Lecture Notes On Analogue Communication
Techniques(Module 1 & 2)
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1. Spectral Analysis of Signals

2. Amplitude Modulation Techniques

3. Angle Modulation

4. Mathematical Representation of Noise
5. Noise in AM System

6. Noise in FM system
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Spectral Analysis of Signals

A signal under study in a communication system is generally expressed as a function of time or as a
function of frequency. When the signal is expressed as a function of time, it gives us an idea of how that
instantaneous amplitude of the signal is varying with respect to time. Whereas when the same signal is
expressed as function of frequency, it gives us an insight of what are the contributions of different
frequencies that compose up that particular signal. Basically a signal can be expressed both in time
domain and the frequency domain. There are various mathematical tools that aid us to get the frequency
domain expression of a signal from the time domain expression and vice-versa. FourierSeries is used
when the signal in study is a periodic one, whereas Fourier Transform may be used for both periodic as
well as non-periodic signals.

Fourier Series

Let the signal x(t) be a periodic signal with period Ty. The Fourier series of a signal can be obtained, if
the following conditions known as the Dirichlet conditions are satisfied:

1. x(t) must be a single valued function of ‘t’.

2. x(t) is absolutely integrable over its domain, i.e.
j |x(0)dr =0

3. The number of maxima and minima of x(t) must be finite in its domain.
4. The number of discontinuities of x(t) must be finite in its domain.

A periodic function of time, say x(z) having a fundamental period 7 can be represented as an infinite
sum of sinusoidal waveforms, the summation being called as the Fourier series expansion of the signal.

x(t) = A0+Z A4, COS(Z;Z;ntJ-FZ B, sin[zintj
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Where 4, is the average value of v(z) given by:
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Alternate form of Fourier Series is

> 27nt
x(t)=C, + ZCn cos -9,
n=l1 ]:)
G =4,
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B
¢, =tan" —=
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The Fourier series hence expresses a periodic signal as an infinite summation of harmonics of

fundamental frequency ]%Z—. The coefficients C, are called spectral amplitudes i.e. C, is the

3

2xnt

amplitude of the spectral component C, cos[ - ¢"J at frequency nfy This form gives one sided

0

spectral representation of a signal as shown in1* plot of Figure 1.

Exponential Form of Fourier Series

This form of Fourier series expansion can be expressed as :

X(t) — z Vnej27rnt/7"0

TO
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v, == | x(ve”™""dt
T, =,
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The spectral coefficients V,and V., have the property that they are complex conjugates of each other

%
Vn = V:,, . This form gives two sided spectral representation of a signal as shown in 2™ plot of Figure-

1. The coefficients V, can be related to C,, as :

V,=C,
V — Cn e’/¢1
"2

2
The V,’s are the spectral amplitude of spectral components Vnel i
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Figure 1 One sided and corresponding two sided spectral amplitude plot

The Sampling Function

The sampling function denoted as Sa(x) is defined as:

Sa(x) :Sin—(x)

X

And a similar function Sinc(x) is defined as :

Sinc(x) :—Siniizx)

The Sa(x) is symmetrical about x=0, and is maximum at this point Sa(x)=1. It oscillates with an
amplitude that decreases with increasing x. It crosses zero at equal intervals on x at every X =1nr |
where 7 is an non-zero integer.
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Figure 2 Plot of Sinc(f)




Fourier Transform

The Fourier transform is the extension of the Fourier series to the general class of signals (periodic and
nonperiodic). Here, as in Fourier series, the signals are expressed in terms of complex exponentials of
various frequencies, but these frequencies are not discrete. Hence, in this case, the signal has a
continuous spectrum as opposed to a discrete spectrum. Fourier Transform of a signal x(?) can be
expressed as:

F[x(t)]=X(f) = T x(t)e > dt

x(t) © X(f) represents a Fourier Transform pair

The time-domain signal x(?) can be obtained from its frequency domain signal X(f) by Fourier
inverse defined as:

x() =F" [X(D]= [ X(Be"df

When frequency is defined in terms of angular frequency ) ,then Fourier transform relation
can be expressed as:

Flx(t)]=X(w) = T x(t)e ™ dt
and
x(t)=F"'[X(w)]= i _[ X(w)e"dw

Properties of Fourier Transform
Let there be signals x(t) and y(t) ,with their Fourier transform pairs:

x(t) = X(f)
y(t) < Y(f) then,

1. Linearity Property
ax(t) +by(t) & aX(f)+ bY(f) , where a and b are the constants

2. Duality Property
X(t) & x(—f)or
X(t) <21 X(—w)

3. Time Shift Property
x(t—t,) <e > X(6)



4. Time Scaling Property
1

x(at) < —X(ij

o \a

5. Convolution Property: If convolution operation between two signals is defined as:
x(H)®y(t) = j x(r)x(t — r)dr , then

x(1) ® y(t) < X(f) Y(f)
6. Modulation Property
& x(t) S X(F-1,)

7. Parseval’s Property

0

[ X0y Odt= [ XY (0

—00

8. Autocorrelation Property: If the time autocorrelation of signal x() is expressed as:

R (7)= T x(t)x*(t—7)dt ,then

2
R (1) &[X(D)
9. Differentiation Property:

d
Sox() & j2m X (D

Response of a linear system

The reason what makes Trigonometric Fourier Series expansion so important is the unique
characteristic of the sinusoidal waveform that such a signal always represent a particular frequency.
When any linear system is excited by a sinusoidal signal, the response also is a sinusoidal signal of
same frequency. In other words, a sinusoidal waveform preserves its wave-shape throughout a linear
system. Hence the response-excitation relationship for a linear system can be characterised by, how the
response amplitude is related to the excitation amplitude (amplitude ratio) and how the response phase
is related to the excitation phase (phase difference) for a particular frequency. Let the input to a linear
system be :

vi (t’ a)n ) = lynejw”l

Then the filter output is related to this input by the Transfer Function (characteristic of the Linear

Filter): H (w, )= | H(w,) o /0@)

, such that the filter output is given as

v, (t,w,)=",

n

H (a) )|e/'(mnt<i9(mn))




Normalised Power

While discussing communication systems, rather than the absolute power we are interested in another
quantity called Normalised Mean Power. It is an average power normalised across a 1 ohm resistor,
averaged over a single time-period for a periodic signal. In general irrespective of the fact, whether it is
a periodic or non-periodic signal, average normalised power of a signal v() is expressed as :

v (1)t

— [N
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~

v

Energy of signal

For a continuous-time signal, the energy of the signal is expressed as:
E= j X (Ot

A signal is called an Energy Signal if

0<E<w
P=0

A signal is called Power Signal if

0<P<ow
E=w

Normalised Power of a Fourier Expansion

If a periodic signal can be expressed as a Fourier Series expansion as:
v(¢) =G, +C cos(27fyt)+C, cos(47fit) +...

Then, its normalised average power is given by :

Integral of the cross-product terms become zero, since the integral of a product of orthogonal signals
over period is zero. Hence the power expression becomes:

2 2
P=C’+L1+—2+..
2 2

By generalisation, normalised average power expression for entire Fourier Series becomes:



0 2
P:C02+ZC—”+

n=l

In terms of trigonometric Fourier coefficients 4, s B, ‘s the power expression can be written as:
2 2 2
P-4 AT B,
n=1 n=1

In terms of complex exponential Fourier series coefficients V,,’s, the power expressions becomes:

Energy Spectral Density(ESD)

It can be proved that energy E of a signal x() is given by :

2

E= J‘ X2 (t)dt = J’ | X (D) df — Parseval’s Theorem for energy signals

So, E = j w()df , where w(f) =|X (D|2 — Energy Spectral Density

The above expression says that y(f) integrated over all of the frequencies, gives the total energy of the

signal. Hence Energy Spectral Density (ESD) quantifies the energy contribution from every frequency
component in the signal, and is a function of frequency.

Power Spectral Density(PSD)

It can be proved that the average normalised power P of a signal x(?),such that x_(t) is a truncated and
o . x(t) Lor<t)
periodically repeated version of x(z) such that x_(t) = 2 is given by :

0; elsewhere

2

P= hm )dt =lim— I |X )| dt — Parseval’s Theorem for power signals
T—>0 ’Z' T—0 ’Z'
2
Y 2
o XD .
So, P= I S(Hdf , where S(f) =, lim , ~———— — Power Spectral Density
—0 T

The above expression says that S(f)integrated over all of the frequencies, gives the total normalised
power of the signal. Hence Power Spectral Density (PSD) quantifies the power contribution from every
frequency component in the signal, and is a function of frequency.



Expansion in Orthogonal Functions

Let there be a set of functions g (x),g,(x),g;(x),...,g,(x), defined over the interval x < x < x, and

such that any two functions of the set have a special relation:

[(0g, 0dx =0

1

The set of functions showing the above property are said to be an orthogonal set of functions in the
interval x < x < x,. We can then write a function f(x) in the same interval x < x < x,, as a linear

sum of such g (x)’s as:
fX)=Cg(x)+C,g,(x)+Cyg,(x)+..+C, g,(X) » where C,’s are the numerical coefficients

The numerical value of any coefficient C, can be found out as:

[ ro0e, coax
=2

n

f g, (x)dx

X

In a special case when the functions g (x)in the set are chosen such that J' g,”(x)dx =1, then such a
set is called as a set of orthonormal functions, that is the functions are orthogonal to each other and each
one is a normalised function too.



Amplitude Modulation Systems

In communication systems, we often need to design and analyse systems in which many independent
message can be transmitted simultaneously through the same physical transmission channel. It is
possible with a technique called frequency division multiplexing, in which each message is translated in
frequency to occupy a different range of spectrum. This involves an auxiliary signal called carrier
which determines the amount of frequency translation. It requires modulation, in which either the
amplitude, frequency or phase of the carrier signal is varied as according to the instantaneous value of
the message signal. The resulting signal then is called a modulated signal. When the amplitude of the
carrier is changed as according to the instantaneous value of the message/baseband signal, it results in
Amplitude Modulation. The systems implementing such modulation are called as Amplitude modulation
systems.

Frequency Translation

Frequency translation involves translating the signal from one region in frequency to another region. A
signal band-limited in frequency lying in the frequencies from f; to f;, after frequency translation can be
translated to a new range of frequencies from f; to f . The information in the original message signal at
baseband frequencies can be recovered back even from the frequency-translated signal. The
advantagesof frequency translation are as follows:

1. Frequency Multiplexing: In a case when there are more than one sources which produce band-
limited signals that lie in the same frequency band. Such signals if transmitted as such
simultaneously through a transmission channel, they will interfere with each other and cannot
be recovered back at the intended receiver. But if each signal is translated in frequency such
that they encompass different ranges of frequencies, not interfering with other signal spectrums,
then each signal can be separated back at the receiver with the use of proper filters. The output
of filters then can be suitably processed to get back the original message signal.

2. Practicability of antenna: In a wireless medium, antennas are used to radiate and to receive the
signals. The antenna operates effectively, only when the dimension of the antenna is of the
order of magnitude of the wavelength of the signal concerned. At baseband low frequencies,
wavelength is large and so is the dimension of antenna required is impracticable. By frequency
translation, the signal can be shifted in frequency to higher range of frequencies. Hence the
corresponding wavelength is small to the extent that the dimension of antenna required is quite
small and practical.

3. Narrow banding: For a band-limited signal, an antenna dimension suitable for use at one end of
the frequency range may fall too short or too large for use at another end of the frequency
range. This happens when the ratio of the highest to lowest frequency contained in the signal is
large (wideband signal). This ratio can be reduced to close around one by translating the signal
to a higher frequency range, the resulting signal being called as a narrow-banded signal.
Narrowband signal works effectively well with the same antenna dimension for both the higher
end frequency as well as lower end frequency of the band-limited signal.

4. Common Processing: In order to process different signals occupying different spectral ranges
but similar in general character, it may always be necessary to adjust the frequency range of
operation of the apparatus. But this may be avoided, by keeping the frequency range of
operation of the apparatus constant, and instead every time the signal of interest beingtranslated
down to the operating frequency range of the apparatus.




Amplitude Modulation Types:

Double-sideband with carrier (DSB+C)
Double-sideband suppressed carrier (DSB-SC)
Single-sideband suppressed carrier (SSB-SC)
Vestigial sideband (VSB)

el S e

Double-sideband with carrier (DSB+C)

Let there be a sinusoidal carrier signal ¢(t) = ACos(27 f,t), of frequency f. . With the concept of

amplitude modulation, the instantaneous amplitude of the carrier signal will be modulated (changed)
proportionally according to the instantaneous amplitude of the baseband or modulating signal x(z). So

the expression for the Amplitude Modulated (AM) wave becomes:
s(t)= [A + x(t)] Cos(2r £ t) =E(t) Cos(27 £ t)

E(t) = A+ x(t)

The time varying amplitude E(z) of the AM wave is called as the envelope of the AM wave. The

envelope of the AM wave has the same shape as the message signal or baseband signal.

ﬂﬂﬂﬂﬂ \ﬂﬂnﬁuﬂi.l‘rﬁ ﬂlﬁlﬂlﬂ—ﬂ—,

\
J LU VY, l'l‘l

|| | | |I |
Iull U |L|I I'-.-'I I Il_,'l l_.ll
Carricr Signal

Modulating Sinc Wave Signal

||'—'|| ﬂll n
M it Ty

|
W

|
| ||I

L
L
Amphitute Modulated Signal

Figure 3 Amplitude modulation time-domain plot

Modulation Index (m,): It is defined as the measure of extent of amplitude variation about unmodulated

maximum carrier amplitude.
modulation factor.

It is also called as depth of modulation, degree of modulation or



_ O,
m =l
A

On the basis of modulation index, AM signal can be from any of these cases:

L. m > 1 : Here the maximum amplitude of baseband signal exceeds maximum carrier

amplitude, |x(1:)|max > A In this case, the baseband signal is not preserved in the AM envelope,
hence baseband signal recovered from the envelope will be distorted.

II. m, <1 : Here the maximum amplitude of baseband signal is less than carrier amplitude

X(t), < A. The baseband signal is preserved in the AM envelope.
max

Spectrum of Double-sideband with carrier (DSB+C)

Let x(#) be a bandlimited baseband signal with maximum frequency content f,,. Let this signal
modulate a carrier ¢(t) = ACos(2x f,t) .Then the expression for AM wave in time-domain is given by:

s(t) =[4+x(t)|Cos(27 f,1)
= ACos(27 f,t) + x(t) Cos(27 £ t)

Taking the Fourier transform of the two terms in the above expression will give us the spectrum of the
DSB+C AM signal.

ACos(27f t) < %[5(f+ f)+o(f-f)]
x(t) Cos(27f,t) < %[X(er f)+X(f~1,)]

So, first transform pair points out two impulses at f = + f, , showing the presence of carrier signal in

the modulated waveform. Along with that, the second transform pair shows that the AM signal
spectrum contains the spectrum of original baseband signal shifted in frequency in both negative and
positive direction by amount f . The portion of AM spectrum lying from f to f + f, in positive

frequency and from - f to — 7 — f in negative frequency represent the Upper Sideband(USB). The
portion of AM spectrum lying from f — f to f in positive frequency and from — 7 + f to — 7, in

negative frequency represent the Lower Sideband(LSB). Total AM signal spectrum spans a frequency
from f - f to f + f, ,hence has a bandwidth of 2 f .

Power Content in AM Wave

By the general expression of AM wave:

s(t) = ACos(27f ) +x(t) Cos(27 L £)

Hence, total average normalised power of an AM wave comprises of the carrier power corresponding to
first term and sideband power corresponding to second term of the above expression.



Botal = Learrier + f;ideband
1 T/2 Az
Pow=lim= | 4’Cos’ 2z f.t)dt =
S V) 2
1 T/2 1 _
I)sideband = lim_ j x2 (t)COSZ (272— fct)dt = —)C2 (t)
> T 7)) 2

In the case of single-tone modulating signal where x(t) = \/m @9(272' fmt) :

2
B’arrier - A_
V 2

Rideband = 4

2 2
P A +V’”

N o =—
carrier sideband
2 4

P

total —

2
= Ptotal = Pcarrier |:1 + ma :|
2

Where, m, is the modulation index given as »; = Vi .
¢ A

Net Modulation Index for Multi-tone Modulation: If modulating signal is a multitone signal
expressed in the form:

x(t)=V, Cosrf )+ V, Cos2rk 1)+ V, Cos2rfyt) +...+V, Cos(2E 1)

2 2 2 2
[1+m'+m2 Jmom,
2

Then, p

total —

})ca rrier

5 )
Where 1, zﬁ,mzzﬁ,%:&,...,m =
A A A

Generation of DSB+C AM by Square Law Modulation

Square law diode modulation makes use of non-linear current-voltage characteristics of diode.
This method is suited for low voltage levels as the current-voltage characteristic of diode is highly non-
linear in the low voltage region. So the diode is biased to operate in this non-linear region for this
application. A DC battery V. is connected across the diode to get such a operating point on the
characteristic. When the carrier and modulating signal are applied at the input of diode, different
frequency terms appear at the output of the diode. These when applied across a tuned circuit tuned to
carrier frequency and a narrow bandwidth just to allow the two pass-bands, the output has the carrier
and the sidebands only which is essentially the DSB+C AM signal.
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Figure 4 Current-voltage characteristic of diode

Figure 5 Square Law Diode Modulator
The non-linear current voltage relationship can be written in general as:
i=av+bv’
In this application v = ¢(t) + x(t)

So
i = a[ACos(27 f,t) + x(t)]+ b[ACos(27 £ t) + x(t)]’
= i=aACos(2x f,t)+ax(t)+bA4’ Cos’ 2z f,t) +bx*(t) + 2bA x(t) Cos(2x f.t)

2 2
—i=|aACos(27 fc@ +ax(t)+ %COS(ZE(Z f )t) +’% +bx* (1) +|2b4 x(t) Cos(27 £, 1)|

Out of the above frequency terms, only the boxed terms have the frequencies in the passband of the
tuned circuit, and hence will be at the output of the tuned circuit. There is carrier frequency term and the
sideband term which comprise essentially a DSB+C AM signal.



Demodulation of DSB+C by Square Law Detector

It can be used to detect modulated signals of small magnitude, so that the operating point may be
chosen in the non-linear portion of the V-I characteristic of diode. A DC supply voltage is used to get a
fixed operating point in the non-linear region of diode characteristics. The output diode current is hence

“Oiode

Q (q!)e‘\ﬂt‘\ta
O dpud-

Figure 6 Square Law Detector

given by the non-linear expression:

i:avm(t)+bv2m(t)

Where V(1) =[Act-x(t)] Cos(27z£. )

This current will have terms at baseband frequencies as well as spectral components at higher
frequencies. The low pass filter comprised of the RC circuit is designed to have cut-off frequency as the
highest modulating frequency of the band limited baseband signal. It will allow only the baseband
frequency range, so the output of the filter will be the demodulated baseband signal.

Linear Diode Detector or Envelope Detector

This is essentially just a half-wave rectifier which charges a capacitor to a voltage to the peak voltage of
the incoming AM waveform. When the input wave's amplitude increases, the capacitor voltage is
increased via the rectifying diode quickly, due a very small RC time-constant (negligible R) of the
charging path. When the input's amplitude falls, the capacitor voltage is reduced by being discharged by
a ‘bleed’ resistor R which causes a considerable RC time constant in the discharge path making
discharge process a slower one as compared to charging. The voltage across C does not fall appreciably
during the small period of negative half-cycle, and by the time next positive half cycle appears. This
cycle again charges the capacitor C to peak value of carrier voltage and thus this process repeats on.
Hence the output voltage across capacitor C is a spiky envelope of the AM wave, which is same as the
amplitude variation of the modulating signal.
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Figure 7 Envelope Detector

Double Sideband Suppressed Carrier(DSB-SC)

If the carrier is suppressed and only the sidebands are transmitted, this will be a way to saving
transmitter power. This will not affect the information content of the AM signal as the carrier
component of AM signal do not carry any information about the baseband signal variation. A DSB+C
AM signal is given by:

S0 = ACOST ) +x(0) Cos(2£ 1)

So, the expression for DSB-SC where the carrier has been suppressed can be given as:

Spe-sc(®) =x(t) Cos(2 1 1)

Therefore, a DSB-SC signal is obtained by simply multiplying modulating signal x(z) with the carrier
signal. This is accomplished by a product modulator or mixer.

Figure 8 Product Modulator

Difference from the the DSB+C being only the absence of carrier component, and since DSBSC has
still both the sidebands, spectral span of this DSBSC wave isstill . — 7 to f + f ,hence hasa

bandwidth of 2 £ .

Generation of DSB-SC Signal



A circuit which can produce an output which is the product of two signals input to it is called a product
modulator. Such an output when the inputs are the modulating signals and the carrier signal is a DSBSC
signal. One such product modulator is a balanced modulator.

Balanced modulator:

v, = Cos(2r £ t) + x(t)
v, =Cos(2r £ t)—x(t)

For diode D, the nonlinear v-i relationship becomes:
i, =av, +bv’ =a[CosQrrf 1) +x(t)]+b[Cos 2 t) +x(O)
Similarly, for diode D,,

i, =av, +bv,” =d[CosQrf t)—x ()] +b[Cos2rf ) —x ()]

v,=v,—v, =(i, —i,)R
Now i 3 4 1 2

. substituting for i;and i
s 1, = 2R[ax()+ 2bx(t) Cos(27 £.1)] g for jand 1)
This voltage is input to the bandpass filter centre frequency f. and bandwidth 2f,,. Hence it allows the
component corresponding to the second term of the v;, which is our desired DSB-SC signal.

Demodulation of DSBSC signal

Synchronous Detection: DSB-SC signal is generated at the transmitter by frequency up-translating the
baseband spectrum by the carrier frequency f.. Hence the original baseband signal can be recovered by
frequency down-translating the received modulated signal by the same amount. Recovery can be
achieved by multiplying the received signal by synchronous carrier signal and then low-pass filtering.
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Figure 9 Synchronous Detection of DSBSC

Let the received DSB-SC signal is :

1t) =x(t) Cos(27£ 1)
So after carrier multiplication, the resulting signal:

e(t) = x(t)Cos(2x f,t).Cos(2r f 1)
= e(t) = x(t) Cos* (27 £ t)

= e(t) = %x(t) [1+Cos(27(2f,) )]

= e(t) = %x(t) +%x(t)Cos(27r(2 £)1)

The low-pass filter having cut-off frequency f,, will only allow the baseband term 1 x(t) » which is in the
2

pass-band of the filter and is the demodulated signal.

Single Sideband Suppressed Carrier (SSB-SC) Modulation

The lower and upper sidebands are uniquely related to each other by virtue of their symmetry about
carrier frequency. If an amplitude and phase spectrum of either of the sidebands is known, the other
sideband can be obtained from it. This means as far as the transmission of information is concerned,
only one sideband is necessary. So bandwidth can be saved if only one of the sidebands is transmitted,
and such a AM signal even without the carrier is called as Single Sideband Suppressed Carrier signal. It
takes half as much bandwidth as DSB-SC or DSB+C modulation scheme.

For the case of single-tone baseband signal, the DSB-SC signal will have two sidebands :

And the upper side-band: (hS'(27Z(fc+fm) t) =(os (272' fmt)(hS’(Zﬂ' fct) —Sln(272' fmt) Sln(Zﬂ' fct)



If any one of these sidebands is transmitted, it will be a SSB-SC waveform:
5(t)os =Cos2f N Cos(27 1) £Sin(27f t)Sin(27rf 1)

Where (+) sign represents for the lower sideband, and (-) sign stands for the upper sideband. The
modulating signal here is x(t) :COS(27T fmt) , so let X, (t) =Si11(272’ fmt) be the Hilbert Transform

T
of x(t) . The Hilbert Transform is obtained by simply giving (—E] to a signal. So the expression

for SSB-SC signal can be written as:

S(t)sy =X(OCHTE ) £, OSIN27E Y

T
Where X, (t) is a signal obtained by shifting the phase of every component present in x(t) by (—EJ .
Generation of SSB-SC signal

Frequency Discrimination Method:
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Figure 10 Frequency Discrimination Method of SSB-SC Generation

The filter method of SSB generation produces double sideband suppressed carrier signals (using a
balanced modulator), one of which is then filtered to leave USB or LSB. It uses two filters that have
different passband centre frequencies for USB and LSB respectively. The resultant SSB signal is then
mixed (heterodyned) to shift its frequency higher.

Limitations:

I.  This method can be used with practical filters only if the baseband signal is restricted at its
lower edge due to which the upper and lower sidebands do not overlap with each other. Hence
it is used for speech signal communication where lowest spectral component is 70 Hz and it
may be taken as 300 Hz without affecting the intelligibility of the speech signal.

II.  The design of band-pass filter becomes quite difficult if the carrier frequency is quite higher
than the bandwidth of the baseband signal.

Phase-Shift Method:
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Figure 11 Phase shift method of SSB-SC generation

The phase shifting method of SSB generation uses a phase shift technique that causes one of the side
bands to be cancelled out. It uses two balanced modulators instead of one. The balanced modulators
effectively eliminate the carrier. The carrier oscillator is applied directly to the upper balanced
modulator along with the audio modulating signal. Then both the carrier and modulating signal are
shifted in phase by 900 and applied to the second, lower, balanced modulator. The two balanced
modulator output are then added together algebraically. The phase shifting action causes one side
band to be cancelled out when the two balanced modulator outputs are combined.

Demodulation of SSB-SC Signals:

The baseband or modulating signal x(t) can be recovered from the SSB-SC signal by using
synchronous detection technique. With the help of synchronous detection method, the spectrum of an
SSB-SC signal centered about , 1s retranslated to the basedand spectrum which is centered
about . The process of synchronous detection involves multiplication of the received SSB-SC
signal with a locally generated carrier.

l

Incoming SSB-SC|  Multiplier Low Pass
g Filter (LPF)

|

The output of the multiplier will be

or

or

or - -

or - -



When e,(?)is passed through a low-pass filter, the terms centre at i'a)c are filtered out and the output

of detector is only the baseband part i.e. 1 x(t) -
2

Vestigial Sideband Modulation(VSB)

SSB modulation is suited for transmission of voice signals due to the energy gap that exists in the
frequency range from zero to few hundred hertz. But when signals like video signals which contain
significant frequency components even at very low frequencies, the USB and LSB tend to meet at
the carrier frequency. In such a case one of the sidebands is very difficult to be isolated with the help
of practical filters. This problem is overcome by the Vestigial Sideband Modulation. In this
modulation technique along with one of the sidebands, a gradual cut of the other sideband is also
allowed which comes due to the use of practical filter. This cut of the other sideband is called as the
vestige. Bandwidth of VSB signal is given by :

BW=(fo+ 1)~ L) =0+,
Where fm — bandwidth of bandlimited message signal

fv —width of the vestige in frequency



Angle Modulation

Angle modulation may be defined as the process in which the total phase angle of a carrier wave is
varied in accordance with the instantaneous value of the modulating or message signal, while amplitude
of the carrier remain unchanged. Let the carrier signal be expressed as:

c(t)=ACos(2x f t+0)
Where ¢ =27 f t+6 — Total phase angle

6 — phase offset
f. — carrier frequency

So in-order to modulate the total phase angle according to the baseband signal, it can be done by either
changing the instantaneous carrier frequency according to the modulating signal- the case of Frequency
Modulation, or by changing the instantaneous phase offset angle according to the modulating signal- the
case of Phase Modulation. An angle-modulated signal in general can be written as

u(t) = ACos(4(1))

where, ¢(t) is the total phase of the signal, and its instantaneous frequency f;(t) is given by

1(0)=5=450(0)

Since u(t) is a band-pass signal, it can be represented as
u(t) = ACos(27 ft + 6(¢))

and, therefore instantaneous frequency f; becomes :

1 d
ﬁ(’)Zﬁ*gae(f)

For angle modulation, total phase angle can modulated either by making the instantaneous frequency or
the phase offset to vary linearly with the modulating signal.

Let m(2) be the message signal, then in a Phase Modulation system we implement to have

0 (t) = O+k,m (t) and with constant f. we get [1(z) linearly varying with message signal.

and in an Frequency Modulation system letting phase offset 8 be a constant, we implement to have
fi(t)= f.+k,m(z),to get [1(¢) linearly varying with message signal

where k, and ksare phase and frequency sensitivity constants.



The maximum phase deviation in a PM system is given by:

A, =k, |m(t)

max
And the maximum frequency deviation in FM is given by:

Afmax - kf |m (t) max
Aw,,, =27k, |m (¢)

max

Single Tone Frequency Modulation

The general expression for FM signal is § (l‘ ) = ACOS(a)Ct +k f.jm(t) dt)

So for the single tone case, wheremessage signal is m (t) =VCos (a)mt)

kV .
Then s(t) = ACos| w,t +—— Sin(w, t)
,

m

= s(t) = ACos(a)ct + mez'n(a)mt))

k fV Aw ]
Here m fET— = Modulation Index

Types of Frequency Modulation
High frequency deviation =>High Bandwidth=> High modulation index=>Wideband FM

Small frequency deviation =>Small Bandwidth=> Small modulation index=>Narrowband FM

Carson’s Rule

It provides a rule of thumb to calculate the bandwidth of a single-tone FM signal.
Bandwidth=2(Af + £,)=2(1+m, ) £,

If baseband signal is any arbitrary signal having large number of frequency components, this rule can be
modified by replacing m , by deviation ratio D.



D= Peak Frequency deviation corresponding maximum possible amplitude of m(t)

Maximum frquency component present in the modulating signal m(t)

Then the bandwidth of FM signal is given as: Bandwidth = 2(1+ D) f,...

Spectrum of a Single-tone Narrowband FM signal

A single-tone FM modulated signal is mathematically given as:

5(t) = ACos (.t +m Sin(,1))
= s(t) = ACos(w,t) Cos(m Sin(w, 1)) — ASin(@,?) Sin(m Sin(w,1))

Since for narrowband FM modulation index my<<I, sowe approximate as:
Cos(m Sin(®,,t)) ~1 and Sin(m Sin(®,,t)) = m Sin(®,t)

s(t) = ACos(w,t) — Am, Sin(w,t)Sin(w, t)

And the expression s(t) becomes: Am
= s(t) = ACos(w,t) + Tf{Cos(a)c +a,)t—Cos(w, - w,)t}

The above equation represents the NBFM signal. This representation is similar to an AM
signal, except that the lower sideband frequency has a negative sign.

Spectrum of a Single-tone Wideband FM signal

A single-tone FM modulated signal is mathematically given as:

s(t)= ACos (a)ct + mein(a)mt))
= s(t) = ACos(w,t) Cos(m Sin(w,t)) — ASin(@,t) Sin(m Sin(®,t))

The FM signal can be expressed in the complex envelope form as:
s(t)=Re |: A% /»Sin(wmt)]

= s(t) = Re[Aejm’Si"(“’mt) % ejwut]

=s(t) = Re[g(t) * ejwctjl

~ jm ;Sin . . . . . . 1
Where §(t) = Ae™ Sintent) , which is a periodic function of period — .

m

The Fouries series expansion of this periodic function can be written as:



(=Y Ce/*

n=—0

Where C, spectral coefficients are given by

1

2 fo
C,=f, [ e dt

n
1

2fm

1

2 fm
Jm Sin(,,t)—j2znf,t
=C, =A4f, I [e ! }dt
1

2/

Substituting x =27 f ¢, the above equation becomes,

Cn _ % T [ejmk,-sm(x)—jnx:| dx

As the above expression is in the form of n™ order Bessels function of first kind :
1 Vi
im Sin(x)— jnx
Jn(mf)=—j[ef 7S] }dx,
2
-7
therefore we can write C, = 4J,(m )

So, §(t) = Z AJ, (mf_)eﬁ;mfmz

n=—00

Hence the FM signal in complex envelope form can be written as:

S(t) =A4%* Re|: Z JH (m/,)e‘iu””/{mt*a’ct):|

sit)y=4 *[ i J,(m ) Cos(27znf,t+ a)ct)}

n=—x

This is the Fourier series representation of Wideband Single-tone FM signal. Its Fourier Transform can
be written as:

S() = A*{ i J”(mf){5(f+ fc+nfm)+§(f—fc—nfm)}}

The spectrum of Wideband Single-tone FM signal indicates the following:

1. WBFM has infinite number of sidebands at frequencies (f,tnf, ).



2. Spectral amplitude values depends upon J, (m ).
3. The number of significant sidebands depends upon the modulation indexm , For m, <<1,
Jy(m,) and J (m,)are only significant, whereas for m, >>1, many significant sidebands

exists.
Methods of Generating FM wave

Direct FM: In this method the carrier frequency is directly varied inaccordance with the incoming
message signal to produce a frequency modulated signal.

Indirect FM: This method was first proposed by Armstrong. In thismethod, the modulating wave is first
used to produce a narrow-band FMwave, and frequency multiplication is next used to increase
thefrequency deviation to the desired level.

Direct Method or Parameter Variation Method

In this method, the baseband or modulating signal directly modulates the carrier. The carrier signal is
generated with the help of an oscillator circuit. This oscillator circuit uses a parallel tuned L-C circuit.
Thus the frequency of oscillation of the carrier generation is governed by the expression:

The carrier frequency is made to vary in accordance with the baseband or modulating signal by making
either L or C depend upon to the baseband signal. Such an oscillator whose frequency is controlled by a
modulating signal voltage is called as Voltage Controlled Oscillator. The frequency of VCO is varied
according to the modulating signal simply by putting shunt voltage variable capacitor (varactor/varicap)
with its tuned circuit. The varactor diode is a semiconductor diode whose junction capacitance changes
with dc bias voltage. The capacitor C is made much smaller than the varactor diode capacitance C4 so
that the RF voltage from oscillator across the diode is small as compared to reverse bias dc voltage
across the varactor diode.

C
I —o
Modulating + H I
signal ' i
- = i :
AN 1 Ry TCo i
Vo * ] i
(oC bias}_'l' ' i
i ]
[ — B
Varactor Camier oscillator
diode tank circuit

Varactor diode method for FM generation

Figure 12 Varactor diode method of FM generation(Direct Method)



Drawbacks of direct method of FM generation:

1. Generation of carrier signal is directly affected by the modulating signal by directly controlling
the tank circuit and thus a stable oscillator circuit cannot be used. So a high order stability in
carrier frequency cannot be achieved.

2. The non-linearity of the varactor diode produces a frequency variation due to harmonics of the
modulating signal and therefore the FM signal is distorted.

Indirect method or Armstrong method of FM generation

A very high frequency stability can be achieved since in this case the crystal oscillator may be used as a
carrier frequency generator. In this method, first of all a narrowband FMis generated and then frequency
multiplication is used to cause required increased frequency deviation.The narrow band FM
wave is then passed through a frequency multiplier to obtain the wide band FM wave. Frequency
multiplication scales up the carrier frequency as well as the frequency deviation. The crystal controlled
oscillator provides good frequency stability. But this scheme does not provide both the desired
frequency deviation and carrier frequency at the same time. This problem can be solved by using
multiple stages of frequency multipliers and a mixer stages.
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Figure 13 Narrow Band FM Generation



FM Demodulators

In order to be able to demodulate FM, a receiver must produce a signal whose amplitude varies as
according to the frequency variations of the incoming signals and it should be insensitive to any
amplitude variations in FM signal. Insensitivity to amplitude variations is achieved by having a high
gain [F amplifier. Here the signals are amplified to such a degree that the amplifier runs into limiting. In
this way any amplitude variations are removed. Generally a FM demodulator is composed of two parts:
Discriminator and Envelope Detector.Discriminator is a frequency selective network which converts
the frequency variations in an input signal in to proportional amplitude variations. Hence when it is
input with an FM signal, it can produce an amplitude modulated signal. But it does not generally alter
the frequency variations which were there in the input signal. So the output of a discriminator is a both
frequency and amplitude modulated signal. This signal can be fed to the Envelope Detectorpart of FM
demodulator to get back the baseband signal
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Figure 15 Frequency response of slope detector

Slope detector: A very simplest form of FM demodulation is known as slope detection or
demodulation. It consists of a tuned circuit that is tuned to a frequency slightly offset from the carrier of




the signal.As the frequency of the signals varies up and down in frequency according to its modulation,
so the signal moves up and down the slope of the tuned circuit. This causes the amplitude of the signal
to vary in line with the frequency variations. In fact, at this point the signal has both frequency and
amplitude variations.It can be seen from the diagram that changes in the slope of the filter, reflect into
the linearity of the demodulation process.The linearity is very dependent not only on the filter slope as it
falls away, but also the tuning of the receiver - it is necessary to tune the receiver frequency to a
point where the filter characteristic is relatively linear. The final stage in the process is to demodulate
the amplitude modulation and this can be achieved using a simple diode circuit. One of the most
obvious disadvantages of this simple approach is the fact that both amplitude and frequency variations
in the incoming signal appear at the output. However, the amplitude variations can be removed by
placing a limiter before the detector. The input signal is a frequency modulated signal. It is applied to
the tuned transformer (T1, C1, C2 combination) which is offset from the centre carrier frequency. This
converts the incoming signal from just FM to one that has amplitude modulation superimposed upon the
signal. This amplitude signal is applied to a simple diode detector circuit, D1. Here the diode provides
the rectification, while C3 removes any unwanted high frequency components, and R1 provides a load.

PLL FM demodulator / detector:When used as an FM demodulator, the basic phase locked loop can
be used without any changes. With no modulation applied and the carrier in the centre position of the
pass-band the voltage on the tune line to the VCO is set to the mid position. However, if the carrier
deviates in frequency, the loop will try to keep the loop in lock. For this to happen the VCO frequency
must follow the incoming signal, and in turn for this to occur the tune line voltage must vary.
Monitoring the tune line shows that the variations in voltage correspond to the modulation applied to
the signal. By amplifying the variations in voltage on the tune line it is possible to generate the
demodulated signal. The PLL FM demodulator is one of the more widely used forms of FM
demodulator or detector these days. Its suitability for being combined into an integrated circuit, and the
small number of external components makes PLL FM demodulation ICs an ideal candidate for many
circuits these days.
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Figure 16 PLL FM Demodulator
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Sources and types of Noise
Type of noises are
* Thermal Noise
* Shot Noise
* Additive Noise
* Multiplicative Noise (fading)
* Gaussian Noise
* Spike Noise or Impulse Noise

Source of thermal noise are resistive elements in electrical and electronic circuits. Current
flowing in conductors can also be an example. Constant agitation at molecular level in all
material, which prevails all over the universe, is another example. In brief any source which
provides the current is the cause of the thermal energy. Source of shot noise is the solid state
semiconductor devices like diode, triode, tetrode, and pentode tubes. The noise which are
additive in nature are known as additive noise. This corrupts message signal. Fading occurs
because of signal or noise available at destination from multiple paths. White noise is basically
approximated by Gaussian noise as its probability density function is Gaussian. Spike noise is
observed in FM receivers because of low input SNR.

Frequency Domain Representation Noise
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Figure 3.1: (a) A sample noise waveform. (b) A periodic waveform is generated by repeating
the interval in (a) from —=T/2 to T/2

n (t) is a non periodic complete noise where as n“(t) is a sample of it and n(TS)(t) is a periodic
noise as shown in above figure 3.1(b).

n(6)= "D (@ cos2mk Aft +bysin 27k Af1) (3.1)
k=1

(5) o IURPON . 5 2 2 —1 bk 3.2

ny (f) = ZC'k cos 2k Aft +6,) cf =a; +b; 6, = —tan — (3.2)

k=l



Power Spectrum of Noise
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Figure 3.2: The power spectrum of the waveform n(TS)

Power spectral density of noise n(Ts)at kAf or - kAf frequency interval can be written as

c? a’ +b?
Gk Af)=G(kAf)=s ——=—_% (3.3)
4Af  4Af
Mean Power spectral density G (kAf)= G, (kAf) (3.4)
Total power in the interval: P, =2G, (k &) Af (3.5)
Representation of Noise
Actual noise n (t) which is a non-periodic signal can be represented as
)= lim s0s 27tk Afi + by sin 27k Aft (3.6)
n(t) Af'L!J;(H& cos 2mk Af. . sin 27k Afi)
H=li . Cos (27tk Aft + 6, (3.7)
n(r) N‘Tﬂgq cos (27k Af )
Where, cf :{IE +b§ (3:8)
2 a® +b?
G(f)= lim ——= lim +——* (3.9)
A—04Af  A—-0 4Af
Now we can write
P(f, = f)) = j_'f" G (f‘ldf‘+jf! G (f‘ldf‘:Ejfz G (f)df (3.10)
e - Ty e om0
Total power Pris P~ [~ G, (/) df=2] "G,(/)df (3.11)

Spectral Component of Noise

Spectral component of noise at k™ instant and within an interval of Af can be represented as
n, (t) as given below.

n(t) = a; cos 2xk Afi + b, sin 27, Aft (3.12a)
m(f) = ¢, cos (27 Aft + 6)) (3.12b)



Corresponding power can be written as

P, = [ (DF =a? cos? 2k Afi + b2 sin? 27k Aft

b D by sin 27k Aft cos 27k Aft (3.13)
Taking a time t = t3, such that cos 2 7kAf = 1, we have Py = a_,%, similarly
Taking a time t = t, such that cos 2 7kAf = 0, we have Py = b_,%, Hence
. e L .
Py =2G,(k Af) A= 2G,(k Af) Af= @ =B =+ =" B4
Since af =b; Py= a; +2ayb; sin 27k Aft cos 27k Aft (3.15)
It is observed that
P, = a; independently of time, apb, =0 ni(t)) = a (3.16)
Let us take two spectral components of noise as given by
n(f) = a, cos 2k Aft + by sin 27tk Aft (3.17a)
nft) =a; cos 27 Aft + by sin 27l Aft (3.17b)
Considering similar analysis as above, we have
(3.18)

aaq =ayb, =b.a =b b =0

This above explanation indicates noise n (t) is random, Gaussian, and stationary process,
whereay, by, a;, b;, are uncorrelated random Gaussian random variables. The probability

density function (pdf) of ¢, and 6, can be given as

f(ck) — ;_keC,%/ZPk CkZ 0 (319)
k
f(6,) = % <6 <m (3.20)

The pdf f(c,) describes a Reyliegh distribution, where as pdf f(6,) describes a Uniform
distribution.

Narrowband Filter Response to Noise
In the following figure 3.3, the filter used is a narrow band filter with transfer function H (f)

and pass band is B Hz. The noise at the input of the filter is n (t).
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“-a'||.-‘“n--.r T A |
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| Hh [
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—f, f. f yonse to narrowband noise



The noise n (¢) to the filter H (f) is a wideband noise, whereas the noise at the output of the
same filter is a narrowband noise An (¢). The amplitude variation of this An (f) is small as it
contains very few harmonics. If we reduce the pass-band B of the filter to a very small value
then the variation in amplitude of An (¢) will be small and may be a approximated sinusoidal

signal.

Effect of Filter to Noise PSD

The noise sample at the output of the filter can be designated as n; (t).
H(k Af) = \H(k Af) |/ = |H(k Af )iy
m (1) = |H(k Af) a cos (2mk Aft + @) + [H(k Af)| by sin 27k Aft + @)
Since |[H(k Af) is a deterministic function,

Hk ANa P = [Hk Af )? i and [|H(k AOB T = H(k Af)f E

) ) ) . r.’.E;“_ +b;“
power [ associated with #n (¢) is B, = |H(k Af)?
@ L o b

G, (k Af) = |H(k Af) G, (k Af)
G, (f)=H G, (f)

Mixing Noise with Sinusoid

Noise nx(f) mixed with a sinusoidal signal at £, can be written as

a b,
m(1) cos 2mfot = —— cos 2m(k Af + [t + —— sin 2m(k A+ fo)t

a o b, o
F—— cos 2m(k Af — fo)t + —— sin 2m(k Af — fo)t

It is already understood that

G,(kAf)

Gk A+ o) = G kAT~ fy) = =

In case of actual noise Af tends to zero, kAf becomes f and therefore, we can write

G, (/)
4

G+ 1) = G(f~Jo) =

Let us single out two spectral components of noise n (t)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)



n,(t) = agcos(2nkAft) + bysin(2mkAft) and (3.30a)
n;(t) = a;cos(2nlAft) + b;sin(2mlAft) (3.30b)

kAfand IAf'is chosen in such a manner that f, = [(k + /)/2]Af’; this means f; is in the middle of
kAfand IAf. Let say IAf> kAf. Now we can define two difference frequency components as
given below.

PAf=fo— kAf= IAf— fo. These difference frequency components are also uncorrelated as
follows.

n;(t).cos2nf,t = %cosZn(lAf + fot+ %sinZn(lAf + f)t+ %cosZn(lAf — fot+
%sinZn(lAf — ot

We find the difference frequency components as

ay b,
n,(6) = == cos 2mp Aft — ——sin 27p Aft (3.31a)

a b
npo(t) = Tf cos 2mp Aft + Tfsin 2mp Aft (3.31b)

n,1(¢) 1s the difference component due to the mixing of frequencies f, and kAf, while n,(f) is
the difference component due to the mixing of frequencies f, and /Af. Now we are interested to
find the expected values of the product of n,(¢) and n(?).

Similar to the last explanation, we have

a @ =a by =b.a =b b =0. Eln, (On ()] = 0 (3.32)

j,.-} 1

So power at difference frequencies
E{ln,(0) + mpp(0)*} = E{ln, (0P} + E{[n,0(0]) (3.33)

Thus mixing noise with a sinusoid signal results in a frequency shifting of the original noise by
fo. The variance of this shifted noise is found by adding the variance of each new noise
component. This is also applicable to two shifted power spectral density plots.

Mixing Noise with Noise

m(nft) = %c'ﬁ ¢ cos [2m(k + 1) Aft + 6, + 6]

b Ly ¢ cos [2n(k— 1) Afe + 6, - 6)) (3.34)

1(1 ’
Ppip=Ppy= 7(:(1 G ] (3.35)



Since ¢, and ¢; are independent random variables,

P, P, (3.36)

Linear Filtering of Noise

Thermal noise and Shot noise have similar power spectral density which can be approximated
as the power spectral density (PSD) of the White noise. This PSD is as shown in figure 3.4.
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Figure 3.4: Power spectral density of noise
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Figure 3.5: A filter is placed before a demodulator to limit the noise power input to the
demodulator

In order to minimize the noise power that is presented to the demodulator of a receiving
system, a filter is introduced before the demodulator as shown in figure 3.5. The bandwidth B
of the filter is made as narrow as possible so as to avoid transmitting any unnecessary noise to
the demodulator. For example, in an AM system in which the baseband extends to a frequency
of fis, the bandwidth B = 2f),. In a wideband FM system the bandwidth is proportional to twice
the frequency deviation.

Noise and Low Pass Filter
One of the filter most frequently used is the simple RC low-pas filter (LPF). The same RC LPF
with a 3 dB cutoff frequency f: has the transfer function

T.F. of RC Low Pass Filter: g /)= — 1 (3.37)
L+ jf /1.

If PSD of input noise Gy, (f). The PSD of output noise is
G, (/) = G, (NH)P
1

G ()= 53—
‘ 1 +(}f "'f_fc ]H

ro |-

(3.38)



Noise power at the filter output, N, can be expressed as

V=[G, onar=1]" 2

—en 2 =14 (fIf, )
. = : 2, w .
noting that J- dx/(1+ x7) = m, N, = N e
, LU ssB
Ideal Low Pass Filter:  H( f) =
) l() elsewhere
n :
L J— -B<f<B
G, (f)=42 N, = nB
l 0  elsewhere
Noise and Band Pass Filter
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—f —fy 0 fi fa

Figure 3.6: A rectangular band-pass filter
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Noise and Differentiator

Transfer function of a differentiator is: H(f) = j2nrtf

[f white noise with G, (/) = n/2 is applied at the input

G, (/) = PG (f) = 45717 S

If the differentiator is followed by a rectangular low pass filter having a bandwidth B.

Noise power at the output of the LPF is

; B 5 2 o 1] . 4]7:2 7 13
;\eo—j_84x~r~‘f~5fgf= e

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)



Noise and Integrator

S A P )

Transfer function of an integratoris:  H(f) = _— = (3.46)
) jot  jot joT
with @ = 27/, Hf )P = { T j (sm E?_"f ] (3.47)
' T rTf
=1 (T = (sinxTf Y nT
T — s L L — ! .
No= | _SIHOP 4 E[T] jm( — ]eif = (3.48)

Noise Bandwidth

The noise bandwidth (By) is defined as the bandwidth of an idealized (rectangular) filter which
passes the same noise power as does the real filter. As per the definition we can find By =
(n/2)f,, where f, is the frequency at which the transfer function of the actual filter is centered.

Quadrature components of Noise

It is sometimes more advantageous to represent Narrowband noise centred around fyas
n(t) = nt) cos 2xfot — ny(t) sin 27fyt (3.49)

These n((t) and ns(t) are known as quadrature component of noise.

Figure 3.7: Quadrature components of noise

Now as per the initial notation

oo

n(f) = lim Z(Hk cos 2k Aft + by sin 2k Aft) (3.50)
Af=04—

n(t)= lim Y {a,cos 2wy + (k— K) Af ]t + bysin 2z[fy + (k— K) Af]ey (3:51)
k=1

Af—=0 4

Where, K.Af = fo, Hence

%}

nJf) = lm z lay cos 2m(k — K) Aft + by sin 2 (k — K) Aft] (3.52)
Af—0
T k=1



o0

n(t)= lim z la, sin 2x(k — K) Aft — b, cos 2m(k — K) Aft] (3.53)
' Af—0 4~

F(6) = [n2 (1) +nZ (D)]'* 0(¢) = tan”" [n (t)/n(1)] (3.54)

A. M. Receiver

This receiver as shown in figure 3.8 is capable of processing an amplitude modulated carrier
and recovering the baseband signal. The modulated RF carrier + noise is received by the
receiving antenna and submitted to Radio frequency (RF) amplifier. After a number of
operations as indicated in the same figure 3.8, finally baseband signal with some small noise is
obtained at the output of the receiver.

Local
ascillator
fosc
Inpuit= Y
mod LJIEIT-E'd RF Radlio Intermediate
carrier + nolse frequency Mi frequency
_— = N = I S
[FF'I_ VIIXET { F_:I
amplifier amplifier
_——___-i______ ____
| Jutput baseband
F signal, power = S
i Q
carfer |—> GO0 | Pl ————>
Muodulated F carrier ]_,T filr ] Molse ouiput
power = 5; J' II sower, N,
A
* white noss, ] | |
B i "’ll |———J————|
power spectral density = — J | |
2 |Sychronausl
[ signal I
I source |
I |

Figure 3.8: A receiving system for amplitude modulated signal

Superheterodyne principle

In early days TRF receivers were used to detect the baseband signal from modulated RF signal.
The performance of such receiver varies as the incoming RF frequency varies. This is because
it uses single conversion technique. Later double conversion technique (frequency of incoming
RF signal changes two times) is used by some receiver as shown in figure 3.8. These are
known as superheterodyne receiver. The main idea behind the design of such receiver is that:
whatever may be the frequency of the incoming RF signal, the output after first conversion



always produces a fixed frequency known as intermediate frequency. Due to this the
performance of receiver remains same for all type of incoming RF signal.

Calculation of Signal power and noise power in SSB-SC

SSB-SC: Signal Power

cos 2r it
A
5if)= Acos[2r (fe + fm) 1] s(t) | selt) Soll) =3 cos !
—i |I }| 5. = A
T2 | Carrier ¥ i Baseband °= "8
. filter Hg{f) i x filter Half)
Moise spectral ) / Multiplier! Moise spectral power
power density = G, = EI Gt G @) density = Gpe
Hf) Half)
1
—f, Jr“ —Jrc 0 I‘C fc + fM —f_..._. 0 fu f

(b) (e}

Figure 3.9: (a) A synchronous demodulator operating on a single-sideband single-tone
signal. (b) The bandpass range of the carrier filter. (c) The passband of the
lowpass baseband filter.

s(t)=A cos [2r(f, + f,)1] (3.55)
Output of multiplier is
52(0) = 5,(0) c0s O = Zcos2m(2, + f,)] + L cos 27,1 (3.56)
Output of baseband filter can be written as
s,(8) = 71 cos 27f, t (3.57)
The input signal power is
A
Si= % (3.58)
The output signal power is
1 (4 _A2_S
So= g (?J T8 4 (3.59)
S,

(3.60)



Noise Power

Gm
A
2l
(=)
—fe—fu e 0 fe fe+ Fra f
G
-
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n
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Figure 3.10:  Spectral densities of noises in SSB demodulator. (a) Density G,; of noise
input to multiplier. (b) Density G,, of noise output of multiplier. (c) Density
G, of noise cutput of baseband filter.
S _Nw
N, = E.JI{;”E: 2 (3.61)

SNR, So _ S/t _ S

= = 2L (3.62)
N, nfu/4 nfu

Calculation of Signal power and noise power in DSB-SC

When a baseband signal of frequency fj is transmitted over a DSB-SC system, the bandwidth
of the carrier filter must be 2 fj, rather than f),. Thus, along with signal the input noise in the

frequency range f. — fas to f. + fir will contribute to the output noise, rather than only in the
range of f. to f. + fyr as in SSB case.

DSB-SC: Signal Power:

5(f) = J2 4 cos 2t cos 2mfit

_ A e "+ f v A o2 : : 3.63
oS AL+ ) + o 2 S (3.63)

o — {1 e “
s, (1) 2\5 cos 271f,t (3.64)
S, (1) = 2;1,3 oS 27 fy,t (3.65)



s(0) =5'(6) + 5”(t) = A cos 2]t (3.66)
il

J2

S = A° _

(u]

(3.67)

[J|.f!’3

.

DSB-SC: Noise Power

G.‘?‘I
n
2
| R |
| |
alb cld (a)
| |
| |
| |
—f. 0 fe f
_FC_FM —fc + fM fc—rm fc + FM
G
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[aTh] e [cTd]
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Figure 3.11:  Spectral densities of noise in DSB demodulation. (a) Density G,; of noise at
output of IF filter. (b) Density G, of noise output of baseband filter.

N fu

P
N, = 5 @)= =5 (3.68)
SNR, 3o — 5t (3.69)
Ny nfm
DSB-SC: Arbitrary Modulated Signal:
s(t) =m(t) cos 2mf.t (3.70)
S = .s".z (1) =m* (1) cos® 2rft = %ml (1) + %mz(r] cos (47 f.1) (3.71)
S,= sE () =m (1) (3.72)
m?> (1)
S, = (3.73)
4
(3.74)



n(t) = n(t) cos 2rf,t — n(f) sin 2xft (3.75)

In the frequency range |f| <fin G (f, +f) =G, (f. —f)=n/2. (3.77)
(}fr()f] = (}nc(}f] = T:" Jf Sf'L{ (378)
n(t) cos 2mf i = 1:.'.!{_.(:‘) t %u{_.(r] cos 4 f,t %un(r] sin 4 f (3.79)
1n,(t) = ,}iuc(r] (3.80)
N 1N ' .
(jﬂ‘r)(.}(] - _(!n_, (Jf )=— .)f.-'Lf Sf E_f.-u (381)
4 4
n .. Ny
N, = N 2y = 5 (3.82)

Calculation of Signal power and noise power in DSB-C

DSB-C: Arbitrary Modulated Signal:

Let us consider the case, where a carrier accompanies the double sideband signal.
Demodulation is achieved synchronously as in SSB-SC and DSB-SC. We note that the carrier
increases the total input signal power but makes no contribution to the output signal power. We

know that

g ,S.fSB}

o D (3.83)
‘I-.Vri n.f,-‘»f

Suppose that the received signal is
s{#) = A[l + m(t)] cos 2xf.t
= A cos 2xf ¢t + Am(t) cos 2mf.t (3.84)
The carrier power, P, = A*/2; The sidebands are contained in the term Am(f) cos 2nf.t. The
power associated with the term is (4%/2)m2(t), where m2(t) is the time average of the square
of the modulating waveform.
We now have the total input power S; as given by

2 Y — 2 _ _
S =P +SPP =2+ Zm2(t) = Z[1+m?(®)] = R[1 +m?(®)] (3.85)
I G Tx0)
s (4/,)1rmE(©®) (3.86a)
2t
565 m- (1) s, (3.86b)
L+ m” (¢)

SU ;ml (I ) Sf'
= (3.87)

‘EVU |+ ;rnz (f] n)f'l.f

In terms of the carrier power P, = A%2,
% 0 ke (3.88)
Nr) r."_f.-\,f

[f the modulation is sinusoidal, with m(¢) = m cos 2xf,t



sty = A(1 + m cos 2xf,,t) cos 2xf.t

In this case m” (1) = m%/2 and

S, m? S
SNR, =22 = 2 20
Ny 2+menfy

Figure of Merit:

_ So ‘Mo
N S" I,.-'}r\_rM
1 SSB-SC
| DSB-SC
Jfa'r2 f)
Y= { D5SB
| + m* ()
Luj DSB with sinusoidal modulation
24+ m

The Square Law Demodulator and Threshold:

(3.89)

(3.90)

(3.91a)

(3.91b)

DSB-SC as well as DSB-C can be demodulated using square law demodulator. This avoids
requirement of synchronous carrier as in case of synchronous detector, which is costlier. But in

case of synchronous detector there is no threshold i.e. as Si/N), decreases by a factor of a, the

So/N, 1s also decreases by a factor of a.. Therefore, figure of merit yis independent of S;/Ny. In

case of nonlinear demodulator as S;/NV), decreases, there is a point, a threshold at which the
So/N, decreases more rapidly than does the S;/Ny,. This threshold often makes the limits to the

usefulness of the demodulator.

¥ =8(t) + ny(t)
y= k}(z . nE
|_r1|3|urI IF . Square— / Baseband | S,(t)+m,(f]
sEnnc;'i —| fiter law t———| filter |——
el f Hglf
noise 1=l device s(f)
|Hi= (1)] |Ha (F)]
1 1
T - T I
| |
| |
| |
| | 'y
| —fc | | !ﬂ‘ | f _fM \ !.'n‘ f
[ | I [ - Filter stops d
PP PRI P ilter stops dc

Figure 3.12: The square-law AM demodulator



x(t) = A[1 + m(1)] cos @t + n(t) (3.92)

J(O) = AA[1 + m(t)] cos @t + n(6)}> (3.93)
sy(t) = AAm() {1 +%(f)} (3.94)
my(1) = 2AAn(D[1 + m(£)] cos @ + (1) (3.95)

assuming |m(t)| << |

s5(t) = AA*m(1) (3.96)
ny(t) = 2AAn(ty cos .t + An*(t) (3.97)
S, = A2 A% m? (1) (3.98)

noise power N, due to the term 2A4n(¢) cos @t

[ -

N/ = 412/:2% of,, = 2224201, (3.99)

noise power N,” which results from the term An*(¢)

Power
nAF
2
[ W N NN NN N — AAA, [N I LELLL . ol ] e A
7K 210-1-2 -—kk k=-K -2-10 12 Ky f
_fr:_fM _fr: _f.':+rM f:—fM fr: fn“'fM

Figure 3.13: The spectral range |f - f.| < f,, of the noise n(t) of power spectral density
n/2 is divided into intervals Af. The power in each interval is represented
approximately by a single spectral line of power n Af/2.

+K

nty="Y ¢ cos [2af, + k A + 6,) (3.100)

k=-K

with G,(k Af) = /2. we have

g =2nAf (3.101)
1y (1) = ¢ cos [(2rf, + kAf )t + 6]

F e, cos {27 + (k+ p) Af]t+ 6, (3.102)
ny(1) = Cxcip €08 7P Aft + 6,y — 6) (3.103)
since ¥= Cf’r.ﬂ (3.104)

2 1_') 2 -
PP = m, (.‘.‘)ZEC; Cowp = 2(n Afy (3.105)



2G(p Af) Af= (2K — p)2(n Af)?
Gue = P0ChH 1)
N =327 fif

total output-noise power

N,= N/ +N,; =220/ A" + 340 1}
AEan 2 (1)
SNR, 22=_~200
No 2nfmMA%+302 fi;
S P
;J — ?3'12 (f) T{_ 3 1
‘?\'a ‘?\’M 1+j(‘?\‘rM"'{R:)

Above threshold, when P./N), is very large,

1]

P
—=m 2 (2) :
‘;\'0 ‘;\'Mr

Below threshold, when P/N,, << 1,

2
S, A
= i,1';'12 (¢)
‘F\‘To 3 A‘T,M

222 Pty

—2fy fas i

Figure 3.14:  Plot of power spectral density G, .(f) in baseband region.
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Figure 3.15: Performance of a square-law demodulator illustrating the phenomena of
threshold

The solid line in figure 3.15 is applicable to the equation as in (3.111). The dashed line
which passes through the center of the axis is applicable to the equation as in (3.112). The third
line in the left and dashed is applicable to the equation as in (3.113).

From the figure 3.15, it is clear that as P./N,s decreases, the demodulator performance
curve fall progressively further away from the straight line plot corresponding to P./Nys very
large (i.e. applicable to synchronous detector).

Let’s say we choose the performance curve of square law demodulator falls away by 1
dB from performance curve of synchronous demodulator. This is achieved at Pc/Ny = 4.6 dB
i.e. P.=2.884 Ny.

If P./N,s is taken more than 2.9 then the difference in ordinate value will be less than 1
dB and it is still better. When m2(t) « 1,then S; = P.. So, we can say S; = 2.9 N,,.

The Envelop Demodulator and Threshold:
This envelope demodulator can be used when |m(t)| < 1. Let us take quadrature component
expression of noise. (3.114)
n(t) = n,(t) cos @t — n(t) sin @t
If the noise n(¢) has a PSD of 7/2 in the range of |f — f.| < f; and is zero elsewhere. Then n.(¢) and
ny(f) have the PSD of 7 in the frequency range of —fj, to fj,. At the demodulator i/p, the i/p signal and
noise is
si(1) + n () = A[1 + m(1)] cos @, + n(t) cos @t —nyf) sin @t

= {A[l + m(t)] + n(0)} cos @t —nt) sin @ (3.115)

The output signal plus noise just prior to base-band filtering is the envelope (phasor sum)



55(8) + my(8) = L(A[L + m(t)] + n(6))* + n2(H)}'?

:-12

[1+ m(0))* + 24[1 + m(O)n(6) +n> () + w2 (0)}"? (3.116)
Assuming then that |n(f)| << 4 and |n(f)] < A,

solt) + my(t) = ([ + m(O] + 24[1 + m(B]n (D} 1/2

1/2
2n,(f
= A[1 + m(1)] Ly 2ne® | (3.118)
Al 1+ m (II]J
§5(1) + ny(1) = A[1 + m(6)] + n (1) (3.119)
_S,/N, m* (f)
7= = (3.120)

SNy 1emd ()

The y here is same as the y obtained using synchronous demodulator. To make a
comparison with the square law demodulator, we assume
m2(t) « 1.In this case as before S; = P. and equation (3.120) reduces equation (3.112).

A threshold can be considered by understanding that the synchronous demodulator, the
square law demodulator, and the envelop demodulator all performs equally well provided
m2(t) « 1. Like square law demodulator, the envelop demodulator exhibits a threshold. As
the input SNR decreases a point is reached where the SNR at the output decreases more rapidly
than the input. The calculation of SNR is quite complex, we can simply state the result that for
S;/Ny < 1,and m2(t) «< 1

S, _m2 (@) S; :
N 11 Ny (3.121)

Yo

Since both square-law demodulation and envelope demodulation exhibit a threshold, a compari-

. .- . . . 2
son is of interest. We had assumed in square-law demodulation that m~ (¢) << 1. Then, as noted

above, 8, = A2 = P, the carrier power, and Eq. (8.77) becomes

S, _m@fF Y (3.122)
N, L1 | Ny '

i

which is to be compared with Eq. (8.70) giving S5,/N, below threshold for the square-law demodu-
lator.

Comparison:

(i) Square law demodulator has lower threshold

(ii)It also performs better below threshold



Module — IV

Noise in Frequency Modulation System:
An FM Receiving System

Sity=Acos{m.t+Kk jmlj:ll—l":-l
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Figure 4.1: A limiter-discriminator used to demodulate an FM signal
g
Limiter and Discriminator:
(Vi(®) 0<t<t
Ap ti; <t<t,
(@) ={Vi® tpstst;
_AL t3 S t S t4_
V20 t,<t<T
(a) Vs v
(c)
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Figure 4.2: a) A limiter input-output characteristics. b) A cycle of the input carrier. ¢) The output

waveform.



Limiter is to suppress amplitude variation noise. Discriminator gives at output an
amplitude variation according to instantaneous frequency of input. This is as shown in figures
4.1 Ind 4.2.

The baseband signal is recovered by passing the amplitude modulated waveform

through an envelope detector.

frequency-to-amplitude converter

H(jo) = jow (4.1)
Ui = jow (4.2)
dt
(1) = O'i vy (1)
3 22 (4.3)

suppose that the voltage v,(f) applied to the converter is

w(t) = A, cos [t + ¢(2)] (4.4)
Here A; is the limited amplitude of the carrier so that A; is fixed and independent of the input
amplitude, and w.f + ¢(?) is the instantaneous phase.

Vi(1) = —04, [a)c +%¢a(r)] sin [@ ¢ + ¢(1)] (4.5)

using o = OA,,

output of the envelope detector

{ d
v(t) = oA, = [wc +j¢a(r]} = a0, + o (1) (4.6)
SNR Calculation:
Signal Power:
Consider that the input signal to the IF carrier filter of figure 4.1 is
I
s{t)= A cos |:wc t+ kj m(ﬂ.}dl} (4.7)
Bandwidth B = 2Af + 2fy (4.8)
The signal is s, (¢) [corresponding to v, (¢)] given by
¥
so(f) = A, u‘;{wc t +kj m(l}dl} (4.9)
t

(1) = kj m(A) dA (4.10)
We find foe the output of the discriminator

s4(t) = aw, + okm(1) (4.11)
Baseband filter rejects the DC component and passes the signal component

output signal is S (¢) = okm(t), and the output-signal power is

S, = ol m* (t) (4.12)

Noise Power:
The carrier and noise at the limiter input are
vty =A cos @+ n () cos @ — n(f) sin @t
= [4 + n(D)] cos @, — nt) sin @t (4.13)



ns(t)
B0y A
ne(t)
Figure 4.3: A Phasor diagram of the terms in above equation (4.13)

R(t) = LA+ (O +[n, (O] (4.14)

L
6(t) = tan A+n () (4.15)
vi(t) = R(t) cos [wt + 6(1)] (4.16)

We ignore the time-varying envelope R(?), since all time variations are removed by the limiter.
Output of the limiter-band-pass filter, »(f) =4, cos[w.t +6 (f)] , where A4, is a constant. Assume
that we are operating under the condition of high-input SNR such that | ne(t) | < A and

| ny(t) | <A (4.17)
tan € = 6 for small 6,
ng (1)
() == (4.18)
( A
ng(t)
V() = A; cos| @t + y (4.19)
—olw +L£
vy(t) = et s (1) (4.20)
input to the baseband filter
o d
t)= ——n(t (4.21)
vy(t) 1 dr s(1)
H(jwy = jow/A (4.22)
Ha(F)|
]
— foa f (a)
G, (fl=nq Differentiator | G, (f} |Baseband
' — ¢ ofw? ——  flter —— G, ()
pizzfzgz  |Hl) = Hall) )
|Gy (1)
|
|
|
|
|
| i)
|
|
|
|
|
|
_B —ty r
2

Figure 4.4 (&) Indicating the operations performed by the discriminator and baseband
filter on the noise output of the limiter. (b) The variation with frequency of
the nower snectral density at the outoot of an FM demodoilator
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o

I, . B
Guh===n IfI<3 (4.23)
Output-noise power
I o e
N= G
=AM
O‘.’z?]' Jue e g
=—| " amid
A+ =t
87* ofn
So a’k?m2(t) 3 kZm2(t) A%/2
SNR, 2 = =2 4.25
N,  (8m?/3)(a?n/A®)fy  4m?  f§  nfm ( )
Let us consider that the modulating signal m(t) is sinusoidal and produces a frequency
deviation Af. then the input signal s;(t)
AF
si{t)=Acos (a)c t+ f sin 27 f, (4.26)
km(t) = 21 Am Af cos 2 mf) t (4.27)
2 9 4?172[/3 ) 3 2
kem=(t) = ,}7” = 2 (Af) (4.28)
S, (A Y AR 3.0
: ::{i] L (4.29)
No 2\fm) My 2 Ny
_ Sr'; / Nr; _ 3
=N =3P (4.30)
Comparison: FM and AM
Let us compare the result for sinusoidal 100% modulation
; g
Vim =;j 2 (4.31)
Yam <
FM is better if § = /2/3 = 0.5 or more. But this comes at the cost of higher bandwidth as
Bpyg = 208 + 1) fy (4.32)
ForBem = 20 fy and bandwidth of AM system is Bam = 2fu,
a
: g [ By B
YEM i[ M ] (4.33)
Yam 2\ Bay

Several authors to make the comparison not on the basis of equal power but rather on the basis
of equal signal power measured when the modulation m(f) = 0. In this case, as it can be easily
verified, we find that the above equation (4.33) can be replaced by

YEm

¥ am

=3p° (4.34)



SNR Improvement: Pre-emphasis and de-emphasis

mp(t) White noise my(t) +na(t)
\ ars
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Figure 4.5: Pre-emphasis and de-emphasis in an FM system
f&( . . . f’h‘ B . .
Pu= [ Guhdr= | IH(17Go1) df (4.35)
aY o he oo 1 P,
N = [—J an’n j 2 | 4 (4.36)
SR ! H,(f) /
NNy = R (4.37)
x|
o/ A (4m- L U
. ( G —he Jir /3
R = i = (4.38)
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Figure 4.6: (a) Deemphasis network and (b) Preemphasis network
. 1
H(f)= — (4.39)
! L+ jif/ £,
f,=12rRC (4.40)
: - . - S
H(f)==(1+joCR)= S| 1+ j— (4.41)
W) R (1+] ) R{ J I
H,(f).Hf) = r/R = constant (4.42)

The improvement in signal-to-noise ratio which results from pre-emphasis depends on the
frequency dependence of the PSD of the baseband signal. Let us assume that the PDF of a
typical audio signal, say music, may reasonably be represented as having a frequency
dependence given by
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Figure 4.7: Normalized logarithmic plots of the frequency characteristics of
a) the de-emphasis network and b) the pre-emphasis network
) = +_1? (4.44)
fe G, df o
P [ 2T [ kG (4.45)
—fu 1 +(_f.-"_fl )= —Ju
Integrating and solving for K*
K= g I (4.46)
S h
: an~" (fy /f;)
R= —— e (4.47)
3T N = Uy g Yan™ (S /f1)]
When fy, /fi > 1
o7ty
R=" ,
5 a8

In commercial FM broadcasting f; = 2.1 kHz, while f), may reasonably taken as = 15 kHz

R = 4.7 corresponding to 6.7 dB improvement



Multiplexing:
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Figure 4.8: A system of frequency division multiplexing
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Figure 4.9: Comparison of an FM system in (a) with a phase modulation system in (b)
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Figure 4.10: To illustrate that in the multiplex system of figure 4.8 using FM, channels
associated with high carrier frequencies are noisier than those associated with lower

frequencies.

0(t) = ny(t)/A is the phase-modulation noise. Since 6(t) and n,(t) are directly related, the

form of the power spectral density of is identical.

The quadratic nature of noise power in FM makes it inferior to PM for higher carrier
frequencies. In PM, noise power in each channel is same.

Assuming that both channels (@) and (b), are constrained to use the same bandwidth. The

frequency range of the topmost channel of the composite signal M(?) extends from (N-1)fy, to
Nfy is the frequency range of an individual in the absence of de-emphasis, the noise output of

the top channel
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7 =9
t“r;,tnp =

an [ df

8T’ nN*

A2
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The condition of equal bandwidth requires that
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Effect of Transmitter Noise
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Figure 4.11: (a) A PM system in which noise is introduced before transmission. (b) The
spectral density of the system. (c) The spectral density of the signal after
differentiation. (d) The spectral density of the noise. (e) Comparison of
spectral densities of signal and noise at input to modulator.

A network similar to the pre-emphasis circuit of figure 4.6(b) is suitable. In practice the 4.8 dB
advantage quoted above for PM over FM is not realized. The advantage is more nearly 3 to 4
dB.

Threshold in Frequency Modulation:

{S” } —{ S } +10log 3;52
= > 4.55
‘3\'!0 4B N M dB 2 ( )

Experimentally it is determined that the FM system exhibits a threshold.
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Figure 4.12: Plots of output SNR against input SNR for linear modulation and demodulation
and also for an FM system illustrating the phenomenon of threshold in FM.

The threshold value of S;/N,, is arbitrarily taken to be the value at which S,/N, falls 1 dB below
the dashed extension.

For larger fthe threshold is also higher.
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Figure 4.13: Thermal noise at discriminator output



Figure 4.14: A spike superimposed on a background of smooth (thermal) noise

The onset of threshold may be observed by examining the noise output of an FM discriminator
on a CRO. A spike or impulse noise appears (with clicking sound) in the background thermal-
type noise, usually referred to as smooth noise.
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Figure 4.15 (a) An FM discriminator and associated filters. (b) The bandpass range of
the carrier filter. (c¢) The passband of the baseband filter.

Phase Lock Loop (PLL)

The PLL is an important circuit which helps to detect the original signal from a
frequency modulated signal corrupted by noise. The operation of this device has been properly
explained in Module II.

In fact PLL is very popular because of their low cost and superior performance,
especially when SNR is low. FM demodulation using PLL is the most widely used method
today. We know PLL tracks the incoming signal angle and instantaneous frequency.
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Figure 4.16 a) Phase Lock Loop (PLL) b) Equivalent circuit of PLL

The free running frequency of VCO is set at the carrier frequency ®.. The
instantaneous frequency of the VCO can be given by

Wyco = O T C.eo(t) (456)

If the VCO output is B.cos{mct + 6,(t)}, then the instantaneous frequency can be
represented as Wyco = we + 0, (t) (4.57)
This means, 6,(t) = Ce,(t) (4.58)
In the above equations C and B are constants of PLL.
The multiplier output in figure 4.16 a) is AB.sin (@t + 0;) cos (ot + 6,) = (AB/2)[sin
(6i — 6,) + sin(2wct + 6; + 6,)]. The term (AB/2).sin(2w.t + 6; + 0,) is suppressed by the loop
filter (LPF). Hence the effective input to the is (AB/2).sin {6i(t) — 0,(t)}. If h(t) is the unit
impulse response of the loop filter, then
eo(t) = h(t) x = ABsin{6;(t) — 0, ()} = S AB [ h(t = x) sin{8; (x) — 8,(x)}dx
(4.59)
But, 0, (t) = Ce, (t), therefore 0, (t) = AK fot h(t — x) sin 8,(x) dx (4.60)



Where, K = (CB/2) and 0.(t) is the phase error and defined by 0.(t) = 0;(t) - O,(t) i.e. O,(t) =
9i(t) - 9e(t)-

FM carrier is A.sin{wt + 0; (t)}

Where, 6;(t) = K¢ [*. m(a)da (4.61)
Hence, 8,(t) = K¢ [ m(a)da — 8,(t) (4.62)
When 0 is very small, then e, (t) = < 6,(t) = Zm(t) (4.63)

Thus PLL works as a FM demodulator. If the incoming signal is phase modulated
wave, then, 0, (t) = 0i(t) = K,m(t) and e, (t) = K m(t)/C . In this case we need to integrate e,
(t) to obtain the desired signal.



