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Lecture 1 

Turbulent Flow in Pipes 

Unlike fully developed laminar flow in pipes, turbulent flow occurs more frequently in many 

practical situations. However, this phenomenon is more complex to analyze. Hence, many 

empirical relations are developed to understand the characteristics of common flow problems. 

Before, going into these solutions and empirical relations, first few concepts and characteristics 

of turbulent flows are discussed. 

Transition from Laminar to Turbulent Flow 
Consider a situation in which a water reservoir is connected to a pipe. The water is initially at 

rest and is allowed to flow through pipe and the flow rate is regulated by a valve. By opening the 

valve slowly, the flow velocity and hence the Reynolds number increases from zero to the 

maximum steady state value. For initial time period, the Reynolds number is small enough for 

laminar flow to occur. At some time, when the Reynolds number reaches 2100, intermittent spots 

and random fluctuations appear indicating the flow transition to turbulent condition. This process 

continues till the Reynolds number value reaches 4000 beyond which the flow becomes fully 

turbulent. 

 

 

`  

 

This phenomena is typically shown in Fig. 1 where the axial velocity component of flow at 

given location is given by . The flow characteristics such as pressure drop and heat 
transfer depends strongly on the nature of fluctuations and randomness. 
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Reynolds Time-Averaging Concept in Turbulent Flow 

 
  

 

The fundamental difference between laminar and turbulent flow is the chaotic and random  

behavior of flow properties the chaotic and random behavior of flow properties such as  

velocity, pressure, shear stress, temperature etc. One way to handle such high Reynolds  

number flow is to standardize in terms of mean/average value of flow parameters. Such a  

technique is known as “Reynolds Time-Averaging Concept”. In this method, the flow parameters 

 are expressed in terms of two quantities; one is the time-average value and the 

 other is the fluctuating part with respect to average value. 
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For example, referring to Fig. 2, if , then mean value of turbulent function is  

defined by,  

                                                                        (1) 

where is the averaging time period . The fluctuation part (or the time varying part) is then 

 defined  by, 

                                                                        (2) 

    

 Turbulent Intensity    

 

It is clear from Eqs. (1) and (2) that the fluctuation has zero mean value. However, the  

mean square value of fluctuating is not zero and is the measure of "turbulent intensity".  

It is often defined as the ratio of square root of mean square of fluctuating velocity to 

 the time average velocity. Mathematically, it may be written as: 

 

                                                                     (3)  
where the mean square value of fluctuating velocity is, 

(4)  
The larger the turbulent intensity, the more will be fluctuation in parameters.  

Typical values of  range form 0.0001 to 0.1. 
 
Turbulent Stresses 
In order to define stresses in turbulent flows, let us write the x- momentum equation 
with time averaging and fluctuation terms; i.e.  
 

                            
                                                                                                                              (5) 
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The three correlation terms  are called "turbulent  

stresses" because they have same dimensions as that of laminar shear  stress terms 

 i.e. . The turbulent stresses are unknown and  must be related to  

experimental flow conditions and geometry. However, experiments in pipe flows reveal that 

 the stress associated with  in y- direction is dominant.  

Hence, with reasonable accuracy, the momentum equation  

is reduced to,  

                                            (6) 

where  

                                            (7)  
The typical trend of a turbulent-shear layer for a pipe flow is shown in Fig. 3. It is seen that  

“laminar shear” is dominant near the wall whereas turbulent shear dominates in the "outer   

layer". There is an intermediate region called "overlap layer" where both laminar and  

turbulent shear are important. 
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An alternate form of shear stress for turbulent flow is given in terms of "eddy viscosity" 

 which is analogous to dynamic viscosity in case of laminar flow. It may be written as;  

                                            (8) 

In order to determine the Reynolds stresses in turbulent flows , several empirical 

theories have been attempted. The most common one is Prandtl's concept of "mixing 

length". He proposed that the turbulent process could be viewed as the random transport of 

bundles of fluid particles over a certain distance  from a region of one velocity to 

another region of different velocity. This distance is called "mixing length". In this mixing 

length, the eddy viscosity may be defined as,  

                      (9) 

Thus, turbulent shear stress becomes,  

                                            (10) 

Turbulent Velocity Profile 

A fully developed turbulent flow in a pipe can be divided into three regions which are 

characterized by their distances from the wall: the viscous sub-layer very near to the pipe 

wall, the overlap region and the outer turbulent layer throughout the center portion of the 

flow. Within the viscous sub-layer the viscous shear stress is dominant compared to that of 

turbulent (or Reynolds) stress i.e. fluid viscosity plays a major role compared to fluid 

density. In the outer turbulent layer, Reynolds stresses (i.e. fluid density) are dominant and 

there is a considerable mixing and randomness to the flow. 

The character of flow within these two regions is entirely different. Considerable efforts have 
been made to determine the actual velocity profiles in pipe flows. Some of them are 
discussed here. 

In viscous sub-layer, the velocity profile is written as,  

                                          (11) 

where  is the distance measured from the wall,  is the kinematics viscosity of 

the flow,  is the time-averaged x -component of velocity and  is called “friction velocity 
defined by, 
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                                          (12) 
The "friction velocity" is not the actual fluid velocity rather it has same dimension as that of 
velocity. The Eq. (11) sometimes called as the ‘law of wall”. For smooth wall, Eq. (11) is 

valid very near to the wall for which .  
In case of "overlap layer" the following expression commonly known as "Logarithmic 
Overlap Law" has been proposed;  

                                        (13) 

 
The most often used correlation is the "empirical power law velocity profile" defined by, 

                      (14) 

where  is the centerline velocity and  holds good for many practical flow problems 

Moody Chart 

The fundamental difference between laminar and turbulent flow is that the shear stress for 
laminar flow depends on the viscosity of the fluid whereas in case of turbulent flow, it is the 

function of density of the fluid. In general, the pressure drop , for steady, incompressible 

turbulent flow in a horizontal round pipe of diameter  can be written in the functional form 
as,  

                                        (15) 

where  is the average velocity,  is the length of the pipe and  is a measure of the 
roughness of the pipe wall. Similar expression can also be written for the case of laminar 
flow in which the  term will be absent because the pressure drop in laminar flow is found 
to be independent of pipe roughness i.e.  

                                        (16) 
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By dimensional analysis treatment, we can found that  

                                      (17)  

The only difference between two expressions in Eq. (17) is that the term , which is 

known as the "relative roughness". In commercially available pipes, the roughness is not 

uniform; so it is correlated with pipe diameter and the contribution  forms a significant 

value in friction factor calculation. From tests with commercial pipes, Moody gave the values 

for average pipe roughness listed in Table 1. 

Table 1: Average values of roughness for commercial pipes (Table 8.1; Ref. 1) 

 

Now Eq. (17) can be simplified with reasonable assumption that the pressure drop is 

proportional to pipe length. It can be done only when,  

                                        (18)  

It can be rewritten as,  

                                        (19) 

where  is known as "friction factor" and is defined by,  

                                        (20)  

Now, recalling the energy equation for a steady incompressible flow,  
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                                        (21) 

where  is the head loss between two sections. With assumption of horizontal 

 constant diameter pipe  with fully developed flow,  

                                        (22) 

From Eqs. (19) and (22), we can determine head loss as,  

                                        (23) 

This is known as Darcy-Weisbach equation and is valid for fully developed, steady, 

incompressible horizontal pipe flow. If the flow is laminar, the friction factor will be 

independent on  and simply,  

                                        (24) 

 

The functional dependence of friction factor on the Reynolds number and relative 
roughness is rather complex. It is found from exhaustive set of experiments and is usually 
presented in the form of curve-fitting formula/data. The most common graphical 
representation of friction factor dependence on surface roughness and Reynolds number is 
shown in "Moody Chart" (Fig. 4). This chart is valid universally for all steady, fully 
developed, incompressible flows. 

The following inferences may be made from Moody chart (Fig. 4). 

• For laminar flows ( ),  and is independent of surface roughness 

• At very high Reynolds number , the flow becomes completely turbulent 
(wholly turbulent flow) and is independent of Reynolds number. In this case, the 
laminar sub-layer is so thin that the surface roughness completely dominates the 
character of flow near the wall. The pressure drop responsible for turbulent shear 
stress is inertia dominated rather than viscous dominated as found in case of laminar 

viscous sub-layer. Hence, the friction factor is given by,  

• The friction factor at moderate Reynolds number  is indeed 
dependent on both Reynolds number and relative roughness. 

• Even for smooth pipes , the friction factor is not zero i.e. there is always head 
loss, no matter how smooth the pipe surface is. There is always some microscopic 
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surface roughness that produces no-slip behavior  on the molecular 
level. Such pipes are called "hydraulically smooth". 

 

Fig (4) Moody’s Chart 

 
It must be noted that Moody chart covers extremely wide range of flow parameters i.e. 

diameter of the pipes , fluid density , viscosity  and velocities  in non-

laminar regions of the flow  that almost accommodates all applications of 
pipe flows. In the non-laminar regions of fluid flow, Moody chart can be represented by the 
empirical equation i.e. 

                      (25) 

This equation is called "Colebrook formula" and is valid with 10% accuracy with the 
graphical data. 
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Source:A.K Jain 
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Source: A.K Jain 

 

 

 

  



Fluid Dynamics 2016 
 

Prof P.C.Swain Page 15 
 

Lecture 2 

Drag and Lift 

Introduction 

In aerodynamics, the lift-to-drag ratio, or L/D ratio, is the amount of lift generated by a wing or 

vehicle, divided by the aerodynamic drag it creates by moving through the air. A higher or more 

favorable L/D ratio is typically one of the major goals in aircraft design; since a particular 

aircraft's required lift is set by its weight, delivering that lift with lower drag leads directly to 

better fuel economy in aircraft, climb performance, and glide ratio. 

The term is calculated for any particular airspeed by measuring the lift generated, then dividing 

by the drag at that speed. These vary with speed, so the results are typically plotted on a 2D 

graph. In almost all cases the graph forms a U-shape, due to the two main components of drag. 

Lift and Drag for Flow About a Rotating Cylinder 

The pressure at large distances from the cylinder is uniform and given by p0. 

 Deploying Bernoulli's equation between the points at infinity and on the boundary of the cylinder, 

 

(23.9) 

Hence,                                            

 

(23.10) 

From Eqs (23.9) and (23.10) we can write 

 

(23.11) 

  

The lift may calculated as 

https://en.wikipedia.org/wiki/Aerodynamics
https://en.wikipedia.org/wiki/Lift_(force)
https://en.wikipedia.org/wiki/Wing
https://en.wikipedia.org/wiki/Aerodynamic_drag
https://en.wikipedia.org/wiki/Fuel_economy_in_aircraft
https://en.wikipedia.org/wiki/Glide_ratio
https://en.wikipedia.org/wiki/Airspeed
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or,     

 

 

 

(23.12
) 

The drag force , which includes the multiplication by cosθ (and integration over 2π) is zero. 

• Thus the inviscid flow also demonstrates lift. 

•  lift becomes a simple formula involving only the density of the medium, free stream velocity and 
circulation. 

•  in two dimensional incompressible steady flow about a boundary of any shape, the lift is always a 
product of these three quantities.----- Kutta- Joukowski theorem 

Aerofoil Theory 

Aerofoils are streamline shaped wings which are used in airplanes and turbo machinery. These shapes 
are such that the drag force is a very small fraction of the lift. The following nomenclatures are used for 
defining an aerofoil 

 

Fig 23.4      Aerofoil Section 
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• The chord (C) is the distance between the leading edge and trailing edge. 
• The length of an aerofoil, normal to the cross-section (i.e., normal to the plane of a paper) is 

called the span of a aerofoil. 
• The camber line represents the mean profile of the aerofoil. Some important geometrical 

parameters for an aerofoil are the ratio of maximum thickness to chord (t/C) and the ratio of 
maximum camber to chord (h/C). When these ratios are small, an aerofoil can be considered to 
be thin. For the analysis of flow, a thin aerofoil is represented by its camber. 

The theory of thick cambered aerofoils uses a complex-variable mapping which transforms the inviscid 
flow across a rotating cylinder into the flow about an aerofoil shape with circulation.  

Flow Around a Thin Aerofoil 

• Thin aerofoil theory is based upon the superposition of uniform flow at infinity and a continuous 

distribution of clockwise free vortex on the camber line having circulation density  per unit 
length .  

• The circulation density  should be such that the resultant flow is tangent to the camber line 
at every point. 

• Since the slope of the camber line is assumed to be small, . The total 
circulation around the profile is given by 

 

(23.13) 

         

 

Fig 23.5    Flow Around Thin Aerofoil 

A vortical motion of strength  at x=  develops a velocity at the point p which 
may be expressed as 
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The total induced velocity in the upward direction at point p due to the entire vortex distribution along the 
camber line is 

          (23.14) 

For a small camber (having small α), this expression is identically valid for the induced velocity at point 

p' due to the vortex sheet of variable strength  on the camber line. The resultant velocity due 

to  and v(x) must be tangential to the camber line so that the slope of a camber line may be 
expressed as 

 

  

 

(23.15) 

From Eqs (23.14) and (23.15) we can write 

 

  

Consider an element ds on the camber line. Consider a small rectangle (drawn with dotted line) around 
ds. The upper and lower sides of the rectangle are very close to each other and these are parallel to the 
camber line. The other two sides are normal to the camber line. The circulation along the rectangle is 
measured in clockwise direction as 

   [normal component of velocity at the camber line should be 

zero] 
  

or     

If the mean velocity in the tangential direction at the camber line is given by  it can be 
rewritten as 

  and   
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if v is very small  becomes equal to . The difference in velocity across the camber line 

brought about by the vortex sheet of variable strength  causes pressure difference and generates lift 
force. 

Generation of Vortices Around a Wing 

• The lift around an aerofoil is generated following Kutta-Joukowski theorem . Lift is a 

product of ρ ,  and the circulation . 

 

  

  

• When the motion of a wing starts from rest, vortices are formed at the trailing edge. 

• At the start, there is a velocity discontinuity at the trailing edge. This is eventual because near the 
trailing edge, the velocity at the bottom surface is higher than that at the top surface. This 
discrepancy in velocity culminates in the formation of vortices at the trailing edge.  

• Figure 23.6(a) depicts the formation of starting vortex by impulsively moving aerofoil. However, 
the starting vortices induce a counter circulation as shown in Figure 23.6(b). The circulation 
around a path (ABCD) enclosing the wing and just shed (starting) vortex must be zero. Here we 
refer to Kelvin's theorem once again. 

 

Fig 23.6    Vortices Generated when an Aerofoil Just Begins to Move 

  

• Initially, the flow starts with the zero circulation around the closed path. Thereafter, due to the 
change in angle of attack or flow velocity, if a fresh starting vortex is shed, the circulation around 
the wing will adjust itself so that a net zero vorticity is set around the closed path.  

• Real wings have finite span or finite aspect ratio (AR) λ , defined as 

 

 (23.16) 

where b is the span length, As is the plan form area as seen from the top.. 

• For a wing of finite span, the end conditions affect both the lift and the drag. In the leading edge 
region, pressure at the bottom surface of a wing is higher than that at the top surface. The 
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longitudinal vortices are generated at the edges of finite wing owing to pressure differences 
between the bottom surface directly facing the flow and the top surface. 

 

Fig 23.7    Vortices Around a Finite Wing 

 

Fig 23.8   Generation of Longitudinal Vortices 
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