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Lecture Note 1 

Dimensional Analysis 

1.1 Introduction 

In engineering and science, dimensional analysis is the analysis of the relationships between 

different physical quantities by identifying their base quantities (such as length, mass, time, 

and electric charge) and units of measure (such as miles vs. kilometers, or pounds vs. 

kilograms vs. grams) and tracking these dimensions as calculations or comparisons are 

performed. Converting from one dimensional unit to another is often somewhat complex. 

Dimensional analysis, or more specifically the factor-label method, also known as the unit-

factor method, is a widely used technique for such conversions using the rules of algebra.  

The concept of physical dimension was introduced by Joseph Fourier in 1822. Physical 

quantities that are of the same kind (also called commensurable) have the same dimension 

(length, time, mass) and can be directly compared to each other, even if they are originally 

expressed in differing units of measure (such as inches and meters, or pounds and Newton’s). 

If physical quantities have different dimensions (such as length vs. mass), they cannot be 

expressed in terms of similar units and cannot be compared in quantity (also 

called incommensurable). For example, asking whether a kilogram is greater than, equal to, 

or less than an hour is meaningless. 

Any physically meaningful equation (and likewise any inequality and in equation) will have 

the same dimensions on its left and right sides, a property known as dimensional 

homogeneity. Checking for dimensional homogeneity is a common application of 

dimensional analysis, serving as a plausibility check on derived equations and computations. 

It also serves as a guide and constraint in deriving equations that may describe a physical 

system in the absence of a more rigorous derivation. 

Many practical flow problems of different nature can be solved by using equations and 

analytical procedures, as discussed in the previous modules. However, solutions of some real 

flow problems depend heavily on experimental data and the refinements in the analysis are 

made, based on the measurements. Sometimes, the experimental work in the laboratory is not 

only time-consuming, but also expensive. So, the dimensional analysis is an important tool 

that helps in correlating analytical results with experimental data for such unknown flow 

problems. Also, some dimensionless parameters and scaling laws can be framed in order to 

predict the prototype behavior from the measurements on the model. The important terms 

used in this module may be defined as below;  

https://en.wikipedia.org/wiki/Engineering
https://en.wikipedia.org/wiki/Science
https://en.wikipedia.org/wiki/Physical_quantities
https://en.wikipedia.org/wiki/Base_quantity
https://en.wikipedia.org/wiki/Length
https://en.wikipedia.org/wiki/Mass
https://en.wikipedia.org/wiki/Time
https://en.wikipedia.org/wiki/Electric_charge
https://en.wikipedia.org/wiki/Units_of_measure
https://en.wikipedia.org/wiki/Algebra
https://en.wikipedia.org/wiki/Joseph_Fourier
https://en.wikipedia.org/wiki/Equation
https://en.wikipedia.org/wiki/Inequality_(mathematics)
https://en.wikipedia.org/wiki/Inequation
https://en.wikipedia.org/wiki/Formal_proof
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Dimensional Analysis: The systematic procedure of identifying the variables in a physical 

phenomena and correlating them to form a set of dimensionless group is known as 

dimensional analysis.  

Dimensional Homogeneity: If an equation truly expresses a proper relationship among 

variables in a physical process, then it will be dimensionally homogeneous. The equations are 

correct for any system of units and consequently each group of terms in the equation must 

have the same dimensional representation. This is also known as the law of dimensional 

homogeneity.  

Dimensional variables: These are the quantities, which actually vary during a given case and 

can be plotted against each other.  

Dimensional constants: These are normally held constant during a given run. But, they may 

vary from case to case.  

Pure constants: They have no dimensions, but, while performing the mathematical 

manipulation, they can arise. 

Let us explain these terms from the following examples: - 

 Displacement of a free falling body is given as,  

𝑆 = 𝑆𝑂 + 𝑉𝑂𝑡 +
1

2
𝑔𝑡2 

where, V0 is the initial velocity, 

 g is the acceleration due to gravity, 

 t is the time,  

 S and SO are the final and initial distances, respectively. Each term in this equation has the 

dimension of length [L] and hence it is dimensionally homogeneous.  

Here, S  and t are the dimensional variables, 

 g, SO , and VO are the dimensional constants and  1/2 arises due to mathematical 

manipulation and is the pure constant.  

 Bernoulli’s equation for incompressible flow is written as, 

𝑝

𝜌
+

1

2
𝑉2 + 𝑔𝑧 = 𝐶 

Here, p is the pressure, V is the velocity, z is the distance, ρ is the density and g is the 

acceleration due to gravity. In this case, the dimensional variables are pV z , and , the 

dimensional constants are g C , and ρ and 1/2 is the pure constant. Each term in this 
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equation including the constant has dimension of [𝐿2𝑇−2]and hence it is 

dimensionally homogeneous. 

 

Buckingham pi Theorem 

 

 The dimensional analysis for the experimental data of unknown flow problems leads 

to some non-dimensional parameters. These dimensionless products are frequently 

referred as pi terms. Based on the concept of dimensional homogeneity, these 

dimensionless parameters may be grouped and expressed in functional forms. This 

idea was explored by the famous scientist Edgar Buckingham (1867-1940) and the 

theorem is named accordingly.  

Buckingham pi theorem, states that if an equation involving k variables is 

dimensionally homogeneous, then it can be reduced to a relationship among (k−r ) 

independent dimensionless products, where r is the minimum number of reference 

dimensions required to describe the variable. For a physical system, involving k 

variables, the functional relation of variables can be written mathematically as, 

y  = f(x1,x2,……xk)     ……………………………………………..(1) 

In Eq. (1), it should be ensured that the dimensions of the variables on the left side of the 

equation are equal to the dimensions of any term on the right side of equation. Now, it is 

possible to rearrange the above equation into a set of dimensionless products (pi terms), so 

that  

π1 = φ(π2,π3, … … . πk−r)…………………………………………..(2) 

 Here, φ(π2,π3, … … . πk−r)is a function of π2, through πk−r . The required number of 

pi terms is less than the number of original reference variables by r . These reference 

dimensions are usually the basic dimensions ML T , and (Mass, Length and Time) 

 

Determination of pi Terms  

Several methods can be used to form dimensionless products or pi terms that arise in 

dimensional analysis. But, there is a systematic procedure called method of repeating 

variables that allows in deciding the dimensionless and independent pi terms. For a 

given problem, following distinct steps are followed. Step I: List out all the variables 

that are involved in the problem. The ‘variable’ is any quantity including dimensional 

and non-dimensional constants in a physical situation under investigation. Typically, 

these variables are those that are necessary to describe the “geometry” of the system 

(diameter, length etc.), to define fluid properties (density, viscosity etc.) and to 

indicate the external effects influencing the system (force, pressure etc.). All the 

variables must be independent in nature so as to minimize the number of variables 
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required to describe the complete system. Step II: Express each variable in terms of 

basic dimensions. Typically, for fluid mechanics problems, the basic dimensions will 

be either ML T , and or FL T , and . 

Dimensionally, these two sets are related through Newton’s second law (F =ma ) so 

that  

 F= MLT-2 = e.g.  ρ= ML− 3 or ρ =FL-4 T2 =  It should be noted that these basic 

dimensions should not be mixed. 

Step III: Decide the required number of pi terms. It can be determined by using 

Buckingham pi theorem which indicates that the number of pi terms is equal to (k  −r 

), where k is the number of variables in the problem (determined from Step I) and r is 

the number of reference dimensions required to describe these variables (determined 

from Step II). 

 

Step IV: Amongst the original list of variables, select those variables that can be 

combined to form pi terms. These are called as repeating variables. The required 

number of repeating variables is equal to the number of reference dimensions. Each 

repeating variable must be dimensionally independent of the others, i.e. they cannot 

be combined themselves to form any dimensionless product. Since there is a 

possibility of repeating variables to appear in more than one pi term, so dependent 

variables should not be chosen as one of the repeating variable. 

 

Step V: Essentially, the pi terms are formed by multiplying one of the non-repeating 

variables by the product of the repeating variables each raised to an exponent that will 

make the combination dimensionless. It usually takes the form of  𝑥𝑖𝑥1
𝑎𝑥2

𝑏𝑥3
𝑐   where 

the exponents a,b, and c are determined so that the combination is dimensionless.  

 

Step VI: Repeat the ‘Step V’ for each of the remaining non-repeating variables. The 

resulting set of pi terms will correspond to the required number obtained from Step 

III.  

Step VII: After obtaining the required number of pi terms, make sure that all the pi 

terms are dimensionless. It can be checked by simply substituting the basic dimension 

(M, L , and T) of the variables into the pi terms.  

 

Step VIII: Typically, the final form of relationship among the pi terms can be written 

in the form of Eq. (.1) where, Π1 would contain the dependent variable in the 

numerator. The actual functional relationship among pi terms is determined from 

experiment. 
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Illustration of Pi Theorem 

 Let us consider the following example to illustrate the procedure of determining the various 

steps in the pi theorem.  

Example (Pressure drop in a pipe flow)  

Consider a steady flow of an incompressible Newtonian fluid through a long, smooth walled, 

horizontal circular pipe. It is required to measure the pressure drop per unit length of the pipe 

and find the number of non-dimensional parameters involved in the problem. Also, it is 

desired to know the functional relation among these dimensionless parameters.  

Step I: Let us express all the pertinent variables involved in the experimentation of pressure 

drop per unit length (∆pl ) of the pipe, in the following form;  

∆𝑝𝑙 = 𝑓(𝐷, 𝜌, 𝜇, 𝑉)                         …… …………………………. ……………… ………….    …………..…(3)  

where, D is the pipe diameter, ρ is the fluid density, µ is the viscosity of the fluid and V is the 

mean velocity at which the fluid is flowing through the pipe.  

Step II: Next step is to express all the variables in terms of basic dimensions i.e. M,L and T . 

It then follows that 

∆𝑝𝑙 = 𝑀𝐿−2𝑇−2; 

𝐷 = 𝐿; 

Step III: Apply Buckingham theorem to decide the number of pi terms required. 

There are five variables (including the dependent variable  ∆pl ) and three reference      

dimensions. Since, k = 5 and  r = 3 , only two pi terms are required for this problem. 

 

Step IV: The repeating variables to form pi terms, need to be selected from the 

list ,ρ, µ and V . It is to be noted that the dependent variable should not be used as 

one of the repeating variable. Since, there are three reference dimensions 

involved, so we need to select three repeating variable. These repeating variables 

should be dimensionally independent, i.e. dimensionless product cannot be 

formed from this set. In this case, D, ρ and V may be chosen as the repeating 

variables. 

 

Step V: Now, first pi term is formed between the dependent variable and the 

repeating variables. It is written as, 

𝜋 = ∆𝑃𝐼𝐷𝑎𝑉𝑏𝜌𝑐      

Since, this combination need to be dimensionless, it follows that     

( 𝑀𝐿−2𝑇−2 )(𝐿)𝑎(𝐿𝑇−1)𝑏 (𝑀𝐿−3)𝑐 = 𝑀0𝐿0𝑇0  
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 The exponents a , b and c must be determined by equating the exponents for each of      

the terms M , L and T i.e. 

 

For M : 1 + c = 0 

For L : − 2 + a + b − 3c = 0 

For T : − 2 − b = 0 

The solution of this algebraic equations gives a = 1; b = −2; c = −1. Therefore, 

𝜋
1=

∆𝑃1𝐷
𝜌𝑉2

 

The process is repeated for remaining non-repeating variables with other additional 

variable (µ ) so that, 

                             Π 2 = µ .D d .V e .ρ f 

Since, this combination need to be dimensionless, it follows that 

(ML−1T −1 )(L )d (LT −1 )e (ML−3 )f  = M 0 L0T 0 

Equating the exponents 

For M : 1 + f = 0 

For L : − 1 + d + e − 3 f = 0 

For T : − 1 − e = 0 

The solution of this algebraic equation gives d = −1; e = −1; f = −1. Therefore 

Π 2 = 

µ 

ρVD 

Step VI: Now, the correct numbers of pi terms are formed as determined in “Step 

III”. In order to make sure about the dimensionality of pi terms, they are written as, 

 

Step VII: Finally, the result of dimensional analysis is expressed among the pi terms  
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It may be noted here that Re is the Reynolds number. 

 

Remarks 

 

If the difference in the number of variables for a given problem and number of reference 

dimensions is equal to unity, then only one Pi term is required to describe the phenomena. 

Here, the functional relationship for the one Pi term is a constant quantity and it is determined 

from the experiment  

Π 1 = Constant (6.1.15) 

The problems involving two Pi terms can be described such that  

Π 1 = φ (Π2 ) (6.1.16) 

 

Here, the functional relationship among the variables can then be determined by 

varying Π2 and measuring the corresponding values of Π1 . 
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Lecture note 2 
 

Diffusion 

2.1 Diffusion 
 

Diffusion is the net movement of molecules or atoms from a region of high concentration (or 

high chemical potential) to a region of low concentration (or low chemical potential) as a 

result of random motion of the molecules or atoms. Diffusion is driven by a gradient in 

chemical potential of the diffusing species. 

 

A gradient is the change in the value of a quantity e.g. concentration, pressure, or temperature 

with the change in another variable, usually distance. A change in concentration over a 

distance is called a concentration gradient, a change in pressure over a distance is called a 

pressure gradient, and a change in temperature over a distance is a called a temperature 

gradient. The word diffusion derives from the Latin word “diffundere” which means "to 

spread way out". 

 

A distinguishing feature of diffusion is that it depends on particle random walk, and results in 

mixing or mass transport without requiring directed bulk motion. Bulk motion, or bulk flow, 

is the characteristic of advection. The term convection is used to describe the combination of 

both transport phenomena. 

2.2 Diffusion in the context of different disciplines 
 

The concept of diffusion is widely used in: physics (particle diffusion), chemistry, biology, 

sociology, economics, and finance (diffusion of people, ideas and of price values). However, 

in each case, the object (e.g., atom, idea, etc.) that is undergoing diffusion is “spreading out” 

from a point or location at which there is a higher concentration of that object. 
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There are two ways to introduce the notion of diffusion: either a phenomenological approach 

starting with Fick's laws of diffusion and their mathematical consequences, or a physical and 

atomistic one, by considering the random walk of the diffusing particles. 

 

In the phenomenological approach, diffusion is the movement of a substance from a region of 

high concentration to a region of low concentration without bulk motion. According to Fick's 

laws, the diffusion flux is proportional to the negative gradient of concentrations. It goes from 

regions of higher concentration to regions of lower concentration. Sometime later, various 

generalizations of Fick's laws were developed in the frame of thermodynamics and non-

equilibrium thermodynamics. 

 

 

From the atomistic point of view, diffusion is considered as a result of the random walk of the 

diffusing particles. In molecular diffusion, the moving molecules are self-propelled by 

thermal energy. Random walk of small particles in suspension in a fluid was discovered in 

1827 by Robert Brown. The theory of the Brownian motion and the atomistic backgrounds of 

diffusion were developed by Albert Einstein. The concept of diffusion is typically applied to 

any subject matter involving random walks in ensembles of individuals. 

 

Biologists often use the terms "net movement" or "net diffusion" to describe the movement of 

ions or molecules by diffusion. For example, oxygen can diffuse through cell membranes so 

long as there is a higher concentration of oxygen outside the cell. However, because the 

movement of molecules is random, occasionally oxygen molecules move out of the cell 

(against the concentration gradient). Because there are more oxygen molecules outside the 

cell, the probability that oxygen molecules will enter the cell is higher than the probability 

that oxygen molecules will leave the cell. Therefore, the "net" movement of oxygen 

molecules (the difference between the number of molecules either entering or leaving the 

cell) is into the cell. In other words, there is a net movement of oxygen molecules down the 

concentration gradient 
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[Diffusion is a process in physics. Some particles are dissolved in a glass of  

water. At first, the particles are all near one top corner of the glass. If the  

particles randomly move around ("diffuse") in the water, they eventually 

become distributed randomly and uniformly from an area of high 

concentration to an area of low concentration, and organized (diffusion 

continues, but with no net flux). ]  

2.3 Fick's laws of diffusion 
 

Fick's laws of diffusion describe diffusion and were derived by Adolf Fick in 1855. They can 

be used to solve for the diffusion coefficient, D. Fick's first law can be used to derive his 

second law which in turn is identical to the diffusion equation. 

 

 

 

(Fig 2.1 Molecular diffusion from a microscopic and macroscopic point of view) 
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From this figure, initially, there are solute molecules on the left side of a barrier (purple line) 

and none on the right. The barrier is removed, and the solute diffuses to fill the whole 

container. Top: A single molecule moves around randomly. Middle: With more molecules, 

there is a clear trend where the solute fills the container more and more uniformly. Bottom: 

With an enormous number of solute molecules, randomness becomes undetectable: The 

solute appears to move smoothly and systematically from high-concentration areas to low-

concentration areas. This smooth flow is described by Fick's laws. 

Fick's first law relates the diffusive flux to the concentration under the assumption of steady 

state. It postulates that the flux goes from regions of high concentration to regions of low 

concentration, with a magnitude that is proportional to the concentration gradient (spatial 

derivative), or in simplistic terms the concept that a solute will move from a region of high 

concentration to a region of low concentration across a concentration gradient. In one 

(spatial) dimension, the law is: 

J = - D
𝑑𝜑

𝑑𝑥
 

Where 

J is the "diffusion flux," of which the dimension is amount of substance per unit area per unit 

time, so it is expressed in such units as mol m−2 s−1. J measures the amount of substance that 

will flow through a unit area during a unit time interval. 

D is the diffusion coefficient or diffusivity. Its dimension is area per unit time, so typical 

units for expressing it would be m2/s. 

 

φ (for ideal mixtures) is the concentration, of which the dimension is amount of substance per 

unit volume. It might be expressed in units of mol/m3. 

 

x is position, the dimension of which is length. It might thus be expressed in the unit m. 

 

D is proportional to the squared velocity of the diffusing particles, which depends on the 

temperature, viscosity of the fluid and the size of the particles according to the Stokes-

https://en.wikipedia.org/wiki/Flux
https://en.wikipedia.org/wiki/Steady_state
https://en.wikipedia.org/wiki/Steady_state
https://en.wikipedia.org/wiki/Dimensional_analysis
https://en.wikipedia.org/wiki/Amount_of_substance
https://en.wikipedia.org/wiki/Mass_diffusivity
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Einstein relation. In dilute aqueous solutions the diffusion coefficients of most ions are 

similar and have values that at room temperature are in the range of 0.6 × 10−9 to 2 ×

10−9𝑚2/s. For biological molecules the diffusion coefficients normally range from 10−11 to 

10−10𝑚2/s. 

In two or more dimensions we must use ∇, the del or gradient operator, which generalises the 

first derivative, obtaining 

J = −𝐷∇𝜑 

 

Where J denotes the diffusion flux vector 

 

The driving force for the one-dimensional diffusion is the quantity −∂φ/∂x, which for ideal 

mixtures is the concentration gradient. In chemical systems other than ideal solutions or 

mixtures, the driving force for diffusion of each species is the gradient of chemical 

potential of this species. 

 

Fick's second law predicts how diffusion causes the concentration to change with time. It is 

a partial differential equation which in one dimension reads 

𝜕𝜑

𝜕𝑡
= 𝐷

𝜕𝜑2

𝜕𝑥2
 

Where 

 φ is the concentration in dimensions of [(amount of substance) length−3], example 

mol/m3; φ = φ(x,t) is a function that depends on location x and time t 

 t is time [s] 

 D is the diffusion coefficient in dimensions of [length2 time−1], example m2/s 

 x is the position [length], example m 

In two or more dimensions we must use the Laplacian Δ = ∇2, which generalises the second 

derivative, obtaining the equation. 

 

2.4 Application of Fick’s Law 

Equations based on Fick's law have been commonly used to model transport processes in 

foods, neurons, biopolymers, pharmaceuticals, porous soils, population dynamics, nuclear 

materials, plasma physics, and semiconductor doping processes. Theory of all voltammetric 

methods is based on solutions of Fick's equation. Much experimental research in polymer 

science and food science has shown that a more general approach is required to describe 

transport of components in materials undergoing glass transition. In the vicinity of glass 

https://en.wikipedia.org/wiki/Del
https://en.wikipedia.org/wiki/Gradient
https://en.wikipedia.org/wiki/Chemical_potential
https://en.wikipedia.org/wiki/Chemical_potential
https://en.wikipedia.org/wiki/Partial_differential_equation
https://en.wikipedia.org/wiki/Laplacian
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transition the flow behaviour becomes "non-Fickian". It can be shown that the Fick's law can 

be obtained from the Maxwell–Stefan equations of multi-component mass transfer. The 

Fick's law is limiting case of the Maxwell–Stefan equations, when the mixture is extremely 

dilute and every chemical species is interacting only with the bulk mixture and not with other 

species. To account for the presence of multiple species in a non-dilute mixture, several 

variations of the Maxwell–Stefan equations are used. See also non-diagonal coupled transport 

processes (Onsager relationship). 

2.5 Coefficient of Mass Transfer 
 

In engineering, the mass transfer coefficient is a diffusion rate constant that relates the mass 

transfer rate, mass transfer area, and concentration change as driving force 

𝑘𝑐 =  
𝑛𝐴̇

𝐴 ∆𝐶𝐴
 

 

 kc is the mass transfer coefficient [mol/(s·m2)/(mol/m3)], or m/s 

 𝑛𝐴̇ is the mass transfer rate [mol/s] 

 A is the effective mass transfer area [m2] 

 ΔCA is the driving force concentration difference [mol/m3]. 

This can be used to quantify the mass transfer between phases, immiscible and partially 

miscible fluid mixtures (or between a fluid and a porous solid). Quantifying mass transfer 

allows for design and manufacture of separation process equipment that can meet specified 

requirements, estimate what will happen in real life situations (chemical spill), etc. 

 

Mass transfer coefficients can be estimated from many different theoretical equations, 

correlations, and analogies that are functions of material properties, intensive properties and 

flow regime (laminar or turbulent flow). Selection of the most applicable model is dependent 

on the materials and the system, or environment, being studied. 
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