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Subject Name: DYNAMICS OF SOILS AND FOUNDATIONS | MCEGT201

Course Content

Module-1

Fundamentals of vibrations: single, two and multiple degree of freedom systems,
vibration isolation, vibration absorbers, vibration measuring instruments.

Module-11

Wave propagation: elastic continuum medium, semi-infinite elastic continuum
medium, soil behaviour under dynamic loading.

Module-111

Liquefaction of soils: liqguefaction mechanism, factors affecting liquefaction, studies by
dynamic tri-axial testing, shake table and blast tests, assessment of liquefaction potential.

Module-1V

Dynamic elastic constants of soil: determination of dynamic elastic constants, various
methods including block resonance tests, cyclic plate load tests, wave propagation tests,
oscillatory shear box test.

Module-V

Theory of Vibration of Foundation: Vertical, sliding, torsional and rocking oscillation of
footing resting on Elastic half space. Oscillation of rigid circular footing supported by an
elastic layer. Introduction of bearing capacity of dynamically loaded shallow foundation.

Reference Books:

¢ Das, B.M., “Fundamentals of Soil Dynamics”, Elsevier, 1983.

e Steven Kramer, “Geotechnical Earthquake Engineering”, Pearson, 2008.

e Prakash, S., Soil Dynamics, McGraw Hill, 1981.

e Kameswara Rao, N.S.V., Vibration analysis and foundation dynamics, Wheeler
Publication Ltd., 1998.

e Richart, F.E. Hall J.R and Woods R.D., Vibrations of Soils and Foundations, Prentice Hall
Inc., 1970.

e Prakash, S. and Puri, V.K., Foundation for machines: Analysis and Design, John Wiley &
Sons, 1998

COURSE OUTCOME

Students can interpret. theory of vibration and resonance phenomenon, dynamic
amplification.

Students can investigate propagation of body waves and surface waves through soil.

Students can predict dynamic bearing capacity and assess liguefaction potential of any site.

Student exposed to different methods for estimation of dynamic soil properties required for
design-purpose.

Students apply theory of vibrations to design machine foundation based on dynamic soil
properties'and bearing capacity
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1.0 FUNDAMETALS OF VIBRATION

In order to understand the behaviour of a structure subjected to dynamic load lucidly, one must
study the mechanics of vibrations 'caused by the dynamic load. The pattern of variation of a
dynamic load with respect to time may be either periodic or transient. The periodical motions can
be resolved into sinusoidally varying components e.g. vibrations in the case of reciprocating
machine foundations. Transient vibrations may have very complicated non-periodic time history
e.g. vibrations due to earthquakes and quarry blasts.

A structure subjected to a dynamic load (periodic or transient) may vibrate in one “of the
following four ways of deformation or a combination there-of:

(i) Extensional

(i) Bending

(iii) Shearing

(iv) Torsional

The forms of vibration mainly depend on the mass, stiffness distribution and end conditions of
the system.

To study the response of a vibratory system, in many cases it .is satisfactory to reduce it to an
idealized system of lumped parameters. In this regard, the simplest model consists of mass,
spring and dashpot. This chapter is framed to provide the basic‘concepts and dynamic analysis of
such systems. Actual field problems which can_be-idealized to mass-spring-dashpot systems,
have also been included.

11 Important Definition

Vibrations: If the motion of the body is oscillatory in character, it is called vibration.

Degrees of Freedom: The number of independent co-ordinates which are required to define the
position of a system during vibration,‘is.called degrees of freedom (Fig. 1)

Periodic Motion: If motion repeats itself at regular intervals of time, it is called periodic motion.
Free Vibration: If a system vibrates without an external force, then it is said to undergo free
vibrations. Such vibrations can be caused by setting the system in motion initially and allowing it
to move.

Natural Frequency: This is the property of the system and corresponds to the number of free
oscillations made by the system in unit time.

Forced Vibrations: Vibrations that are developed by externally applied exciting forces are called
forced vibrations: These vibrations occur at the frequency of the externally applied exciting
force.

Forcing Frequency: This refers to the periodicity of the external forces which acts on the system
during forced vibrations. This is also termed as operating frequency.

Frequency Ratio: The ratio of the forcing frequency and natural frequency of the system is
referred as frequency ratio.

Amplitude of Motion: The maximum displacement of a vibrating body from the mean position is
amplitude of motion.

Time Period: Time taken to complete one cycle of vibration is known as time period.
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Resonance: A system having n degrees of freedom has n natural frequencies. If the frequency of
excitation coincides with anyone of the natural frequencies of the system, the condition of
resonance occurs. The amplitudes of motion are very excessive at resonance.
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Fig.1: System with different degrees of freedom
Damping: All vibration systems. offer resistance to motion due to their own inherent properties.
This resistance is called damping force and it depends on the condition of vibration, material and
type of the system. If the force of damping is constant, it is termed as Coulomb damping. If the
damping force is proportional to the velocity, it is termed viscous damping. If the damping in a
system is free from its material property and is contributed by the geometry of the system, it is
called geometrical.or radiation damping.
A typical concrete block is regarded as rigid as compared to the soil over which it rests.
Therefore, it may be assumed that it undergoes only rigid-body displacements and rotations.
Under the action of unbalanced forces, the rigid block may thus undergo displacements and
oscillations as follows (Fig. 2)
1. Translation along Z axis
2. Translation along X axis
3. Translation along Y axis
4. Rotation about Z axis
5. Rotation about X axis
6. Rotation about Y axis
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Fig.1.2: Modes of vibration of a rigid block foundation
Any rigid-body displacement of the block can be resolved into these six independent
displacements. Hence, the rigid block has six degrees of freedom and six natural frequencies. Of
six types of motion, translation along the Z axis and rotation about the Z axis can occur
independently of any other motion. However, translation about the X axis (or Y axis) and
rotation about the Y axis (or X axis) are coupled motions. Therefore, in the analysis of a block,
we have to concern ourselves with four types of motions. Two motions are independent and two
are coupled. For determination of the natural frequencies, in coupled modes, the natural
frequencies of the system in pure translation and pure rocking need to be determined. Also, the
states of stress below the block in.all four-modes of vibrations are quite different. Therefore, the
corresponding soil-spring constants need to be defined before any analysis of the foundations can
be undertaken
1.2 HARMONIC MOTION
Harmonic motion is.the simplest form of vibratory motion. It may be described mathematically
by the following equation:
Z = Asin(wt— 0)----==----------- Eq.1.1

Displacement,
e
E? |

Fig.1.3: Quantities describing harmonic motion
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The Eq. (1.1) is plotted as function of time in Fig.3. The various terms of this equation are as
follows:

Z = Displacement of the rotating mass at any time t

A = Displacement amplitude from the mean position, sometimes referred as single amplitude.
The distance 2A represents the peak-to-peak displacement amplitude, sometimes referred to as
double amplitude, and is the quantity most often measured from vibration records.

o= Circular frequency in radians per unit time. Because the motion repeats itself after 2z radians,
the frequency of oscillation in terms of cycles per unit time will be ‘U/ZH. It is denoted by f

0= Phase angle. It is required to specify the time relationship between two quantities ‘having the
same frequency when their peak values having like sign do not occur simultaneously. In'Eq. (1)
the phase angle is a reference to the time origin.

The time period, T is given by

T=c=2 Eq.1.2
f w
The velocity and acceleration of motion are obtained from the derivatives of Eq. (1.1)
Velocity = % = Awcos(wt — 6)----------------- Eq.1.3
=Awsin(wt — 0 +7/,)
2
Acceleration = ZTf = w?Asin(wt — 0)--------------- Eq.1.4

=w?Asin(wt — 0 + 1)
Equations (1.3) and (1.4) show that both velocity and acceleration are also harmonic and can be
represented by vectors oA and w?4, which rotate at the same speed as A, i.e. o rad/unit time.
These, however, lead the displacement and acceleration vectors by "/2 and = respectively. In
Fig.4 vector representation of harmonic-displacement, velocity and acceleration is presented
considering the displacement as the reference quantity (6 = 0)
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Fig.1.4: Vector representation of harmonic displacement, velocity, acceleration
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1.3 VIBRATIONS OF A SINGLE DEGREE FREEDOM SYSTEM

The simplest model to represent a single degree of freedom system consisting of a rigid mass m
supported by a spring and dashpot is shown in Fig. 1.5 a. The motion of the mass m is specified
by one co-ordinate, Z. Damping in this system is represented by the dashpot, and the resulting
damping force is proportional to the velocity. The system is subjected to an external time
dependent force F (t).

LLLLLL L L LS L

- Displacement

- Yelocity
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- Acceleration

i
Fi1)
F

(2) Sprisg-mass-dashpat system () Free-bedy diagram

Fig.1.5: Single degree freedom system
Figure 1.5 (b) shows the free body diagram of mass “’m at any instant during the course of
vibrations. The forces acting on the mass m are:
(i) Exciting force, F (t): It is the externally applied force that causes the motion of the system.
(i) Restoring force, Fr.: It is the force exerted by the spring on the mass and tends to restore the
mass, to its original position. For a linear system, restoring force is equal to K Z, where K is the
spring constant and indicates the stiffness. This force always acts towards the equilibrium
position of the system.
(iii) Damping force, Fq The damping force is considered directly proportional to the velocity and
given by CZ, where C'is called the coefficient of viscous damping; this force always opposes the
motion.
In some problems in which the damping is not viscous, the concept of viscous damping is still
used by defining an equivalent viscous damping which is obtained so that the total the energy
dissipated per cycle is same as for the actual damping during a steady state of motion.
(iv) Inertia force, F.: It is due to the acceleration of the mass and is given by mZ. According to
De-Alembert’s principle, a body which is not in static equilibrium by virtue of some acceleration
which it possess, can be brought to static equilibrium by introducing on it an inertia force. This
force acts through the centre of gravity of the body in the direction opposite to that of
acceleration.
The equilibrium of mass m gives
mZ + CZ + KZ = F(t)------------- Eq.1.5
which is the equation of motion of the system.
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1.3.1 Undamped Free Vibrations
For undamped free vibrations, the damping force and the exciting force are equal to zero.
Therefore the equation of motion of the system becomes

mZ + KZ = 0-mm-emmmmev Eq.1.6
Or Z+§Z =0

The solution of this equation can be obtained by substituting

Z = Ajcoswyut + A,y sinwy, t--------------- Eq.1.7

where A; and A: are both constants and w,, undamped natural frequency.
Now Substituting Eq. (7) in Eq. (6), we get;
—w2 (A cosw,t + Aysinw,t) + % (Aicoswyt + A,sinwy,t)------------- Eq.1.8

Orwn=i\g

The values of constants A1 and A are obtained by substituting proper boundary conditions. We
may nave the following two boundary conditions:

(i) At time t =0, displacement Z = Z, and

(i) At time t= 0, velocity Z = V,,

Substituting the first boundary condition in Eg. (1.7), weget

A1=Zo and
7 = —A,w,Sinw,t + Ay, COSW, t--------=----4 Eq.1.9
Substituting the second boundary conditions in Eg. (1.9), we have

1%
A, = w—‘; --------------- Eq.1.10
Hence
Z = Zycoswy,t + Z—Osina)nt ------------------- Eq.1.11
Now let Z, = A;c0S0 --------=msc--m-somm Eq.1.12
ANG ~-= A SiN-wmnmspbemmemeememeneeee Eq.1.13
Substitution of Egs. (1:12) and (1.13) into Eq. (1.11) yields
Z = Azcos(wpt — 0)==-m-mmmmmmmmmmmmemm Eq.1.14

_ —(

Where 8 =tan (wnzo) ------------------- Eq.1.15

And A, = /Zg O Eq.1.16

The displacement, velocity and acceleration of mass as expressed in above eqs can be
graphically shown as
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Fig.1.6: Plot of displacement, velocity and acceleration of vibrating mass-spring system
It is evident from Fig. 1.6 that nature of foundation displacement is sinusoidal. The magnitude of
Maximum displacement is Az. The time required for the motion to repeat itself is the period of

vibration,

T and is therefore given by. T = % = 2;”

The natural frequency of oscillation, £, is givenby

—l_®n_ 1 /E _________________
fo = T 2m  2m\m Eq.1.17
It can be shown that f, = % 51 ----------- Eq.1.18
st

Where, §,,is the static deformation of spring.

1.3.2 Free Vibrations with Viscous Damping

For damped free vibration system (i.e., the excitation force Fo sinw,,t on the system is zero), the
differential equationof motion can be written as

mZ +CZ + KZ = Qoo Eq.1.19
where C is the damping constant or force per unit velocity. The solution of Eq. (1.19) may be
written as

7 = AeMt-mmctesi - Eq.1.20

where A and A are arbitrary constants. By substituting the value of Z given by Eq. (1.20) in Eq.
(1.19), we get

mAAZeM + CAleM + KAeM = 0---mmeemmmmv Eq.1.21
2, (£ K
Or 22 + () A+ =0 Eq.1.22

By solving Eqg. (22)

c c K
T [ [ m— Eq.1.23

The complete solution of Eq.(1.19) is given by

10
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Z=AeMt + Aetet Eq.1.24

The physical significance of this solution depends upon the relative magnitudes of (i)2 and
(K/m), which determines whether the exponents are real or complex quantities.

Case I: ()2 > (K/m

The roots A1 and A are real and negative. The motion of the system is not oscillatory but is an
exponential as shown in Fig.1.7).

ray |
‘ Cz> L km

Fig.1.7: Free Vibration of over Damped Viscous system

Because of the relatively large damping, so much energy is dissipated by the damping force that
there is sufficient Kinetic energy left to carry the mass and pass the equilibrium position.
Physically this means a relatively large damping and the system is said to be over damped.

c K
Case II: (E)2 =)
The roots A1 and A, are equal and negative. Since the equality must be fulfilled, the solution is
given by
Z = (A;+A4y)e Mmoo Eq.1.25
In this case also, there is no vibratory motion. It is similar to over damped case except that it is
possible for the sign to change once as shown in Fig.1. 8.

Z )

Fig.18: Free Vibration Critically damped viscous system
This case is of little importance in itself; it assumes greater significance as a measure of the
damping capacity of the system.

When (;-)2 = () , C=Cx
N A < — Eq.1.26

11
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The system in this condition is known as critically damped system and C. is known as critical
damping constant." The ratio of the actual damping constant to the critical damping constant is
defined as damping ratio:

Damping ratio, ¢ = C£

c

By substituting this value of & = C£ in Eq. (1.23), we get
Az = (=€ 1/ (&)? — Dwpy-------mmmmmmmmm- Eq.1.27

. L N2 K
Case IlI: (Zm) < (m)
The roots A1 and A, are complex and are given as

Ao = (=€ £ i1 = (©)Dwy---mmmmmmmmmmmems Eq.1.28
The complete solution to the Eq.27, gives

7 = AeEH1=8ont 4 4 o(-§-i1-Eont ; Eq.1.29
OrZ = e~$nt[A,eW1-8Dwnt 4 A eW1-EDwnt e i Eq.1.30
The above equation can be written as

Z = e~$9nt[Csin(wpy/1 — E2t) + C,c08(wpy/1 — E2t)]mmmmmmmmmnmmv Eq.1.31
Or Z = e~ $@nt[Csin(wpgt + Coc08(wpgt]--------===--- Eq.1.32

Where w,; = w, (1 — &2)is known as damped natural frequency
The motion of the system is oscillatory (Fig.1.9) and the amplitude of vibration goes on
decreasing in an exponential fashion.

Fig. 1.9: Free Vibration under damped viscous system
As a convenient measure of damping, we may compute the ratio of amplitudes of the successive
cycles of vibration.

Z1 e_"-’nft

7y e-wn(+2m/onD) - Eq.1.33
Z 2mé

or&= - Eq.1.34
Zy . 1_52 q

Now taking logarithm, we get
z, _ 2m§

ny, = N Eq.1.35

The natural logarithm of ratio of two consecutive peak amplitudes is known as Logarithmic
decrement.

12



Lecture Notes on DSF | 2021

Thus, damping of a system can be obtained from a free vibration record by knowing the
successive amplitudes which are one cycle apart.

If the damping is very small, it may be convenient to measure the differences in peak amplitudes
for a number of cycles, say n, as

E=— N2 Eq.1.36

2nmn Zn

Therefore, a system is
Over damped if & 1;
Critically damped if & =1 and
Under damped if < 1

1.3.2 Forced Vibrations of Single Degree Freedom System

In many cases of vibrations caused by rotating parts of machines, the systems are subjected to
periodic exciting forces. Let us consider the case of a single degree freedom system: which is
acted upon by a steady state sinusoidal exciting force having magnitude F and frequency o i.e.
F(t) =Fo sin wt. For this case the equation of motion (Eg.1. 5).can be written as

mZ + CZ + KZ = FySinwt------------- Eq.1.37
Eq.(37) is a linear, non-homogeneous, second order differential equation. The solution of this
equation consists of two parts namely (i) complementary function, and (ii) particular integral.
The complementary function is obtained by considering no forcing function. Therefore the
equation of motion in this case will be:

mZy + CZy + KZ; = 0-mmmmmmmmmmmeev Eq.1.38
The solution of Eg. (1.38) has already been obtained in the previous section and is given by,
Z, = e $Ont[C sin(wpgt + Cocos(wpgt]-=------------ Eq.1.39

Here Z; represents the displacement of mass m at any instant t when vibrating without any
forcing function. .

The particular integral is obtained by rewriting Eq. (1.37) as

MZy + CZ, + KZ, =FySin@t--------=mn--mmn-mmm- Eq.1.40
Where, Z,= displacement of mass m at any instant of time t when vibrating with forcing
function.

The, solution of Eq. (40) is given as

Z, = Ajcosw,t + A,sinw, t------------------- Eq.1.41

where A1 and A; are two, arbitrary constants. Substituting Eq. (1.41) in Eq.1.40

m(—A,w?sinwt — A,w?coswt) + C(A wcoswt — A,wsinwt) + K(A;sinwt + Aycoswt) =

FostRQyf-----------==-=-==mmmmmmo- Eq.1.42
Considering sine and cosine functions in Eq. (1.42) separately,

(—mA,w? + KA, — CA,w)sinwt = Fysinwt-------------- Eq.1.43
(—mA,w? + KA, + CA;w)coswt = 0-------------- Eq.1.44
From Eq.1.43

A (5= 0?) = A (S) @ = B Eq.1.45
FromEq.1.44

13
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Cc K
A (2 0) + Ay (= w?) = Omseremeeemee Eq.1.46
By solving these equations, we have
__ K-mw®HFRp
Ay = (K-mw?)2+C2 0?2 Eq.1.47
_ —C(l)Fo L
Az = (K-mw?)2+C2 w2 Eq.1.48
Let us assume
x = Xcos(wt + a)-------------- Eq.1.49
—maw? 1-()?
Where a = tan~1 2 = tan~1 (K e ) = tan~! < - > ---------------- Eq.1.50
Ay Cw wa—n

(-2 4£2(2)2
wy wn

. 2 2 "o/k
Amplitude X = |A;° + A, =j - Eg.1.51

Now complete solution is given as

x(t) = e $9nt(Cicoswyt + Cpsinwyt) + Xcos(wt + a)------s-mn-mmm Eqg.1.52
Finally after some time 15T part vanishes and vibration is due to steady state which is due to 2"
term only.

The system will vibrate harmonically, with the same. frequency as the forcing and the peak
amplitude is given by

Fo/
Ay = K e Eq.1.53

J(l—j—§>2+452<§n>2

The quantity F °/k equals to the static' deflection of the mass under force Fo. Dynamic

magnification factor M is the ratio of the dynamic amplitude A; to the static deflection and is

given by

M= U W A— Eq.1.54
j(l—j—;>2+452<§n)2

It would be seen that the frequency ratio near (%n:) 1, the value of frequency is maximum.

This is called resonance and the forcing frequency at which this occurs is called as the resonant
frequency.

Differentiating Eq. (1.53) with respect to n and equating to zero, it can be shown that resonance
will occur at a frequency ratio given by

R ey — Eq.1.55

which is approximately equal to unity for small values of &

NOW Wy g = Wpyf 1 — 282---mmmmmmmmmmmme e Eq.1.56

This is known as damped resonance frequency.
Maximum value of magnification factor can be obtained as

S — Eq.1.57

14
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Example:1
An unknown weight W is attached to the end of an unknown spring k and natural frequency of
the system was found to be 90 cpm. If 1 kg weight is added to W, the natural frequency reduced
to 75 cpm. Determine the unknown weight W and spring constant k.
Sol:
w, = 90 cpm

When 1 kg added to the weight W, the natural frequency reduced to 75 cpm
w,= 90 cpm
Or f=90/60=1.5 cps

w=2nf=2nx15r/s

w? =K/ =Kg/W=8892 -------------- 1
Again, f=75/60=1.25 cps
And

w=2nf =2mx1.25=61.88

Kg _
/(W +1) "= 61.88-------mnmmmmm- )

Solving for 1 and 2, we get W=2.27kg

And Spring constant K=201 kg/cm

Example 2:

A spring and dashpot are attached to a body weighing 140 N. The spring constant is 3.0 KN/m.
The dashpot has a resistance of 0.75 N at a velocity of 0.06 m/s. Determine the following for free
vibration:

(1) whether the system is over damped, under damped or critically damped

Sol:
Given:
K=3 kN/m, Damping force = 0.75 N at a velocity of 0.06 m/s
Hence damping coefficient C= 0.75/0.06=12.5 N.s/m
We know:
K'=3kN/m L for over damped vibration

C 25 K
G > ()
140 N For critical damping

c., K
G =)
For under damped

()2 < (K/m)
_12.5x9.81

Now checking for damping condition, we have % = = 0.437

2X140
Again, ’5 — ’3000X9.81 — 145
m 140

15
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So the system is under damped.

Example 3:

An SDF system is excited by a sinusoidal force. At resonance the amplitude of displacement was
measured to be 2 mm. At an exciting frequency of one-tenth of the natural frequency of the
system, the displacement amplitude was measured to be 0.2 mm. Estimate the damping ratio of
the system.

Sol:

Given:

Umax= 2 mm

u=0.2mm at the exciting frequency of one-tenth of the natural frequency (At small frequency)
We know that

F, /i

j(l—‘“—ﬁ ? 4§y

Wn

u =

At low frequency ratio %zl
k

1

1
. 286/1-8% 28

0.2
Hence m/— =1
°/

K

50-2=0.2

1 21
Now Oy %’ which gives 02z
Hence &:% = 0.05 or 5%
Example 4:

A body weighing 600N is suspended from a spring which deflects 12 mm under the load. It is
subjected to a damping effect adjusted to a value 0.2 times that required for critical damping.
Find the natural frequency of the un-damped and damped vibrations, and in the latter case,
determine the ratio of successive amplitudes.

Sol:
w 600
== = 4N
K=5=Tax10s = >%10"/m
m=60 kg
Damping ratio & = £=02

Ce

Natural Frequency= \/%: / 5X61004:28.86 rpm

Damping frequency wy; = wp4/1 — &2 = 28.86 X V1 — 0.22 = 28.27
Now & = 27§ = In2
2

16
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S0 271 x 0.2 = ln?

2

0r§ — e27X02 — 351
2

Problem No.1

For a machine foundation, given weight = 60 kN, spring constant = 11,000 kN/m, and ¢ = 200
kN-s/m, determine

(a) whether the system is overdamped, underdamped, or critically damped,

(b) the logarithmic decrement, and

(c) the ratio of two successive amplitudes.

Problem No.2

For Problem No.1, determine the damped natural frequency.

Problem No. 3

A machine and its foundation weight 140 kN. The spring constant and the damping ratio of the
soil supporting the soil may be taken as 12 x 104 kN/m and 0.2, respectively. Forced vibration of
the foundation is caused by a force that can be expressed as Q (KN) = Qo sin ot

Qo =46 kKN, = 157 rad/s

Determine

(a) the undamped natural frequency of the foundation,

(b) amplitude of motion, and

(c) maximum dynamic force transmitted to the sub-grade.

1.4  TWO DEGREES OF FREEDOM SYSTEMS

1.4.1 Undamped free vibration

Figure 1.10 shows a mass-spring system with two degrees of freedom.

>

Fig.1.10: Free vibration of two degree freedom system
Let Z: and Z; be the displacements of mass mi and mass m. respectively. The equations of
motion of the system can be written:

17
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My Zy + Ky Zy + Ky (Zy — Zy = 0)=-mmeemmemmmemes Eq.1.58
AND
M2y + K3Zy + Ko (Zy — Zy = 0)--memmmemmeeman Eq.1.59

The solutions of Eq. (1.58) and (1.59) will be of the following form
Z1 = AySin(@pt)---mm-mmmnmmmnm mmmmmmennee e Eq.1.60
Zy = ASin(Wyt)-----mmn-mmmmmmmm oo Eq.l.61

Substitution of Egs. (1.20) and (1.61), into Egs. (1.58) and (1.59) yields:

(Kl + Kz - ml(l)‘%)Al - K2A2 = 0 """"""" Eq162
(Kz + K3 - mz(l)‘%)Az + K2A1 = 0 """"""" Eq163
For nontrivial solutions of w,, in Egs. (1.62) and (1.63),
K, +K, — 2 —K.
1+ Ky —mywy 2 ,| = 0--mem- Eq.1.64
—K2 K2 + K3 - mzwn
Or
4 _ (KitKp | K+K3 2 4 KaKo+KoK3+KaKy _
(J.)n ( mq + myp )(J)n + mim; B 0 Eq165
Equation (1.65) is quadratic in w2, and the roots of this equation are:
2
w2 _1[K1+K2 4 K2+K3] i\[(K1+K2 B K2+K3)2 L Eq.1.66
2L my ms mq my mim;

From Eq.(9),two values of natural frequencies (w,,;)and (w,,,) can be obtained.

Wq1, IS corresponding to the first mode and w,,, is of the second mode of vibration

The general equation of motion of the two masses can now be written as

Z, = Alsinwp t + A2sinwyyt--------=ss=s=x--- Eq.1.67

Z, = ALSinwy t + A3Sinw,yt-----====----z=--- Eq.1.68

The superscripts in A represent the mode.

The relative values of amplitudes A; and A, for the two modes can be obtained using Egs.1.62
and 1.63. Thus

A7 _ K, Q Ko +Kz—myw?; ) Eq.1.69

A} Ki+Kp—mywhy K,

j_z T K4k Ijzm W 4 K2+K31;m2w7212 ) Eq.1.70
2 1 2 1Wn2 2

1.4.2 ~Undamped forced vibrations

Consider the system shown in Figure 1.11 with excitation force

Fo sin.(w-t) acting on mass mz. In this case, equations of motion will be:

myZy + Ko, Zy + K, (Zy — Z,) = Fysinwt------------ Eq.1.71

AND

myZy + K3Zy + Ky (Zy — Z1) =0-mmmemmmmmeeeeev Eq.1.72

For steady state, the solutions will be as

Z; = A sinwt------------ Eq.1.73

AND

Z, = A,sinwt-------- Eq.1.74
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Substituting Egs. (1.73) and (1.74) in Egs. (1.71) and (1.72), we get

(Kl + KZ - mla)z)Al - KzAz = Fo """""""" Eq175
AND
—K2A1 + (Kz + K3 - mzwz)Az = 0 """"" Eq176

Fig. 1.11: Mass spring arrangement.for Two degree of freedom

Solving for A; and A, from the above two equations, we get

(K1+K,—mpw?)Fy

Al = mlmz[w4_(K1+K2 : K1+K2)0)2 : K1K2+K2K3+K3K1] - Eq'l'77

mq myp mimyp
(K3Fg
A, = -- Eq.1.78
K1+K, Ky+K K{K>+K>K3+K3K Tl
2 mlmz[w4—( 1Kz K3 3)002+ 1K2+K2K3+K3 1] q
mq my mimy

The above Two equations give steady state amplitude of vibration of the two masses
respectively, as a function of ®. The denominator of the two equations is same. It may be noted
that:

(i) The expression inside the bracket of the denominator of Egs.1.77 and 1.78 is of the same type
as the expression of natural frequency given by Eq. (1.66). Therefore at w = w,;and w =
wypVvalues of A; and Az will be infinite as the denominator will become zero.

(if) The numerator of the expression for Al becomes zero when

L Eq.1.79

Thus it makes the mass m: motionless at this frequency. No such stationary condition exists for
mass my. The fact that the mass which is being excited can have zero amplitude of vibration
under certain conditions by coupling it to another spring-mass system forms the principle of
dynamic vibration absorbers which will be discussed latter on.
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15 SYSTEM WITH n DEGREES OF FREEDOM

1.5.1 Undamped free vibrations

Consider a system shown in Figure 1.12 having n-degree of freedom.

If Z1, Z>, Z3 ... Znare the displacements of the respective masses at any instant, then equations of
motion are:

mlznl + K1Z1 + Kz (Zl - Zz) = 0 """"""""""" Eq180
mzznz - KZ(ZI - Zz) + K3(Z2 - Z3) = 0 """""" Eq181
MpZy — Ky (Zy_q — Zpp) = Q-mmmmmeeeemmmeeeeee e Eq.1.82
The solution of Egs. (1.80) to (1.82) will be of as follows;
Zy = A{Sinwy t--------=--=-=---- Eq.1.83
Zy = AySinwy t---------==-m-mmnm- Eq.1.84
Zy = ApSinwy t------------------ Eq.1.85
Substitution of Eqgs. (1.83) to (1.85) into Egs. (1.80) to (1.82), yields:
[(Kl + Kz) - mlwnz]Al - K2A2 = (- Eq186
—K2A1 + [(Kz + K3) - mzwnZ]AZ - K3A3 = 0 """" Eq187
_K3A2 + [(KZ + K4) - mgwnZ]Ag - K4_A4_ = 0----=--------- Eq188
—K,An_q + K, — Myw,?|A;, = 0--mm-mmmmmmemeeee Eq.1.89

The nontrivial solution of w,, is inithe form of

[(K; + K3) — myw,?] —K; 0 0
_KZ [(KZ N3 K3) - mza)nz] 0 0 = 0“qu90
0 0 _Kn [Kn - mnwnz]

Equation (1.90) is of n'" degree in w2 and therefore gives n values of w, corresponding to n
natural frequencies.. The mode shapes can be obtained from Eq. (1.86 to 1.89) by using, at one
time, one of the various values of w,, obtained from Eqg. (1.90).

When_the number of degrees of freedom exceeds three, the problem of forming the frequency
equation and solving it for determination of frequencies and mode shapes becomes tedious.
Numerical techniques are more useful in such cases. ,

Holzer's numerical technique is a convenient method of solving the problem for an idealized
system

20



Lecture Notes on DSF

2021

|

AH .
L" ]z

n

Fig. 1.12: Undamped free vibrations of a multi-degree freedom system
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Fig. 1.13: An idealized multiple degree of freedom system

Inertia force at a level below mass m;_; = 3'.;11 m;Z;-

Spring force at that level corresponding to the difference of adjoining masses
21
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Ki—l(zi - Zi—l) """"""""""""" - Eq192
Equating the above eqs, we obtain
;";11 ijj =Ki1(Z; — Zi_1)----mmmm - Eq.1.93
Putting Z; = A;sinw,t in EQ.1.93, we get
Zimy (mAwisinwnt) = K;j_q (AiSinwpt — A;_; SiN@y t)--------==----- Eq.1.94
Ord; = Aj_q — ‘“” 2 2L My 2o Eq.1.95

Equation (1.95) gives a relatlonshlp between any two successive amplitudes. Starting with any
arbitrary value of Aj amplitude of all other masses can be determined. A plot of An+1 versus w?
would have the shape as shown in Figure 1.14. Finally An+1 should worked out to zero because
of base fixity.

The intersection of the curve with (w?2) axis would give various w2. The mode shape can be
obtained by substituting the value of w2 in Eq. (1.95).

1.0}
S
3.0 2
g 7} <.
g4 °
mi
10 “m @n2 “n3

Fig.1.14: Residual as a function of frequency in Holzer method

1.5.2 Forced vibration
Let an undamped n degree-of freedom<system be subjected to forced vibration, and Fi (t)

represents the force on mass m; . The equation of motion for the mass m; will be

miZ; + Xy KijZ; = Fi(t)-—-- Eq.1.96
Where i=1,2,3------< n

The amplitude of vibration of a mass is the algebraic sum of the amplitudes of vibration in
various modes. The individual modal response would be some fraction of the total response with
the sum of fractions being equal to unity. If the factors by which the modes of vibration are
multiplied are‘represented by the coordinates “d”, then for mass m;

Zi= AVd+ APdy + — — +47d, + — — — + AWd,, - Eq.1.97
The above equation can be rewritten as
Z; =3 AP d, e Eq.1.98
Substituting Eg.1.98 in 1.96, yields

nom AP, + IR Y K A d, = Fi(t)-—— Eq.1.99
For free vibration, it can be shown

" K AV dy = 02 A e Eq.1.100

Substituting Eqg. 1.100 in 1.99, we
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n_ m AP d + 30 wZom ATd, = Fy(t)——— Eq.1.101
Or 3™, m; A" d, + w2 d,) = Fy(t)-mmrmmmmmv Eq.1.102
Since the left hand side is a summation involving different modes of vibration, the right hand
side should also be expressed as a summation of equivalent force contribution in corresponding
modes.

Let F;(t) be expressed as

Fi(t) = XP_ m; A7 f (8)-mmmmmm oo Eq1.103
Where f,.(t) is the modal force and is given by

_ S Ra”
f(©) = T Eq.1.104
Substituting Eq.1.103 in Eg.1.102 we have
dy + W2, dy = fr(b)-mmmmmmmmmmmmmmmm e Eq.1.105

Now the equation 1.105 is a single degree freedom equation and solution can be expressed as
t .
d, = wLnr Jo £ (@) sinwy, (t — )dT---=mmmmm-=-

Where, 0 <7< 1

It is observed that the co-ordinate d, uncouples the n degree of freedom system into n systems of
single degree of freedom. The d's are termed as normal:co-ordinates and this approach is known
as normal mode theory. Therefore the total solution is expressed as a sum of contribution of
individual modes.

1.6 APPLICATION OF VIBRATION THEORY

1.6.1 Rotating mass type excitation

Machines with unbalanced rotating masses develop alternating force as shown in Fig. 1.15 a.
Since horizontal forces on the foundation at any instant cancel, the net vibrating force on the
foundation is vertical and equal to'2m,ew?sinwt,where me is the mass of each rotating element,
placed at eccentricity e from the centre of rotating shaft and ® is the angular frequency of
masses. Fig. 1.15 b shows such a system mounted on elastic supports with dashpot representing
viscous damping.

7 7P 7
LS LS
m . A 7 & ,")\f ': me
g , p / g '/),' Force generated
(a) Rotating mass type excitation (b) Mass-spring-dash pot system

Fig.1.15: Single degree freedom system with rotating mass type excitation
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The equation of motion can be written as

mZ + CZ + KZ = 2m ew?sinwt -- Eq.1.106
Where, m is the mass of foundation including 2me. The solution of Eq. (1.106) may be written as,

A A ) L — Eq.1.107
Where
(2mee 2
T Eq.1.108
(1—2—;) g’
B omyes = 2mpe-2 = (2m, &) E2meeae Eq/1.109
k €” k € mw? €m q-L
_ - (2N
0 = tan™* (2) Eq.1.110
5 | |
[
l.' \ |I
[\
4 || ],III IIII Frad
H | .
|| o\ 180 Pt
3 | el 1 s |
‘l \ \ - /"—//T‘""‘
- I| 0.2 \ S /
iim I|II \\\ _o‘ =}
I::l.'l )'f g 900
In" ,r'l 03 ::
JI/ /;__.H“‘“ o = =
//// T e I
.'f [T = I -_____' 0°
: Hj,-——————f 0 1.0 2.0 3.0 &.0 5.0
i ; — | Frequency ratio, 1
) b ﬂ ! (b) Phase angle versus frequency ratio n
Fig.1.16: Response of a mass rotating system
The Eq. (1.108).can be expressed in non-dimensional form as given below:
A _ n?
i, e Eq.L111
" j(l—o"j—z)2+4$2(§n)2

Differentiating Eq. (1.111) with respect to n and equating to zero. It can be shown that resonance
will occur at a frequency ratio given by:

1
1 = g e Eq.1.112
R Eq.1.113

By substituting Eq. (1.113) in Eq. (1.111), we get:
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Agz 1
= oo Eq.1.114
(zmee/m)max Zf 1_52 q

-1 Il dampi
=5zror small damping

1.7 VIBRATION ISOLATION

In case a machine is rigidly fastened to the foundation, the force will be transmitted directly to
the foundation and may cause objectionable vibrations. It is desirable to isolate the machine from
the foundation through a suitably designed mounting system in such a way that the transmitted
force is reduced.

For example, the inertial force developed in a reciprocating engine or-unbalanced forces
produced in any other rotating machinery should be isolated from the foundation so that the
adjoining structure is not set into heavy vibrations. Another example may. be the isolation of
delicate instruments from their supports which may be subjected to certain vibrations. In either
case the effectiveness of isolation may be measured in terms of the force or motion transmitted to
the foundation. The first type is known as force isolation and the second type as motion
isolation.

1.7.1 Force Isolation

Figure 1.17 shows a machine of mass m supported on the foundation by means of an isolator
having an equivalent stiffness K and damping coefficient C. The machine is excited with
unbalanced vertical force of magnitude 2m,ew?sinwt .The equation of motion of the machine
can be written as:

mZ + CZ + KZ = 2m,ew?sinwt---------zx---=----- Eq.1.115

The steady state motion of the mass of-machine can be worked out as

2meew?

7= = K sin(wt —@)-z=-------------- Eq.1.116
j(l—j—ﬁ) +48 ()’
2meew?

_ K . _
“Taorracsr (@t —6)

Where, 8 = tan™? [— -------------- Eq.1.117
1-n?

The only-force-which can be applied to the foundation is the spring force KZ and the damping

force, CZ; hence the total force transmitted to the foundation during steady state forced vibration

is

F, = KZ + CZ--mmmmemmmmmemmmeeeeee e mmmme e Eq.1.118

Now substituting Eq. (1.116) in Eq. (1.118), we get

2meew?

sin(wt — 0) + Co K cos(wt — 0)---------- Eq.1.119

[ ety

n

2meew?

Fe = JA—12)2+48%(n)?
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Fig.1.17: Machine isolation foundation system
Equation (1.119) can be written as:

/ 2

F, = 2m, ew? &sin(wt -B) b oo e Eq.1.120
4I(1—n2)2+452(n)2

Where B is the phase difference between the exciting force and the force transmitted to the

foundation and is given by,
Cw

B Eq.1.121

Since the force 2m, ew? is the‘force'which would be transmitted if springs are infinitely rigid, a
measure of the effectiveness of the isolation mounting system is given by,

MT — Ft — vV 1+(27]€:)2 Eq.1.122

CEmeeo® e acy
ur is called the transmissibility of the system.
A plot of pupversusn for different values of & is shown in Fig.1.18

It will-be noted from the figure that for any frequency ratio greater than/2, the force transmitted
to-the foundation will be less than the exciting force. However in this case, the presence of
damping reduces the effectiveness of the isolation system as the curves for damped case are
above the undamped ones for n>v/2. A certain amount of damping, however, is essential to
maintain stability under transient conditions and to prevent excessive amplitudes when the
vibrations pass through resonance during the starting or stopping of the machine. Therefore, for

the vibration isolation system to be effective 5 should be greater than\/2.
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Fig.1.18: Transmisibilty versus frequency ratio plot

1.7.2  Motion Isolation

In many situations, it would be necessary to isolate structure or mechanical systems from
vibrations transmitted-from the neighboring machines. Again we require a suitable mounting
system so that least vibrations are transmitted to the system due to the vibrating base. We
consider a system mounted through a spring and dashpot and attached to the surface which
vibrates harmonically with frequency () and amplitude Yo as shown in Figure 1.19.

Let Z be the absolute displacement of mass; the equation of motion of the system can be written
as:

mZ+C(Z-Y)+KZ-Y)=0 - e Eq.1.123

ORmMZ +CZ+ KZ = CY + KY = CwYycoswt + KY,Sinwt------------ Eq.1.124

OrmZ + CZ + KZ = Yy /[K? + (Cw)?sin(wt + @)--------nnnnmmm —mmmmev Eq.1.125
— -1 (Cw

Where, o = £an ™ (52)--remeremrem e Eq.1.126

The solution of Eq. (1.125) will give the maximum amplitude as:
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A A L. . Eq.1.127

,/(1—n2)2+(2n€)2

The effectiveness of the mounting system (transmissibility) is given by
= Zmax _ __y1+CH)° Eq.1.128

Ur = v TTTTTTTTTTTTTTTTTTTTTmmmommommmssmmmssmmssmmmooooe
0 ,/(1—n2)2+(2ns‘)2

Machine

Founcatien

Pd
3
s Y=Yy, Sin &t
] s

|

7T

/Vibrating ground
cdug to neighbouring

machings

Fig.1.19: Motion isolation system

Equation (1.128) is the same expression as Eq. (1.122) obtained earlier. Transmissibility of such
system can also be studied from the response curves shown in Fig.1.18. It is again noted that for

the vibration isolation to be effective; it must be designed in such a way that #>v/2.
1.7.3 Materials Used In Vibration Isolation

Materials used for" vibration isolation are rubber, felt, cork and metallic springs. The
effectiveness of each depends on the operating conditions.

)} Rubber: Rubber is loaded in compression or in shear; the latter mode gives higher
flexibility. With loading greater than about 0.6 N per sg mm, it undergoes much faster
deterioration. Its damping and stiffness properties vary widely with applied load,
temperature, shape factor, excitation frequency and the amplitude of vibration. The
maximum temperature up to which rubber can be used satisfactorily is about 65°c. It
must not be used in presence of oil which attacks rubber. It is found very suitable for
high frequency vibrations.

i) Felt: Felt is used in compression only and is capable of taking extremely high loads.
It has very high damping and so is suitable in the range of low frequency ratio. It is
mainly used in conjunction with metallic springs to reduce noise transmission.
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i) Cork: Cork is very useful for acoustic isolation and is also used in small pads placed
underneath a large concrete block. For satisfactory working it must be loaded from 10
to 25 N/sqg mm. It is not affected by oil products or moderate temperature changes.
However, its properties change with the frequency of excitation.

iv) Metallic springs: Metallic springs are not affected by the operating conditions or the
environments. They are quite consistent in their behaviour and can be accurately
designed for any desired conditions. They have high sound transmissibility which can
be reduced by loading felt in conjunction with it. It has negligible damping and so is
suitable for working in the range of high frequency ratio.

1.8 THEORY OF VIBRATION MEASURING INSTRUMENTS

The purpose of a vibration measuring instrument is to give an output signal which represents, as
closely as possible, the vibration phenomenon. This phenomenon may be displacement, velocity
or acceleration of the vibrating system and accordingly the instrument which reproduces signals
proportional to these are called vibrometers, velometers or accelerometers.

There are essentially two basic systems of vibration measurement. One method is known as the
directly connected system in which motions can be measured from a reference surface which is
fixed. More often such a reference surface is not available. The second system, known as
“Seismic System™ does not require a fixed reference surface and therefore is commonly used for
vibration measurement.

g % lIJC
] l | Y=Y, Sin @t
!
L, I
7 v
/7 / // // ,/ ’/ // A / A
24 4 s/ Y / /
LN - S T /]
DT e e
4 ’ _// 7 A A
| 4 P, r e a4 ; d
[ 5 // p e Y AN

] Z
L yibrating bscy

Fig.1.20: Schematic diagram of vibration measuring instrument
Figure 1.20 shows a Vibration measuring instrument which is used to measure any of the
vibration phenomena. It consists of a frame in which the mass “m” is supported by means of a
spring K and dashpot C. The frame is mounted on a vibrating body and vibrates along with it.
The system reduces to a spring mass dashpot system having base on support excitation as
discussed earlier in illustrating motion isolation.
Let the surface S of the structure be vibrating harmonically with unknown amplitude Yo and an

unknown frequency ®. The output of the instrument will depend upon the relative motion

between the mass and the structure, since it is this relative motion which is detected and
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amplified. Let Z be the absolute displacement of the mass, then the output of the instrument will
be proportional to X =Z - Y.
The equation of motion of the system can be written as

mZ+C(Z=Y)+K(Z—Y) = 0----mmmmmmmeeeemmmee v Eq.1.129
Subtracting mY from both sides,

mX + CX + KX = —mY = mY,w?sinwt----------------- Eq.1.130
The solution can be written as

2

X = U
J@-n2)2+(2né)?

Yosin(wt — 0)-------mmmmmmmmmm e Eq.1.131

Where n = wﬂ: Frequency ratio

& = damping ratio

6 = tan‘l(%) ---------------------------------------------- Eq.1.132
Equation (1.131)can be rewritten as

X = n?uY,sin(wt — 0) - e Eq.1.133
Where

1
M= Ja-n2+@nd2z T Eq.1.134

1.8.1 Displacement Pickup
The instrument will read the displacement of the structure directly if n?u =1 and 6 =0.The

variation ofn?p with n and & is shown in Figure 1.21
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Fig.1.21: Response of a vibration measuring instrument to a vibrating base
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It is seen when 1 is large, n?u is approximately equal to 1 and 0 is approximately equal to 180°.
Therefore to design a displacement pickup, n should be large which means that the natural
frequency of the instrument itself 'should be low compared to the frequency to be measured. Or
in other words, the instrument should have a soft spring and heavy mass. The instrument is
sensitive, flimsy and can be used in a weak vibration environment. The instrument cannot be
used for measurement of strong vibrations.

1.8.2  Acceleration Pickup (Accelerometer)

Equation (1.133) can be rewritten as

X= w—lz Uw2YSin(wt — §)----------mmmmmmm oo £q.1.135

The output of the instrument will be proportional to the acceleration of the structure if p is
constant. It is seen that p is approximately equal to unity for small values of n. Therefore to
design an acceleration pick up, it should be small which means that the natural frequency of the
instrument itself should be high compared to the frequency to be measured. In other words, the
instrument should have a stiff spring and small mass. The instrument is less sensitive and
suitable for the measurement of strong motion. The instrument size is small.

1.8.3 Velocity Pickup

Equation (1.133) can be rewritten as

X = winuYOa)sin(wt —0) S - ESEEEEE— Eq.1.136

The output of the instrument will be proportional to velocity of the structure if winu is a

constant.
At n= 1, Eq. (1.136) can be written as

% 1 1 g 1
X = pET: Yowsin(wt —6) mmmmmmmmseseemeeeeeeoeoeeeoo- Eq.1.137 asatn=1,u = %

Since w, and ¢ are constant, the instrument will measure the velocity at n= 1.

It may be noted that the same instrument can be used to measure displacement, acceleration and
velocity in different frequency ranges.

XaY,if n > 1, Displacement pickup (Vibrometer)

XaY,if n «< 1, Acceleration pickup (Accelerometers)

XaY,if n =1, Velocity pickup (Velometers)

Displacement and velocity pickups have the disadvantage of having rather a large size if motions
having small frequency of vibration are to be measured. Calibration of these pickups is not
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simple. Further corrections have to be made in the observations as the response is not flat in the
starting regions. From the point of view of small size, flat frequency response, sturdiness and
ease of calibration, acceleration pickups are to be favored. They are relatively less sensitive and
this disadvantage can easily be overcome by high gain electronic instrumentation.

1.8.4 Transducer

A transducer is a device for converting the mechanical motion of vibration into an electrical
signal, commonly called pickup.

There are three kinds of transducers: Displacement, Velocity, and Acceleration

1.8.5 Displacement Transducer

It is the most common type of transducer which is operated on the eddy current principle. It sets
up a high-frequency electric field in the gap between the end of the Proximity Probe and the
metal surface that is moving. It senses the change in the gap and measures relative displacement
not absolute displacement.

Proximity Probe

Fig.1.22: Schematic diagram of proximity probe

It is sensitive to shaft surface defects such as scratches, dents and vibrations in conductivity and
permeability.

Senses shaft run out, and it is very difficult to distinguish vibration from run out.

The practical maximum frequency of proximity probes is about 1500Hz. The minimum frequency
is zero. It can also measure static displacement. A useful application of proximity probes is to
measure very slow relative movement like thermal expansion. It is useful in situations where the
vibrating part cannot tolerate the mass of the pickup.
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1.8.6 Velocity Transducer

Velocity transducer is also called seismic pickup.

The relative motion between the permanent magnet and the coil generates a voltage that is
proportional to the velocity of the motion. The velocity transducer has an internal natural
frequency of about 8 Hz. The velocity transducer is rather large. On small devices this added
mass can significantly affect the vibration output. The coil in the velocity pickup is sensitive to
external electromagnetic fields.

SPRING

MASE

Fig.1.23: Velocity transducer

1.8.7 Acceleration Transducers

PMPING FLVID

Fig.1.24: Accelerator transducer
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The most common acceleration transducer is the piezoelectric accelerometer It consist of quartz
crystal with a mass bolted on top and a spring compressing the quartz. A property of
piezoelectric material is that it generates an electrical charge output when it is compressed. The
charge output is proportional to force F= ma, force is also proportional to acceleration.

Typically accelerometer has very high natural frequency, typically 25000 Hz Its response is
linear for about 1/3 of this range. It has a useful frequency range of from about 5 to
approximately 100000 Hz depending on its size. The primary considerations in selecting an
accelerometer are sensitivity and frequency response.

If high-amplitude motions are to be measured, i.e. greater than 10g, such as in shock
measurement, then a low-sensitivity accelerometer is appropriate 10 mV/g or less.

If the level motion is to be measured, such as building or structural motions at low frequencies
then a high sensitivity accelerometer should be chosen 1000 mv/g.

For most machinery monitoring,100 mV/g sensitivity accelerometer provide the right balance of
sensitivity and frequency response. Other considerations in accelerometer selection or transducer
are Temperature exposure

Linearity - It is expressed as the percent deviation from a constant value of the sensitivity.
Transverse Sensitivity is the ability of the transducer to detect motion in directions perpendicular
to its sensitive axis.

Damping is very low in piezoelectric accelerometer but can be significant in other types, such as
piezo-resistive accelerometer. Strain sensitivity is the ability of the transducer to generate a
signal when the base is distorted, such as when it is clamped against a non flat surface.
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2.0 WAVE PROPAGATION; BASIC ELASTIC PROPERTIES AND RELATIONSHIP

2.1 Elastic Constants
An elastic material is one which obeys Hook's law of proportionally between stress and strain.
For an isotropic elastic material subjected to normal stress a,in the x-direction, the strains in x, y,
z directions are given as

£ = % _______________ Eg.2.1
£, =&, = Sy — Eqg.2.2

If the element of the material is subjected to normal stress oy, g,, g, then by superposition we
obtain

& = %[Ux — u(oy + 0,)]----mmmm Eg.2.3
£y = [0 — (o + 0) e £q.24
&, = %[O’Z G | Eq.2.5

In the above expressions, E is the modulus of elasticity and p is Poisson's ratio. It may be noted
that here E is dynamic modulus of elasticity.

Equations (3to 5) can be rearranged so, that the stresses are expressed in terms of the strains as
follows: (Timoshenko and Goodier, 1951; Kolsly, 1963).

—__ HE SN,
Ox = Trma—zm [sx +¢&, + ez] + T Eq.2.6
—__ HE I W
% = Grwa-zm lex + &y + 6] + Ty Eq.2.7
—__ HE N -
% = Trmazm [sx +¢&, + ez] + A Eq.2.8
For simplicity the equations may be written
L o ] Eq.2.9
Oy = A& + 2G &) ----z7---—p-mm-mmmmmmmmmm oo Eq.2.10
0, = A + 2G &,--Qf-----------==-=====mm=mmmmmmmm- Eq.2.11
In which
=&+ &y €, rrmmmmmmmmmm s e Eq.2.12
_ pE
@+ =2 £q.2.13
E
G ) 2(1+u) ------------------------------------------------ Eq'2'14

Similarly in an isotropic elastic material, there exists linear relation between shear stress and
shear strain. Thus

Yy = mlmememrmmmemrmrmms e e Eq.2.15
Vg = emrmememrm e e Eq.2.16
Vig = e Eq.2.17

G is the shear modulus or rigidity modulus and is the same as given by Egs. (2.9 to 2.11).
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Equations (2.9 to 2.11) and (2.15 to 2.17) comprise six equations that define the stress-strain
relationship

2.2  WAVE PROPAGATION IN AN INFINITE, HOMOGENEOUS, ISOTROPIC,
ELASTIC MEDIUM

In this section, the propagation of stress waves in an infinite, homogeneous, isotropic medium
presented in Figure.2.1 shows the stresses acting on a soil element with sides dx, dy, dz.. For
obtaining the differential equations of motion, the sum of the forces acting parallel to each axis is
considered.

In the x-direction the equilibrium equation is given as

h
s Ez d=
f#_.'-v— 2 0 — ¥
dy T " =
_‘:___F,,:ﬁ__,f” Wt e lﬂf_ﬂ__,—,-
B, r,::+a:‘_'.:ix
Ty & iy s s -
\ i IFF ) |
. L 1 .D'\. )
B xy ! /|—»{_\'I+ = ax
! I 3 P Hr’- i
"i" T, P g = T T — i
T = v i
rz 4 —m;dl. oy ‘
oy
r —— X
____,-o-"""'-'- - e e
f-’; Tox | i _H_,,r'“f
= e 1|, =|
¥y GJ.
Fig. 2.1: Stress on an element of an infinite elastic medium
a d
lcrx - (O'x + %dx)] (dy.dz) + lrxz - (sz + ;;‘Z dZ)J (dx.dy) + lryx — (Tyx +
Fi) 2
% dy)| (dx.dz) + p(dx. dy.dz) 3% = 0-rremsemeemreecmeeeceeees Eq.2.18
Or,
az_u _ Oox oty , O0T%g
5z = o T 3 + Eq.2.19 (a)

Equations similar to Eq. (1), it can be written for the y -and z -directions. These will give

0% _0%yz 99y |\ OTxz o
= ot Eq.2.19 (b)
i _— aTxZ aTxy a e e e
T L Eq.2.19 (c)
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In the above expressions, p is the mass density of the soil; u, v and o are displacements in the x,
y, and z directions respectively. To express the right hand sides of these Egs., the relationship for
an elastic medium given is used. The equations for strains and rotations of elastic and isotropic
materials in terms of displacements are as follows:

2.2.1 Axial Strains
ou

£y = Somormmomrmemeeee Eq.2. 20(a)
£, = Z_; ________________ Eq.2.20(b)
£, = ?3_(: _______________ Eq.2. 20(c)
Shearing Strains:
o | @
Fey = o B Eq.2. 21(a)
0w | 8
o = 2 e Eq.2.21(b)
0w | 8
Vg = ﬁ + aZ _____ Eq.2. 21(c)
Rotations:
N
2w, = ﬁ - a_'z’ ............ Eq.2. 22(a)
o= 0w
20, = ——— Eq.2 .22(b)
o=
20w, = 3% oy Eqg.2. 22(c)
2.2.2 Compression Waves
Substitution of Eq.2.9, 2 15 and 2.17 in Eq.2. 19 (a) gives
62
pa—tg = — (l&‘ + 2G€x) + (G)/xy) + (G)/xz) ___________ Eq.2.23
Or
2
o = (A +268) + G2 (S +55) + G2 (To + 52)rerereeeee Eq.2. 24
2
o = (A5 +268) + G (2 +55) + G2 (To + 52)erereeeee Eq.2. 25
9%u _ , 0% 9%u 0%v 0%w . 9%u  9%u , 9%u
E_A£+G[az+am et o s o Eq.2. 26
%w _ 0%
AT b = 2
The equatlon Eq 2 26 can be rewritten as
=+ G) m L T Eq. 2. 27(a)
Where Vz— — +a—2 +a—22
dz
Slmllarly correspondlng equations in other directions can be written as
ﬁ =+ G)— + GV o o Eq.2. 27(b)
pLe =0+ G) £ V2 @mmrmmrmrmeme e Eq. 2. 27(c)
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Equations (2. 27) are the equations of motion of an infinite homogeneous, isotropic, and
elastic medium. On differentiating these equations with respect to X, y and z, respectively, and
adding, we get

92 [ou _ 9% | 9% | 0% 2 (0w v 0w\
F[£+_+_z (/H'G) +a t ]+GV (x+ay+az) Eq.2.28
pos=+G)(V?0) + (sza ----------------------- Eq.2. 29
Hence, 22 = (A + 26) (V28)-—-mmrrmrmmmrm- Eq.2¢30
Or
% — (1+26) (V2E) = V2V2Emmmmmmmmmnnnnee Eq.2.31
Where I/pz — (A-’:.%G) ----------------------------- Eq232

Vp is the velocity of compression waves which is also referred as primary wave or, P-wave. It is
important to note the difference in the wave velocities for an infinite elastic medium with those

obtained for an elastic rod is, V, = / /- but in the infinite medium, ; /(’p’% This means

that V, >V, that is compression wave travels faster in infinite medium. It is due to the fact that
in infinite medium, there are no lateral displacements, while in the elastic rod lateral
displacements are possible.

2.2.3  Shear-Waves
Differentiating Eq. (2.27 b) with respect to z and Eqg. (2.27,c) with respect to y, we get

a2

P3z ( ) (1+6) (ay)(a ) +GV 0z =0 233
0% (dw 200 .

patz( ) a+6 (ay)<a ] st

Subtracting Eqg.2.34 from Eq.2.33, we get

9% (0w OV _ dw Ov
pi (5o —5) = CV(50 = 5 ) Eq.2.35
FromEq.(2.22,a)
o = dw OJv
Dx = dy 0z
Therefore,
62wx _ 22—
P o = (W “ @, ---------==-==n=m-- Eq.2.35
Or,
o SV = YRV Eq.2.36 (a)
Similar expression can be obtained for @, and @, as
3wy Gy __
= A A R Eq.2. 36 (b)
o T Eq.2. 36 (c)

The above expressions indicate that the Rotation is propagated with velocity Vs which is equal to
38



Lecture Notes on DSF | 2021

/G /p. Shear wave is also referred as distortion wave or S-wave. It may be noted that shear wave

propagates at the same velocity in both the rigid elastic medium like rod or bar and the infinite-
medium.

2.3 WAVEPROP AGATION IN ELASTIC HALF-SPACE

In an elastically homogeneous ground, stressed suddenly at a point 'S' near its surface as shown
in (Figure 2.2), three elastic waves travel outwards at different speeds. Two are body waves;
which are propagated as spherical, fronts affected only a minor extent by the free surface of the
ground, and the third is a surface wave which is confined to the region, near the free surface.

o =S —
= - Vot ———
l-o—\"st“ Jr_\,t_’

1 T S
o i
\\ \\ ’/’l

Fig.2.2: Pulse fronts of the P,.S and R waves

The stresses in the P wave, which is a longitudinal wave like a sound wave in air, are thus due to
uniaxial compression, while during the passage of an S wave the medium is subjected to shear
stress. The surface wave travels more slowly than either body wave, and is generally complex.
This wave was first studied by Rayleigh (1885) and later was, described in detail by Lamb
(1904). It is referred as Rayleigh-wave or R-wave. The influence of Raleigh wave decreases
rapidly with depth.

The half space is defined as the x-y plane with z assumed to be positive toward the interior of the
half-space as shown in Figure 2.3. Let u and w represent the displacements in the directions x
and z, respectively and are independent of y, then

T
u=-—+- Eq.2.37
L0 O e
== Eq.2.38
Where @ and ¢ are two potential function. As z—;:o, the dilation £ of the wave can be written as
- _O0u , dw _ [3%0 9% [

S T T e T 6xaz] + [622 Bxaz] Eq.2.38
ore=20 40 _wag Eq.2.39
' T ax2  9z2 q..

Similarly the rotation in x-z plane is given by
Go=_ 0w _0% %0 _ o e
20, = 5 o oz T a2 Ve Eq.2.40
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Plone wave t }4":7:“*
/;;/:’ L {
) e \
. P |
( / .1/,’- - |
\1’/ 4 /_/- i [
| ‘;‘j 7 |
L s
T e o
=4
Fig.2.3: Wave propagation in Elastic half space
L
==+ Eq.2.41
S
== Eq.2.42

Where @ and ¢ are two potential function. As —O the dilation £ of the wave can be written as

_[o°0 %@ a_(Z) _ 9%¢ .
€= 5 + 5 [axz + 8xaz] + [822 axaz] Eq'2'43
Ore——"’z—@+@—v2¢ ----------------------------------------------------- Eq.2.44
! ax2 = 9z% q.2.

Similarly the rotation in x-z plane is given by
o= _fw_0% %0 oo A e
2w, = 5 3% = o2 + Py Vg Eq.2.45

Substituting u and w from Eq.1 and 2 in, we get

po- (Zii’) +02(55) = O 26) 2 (V20) + G o (V) Eq.2.46
And p 2 (22) = p 2 (22) = (A4 26) Z (V?0) — G = (V2p)-—rrrm- Eq.2.47
The above Eqs (2.46 and2.47) are satisfied if

2= CEED Y2, = YRT? P Eq.2.48
And aat‘f = Gv2<p B — Eq.2.49

Now, consider a sinusoidal wave traveling in the positive x direction. Let the solution of @ and ¢
be expressed as

@ = F(z) expli(wt — fx)]-------mmnmmmmmmmmmm- Eq.2.50
And

@ = G(z) expli(wt — fx)]-------m-mmmmmmmemmem Eq.2.51
Where F(z) and G(z) are function of depth

And f = —2%

wave length

Now substituting Eq. 2.50 into Eq. 2.48 , we get
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(55) F (@ expliCwt — PNV () expliCwot = fr)l}—mmmm Eq.2.52
Or —w?F(2) = VZ[F'(2) = f2F (2)]-rmrmmmrmmmmemmmmmmm e emen oo Eq.2.53

Where F(z) and G(z) are functions of depth
Similarly, substituting Eq. (2.51) into Eq. (2.49) results in

—w?G(2) = V2[G (2) — f?G(2)]--------mnmmmmm- Eq.2.54
Where
F(2) = e Eq.2.55
and

G (2) = T e Eq.2.56

Now Equations (2.53) and (2.54) can be rearranged to the form
F'(2) — q?F(2) = 0-mmmmmmmmmmmmm oo Eq.2.57
G (2) — S?F(2) = 0---mmmmmmmmmmmmmmme e Eq.2.58
Where
R — Eq.2.59
Vp

$2 = 2 Eq.2.60

Solutions to Egs. (2.57) and (2.48) can be given as
F(z) = Aje™ % + Aje 0% mmrmmmmme- Eq.2.61
G(z) = Bie ™% + Bye % ----mmmommmmee- Eq.2.62
where A1, A2, B1, and B are constants.

It can be seen from Egs. (2.61) and (2.62) that A> and B2 must equal zero; otherwise F(z) and
G(2) will approach infinity with depth, which is not the type of wave that is considered here.
With A; and B> equal zero, we have

F(z) = Aje 9% mmmmmmmmeee Eq.2.63
G(z) = Bye ™ 5%-m-mmmmmmmmem- Eq.2.64
Now combining Egs. (2.50) and (2.63) and Egs. (2.51) and (2.64), we get
0= (Ae %) [exp i(wt — fx)]--------m-mmmmmmmmmmmm Eq.2.65
@ = (Bie %) [expi(wt — fx)]--------mmmmmmmmmmmmmam Eq.2.66

The boundary conditions for the two preceding equations are at z=0, o; =0, Tx = 0, and 17y = 0.
We have

Oyzm0) = A6 + 268, = A8+ 26 (32) = 0eremerereenee Eq.2.67
Combining Egs. (2.42), (2.444), and (2.65)—(2.67), one obtains
A [(A+2G)q? — Af?] — 2iB,Gfs = 0----------- Eq.2.68
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Ay 2iGfs
And B_l — Ty R Eq269
. a 0
Similarly, T,x(-0) = G¥px = G (5= + 52) = 0----- Eq.2.70
Again, combining Egs. (2.21), (2.23), (2.65), (2.66), and (2.70)
N G D) i —— Eq.2.71
A _ ()
OR ! =" Eq.2.72
Equating the right-hand sides of Egs.( 2.69) and (2.72),
2iGfs _ (s2+1?)
(A+26)q%-Af2 ~  2ifq "
46£7sq = (52 + 1) (A + 26)q% = Af* |-+ Eq.2.74
Or,16G%f*s2q% = (s + f2)2[(A + 2G)q? — Af2]-smmmsi—- Eq.2.75
Substituting for q and s and then dividing both sides of Eq. (2.75) by G?f¢, we get
2 A+26G 2
16 (1 - szf2> (1-727) [2 - & Zfz] 2] - —  EqQ2.76
However,wave length = veloagﬂ
/2
f = e EQ.2.77
w? _ w? V_rzz 2Y/2 o
So, 2 (w/ > sz av Eq.2.78
Similarly, - L B — Eq.2.79
Y Vszfz Vs (w/ s q.2.
Where a? ==
Vp
However, i? =4+ 26/, and 2 = G/,
2 _ v _ 6 & .
So, a Vp = ol Eq.2.80

The term a? can-also be expressed in terms of Poisson’s ratio. From the relations given in Eq.
(2.81),

2HE g Eq.2.81
1-2u
Substitution of this relation in Eq. (2.80) yields,

2_ 6 _(Q-2¢p
O =026 T 20w Eq.2.82
Again, substituting Egs. (2.78), (2.79), and (2.80) into Eqg. (2.76),

16(1 — a?2V2)(1 —V2) = (2 = V) (2 — V?)?

Or, Ve —8V* — (16a? — 24)V? — 16(1 — a?) = 0------------- Eq.2.83
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Equation (2.83) is a cubic equation in V2. For a given value of Poisson’s ratio, the proper value
of V2 can be found and, hence, so can the value of V. in terms of V, or Vs.

Example 1:

Given p = 0.25, determined the value of the Rayleigh wave velocity in terms of Vs

Solution:
Ve —8V* — (16a%? —24)V2—16(1—a?) =0
For p=0.25
1—-2u
2 = =
at=o— 20 1/3

1 1
V6—8V4—<16><§—24)V2—16(1—§)= 0

3V6 —24V* +56V2—-32=0
(V2 —4)(3V*—12V2+8) =0

2 ,_2

2
Therefore, V= = 4,2 + =) N

|fv2=4,§=1—V2=1—4=—3

So S/f is imaginary. This is also the case for V=2 + %

It can be seen that when g/f and s/f are imaginary, it does not yield the primary and secondary
waves as discussed.

2 p="-09194

3’ vg

Or 1,=0.9194v,

For V3=2 —
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3.0 LIQUEFACTION OF SOIL

Previous earthquake devastation was an illustration of catastrophic damages to structures and
resulting in loss of life which was due to liquefaction phenomenon. Liquefaction is defined as a
condition where a soil will undergo continuation of deformation at a constant low residual stress
or with no residual resistance, due to the build-up and maintenance of high pore water pressure
which reduces the effective confining pressure to a very low value. The pore pressure so build-up
leading to true liquefaction of this type may be due either to static or cyclic stress applications.

3.1 Initial Liquefaction

It denotes a condition where, during the course of cyclic stress applications, the residual pore water
pressure on completion of any full stress -cycle becomes equal to the applied confiningstress.
MECHANISM OF LIQUEFACTION:

The strength of sand is primarily due to internal friction. In saturated state it may be expressed as
S = o, tang------ Eq.3.1
Where S= Shear strength of sand

o, = Effective normal stress on any plane at a depth of z

®= Angle of internal friction

Free Surface

¥ n

w
SR ARG S| (I -

-
-

15uh

X Y X

Fig.3.1. Section of ground showing the position of water table
When a saturated sand is subjected to ground vibrations, it tends to compact and decrease
volume, if drainage is restrained the tendency to decrease in volume results in an increase in pore
pressure.
The strength may now be expressed as,
den = (G_n - udyn)tan (Ddyn """"""" Eq-3-2
Sayn=Shear strength of soil under vibration
ugyn=EXcess pore water due to ground vibration
@ 4yn=angle of internal of friction under vibration
It is observed that with development of additional positive pore pressure, the strength of sand is
reduced.
For complete loss of strength, shear strength becomes zero, Sg,,,=0
Thus, o, — ugyn=0
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Or G,=uqyn, hence ui%:l --------- Eq.3.3
Now u4,,,Can be expressed in terms of rise in water head and be written as
WhW
G}:1 =]-—- Eq34
m}’wz
Or h_W — E _________ Eq35
Z 1+e

This is the critical hydraulic gradient.

It is seen that, because of increase in pore water pressure the effective stress reduces, resulting in
loss of strength. Transfer of inter granular stress takes place from soil grains to pore water. Thus
if this transfer is completed, there is complete loss of strength, resulting in what'is known as
complete liquefaction. However, if only partial transfer of stress from the grains to the pore
water occurs, there is partial loss of strength resulting in partial liquefaction. In‘case of complete
liquefaction, the effective stress is lost and the sand-water mixture behaves as a‘viscous material
and process of consolidation starts. Due to surface settlement, resulting in closer packing of sand
grains occurs. Thus the structures resting on such a material start sinking. The rate of sinking of
structures depends upon the time for which the sand remains in liquefied state. Liquefaction of
sand may develop at any zone of a deposit, where the necessary ecombination of in-situ density,
surcharge conditions and vibration characteristics occur.Such.a zone may be at the surface or at
some depth below the ground surface, depending.-only on the state of sand and the induced
motion.

3.3 FACTORS AFFECTING LIQUEFACTION

The factors affecting liquefaction are.summarised below

a) Soil Type: Liquefaction occurs in cohesion-less soils as they lose their strength
completely under vibration due to the development of pore pressures which in turn
reduce the effective stress to zero. Liquefaction does not occur in case of cohesive soils.
Only highly sensitive clays may lose their strength substantially under vibration.

b) Grain Size and Its Distribution: Fine and uniform sands are more prone to liquefaction
than coarser ones. Since the permeability of coarse sand is greater than fine sand, the pore
pressure developed during vibrations can dissipate faster.

c) Initial Relative Density: It is one of the most important factors controlling liquefaction.
Both pore pressures and settlement are considerably reduced during vibrations with
increase in initial relative density and hence chances of liquefaction and excessive
settlement reduce with increased relative density.

d) Vibration Characteristics: Out of the four parameters of dynamic load namely (i)
frequency; (ii) amplitude; (iii) acceleration; and (iv) velocity; frequency and acceleration
are more important. Frequency .of the dynamic load plays vital role, only if it is close to
the natural frequency of the system. Further the liquefaction depends on the type of the
dynamic load i.e. whether it is a transient load or the load that causes steady vibration.
For a given acceleration, liquefaction occurs only after a certain number of cycles
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3.4

9)

h)

)

k)

imparted to the deposit. Further, horizontal vibrations have more severe effect than
vertical vibrations. Multi directional shaking is more severe than one directional loading
(Seed at al.1977), as the pore water pressure build up is much faster and the stress ratio
required is about 10 percent less than that required for unidirectional shaking.

Location of Drainage and Dimension of Deposit: Sands are more pervious than fine
grained soil. However, if a pervious deposit has large dimensions, the drainage path
increases and the deposit may behave as un-drained, thereby, increasing the chances of
liquefaction of such a deposit. The drainage path is reduced by the introduction of drains
made out of highly pervious material.

Surcharge Load: If the surcharge load, i.e. the initial effective stress is large, then
transfer of stress from soil grains to pore water will require higher intensity vibrations or
vibration for a longer duration. If the initial stress condition is not isotropic as in field,
then stress condition causing liquefaction depends upon Ko (coefficient of earth pressure
at rest) and for Ko> 5, the stress condition required to cause. liquefaction increases by at
least 50%.

Method of Soil Formation: Sands unlike clays do not exhibit a characteristics structure.
But recent investigations show that liquefaction characteristics of saturated sands under
cyclic loading are significantly influenced by method of sample preparation and by soil
structure.

Period under Sustained Load: Age of sand deposit may influence liquefaction
characteristics. A 75% increase in liquefaction resistance has been reported on
liguefaction of undisturbed sand compared to its freshly prepared sample which may be
due to some form of cementation or welding at contact points of sand particles and
associated with secondary compression of soil.

Previous Strain History. Studies on liquefaction characteristics of freshly deposited
sand and of similar deposit’ previously subjected to some strain history reveal, that
although the prior strain history caused no significant change in the density of the sand, it
increased thesstress that causes liquefaction by a factor of 1.5.

Trapped Air: If air is trapped in saturated soil and pore pressure develop, a part of it is
dissipated due to the compression of air, hence trapped air helps to reduce the possibility
of liquefaction.

Groundwater Table: The most conducive condition to liquefaction is near the surface of
ground water table. Unsaturated soil located above the groundwater table will not liquefy.
At:the location where groundwater table significantly fluctuates, the liquefaction will also
fluctuate.

EVALUATION OF ZONE OF LIQUEFACTION IN FIELD

At a depth below the ground surface, liquefaction will occur if shear stress induced by
earthquake is more than the shear stress predicted. By comparing the induced and predicted shear
stresses at various depths, liquefaction zone can be obtained.
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In a sand deposit consider a column of soil of height h and unit area of cross section subjected to
maximum ground acceleration Qmax(Fig.3.2).

Omay

4 P 055
2 \. L~ sectiong
N\ area
| NN BN

3 N Z N

N

.-‘mf’z"ﬂ) Smax
Fig.3.2: Maximum shear stress at a depth for a rigid soil column

Assuming the soil column to behave as a rigid body, the‘inertia force F can be obtained as

F — gamax _________ Eq36
Or =];TZ Amax = Op % """"""" Eq37
The maximum shear stress 7,,,, at a depth-his given by

F_ Amax
Tmax = =00 = & === Eq.3.8

As base area of soil column is taken as unity
Where g = Acceleration due to gravity and y = Unit weight of soil
Since the soil column behaves as a deformable body, the actual shear stress at depth h, (,,45) IS
taken as

Tact = TdTmax = Ta (];Th)amax """ Eq.3.9
Where r,;= Depth reduction factor

If linear variation is.assumed between reduction factor and depth, than rq can be taken as

7y =1—0.012z-----= Eq.3.10

The above relation is valid for depth up to 15 m.
According to Seed and Idriss (1971), the average equivalent uniform shear stress z,,,, is about

65 percent of the' maximum shear stress t,,,, - T herefore
Tapg = 0.65 V; 7 A O —— Eq.3.11

The corresponding number of significant cycles Ns for z,,,, is given in table Table.3.1
Table 3.1: Significant cycles Ns corresponding to 7,,,

Earthquake magnitude, M on Richter’s scale Ns
7 10
7.5 20
8.0 30
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In order to felicitate liquefaction analysis one non dimensional parameter known as Cyclic Stress
Ratio (CSR) or Seismic Stress Ratio (SSR), can be defined as

CSRor SSR =~ .

)

Eq.3.12
Eq.3.13

Amax

Thus, CSRor SSR = 0.65rd(§ p
0
Seed and Idriss (1971) suggested the value of cyclic stress ratio values Cras given in Table 3.2

Table 3.2: Values of C; corresponding to Relative density

Relative density Dr (%) C

0-50 0.57
60 0.60
80 0.68

It was observed that up to a relative density of 80%, the peak pulsating shear stress causing
liquefaction increases almost linearly with the increase in relative density. Keeping this fact in

view, the following general relation is suggested:
Th _ (94 Dp
(a:v)fieldDR = (Z_%)triax,socrg

Where, (;:") rietapg = Cyclic shear stress ratio in field at relative'density of Dr percentage
v

Eq.3.14

(Z‘TTd)triaxISO:Stress ratio obtained from triaxial test at relative density of 50%. It can be

determined from Fig.3.3

= Field value at Th/0Oy tousing
Lnuetaction estimated from
resulls of simpis shear tests

Relative density = 5%

No. of stress cycles =10

0 003 0.0

Mzan grain size Dey, mm

Fig. 3.3: Stress condition causing liquefaction of sands (Seed and Idriss, 1971)

3.5 THE PROCEDURE OF LOCATING LIQUEFACTION ZONE CAN BE SUMMARISED

IN FOLLOWING STEPS
i) Establish the design earthquake, and obtain peak ground acceleration amax. Also obtain

number of significant cycles Ns corresponding to earthquake magnitude using Table.2
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i) Using Eq. 11 determine 4,4 at depth h below ground surface.
Gd
203
equivalent cycles Ns for the relative density of 50%.

iv) Using Eqg. 12, determine the value of (;:h) rietapy fOr the relative density of Dr of the

i) Using Fig.2, determine the value of — for given value of Dso of soil and number of

soil at site. Multiplying (Z:")ﬁeldDR with effectives stress at depth h, we can obtain

the value of shear stress t;, required for causing liquefaction.
V) At depth h, liquefaction will occur if 7,,, > 7,
vi) Repeat steps (ii) to (iv) for other values of h to locate the zone of liquefaction.
Tavg aNd T can be plotted in a graph to identify the zone of liquefaction.
Problem No.1
At a given site, a boring supplemented with standard penetration tests was done up to 15.0m
depth. The results of the boring are as given below:

Depth | Classification of soil | Dso N-Value | Dr | Remarks

(m) (mm) (%)

15 SP 0.18 3 19 | Position of ground water
3.0 SP 0.2 5 30 | lies'1.5 m below the ground
45 SM 0.12 6 35 | surface

6.0 SM 0.14 9 40

7.5 SM 0.13 12 45 | Ymoise=19 KN/m?3

9.0 SP 0.16 17 52 | ¥Ysup=10 KN/m3

10.5 SW 0.2 20 52

12.0 SW 0.22 18 46

13.0 SW 0.22 24 60

15.0 SW 0.24 30 65

The site is located in seismically, active region, and is likely to be subjected by an earthquake of
Magnitude 7.5. Determine the zone of liquefaction using Seed and Idriss (1971) method.

3.6 EVALUATION OF LIQUEFACTION POTENTIAL USING STANDARD
PENETRATION RESIST ANCE

The standard _penetration test is most commonly used in-situ test in a bore hole to have fairly
good estimation-of relative density of cohesion-less soil. Since liquefaction primarily depends on
the Jnitial relative density of saturated sand, many researchers have made attempt to develop
correlations in liquefaction potential and standard penetration resistance. 1S: 2131-1981 gives the
standard procedure to carry out standard penetration test. SPT values (N) obtained in the field for
sand have to be corrected for accounting the effect of over burden pressure as below:

Neorrectea = CnNrieig=----=------ Eq.3.15

Cn = Correction factor obtained from Figure 3.4 or it can be also be found from the expression

Cy= [0 .. Eq.3.16

[

& is the effective stress in kN/m?
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Correction factor Cx
2’- 06 08 10 12 lvyi 16 18 20
I | =

)

o

300

400

Effective vertical overburden pressure (kN/m

500

Fig. 3.4: Chart for correction of N value for over burden pressure

3.7 FOLLOWING PROCEDURE FOR LIQUEFACTION ANALYSIS IS USED

) Establish the design earthquake, and obtain the peak ground acceleration amax. Also
obtain number of significant cycles corresponding to the magnitude of earthquake
using Table 3.1.

i) Using Eq. 3.11 determine 7,,,, at depth h below ground surface.

iii) Determine the value of standard penetration resistance value (N) at depth h below
ground surface. Obtain corrected Ncorrected Value after applying overburden correction
to N using Fig.3.4

iv) Using Fig.3.3, determine ;—_’;for the given magnitude of earthquake and Ncorrected Value
obtained in step (ii). Multiplying ;—_’lwith effective stress at depth h below ground
surface, obtain the value of shear stress 7, required for causing liquefaction.

V) At depth h, liquefaction will occur if

Tavg > Ty
Vi) Repeat steps (ii) to (v) for other values of h to locate the zone of liquefaction.
Example No.1

At a given site boring supplement with SPT was done up to 20 m depth. The results of the boring
are given below. Water table lies 2 m below the ground surface. Take y,,=10 KN/m®. The site is
located..in seismically active zone and the likely to be subjected by an earthquake of magnitude
7.5 and maximum ground acceleration is 0.15¢. Find the zone of liquefaction if any.

Depth(m) | 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0
Nielg 4 4 5 7 9 10 12 14 16 18
Solution:

The effective stress, ¢’ = y,,Z, Reduction factorr; =1 — 0.012z
The calculation are tabulated as below
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Depth N o' CN Ncorrect T_’: 0o Ta amﬂ 0.65 Th Tavg
(m) _ \/@ =NCn o xid
o’
2 4 20 2.24 8.96 0.09 20 0.976 0.0952 1.8 1.9
4 4 40 1.58 6.32 0.07 60 0.952 0.0928 2.8 5.56
6 5 60 1.29 6.45 0.075 | 100 | 0.928 0.0905 4.5 9.05
8 7 80 1.12 7.84 0.08 140 | 0.904 0.0881 6.4 12.33
10 9 100 1.0 9.0 0.1 180 0.88 0.0858 10 15.44
12 10 120 0.91 9.1 0.1 220 | 0.856 0.0835 12 18.37
14 12 140 0.84 10.8 0.12 260 | 0.832 0.0811 16.8 | 21.08
16 14 160 0.79 11.06 0.13 300 | 0.808 0.0788 20.8 | 23.64
18 16 180 0.74 11.84 0.14 340 | 0.784 0.0764 25.2 | 25.97
20 18 200 0.707 12.73 0.16 380 0.76 0.0741 32 28.15

From the above calculation, it is found that up to 18 m depth, z,,,, > 7). Hence liquefaction can
occur up to depth of 18 m from the ground surface.

3.8 FACTOR OF SAFETY AGAINST LIQUEFACTION

The liquefaction analysis can also provide the determination of factor of safety against
liguefaction. If the cyclic stress ratio (CSR) caused by the anticipated earthquake is greater than
the cyclic resistance ratio (CRR) of the in-situ soil, the liquefaction could occur during the
earthquake. The cyclic resistance ratio represents the liquefaction resistance of the soil, which
can be obtained from the standard penetration test. It was observed that the resistance to
liguefaction increased with increase in the corrected N value. Figure 3.5 presents a chart that can
be used to obtain the cyclic resistance of the in-situ soil.

So the factor of safety (FS) against liquefaction may be defined as

CRR

FS = — g Eq.3.17
CSR

Higher the factor of safety more is the resistance of the soil to liquefaction. However, soil having
FS slightly morethan 1.0 may still liquefy during the earthquake.

51




Lecture Notes on DSF

2021

Cyclic resistance ratio (CRR)

v ; o ] :
l' : | 1
= ! : 5 d
i i H 1
5 H i i
1 Per cent fines = 35 15 <5 i
1 il ] i
05 fpr-mmmmmmmmaea e s e —— ':1 ““““ = e e e
! 1] I (] '
] “ | ' :
i H] ! | H
! ] I ] ‘
] il I ” :
H 1 ! I i
i _I_ I I A i
L A— ) fmrmmmmnmenes Yrmmmmmmns
' ,: 1 1
] ) !
08 B
1y !
[ | Ly ot -
1
/,‘/ / n:
* _____________
1
Ll

b

Fines content 25%

Marginal

Modified code proposal (clay content = 5%)

Liquefaction Liquefaction Liquefaction [

No

i Pan-American data B o
! Japanese data [ ] o o)
i Chinese data A A
0 H n n I
0 10 20 30 40 50

— S PT.

Fig.3.5: Chart to determine .the cyclic resistance ratio for clean and silty sand for M=7.5
earthquake (After Seed et al.1975)

Example No.2

The sand deposit of fine sand (finer < 5%) of finite thickness is located at a depth of 3.0 m from
the ground surface and ground water table is located at 1.5m below the ground surface. This is
located in seismic prone area where the anticipated GPA is 0.40g.The standard penetration test
was performed-at depth of 3.0m. The corrected N value is 8. The unit weight of sand is taken
as18.4 kN/m?, Calculate the factor of safety against liquefaction for the saturated sand.

Sol;

Neorrected =8, Unit weight of sand = 18.4 kN/m?

Submerged unit weight = 8.59 kN/m?

PGA=0.4g

Effective stress o) = 0, — u=18.4x1.5+1.5x8.59=40.485 kKN/m3

Total stress g, = 0 + u=40.485+1.5x9.81=55.2 kN/m?
Now using the linear relationship for the stress, depth reduction factor can be computed as

rg = 1—0.012z=1-0.012x3=0.964
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55.2

So CSR=0.65xr, (22) (222%)=0.65 x 0,.964 x X 0.4=0.342
g, g 40.485

Using Fig.4 with Ncorrectea=8, CRR can be obtained as 0.09
09

Hence FS = 0'—:0.263
0.342

So based on the calculation of factor of safety against liquefaction, the sand deposit liquefy.

Problem No 1:

A 10 m thick loose sand deposit (Dr=42%, finer<5%) is saturated below a depth of 4 m. The
sand layer region is highly prone to liquefaction. Estimate the ground acceleration. that would be
required to produce sand soils in a M=7.5 earthquake.
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4.0 DYNAMIC SOIL PROPERTIES
4.1 Laboratory Method
The soil properties which are needed in analysis and design of a structure subjected to dynamic
loading are:
(a) Dynamic moduli, such as Young's modulus E, shear modulus G, and bulk modulus K
(b) Poisson's ratio
(c) Dynamic elastic constants, such as coefficient of elastic uniform compression Cy, coefficient
of elastic uniform shear, C;, coefficient of elastic non-uniform Compression C and coefficient of
elastic non-uniform shear C,,
(d) Damping ratio, ¢
(e) Liquefaction parameters, such as cyclic stress ratio, cyclic deformation and pore pressure
response.
f) Strength-deformation characteristics in terms of strain rate effects.
Since the dynamic properties of soils are strain dependent various laboratory and field techniques
have been developed to measure these properties over a wide range of strain amplitudes.
4.2 LABORATORY TECHNIQUES
The laboratory methods used for determining the dynamic properties of soils are:
i) Resonant column test,
i) Ultrasonic pulse test,
iii) Cyclic simple shear test,
iv) Cyclic torsional simple shear test, and
V) Cyclic triaxial compression test

4.2.1 Resonant Column Test:

The resonant column test is used to-obtain.the elastic modulus E, shear modulus G and damping
characteristics of soils at low strain amplitudes. This test is based on the theory of wave
propagation in prismatic rods (Richart, Hall and Woods, 1970). Either a cyclically varying axial
load or torsional load is applied to one end of the prismatic or cylindrical specimen of soil. This
in turn will propagate either a compression wave or a shear wave in the specimen. In this
technique the™excitation frequency generating the wave is adjusted until the specimen
experiences resonance. The value of the resonant frequency is used to find the value of E and G
depending on the type of the excitation (axial or torsional).

i) Fixed-free end Condition:

Hall. and /Richart (1963) described the apparatus with fixed-free end condition. In this
arrangement one end of the specimen is fixed against rotation and the other end is free to rotate
under the applied torsion (Figure 4.1a).Anode occurs at the fixed end and the distribution of

. . . 1.
angular rotation 6 along the specimen is a , Sine wave.

As shown in Figure 4.1b, by adding a mass at the free end, the variation of 6 along the specimen
becomes nearly linear. J and Jo are respectively the polar moment of inertias of the specimen and
the added mass respectively. Dmevich (1967) used the concept of added mass to obtain a
uniform strain distribution ‘throughout the length of the specimen.
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Fig.4.1: Resonance Column test

Calibration and determination of G and &:

Hardin (1970) suggested the following procedure .of calibration of the apparatus
described in Fig. 1b:
(i) For this model the vibration excitation device itself, without a specimen attached is a single
degree of freedom system. Firstly remove the specimen cap and the additional rigid mass,
connect the sine wave generator to the vibration excitation device and vary the excitation
frequency to determine the resonant frequency:f,,; of the device.
(ii) Attach the additional rigid mass of polar moment of inertia Jo' and determine the resonant
frequency f,,4 of the new system.
The rotational spring constant (torque per unit rotation), Ko, of the spring about the axis of
specimen can be obtained using Eg.4. 1

4m—Jafia
K., = nA__ i Eq41
° T n-dnay

(iii) With the added mass removed and with the specimen cap, specimen and all apparatus,
determine the resonant frequency, f,o. The value of mass polar moment of inertia of the rigid
mass, Jo can be computed using Eq.4.2.

Jo = g Eq.4.2

- 4—7tf,f0
Now at resonance cut off the power and record the decay curve for the vibration, From the decay
curve compute the logarithmic decrement for the apparatus, as follows

logs —---------------- Eq.4.3

Under steady state vibrations, the apparatus damping constant, D is given by

D =2 [KoJgrerrmaremermeeee- Eq.4.4

The procedure of obtaining G and & has been explained in the following steps:

Calculate the mass density of the specimen, p, from Eq. (4.5),
4w

P = —— e Eq.4.5
Where W =Total weight of specimen
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I= Length of specimen

d = Diameter of specimen

g =Acceleration due to gravity,

(ii) Calculate the inertia of the specimen about its axis J, as follows:

J= p3£2d4l -------------------- Eq.4.6
(iii) Calculate the system factor, T as follows:

—Jo_ Ko
T = T Eq.4.7

Where Jo = Mass polar moment of inertia of the apparatus

Ko = Rotational spring constant,

J = Inertia of the specimen

far = Resonant frequency of the complete system.

iv) To measure the torque current constant, K; excite the apparatus successively at frequencies
(V2,2), f,0V2 and 2f,,, during the steady state vibration at each of these frequencies measure
the current flowing through the coils, C in amperes, and the displacement amplitude of vibration,
0 in radians. For each frequency compute the torque-current constant K: as follows

— Kb
K, = oM Eq.4.8
Where Mg is given in Table 4.1
Frequency My
V2 2
(o
(\/7) an 1
2fn0 1/3

(iv) Using Figure 4.2, determine the dimensionless frequency F for the value of T computed in
step (ii).

100
50t — — t
40 - — ! i
3@1__ l.fff‘k 77,l. =l e A = s ==
= \ \
0 p— t t + ¢ -
I~ 1 |
|
— 10} } ! | L |
| 1 ‘
o o l ‘
20w ' T ===
| 0 [ N | \
> 3 |
- \\
|
k= | N
l o
] \
- |
0.6 _1 l 1 | 1 1 ! 1 L o !
0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1.0

value of F

Fig.4.2: System factor T versus F
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G = 4m2p[ LR |2 Eq.4.9
For steady state vibration, the damping factor of the system is given as

_ 1 KCR _ 5.1 |
D, = 4n212f,§R[ SR — 27D, Fo | Eq.4.10

Cr is the mode shape

4.2.2  Cyclic Triaxial Compression Test
In general the stress-deformation and strength characteristics of a soil depend on the following
factors:
1. Type of soil
2. Relative density in case of cohesionless soils; consistency limits, water content and state
of disturbance in cohesive soils
Initial static stress level i.e. sustained stress
Magnitude of dynamic stress
Number of pulses of dynamic load
Frequency of loading
Shape of wave form of loading
8. One directional or two directional loading
In one directional loading only compression of the sample is done while in two directional
loading both compression and extension is done. All the factors listed above can be studied
lucidly on a triaxial set up.
Casagrande and Shannon (1948, 1949) developed the following three types of apparatus for
studying the strength of soils under transient loading (Table.4.2)
Table 4.2: Type of Apparatus

No ok~ w

Type of apparatus Time.of loading (seconds) Remarks

(i) Pendulum loading 0.05t00.01 Suitable for

(i) Falling beam 0.5t0 300 performing fast
(iii) Hydraulic loading 0.05 to any desired larger value | transient tests

Time of loading:was defined as the time between the beginning of test and the point at which the
maximum compressive stress is reached (Figure 4.3). The pendulum loading apparatus (Figure 4.
4) utilizes the energy of a pendulum which, when released from a selected height, strikes a spring
connected to the piston rod of a hydraulic lower cylinder. This lower cylinder is connected
hydraulically to an upper cylinder, which is mounted on a loading frame.

i) Pendulum Loading Test: A pendulum loading system was first developed by
Casagrande and Shannon (1948-49). The loading mechanism is based on the
utilization of energy of a pendulum when released from a selected height and striking
a spring connected to the piston rod of a hydraulic cylinder as shown in the Fig.4. 4(a)

i) The falling beam apparatus consists essentially of a beam with a weight and rider, a
dashpot to control the velocity of the fall of the beam, and a yoke for transmitting the
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i)

load from the beam to the specimen (Fig. 4.4 b). A small beam mounted above the
yoke counter-balances the weight of the beam.

Load

Time

/

| I tn |

Fig.4.3 Time of loading in transient tests

Pendulum Loading Test: A pendulum loading system was first developed by
Casagrande and Shannon (1948-49). The loading mechanism is based on the
utilization of energy of a pendulum when released from a selected height and striking
a spring connected to the piston rod of a hydraulic cylinder as shown in the Fig. 4.4(a)
The falling beam apparatus consists essentially. of a beam with a weight and rider, a
dashpot to control the velocity of the fall of the beam, and a yoke for transmitting the
load from the beam to the specimen (Fig 4.4 b). A small beam mounted above the
yoke counter-balances the weight of the beam.

The hydraulic loading apparatus (Fig. 4.4 ¢) consists of a constant volume vane-type
hydraulic pump connected to-a hydraulic cylinder through valves by which either the
pressure in the cylinder or the volume of the liquid delivered to the cylinder can be
controlled. The peak load'that can be produced by this apparatus is much greater than
can be obtained by either the pendulum type or falling beam apparatus.

/
_// N T
P A— L

Y
o h] -

Fig. 4.4 (a) Pendulum loading apparatus (Casagrande and Shannon. 1948)

spring
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Fig.4.4 (b) Falling beam apparatus (Casagrande and Shannon. 1948)
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Fig. 4.4 c: Hydraulic loading apparatus (Casagrande & Shannon, 1948)

For measuring load, a load gage of rectangular or cylindrical shape is used, with four strain gages
mounted on the inside face. For measuring deflection, a thin flexible steel spring cantilever is
used with strain gages mounted on the cantilever, the base of which is clamped to the loading

piston.

A simultaneous plot of stress and strain versus time from an unconfined compression test with a
time of loading of 0.02 s on cambridge clay is shown in Figure 4.5. Similar plots were prepared
for other times of loading on Manchester sand. Using this data, stress-strain plots were obtained
as shown in Figs.6 a and b. In these figures, stress-strain curves for corresponding static tests are
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also shown. Typical plots of maximum compressive stress versus time of loading (or unconfined
and confined transient tests on Cambridge clay are shown in Fig. 4.7 a and b respectively. A

typical plot in terms of principal stress ratio a failure and time of loading for Manchester sand is
shown in Fig. 4.8.

400 T T T T 8

300- \Slrai.n 16
= i Shear failure at 1, = 0.02 5 =
52 200 1N, 44 7
) i b LE
r ] 4 H
E ] k w

e i R Stres

100}/ o Sreds 42

0 : 1 I B e | 0

0 .04 0.08 0.12 0.16 0.20 0.24

Time (s)

Fig.4.5: Time Vs stress and strain in an unconfined transient test on Cambridge clay (Casagrande &
Shannon, 1948)
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Fig. 4.6(b): Stress Vs Strain Curves (Manchester sand)
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Modulus of deformation is defined as the slope of a line drawn from the origin through the point
on the stress-deformation curve and corresponding to stress of one-half the strength. It is found
that in case of clays, modulus of deformation in fast transient tests was about two times that
obtained in static tests. In case of sands, modulus of deformation was found independent of the
time of loading.

4.2.3 Summary of Cyclic Tests

In the preceding sections, various types of laboratory test methods were presented, from which
the fundamental soil properties such as the shear modulus, modulus of elasticity, and damping
ratio are determined. These parameters are used in the design and evaluation of the behavior of
earthen, earth-supported, and earth-retaining structures. As was discussed in the preceding
sections, the magnitudes of G and ¢ are functions of the shear strain amplitude y'. Hence, while
selecting the values of G and ¢ for a certain design work, it is essential to know the following:

a. Type of test from which the parameters can be obtained

b. Magnitude of the shear strain amplitude at which these parameters needs to be measured For
example, strong ground motion and nuclear explosion can_develop large strain amplitudes
whereas some sensitive equipment such as electron microscopes may be very sensitive to small
strain amplitudes.

Figure 9 provides is a useful reference table for geotechnical engineers; as it gives the amplitude
of shear strain levels, type of applicable dynamic tests, and the area of applicability of these test
results. Despite the fact that laboratory testing is not ideal, it will continue to be important
because soil conditions can be better controlled.in the laboratory. Parametric studies necessary
for understanding the soil behaviour of soils under dynamic loading conditions must be
performed in the laboratory conditions. Table 4.3 provides a comparison of the relative qualities
(what property can be measured and“what is the degree of quality of the measured property) of
various laboratory techniques for measuring dynamic soil properties. Similarly, Table 4.4 gives a
summary of the different engineering parameters that can be measured in different dynamic or
cyclic laboratory tests

Dynamic tests m

Dynamic > triaxial and shear
field tests apparatus

l— Resonance tests—s|

Vibration >
‘_
| table test

Static plate
‘_
| load tests _.-|

|-q— Eaﬂlhqu:lkes ——pl

107 10° 10° 10° 10° 107 107
Shear deformation. ¥ (%)
Fig. 4.9: Range and applicability of dynamic laboratory tests
Table 4.3: Relative Quality of Laboratory Techniques for Measuring Dynamic Soil Properties?
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Relative Quality of Test Results

Effect of
Shear Young's  Material number  Attenuation
modulus modulus  damping of cycles
Resonant column Good Good Good Good -
with application - - - - Fair
Ultrasonic pulse Fair Faur - - Poor
Cyelic triaxial - Good Good Good -
Cyclic simple shear Good - Good Good -
Cyclic torsional shear Good - Good Good -

a After Silver (1981)
Table 4.4: Parameters Measured in Dynamic or Cyclic Laboratory Tests?

Cyclic simple
Resonant column Cyclic triaxial shear Torsional shear
Resonant Horizontal
Load frequency Axial force force Torque
Deformation
Axial Vertical Vertical Vertical Vertical
displacement displacement displacement displacement
Shear Acceleration Not measured  Hornzontal Rotation
displacement
Lateral Not usually Not vsually Often Not usually
measured measured controlled measured

Volumetric  None for undrained tests
Volume of fluid moving into or out of the sample for dramed tests

Pore water Mot usually Measured at Measured at Measured at
pressure  measured boundary boundary boundary
A fter Silver (1981)

43 FIELD TEST METHOD

Field methods generally depend on the measurement of velocity of waves propagating through
the soil"or on the response of soil structure systems to dynamic excitation. The following
methods are in use for determining dynamic properties of soil:

1. Seismic cross-bore hole survey

2. Seismic up-hole survey

3. Seismic down-hole survey

4. Seismic refraction survey

5. Vertical block resonance test
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6. Horizontal block resonance test

7. Cyclic plate load test

8. Standard penetration test

4.3.1 Seismic Cross-borehole Survey

This method is based on the measurement of velocity of wave propagation from one borehole to
another. Figure 4.10 shows the essentials of seismic cross-hole method outlined by Stoke and
Woods (1972).A source of seismic energy is generated at the bottom of one borehole and the
time of travel of the shear wave from this borehole to another at known distance is measured.
Shear wave velocity is then computed by dividing the distance between the borehales by the
travel time.

As discussed above, seismic cross-borehole survey can be done using two boreholes one has the
source for causing wave generation and another having geophone for recording travel time.
However, for extensive investigations and better accuracy, three or more boreholes arranged in a
straight line should be used.

In this case the wave velocities can be calculated from the time intervals between succeeding
pairs of holes, eliminating most of the concern over triggering the timing instruments and the
effects of borehole casing and backfilling (Stokoe and Hour, 1978). Also this arrangement of
bore holes in a straight line overcomes problems of site anisotropy by examining one direction
only at a time.
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Fig. 4.10: Multiple hole seismic cross hole survey
4.3.2 Seismic Up-Hole Survey
Seismic up-hole survey is done by using only one borehole. In this method the receiver is placed
at the surface, and shear waves are generated at different depths within the borehole. Figure
4.11shows the schematic presentation of the arrangement used in seismic up-hole survey (Gote et
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al., 1977).This method gives the average value of wave velocity for the soil between the
excitation and the receivers if one receiver is used, or between the receivers.

The major disadvantage in seismic up-hole survey is that it is more difficult to generate waves of
the desired type.

Fig.4.11: Seismic Up-hole survey
4.3.3 Seismic Down-hole Survey
In this method, seismic waves are generated at the surface of the ground near the top of the
borehole, and travel times of the body waves between the source and the receivers which have
been clamped to the borehole wall at predetermined depths are obtained. The arrangement used
in seismic down-hole survey is shown schematic ally in Figure 4.12. This also requires only one
borehole.
The main advantage of this method is that low velocity layers can be detected even if trapped
between layers of greater velocity provided the geophone spacings are close enough.
4.3.4 Vertical Block Resonance Test
The vertical block resonance test-is used for determining the values of coefficient of elastic
uniform compression (Cy), Young's modulus (E) and damping ratio (&) of the soil.
According to IS 5249:.1984, a test block of size 1.5 m x 0.75 m x 0.70 m high is casted in
M15concrete in a pit of plan dimensions 4.5 m x 2.75 m and depth equal to the proposed depth of
foundation. Foundation bolts should be embedded into the concrete block at the time of casting
for fixing the oscillator assembly. The oscillator assembly is mounted on the block so that it
generates purely vertical sinusoidal vibrations. The line of action of vibrating force should pass
through the centre of gravity of the block. Two acceleration or displacement pickups are
mounted-on the top of the block as shown in Figure 4.13 such that they sense the vertical motion
of the block. A schematic diagram of the set up is shown in Figure 4.13.
The mechanical oscillator works on the principle of eccentric masses mounted on two shafts
rotating in opposite directions. The force generated by the oscillator is given by
F; = 2m e?w--------------- Eq.4.11
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Fig.4.13: Set-up for block resonance test
The oscillator is first set at a particular eccentricity (e).As evident from Eq. (4.11) higher the
eccentricity more will be the force level. It is then operated at constant frequency and the
acceleration of the oscillatory motion of the block is monitored. The oscillator frequency is
increased in steps, and the signals of monitoring pickups are recorded. At any eccentricity and
frequency the dynamic force should not exceed 20 percent of the total mass of the block and
oscillator assembly. The amplitude of vibration (Az) at a given frequency is given by

AZ = szz """"""""""""""""" Eq412
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a; = Vertical acceleration of the block, mm/s?
f = frequency, Hz.
Amplitude versus frequency curves are plotted for each eccentricity to determine the natural
frequency of the foundation-soil system (Fig.4.14).
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Fig.4.14: Amplitude versus frequency plot for vertical vibration test
The natural frequency, f,,,, at different eccentricity (i.e. force level) is different because different
forces cause different strain levels of the block which may be accounted for when appropriate
design parameters are being chosen.
The coefficient of elastic uniform compression (Cy) of the soil is then determined using Eg.
(4.13)

2
C, = 4”2f:z m - Eq.4.13
Where, fn; = Natural frequency of foundation-soil system, Hz
m = Mass of the block oscillator and motor, Kg —sec?/m

A = Base contact area of the block, m?
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From the value of C, obtained from Eq. (3) for the test block of contact area A the value of Cy1
for the actual foundation having contact area A1 may be obtained from Eq. (4.14)

Cor = Cy [P Eq.4.14

The Eq. (4.14) is valid for base areas of foundations up to 10 m?. For areas larger than 10 m?,
the value Cu obtained for 10 m? is used.
The value of damping ratio & is determined using Eq. (4.15) as

fo-fi
= e Eq.4.15
= o g
Where, f1, f2= Two frequencies at which amplitudes is equal to Amﬁ

Amax= Maximum amplitude

fnz = Resonant frequency

The coefficient of elastic uniform compression (Cy) is related to the elastic Young's modulus (E)
by Eq (6) which is in the form of Boussinesq relationship for the elastic settlement of a surface

footing.
E Cg
C, = P A— Eq.4.16

where u = Poisson's ratio
B = Width of base of the block
L = Length of base of the block

Cs = Coefficient depending on L/B ratio
Barkan (1962) recommended the values of Cs for various L/ p ratios as listed in Table 4.5

Table 4.5: values of Cs for various L/B ratios

L/B Cs
1.0 1.06
1.5 1.07
2.0 1.09
3.0 1.13
5.0 1.22
10.0 1.41

The value of damping ratio & is determined using Eq. (4.17) as
B — Eq.4.17

2fT‘Z
Amax

Where, fif> = Two frequencies at which amplitudes is equal to 5

Amax = Maximum amplitude
fr,= Resonant frequency
Example No.1
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A vertical vibration test was conducted on a 1.5m x 0.75 m x 0.70 m high concrete block in an
open pit having depth 2.0 which is equal to the anticipated depth of actual foundation. The test
was repeated at different settings (e) of eccentric masses.

The data obtained from the tests are given below:

SI.LNo | O(degree) fnz Amplitude at Resonance
(Micron)

1 36 41.0 13.0

2 72 40.0 24.0

3 108 34.0 32.0

4 144 31.0 40.0

The soil is sandy in nature having angle of internal friction is 35° and saturated-density. is 20 KN/
m®). The water table lies at a depth of 3.0 m below the ground surface. Probable size of the actual
foundation is 4.0 x 3.0 x 3.5 m high. Determine the values of Cy E and G to be.adopted for the
design of actual foundation.
Limiting vertical amplitude of the machine is 150 microns.
Sol:
1 Area of Block=1.5x0.75=1.125 m?
Mass of Block=1.125x0.75x2400=1890 kg
Mass of oscillator and motor=100 kg (assumed)
Mass of block, oscillator and motoa=1890+100=1990 kg
42 fnyPm  AmEX ;2 %1990
2 C, = Tl = e X0 2 69.84f,,,% kN /m?
The calculated values of C, for different observed resonance frequencies are tabulated as
shown in Table 1

E Cs _ _
Cu can be evaluated from Eq.4.6 asC,, = PRTENT for L/B=2 Cs=1.09
Assume p=0.35, E = V1125020359 o'~ 854C, kN /m?

1.09
_E_ 0854C, . )
T 201+p) 2(1+0.35))_0'316C” kN/m

For different values of C,, , E and G values are calculated and tabulated as shown in table 1
3 Correction for confining pressure and area

The mean effective confining pressure a,, at depth of' one -half the width below the centre
of block'is given by

(142K

Oo1 =0y =5
Where @;, = 0,; + 0,,,

0,,, =Effective overburden pressure at the depth under consideration
o,z=Increase in vertical pressure due to the weight of block

Assuming that the top 2.0 m soil has a moist unit weight of 18 kN/m?, and the next 1.0 m soil
i.e. up to water table is saturated then

o 0.70 ,
Oy = 18X 2.0 +20 X —— = 43 kN/m
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_ 4q[ 2mnvm2+n?+1 Xm2+n2+2+ __, 2mnvm? +n?+1
T = — sin
2 Ar | m2+n2+1+m2n2 mZ4+n2+1 m? +n? + 1+ m2n?
_ L2 _15/2_
Tz 072 2.14
_ B/2 _ 075/2_
Tz 072 1.07

Where q=24x0.7=16.8 kN /m?
Substituting for the values of m and n, we get
Gyp = 13.44 kN /m?
Now &, = G,; + 0, = 43 + 13.44 = 56.44 kN /m?
Ky =1 —sin® = 0.426

(142K 14+ 2x0.426
Oo1 = 0y—————— = 56.44 X ———3—=3484 kN /m?
For the actual foundation; a,,;=18x2.0+20x1.0+ (20-10)x0.5= 61 %
_4.0/2 133
m=302" "
_3.0/2 )
"=30/2

kN
q=24X%X35= 84;;5

Substituting the values of m, n and g we get
1+2x0.426

— — kN
002=124.76[ ” ] = 77.01—
Area of actual foundation =4.0x0.3=12.0 m? (> 10m?)
—— 0.5 0.5 0.5 0.5
Hence, 22 = 22252 — (T2) ™ (@) = = (T20) 7 5 (1225) 7 = 0.4986

w1 E1 Gy To1 A; 34.84 10

For actual foundation Cy =0.4986xC, for block

Table 1:
SI. |6 fnz | Amplitude | For Test Block For Actual Foundation
No |in at
deg. Nggonance %“kN/mz lEO4kN/m2 ?O“kN/mz g:ou“kN/mz 1EO4kN/m2 ﬁ)‘*kN/m2
(micron)
1 |36 |41 13 11.74 10.03 3.71 5.85 5.00 1.85
2 | 72]40 24 11.17 9.54 3.53 5.57 4,76 1.77
3 1108 |34 32 7.15 6.11 2.26 3.56 3.05 1.13
4 114471 31 40 6.71 5.73 2.12 3.35 2.86 1.06

Strain Level Correction
The values of strain levels corresponding to values of C, = amplitude at resonance per width of
test block are given as

SILNo | Cy(Test Block) | Strain Level(10%)
1 11.74 0.173 (13x10%/0.75)
2 11.17 0.320 (24x10%/0.75)
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3 7.15 0.427 (32x107/0.75)
4 6.71 0.533 (40x107%/0.75)
150x10~6

=0.5x10"*

The value of Cy, E and G corresponding to actual strain level of foundation can be obtained by
interpolation as

C, = [3.56 — (3.56 - 3.35)

Strain in Actual foundation=

0.5-0.427
0.533-0.427

M] % 10* =1.97x10* kN/m?
0.533-0.427

0.5—-0.427
0.533-0.427

| x 10*=2.31x10* kN/m?
E = [3.05 - (3.05 — 2.86)

G =[113 - (113 - 1.06) | x 10*=0.73x10* kN/m?

4.3.5 Horizontal Block Resonance Test

Horizontal block resonance test is also performed on the block set up as shown in Figure 4.14. In
this test, the mechanical oscillator is mounted on the block so that horizontal sinusoidal
vibrations are generated in the direction of the longitudinal axis of the block. Three acceleration
or displacement pickups are mounted along the vertical centre line of the transverse face of the
block to sense horizontal vibrations (Fig.4.14 a). The oscillator is excited in steps starting from
rest condition. The signal of each acceleration pick up is amplified and recorded. Rest of the
procedure is same as described for vertical block resonance test. Similar tests can be performed
by exciting the block in the direction of transverse axis.

The amplitude of Horizontal vibrations (Ax) is obtained using Eqg. (4.18).

R ——— Eq.4.18

Where, ax(mm) = Horizontal acceleration in the direction under consideration in mm/s?

f = Frequency in Hz

Amplitude versus frequency curves are plotted for each force level to obtain the natural
frequency, fn; of the block soil system as done in vertical resonance test. A typical frequency
versus amplitude ‘plot-is shown in Figure 4.15. It may be noted that the case of horizontal
vibration is a problem of two degrees of freedom.
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The coefficient of elastic uniform shear C; of soil is given as

821 f2,

Cr = (Ao+lp) Ao+ 2—4rAgl, £q.4.19
Where r = Ym
mo
fnx = Horizontal resonant frequency of block soil system
A
AO —_ E'
A = Contact area of block with soil
M = Mass of block, oscillator and soil
R S ——— Eq.4:20

mo

Mm = Mass moment of inertia of block, oscillator, motor, etc. about the horizontal axis passing
through the centre of gravity of block and perpendicular to the direction of vibration

Mmo = Mass moment of inertia of the block, oscillator; motor etc. about the horizontal axis
passing through centre of contact area of block and soil and perpendicular to the direction of
vibration.

I = Moment of inertia of the foundation contact area about the horizontal axis passing through
the centre of gravity of area and perpendicular to.the direction of vibration.

In Eq. (4.19), negative sign is taken when the system vibrates in first mode and positive sign
when the system vibrates in second mode. For the size of the block recommended in IS 5249-
1977 and for first natural frequency, the Eq. (4.19) reduces to

C; = 92.3f2 --mmmmmmmmmmmma- Eqg.4.21 unit of C, in this equation is KN/m?
The coefficient of elastic uniform shear (C.:) for actual area of foundation (A1) is given by

SR 422

IS 5249: 1977 recommends the following relations between Cu and C,, C, and C,,

CU = 1.510 2.0.G; ---=s-mem-m- Eq.4.23
o W1 Y ol — Eq.4.24
(OFERVly (- o E— Eq.4.25

4.3.67 Cyclic Plate Load Test

The cyclic plate load test is performed in a test pit dug up to the proposed base level of
foundation. The equipment is same as used in static plate load test. Circular or square bearing
plates of mild steel not less than 25 mm thickness and varying in size from 300 to 750 mm with
grooved bottom are used. The test pit should be at least five times the width of the plate. The
equipment is assembled according to details given in IS 1988-1982. A typical set up is shown in
Figure 4.16.
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Fig. 4.16: Experimental set up for Cyclic Plate Load test

To commence the test; a seating pressure of about 7 kPa is first applied to the plate. It is then
removed and dial gauges are set to read zero. Load is then applied in equal cumulative
increments of not more than 100 kPa or of not more than one fifth of the estimated allowable
bearing pressure. In cyclic plate load test, each incremental load is maintained constant till the
settlement of the plate is complete. The load is then released to zero and the plate is allowed to
rebound. The reading of final settlement is taken. The load is then increased to next higher
magnitude of loading and maintained constant till the settlement is complete, which is recorded.
The load is then reduced to zero and the settlement reading is taken. The next increment of load
is then applied. The cycles of unloading and reloading are continued till the required final load
is reached.

The data obtained from a cyclic plate load test is shown in Figure 4.17. From this data, the load
intensity versus elastic rebound is plotted as shown in Figure 4.18, and the slope of the line is
coefficient of elastic uniform compression.
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C, = :;e(kN/ms) ------------------ Eq.4.26

Where P=Load Intensity in kN/m?
Se= Elastic rebound corresponding to P in mm

Load Intensity, P
Py P Py B B

D ) -
T
/
;//

35 JUBWIBNeS Jnse3
()
m [ —
o
/
s
V
Lood intensity, p
<] \\

'L ‘ ;
L

Elastic rebound, Se
Fig. 4.17: Load Intensity versus Settlement Fig.4.19: Load Intensity versus Elastic rebound

It can be shown theoretically (Barkan, 1962) that

C, = SE =1.13 1_’5#2& ----- Eq.4.27

Where Cu= Sub-grade modulus, E = Modulus of elasticity, u = Poisson’s ratio and A = area of
the plate.

However G =

2(1+u)
So, Gy = z.zs"'fi?jZ - Eq.4.28
OR, G — (1_5)221!\/2 _______ Eq.4.29

The magnitude of Cu can be obtained from the plot of g versus se (Figure 4). With the known
value of A‘and a representative value of p, the shear modulus can be calculated from Eq. (12). In
non hamogenous soils, it may be desirable to conduct the test at different depths or one may use
different plate sizes to reflect the change in soil stiffness with depth. Again, it should be noted
that this test suffers from the same limitations as reported in traditional geotechnical engineering
practice for the design of foundations.
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Example 1

The plot of g versus s (settlement) obtained from a cyclic plate load test is shown in Figure
below. The area of the plate used for the test was 0.3 m?. Calculate

a. Kplate, and

b. Shear modulus G (assume p = 0.35).

10 204y w0 g (kPe)
L} oy T T

Sol: From the settlement curve the following can be

determined
Load per unit area, q (kPa) Elastic settlement, 5. (mm).
. 73 053
g 150 1.10
g 225 1.50
B 300 210
&

From the graph
P 300
Cp=o= = 142.86 MN
“ S, 0.0021 [m3
qA r.J 0.5 1 15 2.0 Fa {mm)

Kptare = 5~ = 142.86 X0.3
e
= 42.86MN /im

S(1-wC,VA  (1-0.35)142.86 x 0.3
A 2.26 - 2.26

= 22.5MP,

4.3.7 Standard Penetration Test

The standard penetration test (SPT) is the most extensively used situ test in India and many other
countries. This test is carried in a bore hole using a split spoon sampler. As per IS: 2131-1981,
steps involved in carrying out this test are as follows:

(i) The borehole is made to the depth at which the SPT has to be performed. The bottom of the
borehole is cleaned.

(i) The split-spoon sampler, attached to standard drill rods of required length is lowered into the
borehole and rested at the bottom.

(i) The split —spoon sampler is seated 150 mm by blows of a drop hammer of 65 kg falling
vertically and
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Freely from a height of 750 mm. Thereafter, the split spoon sampler shall be further driven 300
mm in two steps each of 150 mm. The number of blows required to effect each 150 mm of
penetration shall be recorded. The first 150 mm of drive may be considered to be seating drive.
The total blows required for the second and third 150 mm of penetration is termed the
penetration resistance N.

If the split spoon sampler is driven less than 450 mm (total), then N-value shall be for the last
300 mm penetration. In case, the total penetration is less than 300 mm for 50 blows, it is entered
as refusal in the bore log.

(iv) The split spoon sampler is then withdrawn and is detached from the drill rods: The split
barrel is disconnected from the cutting shoe and the coupling. The soil sample collected inside
the barrel is collected carefully and preserved for transporting the same to the laboratory for
further tests.

(v) Standard penetration tests shall be conducted at every change in stratum-or intervals of not
more than 1.5 m whichever is less. Tests may be done at lesser. intervals (usually 0.75 m) if
specified or considered necessary.

The penetration test in gravelly soils requires careful interpretation since pushing a piece of
gravel can greatly change the blow count.

4.3.7.1 Corrections to observed SPT values(N) in cohesionless soils

Following two types of corrections are normally applied to the observed SPT values (N) in
cohesionless soils:

i) Corrections due to dilatancy:
In very fine, or silty, saturated sand, Terzaghi and Peck (1967) recommend that the observed N-
values be
Corrected to N"if N was greater than'15 as

N' =15+ % (V1) P —— Eq.4.30
Bazaraa (1967) recommended the correction as
N'=0.6N (for N > 15) ----------memem- Eq.4.31

This correction is-introduced with the view that in saturated dense sand (N > 15); the fast rate of
application of shear through the blows of drop hammer, is likely to induce negative pore
pressures and thus temporary increase in shear strength will occur. This will lead to a N-value
higher than the actual one. Since sufficient experimental evidence is not available to confirm this
correction, many engineers are not applying this correction. However this correction has also
been recommended in IS: 2131-1981.

i) Correction due to overburden pressure:
On the basis of field tests, corrections to the N-value for overburden effects were proposed by
many investigators (Gibbs and Holtz 1957; Teng 1965; Bazaraa 1967; Peck, Hanson and
Thornburn 1974). The methods which are normally used are:
Bazaraa (1967)
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4N
For 6y < 75kPa, N' = ———------------=-=---- Eq.4.32
4N
For o > 75kPa, N' = ——--------------—--- Eq.4.34
3.25+0.013,

where &, =effective over burden pressure, kPa

Peck, Hanson and Thornburm (1974) recommended

N, = 0.77N loglog """""""""""" Eq435
0

Figure 1 gives the correction factor based on Eq.4.35. Use of this figure has been recommended
in 1S: 2131-1981. In this figure,

Cy = Correctio factor = 0.77N log, , ——------------- Eq.4.36

Correction factor ':b

pressure, kpa

A N

ovarource

rctive

| L

| 1 1°
N &>
o &
O {
‘\‘
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Fig. 4.20: Over burden correction
There is a controversy whether the correction due to dilatancy should be applied first and then
the correction due to over burden pressure or vice-versa. However in IS: 2131-1981, it is
recommended that the correction due to overburden should be applied first.

44 FACTORS AFFECTING SHEAR MODULUS, ELASTIC MODULUS AND
ELASTIC CONSTANTS

Hardin and Black (1968) have given the following factors which influence the shear modulus,
elastic modulus and elastic constants:
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(1) Type of soil including grain characteristics, grain shape, grain size, grading and mineralogy;
(i) Void ratio

(iii) Initial average effective confining pressure;

(iv) Degree of saturation;

(v) Frequency of vibration and number of cycles of load

(vi) Ambient stress history and vibration history

(vii) Magnitude of dynamic stress; and

(viii) Time effects

Soil behavior over a wide range of strain amplitudes is nonlinear and on unloading follows a
different stress-strain path forming a hysteresis loop as shown in Figure 4.21. The area inside this
loop represents the energy absorbed by the soil during its deformation and‘is a.measure of the
internal damping within the soil.

At very low strain amplitudes (<« 0.0001 %) the soil acts essentially as a linear elastic material
with little or no loss of energy. The shear modulus under these conditions is maximum, but as the
strain amplitude is increased, the shear modulus decreases and the damping within the soil
increase.

Fig.4.21: Stress-strain loop at different cycles of loading after Headley, 1985
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5.0 DESIGN OF MACHINE FOUNDATIONS

5.1  Categories of machine foundations

Reciprocating machines:

It produces periodic unbalanced force and operating frequency is 600rpm. For designing
unbalanced force is taken as varying sinusoidally.

Impact machines:

It produces impact loads at an operating frequency of 60-150 blows/min. Dynamic load. attends
the peak within short duration and then die out quickly. Designed as over tuned.

Rotary machines:

These are high speed machines with high operating frequency. Hence the foundations are
designed as under tuned.

52 TYPES OF MACHINE FOUNDATIONS
Block type

Caisson type
Frame type

BLOCK FOUNDATION

Turbine Generator

Floor
e (O
e = —

—_Upper

\
slab
[ I | o BOX OR CAISSON FOUNDATION
B

Base slab

Framed Foundation

Fig.5.1: Types of machine foundations

* Block type machine foundation is a solid block made of concrete block of huge mass,
area and depth. The pedestal machine will be positioned on the top of the block.

« Box or caisson type is used to save some material of concrete in order to avoid an
uneconomic design when the foundation requirement is huge size as well as height of the
foundation is more.

* Framed foundation are used when the machine are subjected to very high operating
frequency like turbo generator etc.

5.3 CRITERIA FOR THE DESIGN OF MACHINE FOUNDATIONS
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» These foundations should be well design to take care of the static loads coming on the
foundation.

* No shear or bearing capacity failure should occur. That means, the bearing capacity of the
foundation against shear failure is to be checked.

* No excessive settlement, that is amount of settlement as calculated under static load and
that has to be compared with different codal guidelines.

*  Under the dynamic loading condition, the foundation should not resonate.

* The natural frequency of foundation soil must be far away from machine to avoid the
resonance.

» Dynamic displacement amplitude must not exceed the permissible limit.

* Vibration of the machine and foundation system together must not'be annoying to the
person working in the environment and it should not damage the adjacent structures.

« Machine foundation should not design for a strong foundation to take care of the dynamic
load but also safe against bearing capacity failure, as well as safe against the resonance
criteria.

5.3.1 Suggested Foundation for Various Types of Machines

1. Machine producing Impulse: Block type foundation

Example: hammer, Presses etc

2. Rotating type machine with low to medium-frequency: Block type foundation with large
contact area.

Example: Large reciprocating engine, Compressor, large blower

3. Rotating type machine with medium to high frequency: Block type foundation resting on
suitable elastic pad or spring.

Example: Medium sized reciprocating.engine, diesel engine and gas engine

4. Rotating type with very high frequency: Framed foundation or massive block with
minimum contact area.

Example: internal combustionengine, electric motors, turbo-generators

54  METHODS.OF ANALYSIS

Linear elastic weightless spring MSD model

Linear elastic theory

Indian standard design code: IS 2974, Part 1 provisions

Machine foundation has to be designed by checking three criteria.

1" Dimensional criteria,

2 Vibration criteria

3" ‘Displacement criteria

These are the three major criteria, which needs to be checked to design a machine foundation as
per our Indian standard design code 2974.

5.4.1 Check the Dimension

For a block type of foundation, the criteria given that size of the foundation block must be larger
than the base plate of the machine.
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The second criteria says minimum all-around clearance of 150 mm. must be provided as per IS
codal provision.

A third criterion is that, the foundation block should be placed deep enough on good bearing
strata.

The combined centre of gravity of the machine plus foundation block should be as far below the
top of the foundation as possible.

5.4.2 Vibration Check

Foundation which is having natural frequency either much higher or lower than the operating
frequency of the machine, is called under tuned or over tuned respectively.

If the ratio of operating frequency to the natural frequency is less than or equal to 0.5 that can be
designed as Under tuned criterion.

If the operating frequency is much higher than the natural frequency and frequency ratio

§ == > 2 for important machine and
n

&= wi > 1.5 for less important machine
n

For both types of machine design criteria is Over tuned.

» To design machine for which operating frequency is very high, over tuned criteria is used
because an under tuned type of foundation design result will provide negative value of
mass or no mass because of the value of k which has to be excessively high.

» To design machine for which operating frequency is low, under tuned criteria is used.

» However for the range of say 1000 rpm. or even in the range of 600 rpm, it is always
better to check your design for both over tuned and under tuned.

5.4.3 Displacement Criteria

* The amplitude of permissible<dynamic displacement should be less than or equals to 0.2
mm, If it exceeds, foundation:is to be redesigned.

* The permissible displacement should be checked using Richart’s chart. So, that it should
not become annoying to the workers or adjacent structures.

* Y-axis of the chart shows dynamic displacement amplitude and X axis represents
operating frequency of the machine.

Fig.5.2: Displacement amplitude vs. frequency (Richard 1962
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5.5 LINEAR ELASTIC WEIGHTLESS SPRING MSD MODEL

Vertical
Vibration

ﬁ "

K,
m
K Horizontal
- Wne = |—= Vibration
nx m

Rocking Mode
ﬂ'ﬁf‘.}L Wng = Kng d
# i ng — Mmo
];\ ol |
K Yawing Mode
& |-
Do = Mm,

Where P and S are the load corresponding to elastic settlement
Coefficient of linear elastic shear, C, = 51 --

e

Barken (1962) proposed the following values:

Cu=2C;, Cp=2Cy, C; = 1.5 Cjp------=-=-====="=m------
According to IS: 5249:

Cy = 1.73C; and C; = 1.5 Cym--===--mm=-m=mr=mmmmmmmoooeee
Vertical Vibration of the Block

Load applied: P, = PySinwt---=#=-=====-=----=r-=---m-mnmo--
Equation of motion: mZ + K,Z = PySinwt------------=-------

C A
Natural Frequency = wy, = % ------------------------

Amplitude of Vertical Vibration, A, =

Posinwt

m(wh;—w?)

Maximum Amplitude of Vibration = bz S —

m(wf;—w?)

Sliding Vibration of the Block
Loadapplied: P, = PySinwt---------=======-==-=-==
Equation of motion: m# + K,x = PySinwt-----------------

Natural Frequency = wyy = [——--mn-mmmmmmmmmmmmmneeee

Posinwt

Amplitude of Vertical Vibration, 4, =

m(wh,—w?)

Px

m(wf;—w?)

Maximum Amplitude of Vibration =
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5.4.3 LINEAR ELASTIC THEORY

(Based on Elastic Half Space Theory)

In 1904, Lamb studied the problem of vibration of single vibrating force acting at a point on the
surface of an elastic half-space. This study included cases in which the oscillating force R acts in
the vertical direction and in the horizontal direction, as shown in Figure 5.3 a and b. This is
generally referred to as the dynamic Boussinesq problem.

In 1936, Reissner analyzed the problem of vibration of a uniformly loaded flexible circular area
resting on an elastic half-space. The solution was obtained by integration of Lamb’s solution for
a point load. Based on Reissner’s work, the vertical displacement at the center of the flexible
loaded area (Figure 5.4 a) can be given by

iwt
AL iy g Y A T —— £g.5.15

Gry
Where Qo=amplitude of the exciting force acting on the foundation
Z= periodic displacement at the centre of the loaded area
w= circular frequency of the applied load
o = radius of the loaded area
G= shear modulus of the soil
f1, f>=Reissner’s displacement functions

R

" YE—

P R L ) T v
Jt ot e e T il S T
: ‘ )
G = shear modulus f
p = density

| U= Poisson's ratio |

ISR P T

& e " . )

- i
G = shear modulus \'
p = density |I

\ u = Poisson's ratio |

Fig. 5.3: Vibrating force on the surface of elastic half -space
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| . /,,—l'l'ura] load = O = Oyl

e

t: PR ..-__,._’.‘.i::-l..._Hli'_.._“.'I__l
il o)
I [.oad per unit area = L]'}F—__l
| Ty
(a)
T_J e
7 5
Weight = W A
W
Mass =m = —

{b}

Fig.5.4: a) Vibration of uniformly loaded circular flexible area, b) Flexible circular area
subjected to force vibration

The displacement functions f; and f,«are related to the Poisson’s ratio of the medium and the
frequency of the exciting force:"Now; consider a flexible circular foundation of weight W (mass
= m = WI/g) resting on an elastic half-space and subjected to an exciting force of magnitude of
(Qoe'(@t*+®) as shown in Figure 5.4b. (Note: a is the phase difference between the exciting force
and the displacement.of the foundation.)

Using the displacement relation given in Eq. (5.15) and solving the equation of equilibrium of
force, Reissner obtained the following relationships:

T Eq.5.16

GTO
Where A; = the amplitude of vibration
Z= dimensionless amplitude
- f12+f22 ____________ E 5 17
\/(1—ba(2)f1)2+(ba§f2))2 G-
b= dimensionless mass ratio

m w 1 w
T g [(V/g)rg] Ty T Eq.5.18
p= density of the elastic material
y=unit of soil
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wTy

ao=dimensionless frequency=wr, \/; Eq.5.19

G Vs
V= velocity of shear wave in the elastic material on which the foundation is resting

The classical work of Reissner was further extended by Quinlan (1953) and Sung (1953). As
mentioned before, Reissner’s work related only to the case of flexible circular foundations where
the soil reaction is uniform over the entire area (Figure 5.5a). Both Quinlan and Sung considered
the cases of rigid circular foundations, the contact pressure of which is shown in Figure 5.3b,
flexible foundations (Figure 5.5a), and the types of foundations for which the contact pressure
distribution is parabolic, as shown in Figure 5.5¢. The distribution of contact pressure q for all
three cases may be expressed as follows.

For flexible circular foundations

Qpei@t+a)

q a7 forr < Tg-===========-mmmmeme- Eq520
0
For rigid circular foundations
Qei(@t+a)
q =—"———= (forr < ry) -—-------mmmmmmmmm-- Eqg.5.21

’2 2
2mry [To—T

For foundations with parabolic contact pressure distribution

_ Z(TOZ_TZ)QOei(wa-a)

n (forr < ry) -—----m-mmmmmmm- Eq.5.22
Ty

P | 4 : A 'y 1 — 1 |
! \ | ,.
! \ ! /
| |
i |
| |
: -
! { — ]
: | =
I
I
|— iy —=]
I
|

a) Uniform pressure distribution b) pressure distribution c) parabolic pressure

under rigid foundation distribution
Fig. 5.5: Contact pressure distribution under circular footing of radius ro

Quinlan‘derived the equations only for the rigid circular foundation; however, Sung presented
the solutions for all the three class described. For all cases, the amplitude of motion can be
expressed in a similar form to Egs. (5.2 to 5.5). However, the displacement functions f; and
f>will change, depending on the contact pressure distribution.

Foundations, on some occasions, may be subjected to a frequency dependent excitation, in
contrast to the constant-force type of excitation just discussed. Figure 5.6 shows a foundation

excited by two rotating masses. The amplitude of the exciting force can be given as
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Q = 2meew? = miew?--------mm-mmmmmmnene- Eq.5.23
Where m;= total of the rotating masses
o= circular frequency of the rotating masses

AE
./ ¥

Nl 7
. H e d

\ i

N 7
Sy,

Fig. 5.6: Foundation vibration by a frequency dependent exciting force

For the above condition, the amplitude of vibration A; can be expressed as

4, = mee? \/ fi+f7 Eq.5.24

Gro (1-bagf1)?+(bagf2))?
Where a4 = a)roﬁ -------------------------------- Eq.5.25
w? = f)—j? -------------------------------------- Eq.5.26
Substituting Eq. 5.26 into Eq. 5.24 we get
4= m;cigg (1—bag£1;;§ba§fz))2 - %ZI _____________ Eq.5.27
Where Z' = a2 J (1_ba%ffjj ffbagfz))z ----- Eq.5.28

Figures 5.7 .and 5.8 show the plots of the variation of the dimensionless amplitude with ag
(Richart,;:1962) for rigid circular foundations (for p = Poisson’s ratio = 0.25 and b = 5, 10, 20,
and 40).
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Fig. 5.7: Plot of Z versus ag forrigid-circular Fig. 5.8: Variation of Z’ with ao for
foundation , Richart, 1962) rigid circular foundation (redrawn
after Richart, 1962)

5.4.4  Effect of Contact Pressure Distribution and Poisson’s Ratio

The effect of the contact pressure distribution on the nature of variation of the non-dimensional
amplitude Z' with ap is shown in Figure 5.9 (for b =5 and p = 0.25). As can be seen, for a given
value of ao, the magnitude of the amplitude is highest for the case of parabolic pressure
distribution and lowest for rigid bases.

For a given type of pressure distribution and mass ratio (b), the magnitude of Z' also greatly
depends on the assumption of the Poisson’s ratio p. This is shown in Figure 5.10.
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Fig. 5.9: Effect of contact pressure distribution variation'of Z’ with ao (redrawn after Richart and
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g

Fig.5.10: Effect of Poisson’s ratio on the variation of Z" with ao (redrawn after Richart and

Whitman, 1967)

5.4.5 Variation of Displacement Functions f; and f,

As mentioned before, the displacement functions are related to the dimensionless frequency ag
and Poisson’s ratio . In Sung’s original study, it was assumed that the contact pressure
distribution remains the same throughout the range of frequency considered; however, for
dynamic loading conditions, the rigid-base pressure distribution does not produce uniform
displacement under the foundation. For that reason, Bycroft (1956) determined the weighted
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average of the displacements under a foundation. The variation of the displacement functions
determined by the study is shown in Figure 5.11

0.3

__||l I

02— pas —

/
I
IIII )
III
s
I|
|
|I E /

.1 T U..‘.-_ -

0 '
0 0.5 1.0 1.5

Nondimensional frequency, ay

Fig.5.11: Variation of the displacement functions with ao and p

5.5  Analog Solutions for Vertical Vibration of Foundations
Lysmer’s Analog
A simplified model was also proposed by Lysmer and Richart (1966), in which the expressions
for k;, and C, were" frequency independent. Lysmer and Richart (1966) redefined the
displacement functions:in the form
| e A A N — Eq.5.29

= T
The functions F1and F; are practically independent of Poisson’s ratio, as shown in Figure 5.11.
The term mass ratio as expressed in Eq. (5.18) was also modified as

B, = [EE] b = [ B Eq.5.30

P
Where B, = modified mass ratio
In this analysis, it was proposed that satisfactory results can be obtained within the range of
practical interest by expressing the rigid circular foundation vibration in the form
mZ + C,Z + K,Z = Q,e™t Eq.5.31
Where
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K, = static spring constant for rigid circular foundation = i(ir" --------- Eq.5.32
And
3.41¢
C, = 1_: N GP-=====mmmmmmmme e eeeeees Eq.5.33
1.0
0.8
u
0.5
(L6 0.25
0
=
T
b,
.4
0
0.5
0.25
0.2
0
L%

i)

Fig.5.12: Plot of F1 and -F2 against a0 for rigid circular foundation subjected to vertical
vibration:(after'.Lysmer and Richart, 1966)

In Egs. (5.32) and (5.33) the relationships for K; and C; are frequency independent. Equations
(5.31t0 5.33) are referred to as Lysmer’s analog.

56 CALCULATION PROCEDURE FOR FOUNDATION RESPONSE, VERTICAL
VIBRATION

Once the equation of motion of a rigid circular foundation is expressed in the form given in
Equation (5.31), it is easy to obtain the resonant frequency and amplitude of vibration based on
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the mathematical expressions presented in earlier section. The general procedure is outlined
next.

A. Resonant Frequency

1. Calculation of natural frequency. as

_ 1 |Kz _ 1 / 46r0
f = Zn\ﬁ T omAl -m Eq.5.34

2. Calculation of damping ratio & As given

.- . _ — 4Gry P — 4szr03

Critical damping C, = 2,/K,m = 2 e substituting for mas m e
4Gro szro3 8r02
= 2 Eq.5.
((1—u)) ((1—u)) -V 6PB: 4535
3. r%@
Now,§ = —=—4—= "fBiS ------------- Eq.5.36
C 0 7 z
-V ePBz

3. Calculation of the resonance frequency (that is, frequency at maximum displacement). For

constant force-type excitation,
fm = a1 — 287

— 1 [_4Gr (042N .

- L J(l_#)m X \[1 202 Eq:5.37
It has also been shown by Lysmer that, for Bz> 0.3, the following approximate relationship can
be established:

1 [(6\ (1 B,—0.36

fm =5- (;) (g) X =5 g Eq.5.38
For rotating mass-type excitation, Lysmer’s corresponding approximate relationship for fm is as
follows:

fn = % (%) (%) X Q}B;}?As _______________ £q.5.39

B. Amplitude of Vibration at Resonance
The amplitude of vibration Az at resonance for constant force-type excitation can be determined
as

&) R Eq.5.40

Zresonance T (K
7 2, 1-8

Now substituting for K, and &, we obtain
— QO(]-_/L) X BZ ___________ Eq54l

Zresonance 4Gry 0.85,/Bz—0.18
The amplitude of vibration for rotating mass-type vertical excitation can be given as [see Eq.
(2.99)]

_ mie BZ
Zresonance = m ° 0.85,/Bz—0.18

C. Amplitude of Vibration at Frequencies Other Than Resonance
For constant force-type excitation, can be used for estimation of the amplitude of vibration, or
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Qo
A, = L Eq.5.43

[0 saeon(y
A

Figure 5.13 shows the plot of QO/Z Versus (wi ). So, with known values of &, and (

w
w
K, n

), one can

determine the value of Qf/z and, from that, Az can be obtained.

Kz

In a similar manner, for rotating mass-type excitation, Eq. (2.95) can be used to determine the
amplitude of vibration, or

(™) (o)
[0 ey

A, =

5
b4
i
S
.
) -
— --IFI
S
u,
E
o= 3
£
P
=| -
E
—
2
s,
| 2
o 2
E
wl E
-
e |
—
|
0

Fig.5.13: Plot of various non-dimensional parameters against (“)/wn) for constant force-type
vibrator (Note: & = & for vertical vibration, & = & for rocking, & = & for sliding; & = &, for
torsional vibration.)
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Fig.5.14: Plot of various non-dimensional parameters against (‘U/wn) for rotating mass-type

vibrator (Note: f = &z for vertical vibration, & = & for rocking, & = & for sliding; & = &, for
torsional vibration.)
The procedure here described relates to a rigid circular foundation having a radius of ro. If a
foundation is rectangular in shape with length L and width B, it is required to obtain an
equivalent rradius, which can then be used in the preceding relationships as discussed in above.
This can-be done by equating the area of the given foundation to the area of an equivalent circle.
Thus,

nré = LB
where ro = radius of the equivalent circle.
It is obviously impossible to eliminate vibration near a foundation.
However, an attempt can be made to reduce the vibration problem as much as possible. Richart
(1962) compiled guidelines for allowable vertical vibration amplitude for a particular frequency
of vibration, and this is given in Figure 5.15.
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Fig.5.15:
The data presented in Figure 5.15 refer.to the maximum allowable amplitudes of vibration.
These can be converted to maximum allowable accelerations by
Maximum acceleration = (maximum displacement)w?

5.7 GENERAL RULES FOR DESIGNING MACHINE FOUNDATION

In the design of machine foundations, the following general rules may be kept in mind to avoid
possible resonance_ conditions:

1. The resonant frequency of foundation-soil system should be less than half the operating
frequency for high-speed machines (that is operating frequency > 1000 cpm). For this case,
during starting or stopping the machine will briefly vibrate at resonant frequency.

2. Fordow-speed machineries (speed less than about 350-400 cpm), the resonant frequency of
the foundation-soil system should be at least two times the operating frequency.

3. Inall types of foundations, the increase of weight will decrease the resonant frequency.

4. An increase of ro will increase the resonant frequency of the foundation.

5. An increase of shear modulus of soil (for example, by grouting) will increase the resonant
frequency of the foundation.

5.7 SLIDING MODE OF VIBRATION FOR FOUNDATION

Arnold, Bycroft, and Wartburton (1955) have provided theoretical solutions for sliding vibration
of rigid circular foundation (Figure 5.16) acted on by a force, Q = Q,e*t. Hall (1967)
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developed the mass-spring-dashpot analog for this type of vibration. According to this analog,
the equation of motion of the foundation can be given in the form

mi + Cox + Kyx = Qget®t--mmmmmmmmm oo Eq.5.45

where m= mass of the foundation

Foundation mass = m

h=1

Fig.5.16: Sliding mode of vibration-of rigid circular foundation

Spring constant for horizontal mode of vibration
_324(1-w)Gry

K, = e T Eq.5.46

Dash pot coefficient for horizontal mode of vibration
_184(1-wré

Cy = P—ry, & [ PG -mmmmmmmmm i Eq.5.47

The natural frequency of the foundation for sliding can be calculated as

_ 1 [Kx 1 ’32(1—#)07‘0 ________________
f = Zn\/; T 2mAlC (7-81)m Eq.5.48

The critical damping and damping ratio in sliding can be evaluated as
C., = criticaldamping in sliding

_ _ 32(1-p)Gry -
Cox =2 /K,m =2 ey ™ Eq.5.48
& ='damping ratio in sliding
Cx L0288
Where , By is the dimensionless mass ratio expressed as
_ 7-8u m

X 32(1-p) prd

Calculation Procedure for Foundation Response Using Eqg. (5.51)

Resonant Frequency

1. Calculate the natural frequency fn using Eq. (5.45)

2. Calculate the damping ratio & using Eq. (5.49). [Note: Bx can be obtained from Eq. (5.50)].
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3. For constant force excitation (that is, Qo = constant), calculate

4. For rotating mass type excitation, calculate
A — Eq.5.52

/1—2&%

Amplitude of Vibration at Resonance

1. For constant force excitation, amplitude of vibration at resonance is
Q 1

Ax(resonance) = K_izfx (—1_‘{% """"""" Eq.5.53

2. For rotating mass-type excitation
mee 1

Ax(resonance) = TZ&@

where m; = total rotating mass causing excitation
e = eccentricity of each rotating mass

Amplitude of Vibration at Frequency Other than Resonance

1. For constant force-type excitation
QO/K

A, = i Eq.5.55

1-92 2+4 2(2)

oz) +4E2 ()
2. For rotating mass-type excitation,
mee ) 2

AZ — ( /m)( /wn) _________________ Eq556

[ iy
Same figures 5.13 & 5.14 are used to calculate various non-dimensional parameters against
(“’/wn) for constant force and rotating mass-type vibrator respectively.
58 TORSIONAL'VIBRATION OF FOUNDATIONS
Figure 5.21a shows a circular foundation of radius r0 subjected to a torque T = T,0'“t about an
axis z-z. The vibration problem of this type was solved by Reissner (1937) solved considering a
linear distribution of shear stress 7,4 (Shear stress zero at center and maximum at the periphery
of the foundation), as shown in Figure 5.17b which represents the case of a flexible foundation.
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Fig.5.17 Torsional variation of rigid circular foundation

In 1944 Reissner and Sagoli solved the same problem for the case of a rigid foundation
considering a linear variation of displacement from the center to the periphery of the foundation.

Similar to the cases of vertical, rocking, and sliding modes of vibration, the equation for the
torsional vibration of a rigid circular foundation.can be written as

J2z@ + Cot + Ky = Ty@ @t -mmmmmmmm oo Eq.5.57

Where, J»= mass moment of inertia of the foundation about the axis z-z
Ca = dashpot coefficient for torsional vibration

Ka = static spring constant fortorsional vibration = 13—6 Grd
o = rotation of the foundation at any time due to the application of a torque T = T,e'®*
The damping ratio fofor this mode of vibration has been determined as (Richart, Hall, and

Wood, 1970) given-below

0.5

fo = Tron g Eq.5.58

Where

Ba = the.dimensionless mass ratio for torsion at vibration= ; iZS -=-- Eqg.5.59
0

Calculation Procedure for Foundation Response Using Eqg. (5.51)
Resonant Frequency
1. Calculate the natural frequency fn

1 Ka
fn = E\/; """""""""""" Eq560

2. Calculate the damping ratio Ba using Eg. (5.59) and damping ratio &, by Eq. 5.58
3. For constant force excitation (that is, To = constant), calculate



Lecture Notes on DSF | 2021

4. For rotating mass type excitation, calculate
A — Eq.5.62

/1—2&%

Amplitude of Vibration at Resonance

1. For constant force excitation, amplitude of vibration at resonance is
To 1
a = e Eq.5.63
(resonance)
Ke 264 [1-82
2. For rotating mass-type excitation

_ mee(x/z) 1

a(resonance) - Jzz 2¢ \[@
a “Sa

where m; = total rotating mass causing excitation
e = eccentricity of each rotating mass
Amplitude of Vibration at Frequency Other than Resonance

3. For constant force-type excitation
To/K
a= N — Eq.5.65
w?)? w \2
J(l—w—%) +4E2(2)
4. For rotating mass-type excitation,
ee(*/2) 2
<m ‘ /2 /]zz)(w/wn)
e Eq.5.66

2
[ sy
For constant force excitation, calculate ‘U/wnand then refer to Figure 5.13 to obtain o/(To/Ky,).
For rotating mass-type excitation; calculate ‘U/wn and then refer to Figure 5.14 to obtain o/[m;

e(x/2)/3z].
For a rectangular foundation with dimensions B x L, the equivalent radius may be given by

ro = /% .................... Eq.5.67

The torsional vibration of foundations is uncoupled motion and hence can be treated
independently of-any vertical motion. Also, Poisson’s ratio does not influence the torsional
vibration of foundations

5.9 ROCKING VIBRATION OF FOUNDATIONS

A theoretical solution for foundations subjected to rocking vibration was presented by Arnold,
Bycroft, and Wartburton (1955) and Bycroft (1956). Rocking mode of vibration for rigid
circular foundations is shown in Figure 5.18.
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Fig. 5.18: Rocking vibration of a circular rigid foundation

A mass-spring-dashpot model for rigid circular foundations was developed by Hall (1967) in the
same manner as Lysmer and Richart (1966) developed for vertical vibration. According to Hall,
the equation of motion for a rocking vibration can be given as

o6 + Cob + KO = My @t -mmmieemmmmeeeeev Eq.5.68
Where 6 = rotation of the vertical axis of the foundation at any time t
2
lo = mass moment of inertia about the y axis (through its base):% (%0 + h?z) ------- Eq.5.69
where Wo=weight of the foundation
g = acceleration due to gravity
h = height of the foundation
. . _ 8ry
Static spring constant, Ky = 1) Eq.5.70
4
Dashpot coefficient, Cy = ——r0 — \/Geeemmmmmeeemmmmmee Eq.5.71

(1-m(1+Bp)

Inertia ratio, Bg = (

3(1—#)) Io
8 prd

................. Eq.5.72
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A. Resonant Frequency

Ko

1. Calculate the natural frequency: f, = — ;
0

2

2. Calculate the damping ratio ,

Critical damping coefficient, C.o = 2./Kyl,

0.15

$0 = Grso)y5s

3. Calculate the resonant frequency:

fm = Ja /1 — 2&5 ----(for constant force excitation)

— f‘l’l
/1—2{5

B. Amplitude of Vibration at Resonance

fm

Constant force type vibration

6 _ My 1
resonance ~ ;
28g |1-&5

For rotating type excitation

myeZ’ 1
I
o 259/1—55

Where, m; = total rotating mass causing excitation

Hresonance -

e = eccentricity of each mass

----------- (for rotating mass-type excitation)

Eq.5.73

Eq.5.74

Eq.5.75

Eq.5.76

Eq.5.77

Eq.5.78

Eq.5.79

C. Amplitude of Vibration at Frequencies Other than Resonance

For constant force-type excitation

My
Kg

2

) +a?(2)’

of

For rotating mass type vibration
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o — A S

J (1—3—;)2+4(6a)2(§n)2

Eq.5.81

In the case of rectangular foundation, the preceding relationships can be used by determining the

equivalent radius as

3
ro = /% -------------- Eq.5.82
Table 5.1: Values of various Lysmer’s Analog Parameters
Mode of Equivalent Mass ratio Damping factor Spring Constant
Vibration Radius
(1 — H)m 0.425 4Gr0
. BL B - - fz = =
Vertical o = ’? z 4pr3 VB, 27 1—u
Horizontal BL B — 7-8u m £ - 0.288 _ 32401 - mGry
= |[= xT 3201 - 3 . /B. * 7 —8u
To - ( 1) P15 By
Torsional ~ BL(B2? + 12) B = ]zz £ € 0.5 K, = EGTS
To = 61 @ pros 1+ ZBa 3
Rockin 3(1—-w)\ ! 0.15 8Grg
| _ B Be:( 8 >_05 $o == Ko = st
o 3 PTo (1+ Bg)y/Bg 3(1—w)

Example No.1: A concrete foundation is 2.5 m in diameter. The foundation is supporting a
machine. The total weight of the-machineand the foundation is 270 kN. The machine imparts a

vertical vibrating force Q = Qg sinwt. Given

Qo=27 kN (not frequency dependent). The operating frequency is 150 cpm. For the soil

supporting the foundation, unit weight = 19.5 kKN/m?, shear modulus = 45000 kPa.

ratio = 0.3. Determine;

a. resonant frequency,

b. the amplitude of vertical vibration at resonant frequency, and

c. the.amplitude of vertical vibration at the operating frequency

Sol:

The machine imparts a vertical vibrating force Q = Qo sinwt where Qo=27 kN
The operating frequency = 150 cpm=2.5 Hz

Equivalent radius r, = 1.25m

Total weight of the machine and the foundation =270 kN

Mass ratio
_ (-pm_(-pW _ (1-03)X270 4 5,
27 4prd T ayrd T 4x19.5x1.253

Damping factor
102
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0425 0.425

= —— =0.382
s JB, V124

Spring constant
__ 4Gry_4x4500x1.25

g =32142.86 KN/m?
1-0.3

1-p
_i 4Gy =i 4x4500%1.25 —
Natural frequency f,, = — /—(1_#)m — /—(1_0_3)%7%31 5.44 Hz

a) Resonance frequency f;, = fry/1 — 262=5.44x V1 — 2 x 0.3822=4.58 Hz

b) Amplitude of vertical vibration at resonant frequency:

A — Q0-m) B, _ 27(1-0.3) 1.24 _
Zresonance 4Gry 0.85,/Bz—0.18 4x4500x1.25  0.85y1.24—0.18

c) The amplitude of vertical vibration at the operating frequency:

Qo 2
_ /Kz _ 7/32142.86 —
A, = = =

(o2 sy’ -2 oy

Example No.2:

A radar antenna foundation is shown below. For.torsional vibration of the foundation, given

To = 250 kN-m (due to inertia)

To = 83 kKN-m (due to wind)

Mass moment of inertia of the tower about the axis z-z = 13 x 106 kg-m?, and the unit weight of
concrete used in the foundation = 24 kKN/m?. Calculate

!
/
/
!

a) the resonant frequency fortorsional mode of vibration; and
b) angular deflection at resonance.
J
Section J,.’J | \\
|
I

!
I
/

N
)
\
\
‘\
o

ptsm e L
25

G = 135000 kPa
¥ = 17.6 kN/m?
u=025

|4—]J?m=2fu—:—b-{
i

Fig: Foundation for radar of antenna
Solution:
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a)

'-'irzz = '-'il;z(h}wa'} + Jzz(fcmnda.ﬁm}

=13x10°+ l[mgh (Mﬂﬁ
2

981
24 %1000
=13x10°+ = n(? 6)* (2.5) —] (7.6)°
9.81
=13 % 10°+ 32.05 % 10°=45.05 x 10° kg'm’
T 45.05x%10°
B,=—=-= Jod =0.99

P (17.6x10°/9.81)(7.6)’

Damping factor

0.5 0.5 -
1+2B, 1+(2)(099)
16 16
k,= —Gru _[ ]xlaﬁxmﬁx(? 6)° =3.16x10'! N-m
B ky 3.16x 10!
) T 2m\(45.05x10°
=1333 Hz
Thus, the damped natural frequency
fu=fo [1-2D2 =(1333)|/1- (2)(0.168)"
=12.92 Hz

b) Angular frequency at resonance
If the torque due to wind (Ty) 15 to be treated as a stafic torque, then

I

= kg
¥ tatic
So

3 . [ 83x10° }
" 16Gr ") 7| 3 16x 101!
=0.0263 % 10™ rad
Angular deformation due to torque produced by inertia

T, 1

o _o
ke 2D, \J1- D}
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( 250 x10° } 1
3.16x10" || (2)(0.168) 1 (0.168)?
—0.24% 10" rad

At resonance, the total angular deflectionis
(= Cipasia T Oaatic = (0.24 + 0.0263) X 10~ = 0.2663 X 10 rad
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5.10 DYNAMIC BEARING CAPACITY OF SHALLOW FOUNDATION

During the application of single pulse dynamic loads which may be in vertical or horizontal
directions, the foundation may get excessive settlement. Horizontal dynamic loads on
foundations are due mostly to earthquakes. These types of loading may induce large
permanent deformation in foundations. Isolated column footings, strip footings, mat footings,
and even pile foundations all may fail during seismic events. Such failures are generally
attributed to liquefaction. However, a number of failures have occurred where field
conditions indicate there was only partial saturation or a dense soil and therefore liquefaction
alone is a very unlikely explanation. Rather, the reason for the seismic settlements of these
foundations seems to be that the bearing capacity was reduced (Richards, Elms and
Budhu,1993).

During the analysis of the time dependent motion of a foundation ‘subjected to dynamic
loading or estimating the bearing capacity under dynamic conditions several factors need to
be considered.

Most important of these factors are

a) Nature of variation of the magnitude of the loading pulse,

b) Duration of the pulse, and

c) Strain-rate response of the soil during deformation

5.10.1 Ultimate Dynamic Bearing Capacity

Bearing Capacity in Sand

The equations for static ultimate bearing capacity evaluation are valid for dense sands where
the failure surface in the soil extends to the ground surface. This is referred as the case of

. , . D : . .
general shear failure. For shallow foundations (i.e., f/B < 1), if the relative density of

granular soils Rp is less than-about 70%, local or punching shear failure may occur. Hence,
for static ultimate bearing capacity calculation, if 0 < Rp < 0.67, the values of internal angle
of friction, ¢ should be replaced by the modified friction angle

@' = tan~1[(067 # R, — 0.75R3)tan®]------- Eq.5.83

However;'when load is applied rapidly to a foundation to cause failure, the ultimate bearing
capacity changes by somewhat. This fact has been shown experimentally by Vesic, Banks,
and-Woodward (1965), who conducted several laboratory model tests with a 101.6 mm
diameter rigid rough model footing placed on the surface of a dense river sand (i.e., Ds = 0),
both dry and saturated. The rate of loading to cause failure was varied in a range of 2.54 x
10 mm/s to over 254 mm/s. Hence, the rate was in the range of static (2.54 x 10 mm /s) to
impact (254 mm/s) loading conditions. All but the four Based on the experimental results
available, the following general conclusions regarding the ultimate dynamic bearing capacity
of shallow foundations in sand can be drawn:

1. For a foundation resting on sand and subjected to an acceleration level of amax < 13g, it is
possible for general shear type of failure to occur in soil (Heller, 1964).
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2. For a foundation on sand subjected to an acceleration level of amax > 13g, the nature of soil
failure is by punching (Heller, 1964).

3. The difference in the nature of failure in soil is due to the inertial restrain of the soil
involved in failure during the dynamic loading. The restrain has almost a similar effect as the
overburden pressure as observed during the dynamic loading which causes the punching
shear type failure in soil.

4. The minimum value of the ultimate dynamic bearing capacity of shallow foundations on
dense sands obtained between static to impact loading range can be estimated by.using a
friction angle @, such that (Vesic, 1973)

Qdy — @ _ 20 __________________ Eq584

The value of @4, can be subsequently used to find various bearing capacity factors.

However, if the soil strength parameters with proper strain rate are known from laboratory
testing, they should be used instead of the approximate equation.

5. The increase of the ultimate bearing capacity at high loading rates is due to the fact that the
soil particles in the failure zone do not always follow the path of least resistance. This results
in at higher shear strength of soil, which leads to a higher bearing capacity.

6. In the case of foundations resting on loose submerged sands, transient liquefaction effects
may exist (Vesic, 1973). This may results .in-unreliable prediction of ultimate bearing
capacity.

7. The rapid increase of the ultimate bearing capacity in dense saturated sand at fast loading
rates is due to the development of negative pore water pressure in the soil.

The dynamic bearing capacity problem-attracted attention of the investigators in 1960 when the
performance of foundations -undertransient loads became of concern to the engineering
profession (Wallace, 1961; Cunny and Sloan, 1961; Fisher, 1962; Johnson and Ireland, 1963;
Mckee and shenkman 1962: White, 1964; Chummar, 1965; Triandafilidis, 1965).

All analytical approaches are based on the assumption that soil rupture under transient
loads occurs along a-static rupture surface. In this section the salient features of the analysis
developed by~ Triandafilidis (1965) and Wallace (1961) for transient vertical load; and by
Chummar (1965) for transient horizontal load have been presented.
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5.10.2

Triandafilidis’s Solution:

Centre of rotation

El o}
v 0,438
114 id ; Al l '
e ’\K\ ;A‘ ' '7_-,‘;01-.
\ s ,'/ . /-”
AN / ¢ N4
RN S "N /
7 N "N
“Fellenius N\ == o
rupture N g w2
surface Z_Prandtls rupture surtace
\, ~— Center ot rotation
¢/ (Fellenius)
}- —8 - J” -3
. |
S‘Hn
IJ.,JL_ J_u_hu_;.l, 1 i
=

\ w«;\l‘a fCQ( ‘Qt/
of gravit
\\‘}»_ < \ /C,O

 S— | B
e

\

\

—.—7

W Wcos8

Fig. 5.19: lllustrations of mode of failure and dynamic equilibrium of moving soil mass

Triandafilidis's Analysis

Triandafilidis (1965) has presented a solution for dynamic response of continuous surface

footing supporting by saturated ecohesive soil (¢p=0 condition) and subjected to vertical transient

load. The analysis is based on the following assumptions:

(i) The failure surface of soil is cylindrical for evaluation of bearing capacity under static
condition (Fig.5.19).

(i) The saturated cohesive soil (¢= 0) behaves as a rigid plastic material (Fig. 5.20).

(iii)-The forcing function is assumed to be an exponentially decaying pulse (Fig.5.21)

(iv) The influence of strain rate on the shear strength is neglected.

(v) The dead weight of the foundation is neglected.
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Fig. 5.20 Assumed Stress-strain relationship Fig. 5.21 Transient Vertical Load
Analysis

Let the transient stress pulse be expressed in the form

qa = qoe Pt = Aq e Pt Eq.5.85
Where g,= Stress at any time t

= Decaying function

q,,= Static bearing capacity of continuous.footing

qo=instantaneous peak intensity of stress pulse

A= Over load factor = 4&

qu

The rupture surface.is shown in Fig. 5.19 with centre of rotation at point0 located at a height of
0.43 B above the ground surface.

The equation of-motion is written by equating the moment of the disturbing and restoring forces
taken about the point O. The only disturbing and restoring force is an externally applied dynamic
pulse. The restoring forces consist of shearing resistance along the rupture surface, the inertia of
the soil‘mass taken in the motion and the resistance caused by the displacement of centre of
gravity of soil mass.

Disturbing moment M,, due to applied dynamic pulse is given as
Mg, = > qqB?--------- Eq. 5.86
Where B=Width of the footing
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The static bearing capacity of a continuous footing along the failure surface (Fellenius, 1948) is given as
q, = 5.54c¢,

Where cy is the un-drained shear strength of soil

Now Resisting moment M¢due to shear strength is taken as

M, = = qyB?---mmmmmmmm- Eq.5.87

Due to the application of pulse, the soil mass is subjected to an acceleration. So the resisting

moment M,.;due to the rigid body motion of the failed soil mass is given as

M,; = Job------ Eq.5.88

WB?

Jo=Polar mass moment of inertia:1 260

W=Weight of the cylindrical soil mass=0.31ynB?
Where yis the unit weight of soil

wB?
1.369

There fore M,; = G---mm- Eq.5.89

The displaced position of the soil mass generates a restoring moment M,.,, which may be expressed as

M,,, = Wrsinf-------- Eq.5.90

. _ _ 2.205B
For small rotation M,., = W18 where r =

By equating the moments of disturbing forces to those of the restoring forces, the following
equation of motion is obtained
Mdp = Mrs + Mri + MI'W ----- Eq591

= 39 0.68g -
6+ 9 = 2] g [ae~F* — 1] Eq.5.92
Equation (5:92)is a second order, non-homogeneous, linear differential equation with constant

coefficients. Thenatural frequency and the time period of the system are given by

W= Ve Eq.5.93

Time period of vibration

T = Eq.5.94
2w 3g

Solution of Eq. (5.92) gives the following relation

Y _ (o) = S - [{1 -1+ BZTZ} cos (Zm) + %sin (%) + Ae Bt — % - 1] ------ Eq.5.95

0.689qy 412+ p2T2 4772 T
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The above relation can be used to trace the history of motion of the foundation. For

determination of the maximum angular deflection 8, Eq. (5.95) can be differentiated with respect
to time. Thus

Y _(6)= T 2 [{/1 —1-£ Tzz} sin (%) +E2 cos (%) — ﬂe‘ﬁt] ------- Eqg. 5.96

2
0.689qy 2+B2T2 4T 21 21

For obtaining the critical time t = t., which corresponds to 6 = 6,,,,, the right-hand side of Eq.

- - 2nT
(5.96) is equated to zero. Since Py cannot be zero,
1 =BT in (B 4 BT s () — BT gt = (eeeee
[{/1 1 47t2}51n(T)+2ncos(T) ol ]—0 Eqg. 5.97

By using small increments of time t in Eq. (5.97), the value of tcr can be obtained. This value of t

= t¢r can then be substituted in to Eq. (5.96) with known values of A, § and B to obtain

w
0.68g9qy

Figures 5.22 to 5. 24 give the values of K (s?) for B = 0.6, 1.5 and'3.0 m, respectively, with A =
1-5 and f=0-50 s

Omax = K, is the dynamic load factor.

1 —
-~
n
X
2
o
=]
-
=]
a
2
= :
¢ 0
ot / - B =0.6m
S e s 0.0
a 105_‘ . U o~ 0.5 m=mmmem e mw
' OT 1.0 —=—=—
/ S S 5 (P e
2050 :
= : 0@ T
10 = .2 g 10.0 —— R
/ = 50.0 s
-7
10 | | |

1.0 2.0 3.0 L0 50
Overload ratio, A

Fig.5.22 Relationship between overload ratio and dynamic load factor for continuous footings
0.6 m wide
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Fig. 5.23Relationship between overload ratio Fig.5.24 Relationship' between overload
ratio and dynamic load factor for continuous dynamic load factor for continuous wide
footings footing of width 1.5 m 3.0.m wide

5.10.3

Chummar's Solution

Chummar (1965) presented as solution for dynamic response of a strip footing supported by
cohesive soil and .The analysis is based on the following assumptions:

(i)
(i)

(i)
(iv)

The failure of the footing occurs with‘the application of horizontal dynamic load
acting at a certain height above the base of the footing.

The resulting motion in the footing is of a rotatory nature. The failure surface is a
logarithmic spiral with its centre on the base corner of the footing, which is also the
centre of rotationas shown in (Fig.5.25).

The rotating soil mass.is considered to be a rigid body rotating about a fixed axis.

The soil exhibits rigid plastic, stress-strain characteristics.

Btan@

wg spiral r = e
Resultant friction

Fig.5.25: Transient horizontal load on a continuous strip footing resting on ground surface
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Analysis: The static bearing capacity of the footing is calculated by assuming that the
footing fails when acted upon by a vertical static load, which causes rotation of the logarithmic
spiral failure. The ultimate static bearing capacity qu is given by:

1
qu = cNc +5yN, B Eqg. 5.98

Where ¢ =Cohesion
B= Footing width and equal to the initial radius of spiral curve.
v=Unit weight of the soil.
N.and N, are bearing capacity factors for the assumed type of failure.
Now considering moment of the forces about0, the centre of rotation:

(ezntanw_l) _

Moment due to cohesion ¢, Mg, = WcB?, where r——— Yoo Eg.(5.99)
3mtan®
Moment due to weight W of soil wedge, Mgy, 52, where % = £-<--Eq.(5.100)

@ is the angle of internal friction
2

Moment due to gy about point O is given as tu?

2
Under equilibrium condition, we get tu?:MRC + Mgy, Which gives

2vB [0) 3mtan® 1
G = o (e?mtand — 1)  AZEEC—10) Eq. (5.101)
Combining Eq.(5.98) and (5.101), yields
wtang
N, = 4taniile;2®+1 +tH Eq. (5.102)
e2ntan®_1
v T H—— Eq. (5.103)

By considering a suitable factor of safety F, the static vertical force on the foundation per unit
length can be given as

Q = 2 (cN, + SV BNy )-mrmmemm et Eq. (5.104)
The variation of dynamic force in the above analysis is considered as
Qd(max) = AQ """""" Eq (5105)
¢
o
= P
g max
)

—t —

Time

Fig.5.26: Loading factor.
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Where, Q4(max)is the maximum value of horizontal transit load per unit length acting at height H
above base of the footing and A is over load factor.

For considering of the dynamic equilibrium of the foundation with the horizontal transient load,
the moment of each of the forces (per unit length) about the centre of the log-spiral needs to be
considered:

Moment due to the vertical force Q,M; = %QB -------------------- Eq. (5.106)
2. Moment due to the horizontal force Qqat any time t,
M, = QuH = Qamantt Magmax)t Eq. (5.107)
ta ta

3. Moment due to the cohesive force acting along the failure surface is given‘by Eq.(5.88)
Moment due to weight of soil mass in the failure wedge is given by Eq: (5.89)
5. Moment of the force due to displacement of the centre of gravity of the failure wedge (as
shown in Fig.5.26) from its initial position:
Y B LT/ G — Eq. (5.108)
Where W is the weight of the failure wedge, and given by

(ezntanc)_l)sz

&

W = e Eq. (5.109)
AX = Rcos(n — a) — Rcosn------------------ Eq. (5.110)
When a is small, Eq.(5.110) can be written as AX = (Rsin n)a-------------- Eqg. (5.111)
But R = Vx2 + z% and
_ ang
7= 4Btan®g(e3#tenly+y o Eq. (5.112)

(9tan?@+1)(e?mtand_q)

4Btan?@(e3Ktand 1)

z= 3(\/9tan2¢+1)(92ntan@_1) ------------------------- Eq (5113)
Now Eqg. (5.108) becomes, M5 = BB3(sinn)a----------------- Eq. (5.116)
_ (e3wandyqy,
Ly e Eq. (5.117)
6. Moment due to inertia force of soil wedge
62
Mo=(%5)) e Eq. (5.118)
Where J is the mass moment of inertia of the soil wedge about the axis of rotation
B4-
J = [mgt—m] G W— Eg. (5.119)
Now: substituting for J in Eq. (5.118), we get
_ (e BB
Mg =G Eq. (5.120)
_ e4ntan¢_1
Where u, = Totamg T Eqg. (5.121)

Moment due to the frictional resistance along the failure surface will be zero as its resultant will
pass through the centre of log-spiral. Now for the equation of motion,

M1+M2 :MRC+MRW+M3 +M4 """"""""""""""""" Eq (5122)
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Substitution of the proper terms for the moments in Eq. (5.122) gives

CH+K2a=2 (% ‘“’”‘”)t) ] Eg. (5.123)
_ . [9Bsinn __49 — 2 3
Where K = \/—M , A=—— and E =1cB’ + €yB Eq. (5.124)

Now general solution to the second order differential Eq. (5.123) can be found as
Fort <t,

a = % (E = 30B) cos(Kt) — " sin(Ke) + = (“422 + 2 QB — E )-----Eq. (5:125)
tq 2
Fort >t

a= [%][Gll( cos(Kty) — G, sin(Ktz)]cos(Kt) + (l) [GiKsin(Kty)

—Gycos(Kty) ]sm(Kt) +(5) G QB = E)---eereenii- Eq. (5.126)
Where G, == (E -2 QB) cos(th) — 22 in(Kty) + 2 Eq. (5.127)
d
and G, = (E —2QB)sin(Kt,) — = di’"a") cos(Kty) + Mljzf’"“’” ----- Eq. (5.128)
d

Example No.2.1

A 2.5m wide continuous surface footing is subjected to a horizontal transient load of duration
0.4s applied at a height of 4.0 m from the base of footing. The properties of the soil are
y=17kN/m®, ¢=30kN/m? and ¢ =32°.Determine the value of the maximum horizontal load that
can be applied on the footing. Also compute the angular rotation at time equal to 0.6 s.

Sol: Given that

y=17kN/m®, ¢ =30kN/m3and ¢ =32°.H= 4.0 m, t-=0.4 s

_(ezmana) 1) 4tan®(e3ntan®+1)

T tano =794, Ny= 9tan2p+1 2400
ng (cN. + > yBN],):8290 Taking a suitable value of factor of safety as 2.0
i) Determination of various parameters
(e e2mtang _ -1)_ tan®(93”tan®+1)
V= 2tan =39.1, 9tan?p+1 =50
(e3utan¢+1) _ _ e4ntan0_1_
3(\/9tan2®+1)_56'6’ He = otans 256
_ _ —4Btan®@(e3Han011) _ _ 4Btan?p(e3Ktandiqy
X = (9tan2@+1)(e2mtand_qy 252B,z= 3(\/9tan2®+1)(92”tan¢—1)_2'85 B

oLz _
And, SInN==—; 0.75
i) Determination of K, Aand E
K=Vl =807, 4= 54— =0.0000577, and E = cB? + eyB*= 20700 kN
C

Uc
iii) Determination of Mg(max) in terms of A

Md(max):HQd(maX):HQx
= 4x8290A=33160A
iv) Determination of A¢r which corresponds to o=0
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A 1 AM A M 1
a= —(E —EQB) cos(Kt) —FMsin(Kt) +—(M+EQB - E)

For t=tq equals to 0.4s
0.0000577 331604

~0.0000577
~0.8072

1
(20700 - 58290 X 2.5) cos(0.8070 x 0.4) — sin(0.8070 x 0.4)

0.8073 0.4
0.0000577 (33160/1 1 8200 x 2.5 20700)
0.8072 0.4 2 '

=0.9159 c0s(0.3228)—9.101 sin(0.3228) + 2.9410.9181 — 1.834
=0.05A—0.0474
For =0, 2=0.948=A1_,

V) Determination of Mg(max) for A=A7,
Mamax=33160Ae= 331600.948=31436 kNm

Vi) Determination of G; and G»
G, ==(E ( - QB) cos(Kty) — iMd(ma") sin(Kty) + ——2 AMd(max) =0.9159

K2

G, = (E —= QB) sin(Kt,) — d(m“") cos(Kty) + d(—mdax) —4.05
vii)  Determination of o fort 0.6s
a= [%] [G,K cos(Kt;) — G, sin(Kt,)]cos(Kt) + (%)[Glein(th)
—G, cos(Kt,) Jsin(Kt) + 5 (3 QB — E) = -8229 rad

5.10.4 Wallace's Solution

Analysis presented by Trianadafilidis (1965) is based on rotational mode of failure. However, it
is possible that a foundation may fail by vertically punching into the soil mass due to the
application of vertical transient load."Wallace (1961) presented a procedure for the estimation of
the vertical displacement of continuous footing considering punching mode of failure. The
analysis is based on the following assumptions:

Q) The failure surface in the soil mass is assumed to be of similar type as suggested by
Terzaghi (1943) for the evaluation of static bearing capacity of strip footings. This is shown in
Figure 5.27

Fig. 5.27: Failure Surface
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—Peak intensity, q

Loading intensity
Load duration,ty

Fig.5.28: Loading Function
(i) The soil behaves as a rigid plastic material

(iii)  The ultimate shear strength is given by

s = ¢ + aotan@®--- Eg. (5.129)
Where, s = Ultimate shear strength
¢ = Cohesion

o= Normal stress
@= Angle of internal friction

iv) The dynamic load applied to the footing.is initially peak triangular force pulse (Fig.5.28).
V) The footing is assumed to be weightless and to impart uniform load to the soil surface

Analysis:

The applied load is assumed to be an‘initial-peak triangular force which decays to zero at time tq
as shown in Fig.5.28. The peak load g-is expressed in pressure units. Since the function is

discontinuous at time tq, two equations are necessary

For 0 <t <t,; Loadingfunction =qB (1 — i) --------- Eqg. (5.130)

ta
For t > t,; Loading function =0

In Fig. 5.27, BD is an arc of a logarithmic spiral with its centre at O. It is defined by the Eq.
(5.131).

P L L — Eqg. (5.131)
Where r, = distance OD see Fig. (5.27)

@= Angle of internal friction

The static bearing capacity qu for such a failure surface is given by

Gu = cNe + qNg + 5 YBNy----eem- Eq. (5.134)
where, ¢ = Cohesion
q=yDs

y= Unit weight of soil
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Dy = Depth of footing
N, Ng, N, = Bearing capacity factors

The bearing capacity factors depend on @ and K, K being 2 (Distance OA)/H, Fig. 5.27. The
value of K locates the centre of the spiral which is the centre of rotation. Obviously the correct
value of K is that which yields the minimum value of the bearing capacity. It is obtained by trial
and error for each set of problem parameters. The values of N, N,, N, for various values of @ and
K are given in Column 3, 4 and 5 of Table 5.2.

Any acceleration of the soil mass ACDBA due to the downward movement of the footing will
cause inertial forces which will resist such movement. The inertial forces are directly
proportional to the acceleration of each individual soil mass and thereby ‘dependent on
displacements. The effective total inertial force is obtained by combining the inertial forces on
each separate mass using energy considerations.

The inertial force is given by I = N,yB% ------------ Eq. (5.135)

Where, A= Displacement at any time t

N,;=Coefficient of dynamic inertial shear resistance.

The coefficient N, depends on @ and K, and its values are listed in column no. 6 of Table 5.2
Displacement of the soil mass within the failure surface due to downward movement of the
footing will increase the restoring moment about the point 0, and the increase in moment will be
proportional to the displacement provided the rotation is not excessive. It is expressed as

Rp = NyByA--------- Eq. (5.136)
The coefficient Ny also depends on @and K. Its values are listed in column no. 7 of Table 5.2.
The differential equations are established by equating the four vertical forces to zero. There must
be separate equations for before and after time tq

ForO0 <t <ty

NjyBSS + NpyBAA# B — qB (1~ L) = 0 Eq. (5.137)
dt tq

Or

Fort >ty
2

NiYB 3 + NgyBA + q,B = 0---------- Eq. (5.138)

A NR »_ Qu
Or, ) + EA— NjyB Eq (5139)

The solution of the differential equations will yield equations of footing displacement versus
time. The forms of the particular solutions of Eq. 5.140 are found to be

_ , . , a—qu) _ a9 N4
A= C; cos(K't) + C,sin(K't) + (NRV) (Nm/td) t Eq. (5.140)
And A= C; cos(K't) + C, sin(K't) — (;’—uy) --------- Eq. (5.141)
R
Inwhich K’ = % and C;, C,, Csand C, are coefficient of integration. The Cy, C; are evaluated
1

by the initial conditions. The coefficients Cz and C4 are obtained by conditions of displacement
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and velocity at tq as defined by Eq. (5.140). After finding the solution and substitution of the
coefficients yield non-dimensional Egs. 5.140 & 141 as

For0 <t <ty
a

NRY\ A (4 _ _ ' U Tein(K't) — K't]-mmommmeee
( = )a= (qu 1)[1 - cos(K't)] + L [sin(K't) — K't] Eq. (5.142)
Fort >ty
a a
(Nq—':/) A= [(1 - i) + %sin(l('td) cos(K'ty) + [t‘:[‘(, (1 —cos(K'ty))|sin(K'ty) — — — — — Eq. (5.143)

The coefficients N, N, N,, Njand Nr are dependent only on values of @ and .K. Using
magnitudes of @ from 0° to 45° and of K for the region where the ultimate static shear resistance
could be a minimum, these coefficients were evaluated. The values obtained are given, in Table
5.2 for every fifth degree. The maximum displacement from Eqg. 5.142 and 5.143 is the
predicated permanent footing displacement, since downward motion ceases-at the time of the
maximum displacement.

te
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Fig. 5.29: Non-dimensional maximum displacement
Table 5.2: Bearing Capacity Factors

®(dgree) | K N, N, N, N, Ny Ne
N,
0 -0.05 0.000 5.7277 1.00 0.0633 2.0125 | 5.6366
0.00 0.000 5.7124 1.00 0.0631 1.9723 | 5.5887
+0.05 0.000 5.7258 1.00 0.0633 1.9433 | 5.5394
-0.65 0.0454 | 79.6255 7,9664 0.03755 |8.9076 | 4.8709
-0.60 0.1445 29.8163 3.6986 0.2280 6.4362 | 5.3126
-0.55 0.1481 18.9958 2.6619 0.1579 5.0332 | 5.6460
-0.50 0.1553 14.3469 2.2552 0.1213 4.1699 |5.8636
-0.45 0.1655 11.8179 2.0339 0.1011 3.6088 | 5.9750
-0.40 0.1786 10.2699 1.8985 0.0897 3.2299 | 6.0020
-0.35 0.1945 | 9.2580 1.8100 0.0833 2.9674 | 5.9698
5 -0.30 0.2131 | 8.5723 1.7500 0.0799 2.7828 | 5.9005
-0.25 0.2344 | 8.1007 1.7087 0.0786 2.6523 | 5.8108
-0.20 0.2585 7.7778 1.6805 0.0785 2.5604 |5.7116
-0.15 0.2855 7.5629 1.6617 0.0793 2.4969 | 5.6099
-0.10 0.3154 | 7.4291 1.6500 0.0809 2.4547 | 5.5096
-0.05 0.3483 7.3580 1.6437 0.0829 0.4288 | 5.4128
0.00 0.3843 7.3366 1.6419 0.0853 2.4155 |5.3205
0.05 0.4233 7.3553 1.6435 0.0881 2.4122 |5.2330
-0.60 0.5700 | 53.9491 10,5127 | 0.1120 5.7922 |7.1922
-0.55 0.5588 28.9945 6.1125 0.0935 4.8411 | 7.1948
-0.50 0.5645 20.5266 4.6194 0.0833 42238 | 7.1228
-0.45 0.5832 16.3539 3.8837 0.0779 3.8095 |6.9932
-0.40 0.6127 13.9337 3.4569 0.0757 3.5264 | 6.8293
-0.35 0.6521 12.4031 3.1870 0.0755 3.3323 | 6.6445
-0.30 0.7008 11.3881 3.0080 0.0767 3.2008 | 6.4587
10 -0.25 0.7586 10.7004 2.8868 0.0790 3.1147 | 6.2781
-0.20 0.8253 10.2345 2.8046 0.0821 3.0625 |6.1071
-0.15 0.9012 | 9.9267 2.7503 0.0858 3.0360 | 5.9474
<0.10 0.9863 | 9.7361 2.7167 0.0901 3.0294 | 5.7994
-0.05 1.0807 | 9.6352 2.6990 0.0948 3.0386 | 5.6676
0.00 1.1848 | 9.6049 2.6936 0.0999 3.0604 | 5.5360
+0.05 1.2986 | 9.6313 2.6983 0.1053 3.0923 | 3.4187
-0.55 1.5462 | 46.5473 13.4724 | 0.0707 5.2677 | 8.6324
-0.50 1.5198 | 30.2759 9.1124 0.0696 4.7177 |8.2310
-0.45 1.5342 23.2038 7.2175 0.0707 4.3564 | 7.8481
15 -0.40 1.5806 19.3483 6.1844 0.0734 4.1189 | 7.4903
-0.35 1.6540 16.9964 5.5542 0.0773 3.9669 | 7.1622
-0.30 1.7520 15.4722 5.1458 0.0823 3.8766 | 6.8645
-0.25 1.8730 14.4550 4.8732 0.0881 3.8322 | 6.5961
-0.20 2.0166 13.7730 4.6905 0.0947 3.8232 | 6.3542
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015 21825 |13.3257 45706 01020 |3.8418 |6.1361
®(dgree) | K N, N, N, N, Ny Ne
N;

15 010 | 23710 |13.0501 |4.4968 | 01101 |3.8825 | 59388
005 | 25823 |120048 |4.4579 |0.1183 |3.9413 |5.7596

0.00 28168 | 12.8613 | 4.4462 |0.1282 | 4.0149 | 55961

+0.05 3.0750 12.8991 4.4563 0.1383 4.1008 | 5.4463

050 | 36745 |46.2884 |17.8477 | 0.0673 |5.6658 |9.1768

045 | 36419 |33.8986 |13.3381 |0.0728 |5.3067 |8.5380

040 | 36943 |27.6099 |11.0492 | 0.0796 | 5.0886-| 7.9941

035 | 38151 |23.9213 |9.7067 |0.0877 | 49684 |7.5267

030 39952 | 215875 |88572 |0.0970 |4.9199 |7.1214

20 20.25 42298 | 200542 |8.2992 | 01076 | 4.9258 | 6.7672
020 | 45161 |19.0369 |7.9289 |O0.1194 | 49764 | 6.4552

015  |58533 |183742 |7.6877 |0.1825 50582 |6.1783

010 | 52413 |17.9678 |7.5398 |0.1470 | 5.1704 |5.9309

005  |50864 |17.7542 |7.4620 |0.1629° |5.3068 |5.7084

0.00 6.1717 |17.6903 |7.4368. | 0.1802 |54638 |55072

¥0.05 | 67161 |17.4757 |7.4589 | 0.1989 |5.6486 |5.3243

050 | 85665 |73.8778 |354499 |0.0732 |7.2346 |9.9384

045 | 83599 |51.2706 |24.9079 |0.0835 |6.8363 | 9.0503

040  |83728 |40.7056 | 199814 |0.0954 | 6.6214 |8.3291

035  |85541 |34.7663 |17.2119 |0.1094 | 6.5339 |7.7297

030 88760 |31.1015 |155029 |0.1254 | 6.5404 |7.2223

’s 025 | 93230 287315 |14.3977 |0.1437 |6.6199 | 6.7864
020 | 9.8871 271750 |13.6720 |0.1646 | 6.7584 | 6.4075

20.15 105646 | 26.1681 | 13.2024 | 0.1882 | 6.9462 | 6.0748

20.10 11.3542 | 25.5533 | 12.9157 | 0.2148 | 7.1761 | 5.7803

20.05 122560 | 252309 | 12.7654 | 0.2445 | 7.4429 | 55178

0.00 13.2745 | 25.1345 | 12.7205 | 0.2775 | 7.7423 | 5.2825

¥0.05° | 144005 | 252180 |12.7594 |0.3139 |8.0710 |5.0704

2075 103095 | 80.8644 | 47.6872 | 0.1064 | 9.3123 | 9.3540

-040 101315 | 62.4470 | 37.0539 | 0.1267 | 9.0899 | 8.4705

20.35 103718 | 52.5548 | 31.3426 | 0.1506 | 9.0494 | 7.7518

20.30 10.9400 | 46.6067 | 27.9084 | 0.1787 | 9.1446 | 7.1533

025 | 201887 |42.8208 | 257226 |0.2116 |9.3473 | 6.6458

30 20.20 21.0566 | 40.3597 | 243017 | 0.2500 | 9.6392 | 6.2095
015 | 233512 |38.7778 |23.3884 |0.2944 | 10.0081 | 5.8303

010 | 249984 |37.8159 |22.8330 |0.3456 | 10.4452 | 5.4979

005 | 26.8993 | 373127 |22.5425 |0.4041 | 10.9441 | 5.2044

0.00 20.0580 | 37.1624 | 22.4558 | 0.4706 | 11,4998 | 4.9436

¥0.05 | 314810 |37.2926 |22.5309 | 0.5457 | 12.1084 | 4.7107
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35 045 | 462942 | 1343023 | 950397 | 0.1527 | 13.4981 | 9.4021
®(dgree) | K N, N, N, N, Ny Ne
N;

040 | 45.4427 |100.66099 | 71.4837 | 0.1887 | 13.2639 | 8.3844

035 | 45.6687 |83.4477 |59.4308 | 0.2323 | 13.3114 | 7.5703

030 | 46.7356 | 733676 |52.3727 | 0.2849 | 13.5708 | 6.9017

025 | 485145 |67.0529 |47.9511 | 0.3481 | 14.0015 | 6.3419

020 | 509356 |62.0887 |45.1052 | 0.4237 | 14.5786 | 5.8661

35 20.15 53.0640 | 60.3926 | 43.2874 | 0.5133 | 15.2895 | 5.4569
010 | 57.8568 |58.8199 |42.1864 | 0.6191 | 16.1127 51018

20.05 61.8051 | 57.9980 | 416113 | 07428 | 17,0515 47911

0.00 66.6196 | 57.7539 | 41.4398 | 0.8868 | 18.0970 | 45175

¥0.05 | 72.0773 |57.9662 | 415884 | 1.0526 | 10.2451 | 4.2753

20.40 115.7007 | 172.8231 | 146.0161 | 0.3229-| 20,8738 | 8.0404

2035 1155504 | 141.1002 | 119.3973 | 04107 | 21.1138 | 7.1701

20.30 117.6386 | 123.0124 | 104.2199 | 0.5195 | 21.7125 | 6.4650

20.25 1215875 | 111.8576 | 94.8599 | 0.6536 | 22.6077 | 5.8817

20.20 127.1879 | 104.7472 | 88.8935 | 0.8175 | 23.7619 | 5.3914

40 20.15 134.3346 | 100.2323 | 85:1051 | 1.0168 | 25.1570 | 4.9741
20.10 142.9868 | 97.5069 |'82.8181 | 1.2572 | 26.7775 | 4.6152

20.05 153.1451 | 96.0866 | 8L.6263 | 1.5450 | 28.6173 | 4.3038

0.00 164.830 | 95.6630 | 81,2709 | 1.8870 | 30.6724 | 4.0317

¥0.05 | 178.1176 | 96.0303 | 81.5791 | 2.2904 | 32.9400 | 3.7924

040 | 327.6781 | 322:2748 | 323.2752 | 0.6576 | 36.2961 | 7.4295

035 | 3254948 | 250.1345 | 260.1349 | 0.8611 | 37.0113 | 6.5550

030 | 329.9752 224.0769 | 225.0772 | 1.1194 | 38.3965 | 5.8568

025 | 339.8627202.7837 | 203.7840 | 14447 | 40.3468 | 5.2846

45 20.20 354.4804 | 189.3358 | 190.3361 | 1.8515 | 42.8070 | 4.8083
015 . | 3734971 | 180.8450 | 181.8452 | 2.3565 | 45.7496 | 4.4062

010 | 393.7473 | 175.7358 | 176.7361 | 20784 | 49.1634 | 4.0628

0,05 | 4242605 | 173.0775 | 174.0778 | 3.7386 | 53.0475 | 3.7669

0.00 4561177 | 172.2851 | 173.2853 | 4.6607 | 57.4067 | 3.5096

¥0.05 | 492.4763 | 172.9729 | 173.9732 | 5.7709 | 62.2499 | 3.2843
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511 Seismic Bearing Capacity and Settlement in Granular Soil

The shallow foundations may fail during seismic events. Published studies relating to the
bearing capacity of shallow foundations in such instances are rare. In 1993, however,
Richards et al. developed a seismic bearing capacity theory to find seismic bearing capacity
of granular soil. Figure 5.30 shows a failure surface in soil assumed for the subsequent
analysis, under static conditions. Similarly, Figure 5.31 shows the assumed failure under
earthquake conditions. Note that, in the two figures,

a,, a4p = inclination angles for active pressure conditions

And

ap, apg= inclination angles for passive pressure conditions

W""l

Fig.5.31: Assumed failure surface in soil for seismic bearing capacity analysis
According to this theory, the ultimate bearing capacities for continuous foundations in
granular soil are

qu = qNg + %yBNy, For static condition----------=----=----- Eq. (5.144)

qQue = qNgg + %yBNyE, For Earthquake conditions------------ Eq. (5.145)
Where, Ny, N,,, Ngg, N, are bearing capacity factors
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Again, N,, N, = f(@")
And Ny, Nyp = f(@', tan8)

Where tanf = =

1-ky

Eq. (5.146)

k= Horizontal coefficient of earthquake acceleration

k,= Vertical coefficient of earthquake acceleration

Using the failure surface shown in Figure 5.31, Richards, EIms and Budhu (1993) provided
the values of bearing capacity factors, N,, and N,,. They are given in Table 5.3

Table 5.3: Bearing capacity factors

¢(deg) Ng Ny
0 1.0 0
10 24 1.4
20 5.9 6.4
30 16.5 238
40 59.0 112.0

The variations of N, and N,, with @" are shown in Figure 5.32.Figure 5.33 shows the variations

N. N, . . . .
of YE / y.and %/ with tan and the soil angle ®’based on this analysis.
Y q

120

100 1

B0 1

Ngan d Ny

40

60

)

Soil friction angle, ¢ (deg)

Fig. 5.32: Variation of N, and N, based on failure surface assumed in Figure 5.30
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Fig. 5.33: Variation of VE/Nyand qE/Nq with tan6

Under static conditions, bearing capacity failure can lead to-a substantial sudden downward
movement of the foundation. However, bearing capacity related settlement in an earthquake is

important and it takes place when the ratio tanf = kh/(l — k) reaches the critical value. The
v

.. k L. *
critical value can be expressed as [ a ’;{ )] critical becomes equal to k;, when k,=0
—tv

Table 5.4: Variation of a,; with k;, and soil friction angle @’
(Compiled from Richards, Elms and Budhu, 1993)

tanar,e
ki, ¢ =20 ¢'=25° ¢'=30" ¢ =35 ¢ =40°
0.05 1.10 1.24 1.39 1.57 1.75
0.10 0.97 1.13 1.26 1.44 1.63
0.15 0.82 1.00 1.15 1.32 1.48
0.20 0.71 0.87 1.02 1.18 1.35
0.25 0.56 0.74 0.92 1.06 1.23
0.30 0.61 0.77 0.94 1.10
0.35 047 0.66 0.84 0.98
0.40 0.32 0.55 0.73 0.88
0.45 0.42 0.63 0.79
0.50 0.27 0.50 0.68
0.55 0.44 0.60
0.60 0.32 0.50

Figure 5.34 shows the variation of kj, (for k, = 0) with the factor of safety (FS) applied to the
ultimate static bearing capacity [Eq. 5.144], with @' , and with Df/B (for @’ =30° and 40°).
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Fig.5.34: Critical acceleration k;, for k,=0

The settlement of a strip foundation due to an earthquake using a sliding block approach can be
estimated (Richards, EIms and Budhu, 1993) as

Spq(m) = 0.1745[’%] Y 9 = NLAum Eq. (5.147)

Where, V = peak velocity for the design earthquake (m/sec)

A = acceleration coefficient for the design earthquake

g = acceleration due to'gravity (9.81 m/s?)

The values ofk}, and a4z can be obtained from Figure 5.34 and Table 5.4, respectively. This
approach can be'used to design a footing based on limiting seismic settlements.

Problem No.1

A'rectangular foundation has a length L of 2.5 m. It is supported by medium dense sand with a
unit weight of 17 kN/m2. The sand has an angle of friction of 36°. The foundation may be
subjected to a dynamic load of 735 kN increasing at a moderated rate. Using a factor of safety
equal to 2, determine the width of the foundation. Use Ds= 0.8 m.

APPENDIX (Foundation for Various Types Machines)
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DESIGN OF RECIPROCATING MACHINE FOUNDATION

Reciprocating Machine should be placed over suitable Vibration Absorber to reduce the
magnitude of displacement due to dynamic unbalanced force produced due the Machine.

Design for Vibration absorber: The following steps are required

1
2

10
11

12

13

Q.1

Make a trial design without absorber

Depending on requirement of minimum foundation size, for the machine selection of
block foundation size is made.

Determine stiffness due to vertical vibration K=K

Determine the natural frequency of soil, considering total mass due to machine and
foundation, w;,;; =v—=

mqi+m,

Find mass ratio n :%

1
Determine frequency ratio alz%, w is the operating frequency
Compute displacement magnitude without absorber as , Zmax
Fo
(my+my) (w2, -w?)

Zmax=

Z

Calculate efficiency of absorber = , 2118 the permissible displacement

max
Again efficiency can be expressed as

aZ(1+n)(a?-1)
M i-a+n) (a?+a%-a2a2)]

Wni2

where a; is the frequency ratio, a, = ”

Whi2 is the natural frequency of absorber.
Find stiffness of absorber Ko=m,w?,,

Suitable absorber may be selected from K»

[(1+n)aZ+naZ-1]F,
myw?[1-(1+n)(a?+a%-a?a?)]

Find Z,= , Than check for maximum force of resistance

Find'magnitude of force resistanceF, = K,Z,

Determine the stiffness of the absorber to be kept between a reciprocating machine and

foundation to bring the vibration amplitude to less than 0.02 mm. The weight of the machine is

18 KN. It produces an unbalanced force of 4 kN, when operated at speed of 600rpm. Shear
modulus of foundation soil G=20MN/m? and p= 0.35.

Sol: Mass of the block foundation of dimension 4x3m? with 1.5 m height

mq =

_ 24X4X3X15
9.81

= 44 kg
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Mass of machine m, = % = 1.83 kg,

Equivalent radius of circular footing r = /%:1.95 m

Stiffness in vertical direction, K, = %:240000 KN/m

240000
44+1.83

Natural frequency of vibration, w,,;; = =72.36 r/sec

Operating frequency of machine, w = Z”ZEOO: 62.83 r/sec
Maximum amplitude of vertical vibration (Without absorber)

Fo
(m, +m2)(w72111 -

--=0.068 mm
w?)

Zmax =

2= 20,333

Zmax 0.068

Efficiency of absorber=

Frequency ratio, a;, = % =1.15, Mass ratio, n = %:0.0415
2

a?(1+n)(a2=1)
[1-(1+n)(a?+a%—a?a3?)]

Now efficiency can also be expressed as n=

aZ(1+0.0415)(1.152-1)
[1—(1+0.0415)(1.152+a3—1.152a2)]

Hence, 0.333=

S0 a,=1.31
Buta, = % hence w,,;,=81.97 r/s

_ [(1+n)aZ+naZ-1]F, [(1+0.0415)1.152+0.0415%1.312—1]| x4

= = = —58.47 mm
2 myw?[1-(1+n)(aZ+a%-a?a2)] 1.83x62.832[1—(1+0.0415)(1.152+1.312-1.152x1.312)]

Resisting force of absorber F, = K,Z,=12298x0.05847=719 kN

MACHINE FOUNDATION ON PILES

Piles divided into two groups: End bearing and Friction Piles
Longitudinal Vibration of Short Elastic Bar:
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) End Bearing Pile' Mass of Pile is negligible
2
~ U2 G Eq.(1)

Where u is the displacement function and v is shear wave velocity
Solution to above second order differential equation is expressed as

u(x,t)=U(x)(Aisinwnt+A2c0swnt)--- Eq.(2)
Where A: and Az are two constants, wn is the natural frequency and U(x) is amplitude of
displacement along the length of the bar and is independent of time “t”
Eqg. 1 can be rewritten by putting value from Eq.2 as

Wave equation:

a
2D 12 02U X) = 0 Eq.(3)

Now general solution to the above Eq.3 can be given as

U(x) :Blsin(%) +Bzcos(% ----- Eq. (4)

Using end conditions a) Fixed
At x=0, U(x) =0 which gives B>=0

At x=L, &2 — o, glves—a)ncosM 0,
Hence, cos 2= = 0, or 2= M
Ve Ve 2
Which gives, w,, = = (Zn — Dm=¢, for n=1 w, = %%
Cl)n 1 E_P _______________
So natural frequency f, = ~%=_ . Eq.(5)

Where Ep and pp are Young’s modulus and density of pile material

(13 2

Now mass of pie is considered as “m
The general solution is again taken as'U(x) =Blsin(%) +Bzcos(%
From end condition, we get B2=0.which gives U(x) :Blsin(%)

At x=L, the inertia force of mass m'is acting on the soil column and this can be expressed as
62

F=-m-ogmmmmmmmate e Eq.(6)
Strain in the pile is expressed as ezg—z = % ------------ Eq.(7)
Where E and A are Young’s modulus and area of cross section of pile respectively.

F _du U :
7= % = — (Alsma)nt + Aycoswy,t)-------- Edq.(8)
Substituting for , above Expression becomes
Bywp F

1;: cos( o ) (Alsma)nt + Aycosw,t) = Y Eq.(9)
Now, F = —m(;—z = —m[Blsin(wv—M] %(Alsinwnt + Aycoswy,t)------ Eq.(10)
Or, F = mw,lelsm(wv—M)(Alsinwnt + A,cosw,t)----------- Eq.(11)
From Eq.(9) and (10), we get
AE n : n
5, cos (wv—cx) = mwnsm(wv—cx) ------ Eq.(12)
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Atx=L AE = mw,vetan () --------- Eq.(13)
Or, Apv? = mwnvctan(wv—”L) -------------- Eq.(14)
as v, = \/%
Now consider a non-dimensional parameter,
Aly _ @nl Only
W = a-tan() Eq. (15)
which may be expressed as f = atana
Where 8 = 2 and ¢ = £zt
w Ve
The above relation can be placed in tabular form as Tablel
T1: Coefficients for natural frequency of piles
B 0.1 0.3 0.5 0.7 1.0 2.0 4.0 10.0
a 0.32 0.53 0.66 0.75 0.86 1.08 1.27 1.43
When pile mass is negligible as compared to mass of on pile cap, we get
AL nL AE,
o= (“;—C)2 ,and hence wy, = Vo hemmemmmemen e Eq.(16)

i) Friction Pile:

Assumptions:

1 Pile is vertical and circular in cross section, if not equivalent circular radius is taken

2 The pile is floating the soil foundation, (Not restricted)

3 The pile is perfectly connected to soil.

4 The soil above the pile tip behaves as an infinitesimal thin independent linearly
elastic layer.

5 The dynamic stiffness.and damping of pile material can be described interms of a

complex stiffness matrix as proposed by Novak and El-Sharnouby 1983.

Stiffness K = Ky 4 iK,-------------=-=-m-m-mmom- Eq. (17)
Kz is realpart of stiffness =Rex
And K3 isdmaginary part=Im«
Let vertical stiffness K; =Rek ---------=--=-==-=--- Eq.(18)
And Damping Coefficient CZ:I;‘—" ---------------- Eqg.(19)
Now force acting on pile Q=KZ----------=-------- Eq.(20)
OrQ = (K, + iw,C,)Z or Q = (K,Z + ZC,) - Eq.(21)
Stiffness and Damping are rewritten as
A A
K, = CDfnandC, = Gt - Ea.(22)
p

Where f,1 and f,, are two factors can be taken from Fig. 1 (a),(b), proposed by Novak et al.
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Fig. 1:Stiffness and Damping Parameters of Vertical Response for:-a) End Bearing Piles and b)
Floating Piles (reprinted from Novak and El Sharnouby 1983, © ASCE)

Stiffness and Damping of Pile Group

K,(g) = 222a0dC, (g) = £ wrmmmrerrmmmreneeeee Eq.(23)

Where a, = Interaction factor and is obtained. from the table T:3.6 page 49 (Hand book of
Machine Foundation by Srinivasulu &Vaidyanatham)

S/D=Pile Spacing/Diameter of Pile | 3.0 45 6.0 0

a, 0.35 0.58 0.63 1.0
Stiffness and Damping Coefficient of Pile Cap:
K,(cap) = G;DfS, --------------"Qf=m---=mmmmmmmmmm - Eq.(24)
C,(cap) = DyrSoGypg-mmm-mmrmmrmmrmmrmmemmemeanaan Eq.(25)

Where rq is the equivalent radius of pile cap and Dx is the depth of pile cap from ground surface
S1 and S; are constants and may be taken as 2.7 and 6.7 respectively.

Now total stiffness and Damping Coefficient can be obtained as

K,(T) = K,(g) + K (cap)--------=--==mmrmmmmmmmmmmmmeeev Eq.(26)

Cz(T) = Cz(.g) + Cz (Cap) """"""""""""""""" Eq(27)

Damping Ratio in Vertical Direction

C(T) e e e e e e e e e e e e e Eq(28)

Z 7 WK, (T)m
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Y — Eq.(29)

Amplitude of Displacement: For constant force of excitation

4. =% 1 e Eq.(30)

z— Kz Dz\/(l_DZZ)

Amplitude of Displacement: For rotating mass type of excitation

Az — mee L Eq(31)

M D,V(1-D2)

Q.1 A group of four piles having dimension 0.3x0.3 m? is supported a machine foundation as
shown in Fig. Determine total stiffness and damping coefficient, given Ep=2.1x10" KN/m?, unit
weight of s0il18.9 kN/m?, Poisson’s ratio 0.5 and shear modulus Gs=28120 kN/m?

GL
1.5m 2.00m

12m ] |

H A M *
2.1lm

M, .
‘ 1.5m
e

Solution: Equivalent radius of pile cap ro:\/@: 1.18 m
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Equivalent radius of pile R= \/@: 0.17 m

Vertical stiffness of pile, K, = (%E)lez 2Ax107x03% fz1, fz11s found from Fig 1(b) as 0.035

0.17

= 389.1x10°kN/m?

E 2.1x107
Now= = === 746.8= say 750
L
R

G 28120
= 0%=70.58, From Fig. 1(b)f,,=0.06

. S 2.1x107x0.32
Hence Damping Coefficient is calculated as C, = (%)fzz =%x0.06:938.7 KN.s/m
p

18.9
Calculation of Interaction factor:

S=15-4 41 for pile Ato B, Ato D
D 0.34
A A B C D
1 054 [ 048 | 0.54

B 054110 0.54 | 0.48
C 0.48 {054 |1.0 0.54

D 0541048 | 054 |10

Zar 2.56 | 2.56 |2.56 | 2.56

If the sum of interaction factors is not same, than take average value of }; a,

Yk, 4x389100
Kzr(g)—Z ar;—z.ss =607968.75kN/m
C
C,;(g) = =—%=1446.78 kNs/m

Ya,

Now Stiffness and Damping Coefficient for Pile Cap
K,(cap) = GsD;S; = 28120 X 1.5 x 2.7 = 113886 kN/m
And Damping Coefficient for Pile Cap
C,(cap) = DsryS;NGgps=2720 KNs/m
Now total Stiffness and Damping Coefficient are calculated as
K,(T) = K,(g) + K;(cap)=607968.75+113886=721854.75 kN/m
C,(T) =C,(g)+ C;(cap)=1446.78+2720=4166.78 KNs/m

Problem1 A machine is supported by four pre-stressed concrete piles driven into a bed rock.
The length of each pile is 8o ft long and is 12x12 in? in cross section. The weight of the machine
and foundation is 300x10%lbs, unit weight 150 Ib/ft3. The Young’s modulus is 3.5x10°Ib/in,

Determine the natural frequency of pile foundation system.

FRAMED FOUNDATION FOR MACHINE
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In the case of a frame foundation, it is necessary to check the frequencies and amplitudes of
vibration and also to design the members of frame from structural considerations. The methods
for carrying out dynamic analysis may be divided into two categories:
(a) Two-.dimensional analysis
(b) Three-dimensional analysis
The two-dimensional analysis (Also known as Simplified Method) is based on the following
assumptions:
Each transverse frame that consists of two columns and a beam perpendicular to the main shaft
of the machine is considered separately. The stiffness of the equivalent spring is.calculated as the
combined stiffness of the beam and the column acting together and the mass.is determined by the
mass of total loads acting on the cross frame.
Following Assumptions are made.

i) Frame columns are fixed at their lower ends into the rigid base slabs.

i) The difference in vertical deformation of individualframe column is neglected

iii) Torsional resistance of longitudinal beam is.insignificant compare to the deformation

resistance of transverse beam. Therefore, the effect of longitudinal beam on vertical
vibration of transverse frame can be neglected.

iv) The natural frequencies of individual cross frame are practically of same order.

V) The effect of elasticity of soil is neglected.

Vi) The connection of transverse beam with column is also neglected.
Determination of Vertical Frequency:
For obtaining vertical frequency, each transverse frame that consists of two columns and a beam

perpendicular to-main shaft of the machine is considered separately as shown in Fig. 1
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I QL+2Wy+ W
m =
| 0
h
M
|

Fig. 1 a) Typical Transverse Frame  b) Idealised Model
The loads acting on this frame are
(1) Dead load of the machine and bearing, Wm
(i) Load transferred to the columns by longitudinal beams, W1
(iii) Uniformly distributed load due to self weight of cross beam, g per unit length
(Iv) Unbalanced vertical force due to machine operation, F,sin(wt)
The mass-spring system used as model for the frame is shown in Fig.1 (b). The stiffness of
equivalent spring (K) is computed as:the combined stiffness of the beam and columns acting

together. It is given by

K, =2 Eq.1

Where W = Total load on the frame=Wn+2W_+qL

L= Effective span

&,.= Total vertical deflection at the vcentre of the beam due to bending action of beam and axial
compression in.column.

S0, 05t = 01 + 8, + 83 + &y Eq.2
6,=Vertical deflection of beam due to load W,

&,= Vertical deflection of beam due to distributed load q

6;=Vertical deflection of beam due to shear

6,=Axial compression in column

Now the magnitude of each deflection components can be obtained as
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_ WipL3 2K+1
17 96E1, K+2 :

5, = L SK+2

384EI, K+2
65 = o (W + 1)

SEA, 2
0, = W, + M)

EA, 2
Where

Ap=Cross sectional area of beam, A.= Cross sectional area of column

I.=Moment of inertia of beam about the axis of bending

. . h
E= Young’s modulus of concrete, K=Relative stiffness factorzll—’J X
[

L= Effective span of frame, h= Effective height of frame

The values of L and h are taken as

L=1y—2ab,h=hy—2aa

1, = Centre to centre distance between columns (Fig. 1a)

h, = Height of the column from the top of the base slab to the centre of the frame beam (Fig. 1a)
a = One-half of the depth of the beam for a frame without haunches (Fig. 1a) or the distance as
shown in Fig. 2 for a frame with haunches

b = One-half of the column width for a frame without haunches (Fig. 1a) or the distance as
shown in Fig. 2 for a frame with-haunches.

Knowing the values of +h,, [, and b, o can be obtained from Fig. 3.

halls® 0.75
=
0 ! | | | |
0 0.04  0.08 0.2 0-1% G20
b/ls

: _ | i
Fig. 2: values of a and b for a frame with haunches. Fig.3: o versus
0
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The natural frequency of a transverse frame in vertical vibrations is given by

Average vertical natural frequency of the T. G. Foundation is taken as:

_ Wnz1tWnzat ——+Wnzn
Wnza = Eq.4

n

Wnz1 » Wnzo, €1C =Vertical frequencies of individual transverse frames

Vertical Vibration Amplitude:

Pz

AZ = - Eq5
S Kz J(l 9% )2, (2p—L 2
Wnza

Wnza

Az=Average vertical amplitude of vibration og foundation
P,=Total vertical imbalance force

Y. K;= Sum of the stiffness of the individual frames
wnzq= Average value of natural frequency

D= Damping ratio

For under-tuned foundation, i.e. w < Wy, OF Ws = Wy

The maximum amplitude of vibration can be expressed as

Pz 1

Azmax) = YKy X 2D T Eq.6

Horizontal Vibration Analysis:
The following assumptions are made during analysis of horizontal vibration of frame foundation
i) Columns are fixed into'the rigid base slab at lower ends.
i) The deck'slab'is rigid in its own plane.
iii) The resistance offered by the column in axial compression is large as compare to their
resistance in bending.
iv) Torsional vibration of deck slab is neglected.
V) Elastic resistance of the soil at the base can be neglected.
The spring stiffness is provided by the columns due to their bending action and for any

transverse frame is given by

12EI, ,6K+1
K. = <
xt h3 (3K+2)

Eq.7

K,;=Lateral stiffness of an individual transverse frame.

The natural frequency of frame foundation is given by
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Wnxa = [Ty~ T Eq.8

Where W is the total weight of deck slab and machine
The average horizontal amplitude of vibration of the foundation may be expressed as

Py

A, = Eq.9

w? [3)
K 1-——)2+(2D—)?
% nxj( PRI L

For under-tuned foundation, i.e. w < Wy, OF W, = Wy

The maximum amplitude of vibration can be expressed as

P. 1
Ay max = 2; X — Eq.10
X

Two Degree of Freedom (Amplitude Method) Analysis:

L
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Fig. 4(a) Section nof cross frame (b) Mathematical model
Vertical Vibration Analysis:
For the vertical frequency a two-degree-spring-mass system shown in Fig. 4(b) is adopted. Mass

m lumped over the columns is given as

W1 +W5+0.33W3+0.25W,
m1 & 1 2 3 4 qul
g
Mass mz acting at the centre of the cross beam is given as
W5+0.45W,
m; = % Eq.12

W, =Dead load of the machine and bearing
W,=Load transferred to column by lognitudinal beams.

W5=Weight of two columns contituting the transverse frame
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W,=Weight of the tranverse beam
The stiffness Ky of both the column of a transverse frame is given by

O — Eq.13

Y T—— Eq.14

1(1+2K 31
Az = X )
96EI,(2+K) = 8GAp

Eq.15
G = Shear modulus of beam material

E = Young's modulus of columns material

Ac = Cross-sectional area of a column

h = Effective height of the column

I= Effective span of the beam

Av= Cross-sectional area of the beam

Ib= Moment of inertia of the beam

The equations of motion for my as free vibration will be expressed as

m,Z, + K, Z, + K, (Z, — Z,) = 0----—-- Eq.16
Similarly equation of motion for my is given as
mzznz + Kz(Zz - Zl) = 0 """ Eq17
The solution of above equationsare given as
Zl = Alsin(l)nt ““““ Eq.18
Zy, = AySinwyp-------- Eq.19
Now substituting these Eqs into Eq. and on simplification we get
wp — (1 + (w2, + w2,) + (1 +n)w?;;ws, = 0----- Eq.20
_ K1
Onir = g Eq.21
— |
Wniz = fr Eq.22
L S
= Eq.23

Now the two natural frequencies of the system for forced vibration condition can be obtained by

considering the equations motion as

m]_Z"l + K]_Zl + Kz (Zl - Zz) = O """" Eq.24

139



Lecture Notes on DSF | 2021

myZ, + Ky (Z, — Z,) = Fysinwt------- Eq.25
By solving these equations the amplitude of vertical vibration can be obtained as

2
Agy = e Eq.26

2
my|w*=(1+m) (whyy +wh, )0 +(A+n)wh; 0k, |

2 2 _ 2
Azy = Fl+ney tnwz,-e?| Eq.27

2
ma|w*=(1+m) (whyy +whp, )0+ (1+n)wh; 0h |

Problem No. 1

Plan of deck slab with loading position is shown. A reinforced concrete frame with vertical loads
at bvarious points are also shown. The details of these loads are

1 and 2 = 5t each, 3,4,5 and 6 = 2t each

Ec = 3x10° t/m? and unit weight of concrete = 2.24t/m°,

Calculate the natural frequency of horizontal vibration in the longitudinal direction by treating

the frame vas single degree freedom system.

6 2 4
‘ A\ A\ A\ l
4.8 2.8m
\ 5 1 3
! e e Ia) !
* : ~ ~ ~ : 2.0m
. le1.2m —pfe1.2m —>|<—.— 31m — l
v : !
«— 2.5 T 36m 4+— 2.5 —>

Fig. (a)Deck slab with loading position
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2

0.6m
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0.9m 48m >
5.4 m
Fig. (b) longitudinal Section
1 0m = /_J 0.4m

0.6m

0.4m

36m

A 4

A

6.8 m
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Fig (c) Transverse Section
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PRACTICE PROBLEMS

Q.1 An unknown weight W is attached to the end of an unknown spring k and natural
frequency of the system was found to be 90 cpm. If 1 kg weight is added to W, the natural
frequency reduced to 75 cpm. Determine the unknown weight W and spring constant k

Q.2 A spring and dashpot are attached to a body weighing 140 N. The spring constant is 3.0
kN/m. The dashpot has a resistance of 0.75 N at a velocity of 0.06 m/s. Determine the following
for free vibration:whether the system is over damped, under damped or critically damped.

Q.3 A counter rotating eccentric mass exciter is used to produce forced oscillation of a spring
supported mass. By varying the speed of rotation, resonant amplitude of 5.mm _was recorded.
When the speed of rotation was increased considerably beyond the resonant frequency, the
amplitude appeared to approach a constant value of 0.6 mm. Determine the damping factor of the
system.

Q.4 An SDF system is excited by a sinusoidal force.”At resonance the amplitude of
displacement was measured to be 2 mm. At an exciting frequency of one-tenth of the natural
frequency of the system, the displacement amplitude was measured to be 0.2 mm. Estimate the
damping ratio of the system.

Q.5 A body weighing 600 N is suspended from a spring which deflects 12 mm under the load.
It is subjected to a damping effect adjusted to a value 0.2 times that required for critical damping.
Find the natural frequency of the un-damped and damped vibrations, and in the latter case,
determine the ratio of successive amplitudes.

Q.6 In a cyclic plate load test on a plate of 0.60 m x 0.60 m size settles 0.65 mm under a
pressure of 20 kN/m?. On unloading observed plate settlement was 0.60 mm. Determine the
value of coefficient of elastic uniform compression of the soil.

Q.7 A mass attachedto a spring of 5 N/mm has a viscous damping device. When the mass
was displaced and released, the period of vibration was found to be 2 s and ratio of the
consecutive amplitudes was 10/3. Determine the damping factor and natural frequency of the
system. Determine also the amplitude of motion when a force of 3 sin 4t N acts on the system.

Q.8 A machine of weight 17.5 kN and operating frequency 400 rpm has to be installed on
ground which has properties G= 40 MN/m? , ¥,=20 kKN/m® and p=0.3. The machine contains a
unbalanced rotating parts which produce an eccentric moment of 18 Nm in vertical direction.
The permissible amplitude of vibration for the system is 0.2 mm and the equivalent diameter of
the foundation required to install the machine is 1.6 m. Design the foundation.

Q.9 Determine the stiffness of the absorber to be kept between a reciprocating machine and
foundation to bring the vibration amplitude to less than 0.02 mm. The weight of the machine is
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25 KkN. It produces an unbalanced force of 4 Kn in the vertical direction, when operated at speed
of 750 rpm. Shear modulus of foundation soil G=2.5x10*kN/m? and Poisson’s ratio 0.3.

Q.10 A foundation is subjected to a constant force type vibration. Given that the total weight of
machine and foundation block is 1500 N. Unit of foundation soil y= 15 kN/m?, Shear modulus
and poison’s ratio are 15 MN/m? and 0.4 respectively. The amplitude of vibrating force Fo =
1500N.Operating frequency of machine is 80 cpm. The size of foundation block is 10m long and
3 m wide. Determine

i) The resonance frequency and check for type of mode of vibration
i) Amplitude of vibration at resonance.

Q.11 A machine is supported by four pre-stressed concrete piles driven into a‘bed rock. The
length of each pile is 80 ft and they are 12x12in? in cross section. The weight-of the machine and
foundation is 300x102% Ibs, Unit of concrete is 150 Ib/ft3. Young’s modulus 3.5x10° Io/ft3.
Determine the natural frequency of pile foundation system.

Q.12 Following are the field standard penetration test number (N)-in a deposit of sand. Ground
water table is encountered at a depth of 3m below the ground surface. Soil properties of sand are,
dry unit weight 18.5kN/m? and saturated unit weight 20.6 kN/m®. Determine for an earth quake
magnitude of 7.5, whether liquefaction will occur? Assume ground acceleration as amax= 0.15g.

Depth(m) | 1.5 3.0 45 6.0 75 9.0 105
N 6 8 10 14 16 20 20

Q.13 A horizontal piston type compressor is placed on a block type foundation as shown In
Fig.1
The operating frequency is 600 cpm. The amplitude of the horizontal unbalanced force of
compression is 30kN and it produces a rocking motion of the foundation about point O. The
mass moment of inertia. of the compressor assembly about the axis BOB’ is 16x10°kg.m2.
Determine

) The‘resonance frequency

i) The amplitude of rocking vibration at resonance.

Q.14° A concrete bock foundation of a machine has the following dimension, L=4m, B=3m and
height H=1.5 m. The foundation is subjected to a sinusoidal horizontal force from the machine
having amplitude of 10 kN at a height of 2.0 m from the base of the foundation as shown in
Fig.2.

The soil supporting the foundation is sandy clay with G=30,000 kN/m?, u=0.25and unit weight
y=17 kN/m®. Determine

)] The resonance frequency for sliding and rocking mode of vibration of the
foundation (Independent mode analysis)
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i) Total horizontal displacement at the top of the foundation block.

(B
W—f—‘- FOUNDATION s
BREXZ v

4»
an
b 6 +|
|
! )
i
|
| :
am
s PLAN
Fig.1
10 kN
i >
|
i
: 2,0m
15m :
|
|
!
3.0m
+
1.5m .O0m
| NG
3.0m
Fig. 2 Dimension of Block Foundation

Q.15 A machine is supported by four pre-stressed concrete piles driven into a bed rock. The
length of each pile is 8o ft long and is 12x12 in? in cross section. The weight of the machine and
foundation is 300x10%lbs, unit weight 150 Ib/ft®. The Young’s modulus is 3.5x10°Ib/in?,

Determine the natural frequency of pile foundation system.
144



Lecture Notes on DSF | 2021

MULTIPLE CHOICE QUESTIONS

Q.1 A spring and dashpot are attached to a body weighing 200 N. The spring constant is 2.0 kKN/m.
The dashpot has a resistance of 0.65 N at a velocity of 0.05 m/s. If the system is set to a motion, the
system is:

(a) Over damped (b) Under damped (c) Critically damped  (d) None of above

Q.2 A counter rotating eccentric mass exciter is used to produce forced oscillation of @ spring
supported mass. By varying the speed of rotation, resonant amplitude of 6 mm was recorded. When the
speed of rotation was increased considerably beyond the resonant frequency, the amplitude appeared to
approach a constant value of 0.6 mm. The damping factor (in %) of the system is:

(@) 2 (b) 8 ©9 (@5

Q.3  An SDF system is excited by a sinusoidal force. At resonance the amplitude of displacement was
measured to be 4 mm. At an exciting frequency of one-tenth of the natural frequency of the system, the
displacement amplitude was measured to be 0.3 mm. The damping factor-of the system (in %) is:

(@) 3.75 (b) 3.05 () 1.25 (d) 5.81

Q.4 A body weighing 600 N is suspended from a spring which deflects 10 mm under the load. It is
subjected to a damping effect adjusted to a value 0.4 times that required for critical damping. The un-
damped natural frequency of the vibrations (in radian per.second) is:

(a) 36.33 (b) 28.86 (c) 31.32 (d) 41.81

Q.5  The damped natural frequency of the vibrations (in radian per second) of the system in Q 4 is:
(a) 33.33 (b) 35.16 (c) 28.70 (d) 20.11

Q.6 The ratio of successive peak amplitudes of the vibrations for the system of Q 4 is:

(@) 7.33 (b) 12.34 (c) 18.25 (d) 16.58

Q.7 A mass attached to a spring of 9 N/mm has a viscous damping device. When the mass was
displaced and released, ratio of the consecutive amplitudes was 11/6. The damping factor of the system
(in %) is:

(a) 7.20 (b) 5.67 () 3.93 (d) 9.64

Q.8 . As per Indian standard code 1S 2974, 1V, the permissible amplitude for Rotating machine speed
>1500 rpm is

a) 0.4mm b) 0.2mm c) 0.6mm d) 0.8 mm

Q.9 If ® and o, are operating and natural frequency of system respectively, which one is correct for
the design condition of dynamically loaded foundation

a)0.5w < w,<1.5w b) 0.5w>w>1.5w €)1.5W>wWn<0.25w d) None of above
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Q.10  An unknown weight W is attached to the end of an unknown spring k and natural frequency of
the system was found to be 92cpm. If 1 kg weight is added to W, the natural frequency reduced to 80
cpm. Find the unknown weight

a)5.97kg b)4.07 kg c) 3.11 kg d)3.97 kg

Q.11 The value of equivalent radius of circular footing for rocking mode of vibration of a rectangular
foundation of size 4mx6m is

(@28m (b) 3.1m (c) 3.5m (d) None of above

Q.12  Damping factor for sliding mode of vibration is given as

0.245 0.425 0.2875 0.215
(@) (b) 5 ©>5" @ 5
Q.13  Spring constant for torsional mode of excitation is expressed as
@ ‘fi: (b) % (Y= Gr3 (d) None of above

Q.14 Modified mass ratio as per Lysmer Analysis for a block type foundation of size 4x6 m? subjected
to vertical mode of vibration due to total weight of 150 kg resting on foundation soil having unit weight
and poison’s ratio as 17.2 kN/m® and 0.25 respectively is

(@) 0.764 (b) 0.205 (c) 1.204 (d) 0.415
Q.15 The magnification factor for mode of vibration in Q 4 is:
(@) 1.208 (b) 1.176 (c) 0.987 (d) 2.316

Q.16  According to the Richart, the maximum operating frequency up to which no noticeable amplitude
of vibration can be identified by person

(a) 500 rpm (b) 750/rpm (c) 1000 rpm (d) 2000 rpm

Q.17  According the AS 5249, the relation between Coefficient of uniform elastic compression for
various mode of excitation can be given as

(a) Cu=1.73 C5C»=2Cy > (b)Cy=2C, Co=1.75Cy (c)Cy=2.25C,, C,=2.2Cy (d)None of above

Q.18 Thevalue of coefficient of elastic uniform compression C, of soil obtained from block vibration
test of contact area of 10 m? is 12 kN/m? The of C, for a base area of foundation of 12 m? is

(a)15 kN/m? (b) 10.65 kKN/m? (c) 12 KN/m? (d) None of above

Q.19 Coefficients for natural frequency of end bearing pile of length 12m resting on soil having shear
velocity of 350 m/s is 0.43. The natural frequency of vibration is

(@) 14.56 rpm (b) 18.98 rpm (c) 12.54 rpm (d) None of above

Q.20 The efficiency of absorber m used in foundation for reciprocating engine when maximum
displacement is 0.034 mm and the permissible displacement of 0.02 mm is

a) 65.2% (b) 58.82% (c) 76.3% (d) None of above
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