 

   =[ y  x
p

s

T

T
 ] - y 

  =   x
p

s

T

T
                     

Relative velocity method          

Angular velocity of s = angular velocity of s relative to a + angular velocity of a 

                                ωs = ωsa + ωa  

or      Ns = Nsa + Na 

similarly     Np = -Npa + Na (Ns and Np are to be in opposite direction) 



        Nsa = Ns - Na     and  Npa = Na – Np 
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Torque in epicyclic trains 

 Torques are transmitted from one element to another when a geared system 

transmits power. Assume that all the wheels of a gear trains rotate at uniform speeds i.e. 

accelerations are not involved. Also each wheel is in equilibrium under the action of 

torques acting on it. 

Let Ns, Np, Na, and  NA be the speed and Ts, Ta , Tp  and TA the external torque, 

transmitted by s, a, p and A respectively. 

We have T = 0 

Ts +Ta + Tp +TA = 0 

Now s and a are connected to machinery 

outside the system and transmits external 

torque. The planet p is not connected to 

any external source 

Ts +Ta + 0  +TA = 0 

Ts +Ta + TA = 0 

If A is fixed 

Assume no losses in power transmission 

 

∑Tω = 0 

∑TN = 0 

TsNs + Ta Na +TANA= 0 

TsNs + Ta Na = 0 

Brakes and dynamometers 

Internal Expading shoe brake 

Figure shows internal shoe automobile brakes. It consists of two semi – circular shoes 

which are lined with a friction material such as ferodo. The shoes press against the inner 

Figure - 55 



flange of the drum when the brakes are applied. Under normal running of the vehicle, 

the drum rotates freely as the outer diameter of the shoes is a little less than the internal 

diameter of the drum. 

The actuating force F is usually applied by two equal diameter pistons in a common 

hydraulic cylinder and is applied equally in magnitude to each shoe. For the shown 

direction of the drum rotation, the left shoe is known as leading or forward shoe and 

right as the trailing or rear shoe. 

Assuming that each shoe is rigid as compare to the friction surface, the pressure P at any 

to its distance l form the pivot  

 

    Figure - 56 

 

 

 

 

 

Considering the leading shoe, 

    where is a constant 

The direction of p is perpendicular to OA. 

The normal pressure,  

 

        where  



Pn is maximum when  

Let Pn
l
 = maximum intensity of normal pressure on the leading shoe. 

Pn max = Pn
l
 = K2 sin 90  =K2 

Pn = Pn 
l 
sin  

Let w = width of brake lining, µ = coefficient of friction 

Consider a small element of brake lining on the leading shoe tha makes an angle  at 

the centre. 

Normal reaction on the differential surface  

Rn
l
 = area X pressure = r  w Pn = r  w Pn

l
 sin  

Taking moments about the fulcrum O1  

 

Where   

                     

    

    

And 
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Taking moment about the fulcrum o2 for the trailing shoe 

Fa- n
t
c sin =0 

Where n
t
c sin =  

and 

 

=  

Thus   the maximum pressure intensities on the leading and the 

trailing shoe, can be determined by 

Braking torque ,TB =  

                              =  +  

                               =  

                               =  

 


