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Subject Name: DYNAMICS OF SOILS AND FOUNDATIONS MCEGT201   

Course Content 

Module-I 

Fundamentals of vibrations: single, two and multiple degree of freedom systems, 

vibration isolation, vibration absorbers, vibration measuring instruments. 

Module-II 

Wave propagation: elastic continuum medium, semi-infinite elastic continuum 

medium, soil behaviour under dynamic loading. 

Module-III 

Liquefaction of soils: liquefaction mechanism, factors affecting liquefaction, studies by 

dynamic tri-axial testing, shake table and blast tests, assessment of liquefaction potential. 

Module-IV 

Dynamic elastic constants of soil: determination of dynamic elastic constants, various 

methods including block resonance tests, cyclic plate load tests, wave propagation tests, 

oscillatory shear box test. 

Module-V 

Theory of Vibration of Foundation: Vertical, sliding, torsional and rocking oscillation of 

footing resting on Elastic half space. Oscillation of rigid circular footing supported by an 

elastic layer. Introduction of bearing capacity of dynamically loaded shallow foundation. 

Reference Books: 

 Das, B.M., “Fundamentals of Soil Dynamics”, Elsevier, 1983. 

 Steven Kramer, “Geotechnical Earthquake Engineering”, Pearson, 2008. 

 Prakash, S., Soil Dynamics, McGraw Hill, 1981. 

 Kameswara Rao, N.S.V., Vibration analysis and foundation dynamics, Wheeler 

Publication Ltd., 1998. 

 Richart, F.E. Hall J.R and Woods R.D., Vibrations of Soils and Foundations, Prentice Hall 

Inc., 1970. 

 Prakash, S. and Puri, V.K., Foundation for machines: Analysis and Design, John Wiley & 

Sons, 1998 

COURSE OUTCOME 

Students can interpret theory of vibration and resonance phenomenon, dynamic             

amplification. 

Students can investigate propagation of body waves and surface waves through soil. 

Students can predict dynamic bearing capacity and assess liquefaction potential of any site. 

Student exposed to different methods for estimation of dynamic soil properties required for 

design purpose. 

Students apply theory of vibrations to design machine foundation based on dynamic soil 

properties and bearing capacity 
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1.0 FUNDAMETALS OF VIBRATION 

In order to understand the behaviour of a structure subjected to dynamic load lucidly, one must 

study the mechanics of vibrations 'caused by the dynamic load. The pattern of variation of a 

dynamic load with respect to time may be either periodic or transient. The periodical motions can 

be resolved into sinusoidally varying components e.g. vibrations in the case of reciprocating 

machine foundations. Transient vibrations may have very complicated non-periodic time history 

e.g. vibrations due to earthquakes and quarry blasts. 

A structure subjected to a dynamic load (periodic or transient) may vibrate in one of the 

following four ways of deformation or a combination there-of: 

(i) Extensional  

(ii) Bending  

(iii) Shearing  

(iv) Torsional 

The forms of vibration mainly depend on the mass, stiffness distribution and end conditions of 

the system. 

To study the response of a vibratory system, in many cases it is satisfactory to reduce it to an 

idealized system of lumped parameters. In this regard, the simplest model consists of mass, 

spring and dashpot. This chapter is framed to provide the basic concepts and dynamic analysis of 

such systems. Actual field problems which can be idealized to mass-spring-dashpot systems, 

have also been included. 

1.1 Important Definition 

Vibrations: If the motion of the body is oscillatory in character, it is called vibration.  

Degrees of Freedom: The number of independent co-ordinates which are required to define the 

position of a system during vibration, is called degrees of freedom (Fig. 1) 

Periodic Motion: If motion repeats itself at regular intervals of time, it is called periodic motion. 

Free Vibration: If a system vibrates without an external force, then it is said to undergo free 

vibrations. Such vibrations can be caused by setting the system in motion initially and allowing it 

to move. 

Natural Frequency: This is the property of the system and corresponds to the number of free 

oscillations made by the system in unit time. 

Forced Vibrations: Vibrations that are developed by externally applied exciting forces are called 

forced vibrations. These vibrations occur at the frequency of the externally applied exciting 

force. 

Forcing Frequency: This refers to the periodicity of the external forces which acts on the system 

during forced vibrations. This is also termed as operating frequency. 

Frequency Ratio: The ratio of the forcing frequency and natural frequency of the system is 

referred as frequency ratio. 

Amplitude of Motion: The maximum displacement of a vibrating body from the mean position is 

amplitude of motion. 

Time Period: Time taken to complete one cycle of vibration is known as time period. 
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Resonance: A system having n degrees of freedom has n natural frequencies. If the frequency of 

excitation coincides with anyone of the natural frequencies of the system, the condition of 

resonance occurs. The amplitudes of motion are very excessive at resonance. 

 

 

 
Fig.1.1: System with different degrees of freedom 

Damping: All vibration systems offer resistance to motion due to their own inherent properties. 

This resistance is called damping force and it depends on the condition of vibration, material and 

type of the system. If the force of damping is constant, it is termed as Coulomb damping. If the 

damping force is proportional to the velocity, it is termed viscous damping. If the damping in a 

system is free from its material property and is contributed by the geometry of the system, it is 

called geometrical or radiation damping. 

A typical concrete block is regarded as rigid as compared to the soil over which it rests.  

Therefore, it may be assumed that it undergoes only rigid-body displacements and rotations. 

Under the action of unbalanced forces, the rigid block may thus undergo displacements and 

oscillations as follows (Fig. 2) 

1. Translation along Z axis 

2. Translation along X axis 

3. Translation along Y axis 

4. Rotation about Z axis 

5. Rotation about X axis 

6. Rotation about Y axis 
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Fig.1.2: Modes of vibration of a rigid block foundation 

Any rigid-body displacement of the block can be resolved into these six independent 

displacements. Hence, the rigid block has six degrees of freedom and six natural frequencies. Of 

six types of motion, translation along the Z axis and rotation about the Z axis can occur 

independently of any other motion. However, translation about the X axis (or Y axis) and 

rotation about the Y axis (or X axis) are coupled motions. Therefore, in the analysis of a block, 

we have to concern ourselves with four types of motions. Two motions are independent and two 

are coupled. For determination of the natural frequencies, in coupled modes, the natural 

frequencies of the system in pure translation and pure rocking need to be determined. Also, the 

states of stress below the block in all four modes of vibrations are quite different. Therefore, the 

corresponding soil-spring constants need to be defined before any analysis of the foundations can 

be undertaken 

1.2 HARMONIC MOTION 

Harmonic motion is the simplest form of vibratory motion. It may be described mathematically 

by the following equation: 

𝑍 = 𝐴𝑠𝑖𝑛(𝜔𝑡 − 𝜃)-----------------        Eq.1.1 

 
Fig.1.3: Quantities describing harmonic motion 
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The Eq. (1.1) is plotted as function of time in Fig.3. The various terms of this equation are as 

follows: 

Z = Displacement of the rotating mass at any time t 

A = Displacement amplitude from the mean position, sometimes referred as single amplitude. 

The distance 2A represents the peak-to-peak displacement amplitude, sometimes referred to as 

double amplitude, and is the quantity most often measured from vibration records. 

ω= Circular frequency in radians per unit time. Because the motion repeats itself after 2π radians, 

the frequency of oscillation in terms of cycles per unit time will be 𝜔 2𝜋⁄ . It is denoted by f  

θ= Phase angle. It is required to specify the time relationship between two quantities having the 

same frequency when their peak values having like sign do not occur simultaneously. In Eq. (1) 

the phase angle is a reference to the time origin. 

The time period, T is given by 

𝑇 =
1

𝑓
=

2𝜋

𝜔
-------------------         Eq.1.2 

The velocity and acceleration of motion are obtained from the derivatives of Eq. (1.1) 

Velocity = 
𝑑𝑍

𝑑𝑡
= 𝐴𝜔𝑐𝑜𝑠(𝜔𝑡 − 𝜃)-----------------      Eq.1.3 

  =𝐴𝜔sin⁡(𝜔𝑡 − 𝜃 + 𝜋
2⁄ ) 

Acceleration = 
𝑑2𝑍

𝑑𝑡2
= 𝜔2𝐴𝑠𝑖𝑛(𝜔𝑡 − 𝜃)---------------      Eq.1.4 

  =𝜔2𝐴𝑠𝑖𝑛(𝜔𝑡 − 𝜃 + 𝜋) 

Equations (1.3) and (1.4) show that both velocity and acceleration are also harmonic and can be 

represented by vectors ωA and 𝜔2𝐴,⁡which rotate at the same speed as A, i.e. ω rad/unit time. 

These, however, lead the displacement and acceleration vectors by 𝜋 2⁄ ⁡and π respectively. In 

Fig.4 vector representation of harmonic displacement, velocity and acceleration is presented 

considering the displacement as the reference quantity (θ = 0) 

 

 
Fig.1.4: Vector representation of harmonic displacement, velocity, acceleration 



Lecture Notes on DSF 2021 
 

8 
 

1.3 VIBRATIONS OF A SINGLE DEGREE FREEDOM SYSTEM 

The simplest model to represent a single degree of freedom system consisting of a rigid mass m 

supported by a spring and dashpot is shown in Fig. 1.5 a. The motion of the mass m is specified 

by one co-ordinate, Z. Damping in this system is represented by the dashpot, and the resulting 

damping force is proportional to the velocity. The system is subjected to an external time 

dependent force F (t). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1.5: Single degree freedom system 

Figure 1.5 (b) shows the free body diagram of mass ‘’m at any instant during the course of 

vibrations. The forces acting on the mass m are: 

(i) Exciting force, F (t): It is the externally applied force that causes the motion of the system. 

(ii) Restoring force, Fr.: It is the force exerted by the spring on the mass and tends to restore the 

mass, to its original position. For a linear system, restoring force is equal to K Z, where K is the 

spring constant and indicates the stiffness. This force always acts towards the equilibrium 

position of the system. 

(iii) Damping force, Fd The damping force is considered directly proportional to the velocity and 

given by 𝐶𝑍̇, where C is called the coefficient of viscous damping; this force always opposes the 

motion.  

In some problems in which the damping is not viscous, the concept of viscous damping is still 

used by defining an equivalent viscous damping which is obtained so that the total the energy 

dissipated per cycle is same as for the actual damping during a steady state of motion. 

(iv) Inertia force, F.: It is due to the acceleration of the mass and is given by 𝑚𝑍̈. According to 

De-Alembert’s principle, a body which is not in static equilibrium by virtue of some acceleration 

which it possess, can be brought to static equilibrium by introducing on it an inertia force. This 

force acts through the centre of gravity of the body in the direction opposite to that of 

acceleration. 

The equilibrium of mass m gives 

𝑚𝑍̈ + 𝐶𝑍̇ + 𝐾𝑍 = 𝐹(𝑡)-------------        Eq.1.5 

which is the equation of motion of the system. 
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1.3.1 Undamped Free Vibrations 

For undamped free vibrations, the damping force and the exciting force are equal to zero. 

Therefore the equation of motion of the system becomes 

𝑚𝑍̈ + 𝐾𝑍 = 0------------         Eq.1.6 

Or 𝑍̈+
𝐾

𝑚
𝑍 = 0 

The solution of this equation can be obtained by substituting 

𝑍 = 𝐴1𝑐𝑜𝑠𝜔𝑛𝑡 + 𝐴2𝑠𝑖𝑛𝜔𝑛𝑡---------------       Eq.1.7 

where A1 and A2 are both constants and 𝜔𝑛 undamped natural frequency. 

Now Substituting Eq. (7) in Eq. (6), we get; 

−𝜔𝑛
2(𝐴1𝑐𝑜𝑠𝜔𝑛𝑡 + 𝐴2𝑠𝑖𝑛𝜔𝑛𝑡) +

𝐾

𝑚
(𝐴1𝑐𝑜𝑠𝜔𝑛𝑡 + 𝐴2𝑠𝑖𝑛𝜔𝑛𝑡)-------------   Eq.1.8 

Or 𝜔𝑛 = ±√
𝐾

𝑚
 

The values of constants A1 and A2 are obtained by substituting proper boundary conditions. We 

may nave the following two boundary conditions: 

(i) At time t = 0, displacement Z = Z0 and 

(ii) At time t= 0, velocity 𝑍̇ = 𝑉0 

Substituting the first boundary condition in Eq. (1.7), we get 

A1=Z0 and 

𝑍̇ = −𝐴1𝜔𝑛𝑠𝑖𝑛𝜔𝑛𝑡 + 𝐴2𝜔𝑛𝑐𝑜𝑠𝜔𝑛𝑡---------------      Eq.1.9 

Substituting the second boundary conditions in Eq. (1.9), we have 

𝐴2 =
𝑉0

𝜔𝑛
---------------                              Eq.1.10 

Hence 

𝑍 = 𝑍0𝑐𝑜𝑠𝜔𝑛𝑡 +
𝑉0

𝜔𝑛
sin𝜔𝑛𝑡-------------------                 Eq.1.11 

Now let 𝑍0 = 𝐴𝑍𝑐𝑜𝑠𝜃⁡--------------------                 Eq.1.12 

and 
𝑉0

𝜔𝑛
=𝐴𝑍𝑠𝑖𝑛𝜃----------------------------                 Eq.1.13 

Substitution  of  Eqs. (1.12) and (1.13) into Eq. (1.11) yields 

𝑍 = 𝐴𝑍𝑐𝑜𝑠(𝜔𝑛𝑡 − 𝜃)---------------------                 Eq.1.14 

Where 𝜃 = 𝑡𝑎𝑛− (
𝑉0

𝜔𝑛𝑍0
)-------------------                 Eq.1.15 

And 𝐴𝑍 = √𝑍0
2 + (

𝑉0

𝜔𝑛
)2----------------------                 Eq.1.16 

The displacement, velocity and acceleration of mass as expressed in above eqs can be 

graphically shown as 
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Fig.1.6: Plot of displacement, velocity and acceleration of vibrating mass-spring system 

It is evident from Fig. 1.6 that nature of foundation displacement is sinusoidal. The magnitude of 

Maximum displacement is Az. The time required for the motion to repeat itself is the period of 

vibration, 

T and is therefore given by.⁡𝑇 =
1

𝑓
=

2𝜋

𝜔
 

The natural frequency of oscillation, 𝑓𝑛is given by  

𝑓𝑛 =
1

𝑇
=

𝜔𝑛

2𝜋
=

1

2𝜋
√
𝐾

𝑚
-----------------       Eq.1.17 

It can be shown that 𝑓𝑛 =
1

2𝜋
√

𝑔

𝛿𝑠𝑡
-----------      Eq.1.18 

Where, 𝛿𝑠𝑡is the static deformation of spring. 

1.3.2 Free Vibrations with Viscous Damping 

For damped free vibration system (i.e., the excitation force F0 sin𝜔𝑛𝑡 on the system is zero), the 

differential equation of motion can be written as 

𝑚𝑍̈ + 𝐶𝑍̇ + 𝐾𝑍 = 0-------------------------      Eq.1.19 

where C is the damping constant or force per unit velocity. The solution of Eq. (1.19) may be 

written as 

𝑍 = 𝐴𝑒𝜆𝑡----------------------        Eq.1.20 

where A and λ are arbitrary constants. By substituting the value of Z given by Eq. (1.20) in Eq. 

(1.19), we get 

𝑚𝐴𝜆2𝑒𝜆𝑡 + 𝐶𝐴𝜆𝑒𝜆𝑡 + 𝐾𝐴𝑒𝜆𝑡 = 0-------------     Eq.1.21 

Or 𝜆2 + (
𝐶

𝑚
)𝜆 +

𝐾

𝑚
= 0---------------------------     Eq.1.22 

By solving Eq. (22) 

𝜆1,2 = −
𝐶

2𝑚
± √(

𝐶

2𝑚
)2 −

𝐾

𝑚
-----------------      Eq.1.23 

The complete solution of Eq.(1.19) is given by 
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𝑍 = 𝐴1𝑒
𝜆1𝑡 + 𝐴2𝑒

𝜆2𝑡-------------------      Eq.1.24 

The physical significance of this solution depends upon the relative magnitudes of (
𝐶

2𝑚
)2 and 

(K/m), which determines whether the exponents are real or complex quantities. 

 Case I:  (
𝐶

2𝑚
)2 > (𝐾/𝑚 

The roots λ1 and λ2 are real and negative. The motion of the system is not oscillatory but is an 

exponential as shown in Fig.1.7).  

 
Fig.1.7: Free Vibration of over Damped Viscous system 

Because of the relatively large damping, so much energy is dissipated by the damping force that 

there is sufficient kinetic energy left to carry the mass and pass the equilibrium position. 

Physically this means a relatively large damping and the system is said to be over damped. 

Case II:  (
𝐶

2𝑚
)2 = (

𝐾

𝑚
) 

The roots λ1 and λ2 are equal and negative. Since the equality must be fulfilled, the solution is 

given by 

𝑍 = (𝐴1+𝐴2)𝑒
𝜆𝑡---------------------       Eq.1.25 

In this case also, there is no vibratory motion. It is similar to over damped case except that it is 

possible for the sign to change once as shown in Fig.1. 8. 

 
 

Fig.18: Free Vibration Critically damped viscous system 

This case is of little importance in itself; it assumes greater significance as a measure of the 

damping capacity of the system. 

When (
𝐶

2𝑚
)2 = (

𝐾

𝑚
) , C=Cc 

And 𝐶𝑐 = 2√𝐾𝑚--------------------       Eq.1.26 
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The system in this condition is known as critically damped system and Cc is known as critical 

damping constant.' The ratio of the actual damping constant to the critical damping constant is 

defined as damping ratio: 

Damping ratio, 𝜉 =
𝐶

𝐶𝑐
 

By substituting this value of' 𝜉 =
𝐶

𝐶𝑐
⁡ in Eq. (1.23), we get 

𝜆1,2 = (−𝜉 ± √(𝜉)2 − 1)𝜔𝑛------------------      Eq.1.27 

 

Case III:  (
𝐶

2𝑚
)2 < (

𝐾

𝑚
) 

The roots λ1 and λ2 are complex and are given as 

𝜆1,2 = (−𝜉 ± 𝑖√1 − (𝜉)2)𝜔𝑛------------------      Eq.1.28 

The complete solution to the Eq.27, gives 

𝑍 = 𝐴1𝑒
(−𝜉+𝑖√1−𝜉2)𝜔𝑛𝑡 + 𝐴2𝑒

(−𝜉−𝑖√1−𝜉2)𝜔𝑛𝑡----------------- -   Eq.1.29 

Or 𝑍 = 𝑒−𝜉𝜔𝑛𝑡[𝐴1𝑒
(𝑖√1−𝜉2)𝜔𝑛𝑡 + 𝐴2𝑒

(−𝑖√1−𝜉2)𝜔𝑛𝑡]---------------   Eq.1.30 

The above equation can be written as 

𝑍 = 𝑒−𝜉𝜔𝑛𝑡[𝐶1sin⁡(𝜔𝑛√1− 𝜉2𝑡) + 𝐶2cos(𝜔𝑛√1− 𝜉2𝑡)]--------------  Eq.1.31 

Or 𝑍 = 𝑒−𝜉𝜔𝑛𝑡[𝐶1sin⁡(𝜔𝑛𝑑𝑡 + 𝐶2cos(𝜔𝑛𝑑𝑡]--------------    Eq.1.32 

Where 𝜔𝑛𝑑 = 𝜔𝑛(1 − 𝜉2)is known as damped natural frequency 

The motion of the system is oscillatory (Fig.1.9) and the amplitude of vibration goes on 

decreasing in an exponential fashion. 

 
Fig. 1.9: Free Vibration under damped viscous system 

As a convenient measure of damping, we may compute the ratio of amplitudes of the successive 

cycles of vibration. 

𝑍1

𝑍2
=

𝑒−𝜔𝑛𝜉𝑡

𝑒−𝜔𝑛𝜉(1+2𝜋/𝜔𝑛𝑡)
------------        Eq.1.33 

Or 
𝑍1

𝑍2
=

2𝜋𝜉

𝑒
√1−𝜉2

-----------------        Eq.1.34 

Now taking logarithm, we get 

𝑙𝑛
𝑍1

𝑍2
=

2𝜋𝜉

√1−𝜉2
------------------        Eq.1.35 

The natural logarithm of ratio of two consecutive peak amplitudes is known as Logarithmic 

decrement.  
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Thus, damping of a system can be obtained from a free vibration record by knowing the 

successive amplitudes which are one cycle apart.  

If the damping is very small, it may be convenient to measure the differences in peak amplitudes 

for a number of cycles, say n, as 

𝜉 =
1

2𝜋𝑛
𝑙𝑛

𝑍0

𝑍𝑛
------------------        Eq.1.36 

Therefore, a system is 

Over damped if ξ> 1; 

Critically damped if  ξ = 1 and 

Under damped if ξ< 1 

 

1.3.2 Forced Vibrations of Single Degree Freedom System 

In many cases of vibrations caused by rotating parts of machines, the systems are subjected to 

periodic exciting forces. Let us consider the case of a single degree freedom system: which is 

acted upon by a steady state sinusoidal exciting force having magnitude F and frequency ω i.e. 

F(t) =F0 sin ωt. For this case the equation of motion (Eq.1. 5) can be written as  

𝑚𝑍̈ + 𝐶𝑍̇ + 𝐾𝑍 = 𝐹0𝑠𝑖𝑛𝜔𝑡-------------      Eq.1.37 

Eq.(37) is a linear, non-homogeneous, second order differential equation. The solution of this 

equation consists of two parts namely (i) complementary function, and (ii) particular integral. 

The complementary function is obtained by considering no forcing function. Therefore the 

equation of motion in this case will be: 

𝑚𝑍1̈ + 𝐶𝑍1̇ +𝐾𝑍1 = 0-----------------      Eq.1.38 

The solution of Eq. (1.38) has already been obtained in the previous section and is given by, 

𝑍1 = 𝑒−𝜉𝜔𝑛𝑡[𝐶1sin⁡(𝜔𝑛𝑑𝑡 + 𝐶2cos(𝜔𝑛𝑑𝑡]--------------    Eq.1.39 

Here Z1 represents the displacement of mass m at any instant t when vibrating without any 

forcing function. . 

The particular integral is obtained by rewriting Eq. (1.37) as 

𝑚𝑍2̈ + 𝐶𝑍2̇ +𝐾𝑍2 = 𝐹0𝑠𝑖𝑛𝜔𝑡---------------------     Eq.1.40 

Where, Z2= displacement of mass m at any instant of time t when vibrating with forcing 

function. 

The, solution of Eq. (40) is given as 

𝑍2 = 𝐴1𝑐𝑜𝑠𝜔𝑛𝑡 + 𝐴2𝑠𝑖𝑛𝜔𝑛𝑡-------------------     Eq.1.41 

where A1 and A2 are two, arbitrary constants. Substituting Eq. (1.41) in Eq.1.40 

𝑚(−𝐴1𝜔
2𝑠𝑖𝑛𝜔𝑡 − 𝐴2𝜔

2𝑐𝑜𝑠𝜔𝑡) + 𝐶(𝐴1𝜔𝑐𝑜𝑠𝜔𝑡 − 𝐴2𝜔𝑠𝑖𝑛𝜔𝑡) + 𝐾(𝐴1𝑠𝑖𝑛𝜔𝑡 + 𝐴2𝑐𝑜𝑠𝜔𝑡) =

𝐹0𝑠𝑖𝑛𝜔𝑡-----------------------------       Eq.1.42 

Considering sine and cosine functions in Eq. (1.42) separately, 

(−𝑚𝐴1𝜔
2 + 𝐾𝐴1 − 𝐶𝐴2𝜔)𝑠𝑖𝑛𝜔𝑡 = 𝐹0𝑠𝑖𝑛𝜔𝑡--------------    Eq.1.43 

(−𝑚𝐴2𝜔
2 + 𝐾𝐴2 + 𝐶𝐴1𝜔)𝑐𝑜𝑠𝜔𝑡 = 0--------------      Eq.1.44 

From Eq.1.43 

𝐴1 (
𝐾

𝑚
−𝜔2) − 𝐴2 (

𝐶

𝑚
)𝜔 =

𝐹0

𝑚
------------       Eq.1.45 

From Eq.1.44 
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𝐴1 (
𝐶

𝑚
𝜔) + 𝐴2(

𝐾

𝑚
− 𝜔2) = 0--------------       Eq.1.46 

By solving these equations, we have 

𝐴1 =
(𝐾−𝑚𝜔2)𝐹0

(𝐾−𝑚𝜔2)2+𝐶2𝜔2----------------        Eq.1.47 

𝐴2 =
−𝐶𝜔𝐹0

(𝐾−𝑚𝜔2)2+𝐶2𝜔2--------------        Eq.1.48 

Let us assume  

𝑥 = 𝑋𝑐𝑜𝑠(𝜔𝑡 + 𝛼)--------------        Eq.1.49 

Where 𝛼 = 𝑡𝑎𝑛−1
𝐴1

𝐴2
= 𝑡𝑎𝑛−1 (

𝐾−𝑚𝜔2

𝐶𝜔
) = 𝑡𝑎𝑛−1 (

1−(
𝜔

𝜔𝑛
)2

2𝜉
𝜔

𝜔𝑛

)----------------   Eq.1.50 

Amplitude 𝑋 = √𝐴1
2 + 𝐴2

2 =
𝐹0

𝐾⁄

√(1−
𝜔2

𝜔𝑛
2 )

2+4𝜉2(
𝜔

𝜔𝑛
)2

----------------------------   Eq.1.51 

Now complete solution is given as 

𝑥(𝑡) = 𝑒−𝜉𝜔𝑛𝑡(𝐶1𝑐𝑜𝑠𝜔𝑑𝑡 + 𝐶2𝑠𝑖𝑛𝜔𝑑𝑡) + 𝑋𝑐𝑜𝑠(𝜔𝑡 + 𝛼)----------------   Eq.1.52 

Finally after some time 1ST part vanishes and vibration is due to steady state which is due to 2nd 

term only. 

The system will vibrate harmonically, with the same frequency as the forcing and the peak 

amplitude is given by  

𝐴𝑍 =
𝐹0

𝐾⁄

√(1−
𝜔2

𝜔𝑛
2 )

2+4𝜉2(
𝜔

𝜔𝑛
)2

--------------------------      Eq.1.53 

The quantity 
𝐹0

𝐾⁄  equals to the static deflection of the mass under force F0. Dynamic 

magnification factor M is the ratio of the dynamic amplitude Az to the static deflection and is 

given by 

𝑀 =
1

√(1−
𝜔2

𝜔𝑛
2 )

2+4𝜉2(
𝜔

𝜔𝑛
)2

-----------------------       Eq.1.54 

It would be seen that the frequency ratio near (
𝜔

𝜔𝑛
=η=) 1, the value of frequency is maximum. 

This is called resonance and the forcing frequency at which this occurs is called as the resonant 

frequency. 

Differentiating Eq. (1.53) with respect to η and equating to zero, it can be shown that resonance 

will occur at a frequency ratio given by 

𝜂 = √1 − 2𝜉2-------------------       Eq.1.55 

which is approximately equal to unity for small values of  ξ 

 Now 𝜔𝑛𝑑 = 𝜔𝑛√1 − 2𝜉2-------------------------      Eq.1.56 

This is known as damped resonance frequency. 

Maximum value of magnification factor can be obtained as 

𝑀𝑚𝑎𝑥 =
1

2𝜉√1−𝜉2
-------------------------       Eq.1.57 
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Example:1 

An unknown weight W is attached to the end of an unknown spring k and natural frequency of 

the system was found to be 90 cpm. If 1 kg weight is added to W, the natural frequency reduced 

to 75 cpm. Determine the unknown weight W and spring constant k. 

Sol: 

𝜔𝑛 = 90⁡𝑐𝑝𝑚 

When 1 kg added to the weight W, the natural frequency reduced to 75 cpm 

𝜔𝑛= 90 cpm  

Or f= 90/60=1.5 cps 

𝜔 = 2𝜋𝑓 = 2𝜋 × 1.5⁡𝑟/𝑠 

𝜔2 = 𝐾
𝑚⁄ =

𝐾𝑔
𝑊⁄ = 88.92--------------1 

Again,  f= 75/60=1.25 cps  

And  

𝜔 = 2𝜋𝑓 = 2𝜋 × 1.25 = 61.88 

𝐾𝑔
(𝑊 + 1)⁄ = 61.88----------------2 

Solving for 1 and 2, we get W=2.27kg 

And Spring constant K=201 kg/cm 

Example 2: 

A spring and dashpot are attached to a body weighing 140 N. The spring constant is 3.0 kN/m. 

The dashpot has a resistance of 0.75 N at a velocity of 0.06 m/s. Determine the following for free 

vibration: 

(i) whether the system is over damped, under damped or critically damped 

 

Sol: 

     Given: 

    K=3 kN/m, Damping force = 0.75 N at a velocity of 0.06 m/s 

    Hence damping coefficient C= 0.75/0.06=12.5 N.s/m 

    We know: 

 for over damped vibration 

(
𝐶

2𝑚
)2 > (

𝐾

𝑚
) 

     For critical damping 

(
𝐶

2𝑚
)2 = (

𝐾

𝑚
) 

     For under damped 

(
𝐶

2𝑚
)2 < (𝐾/𝑚) 

Now checking for damping condition, we have 
𝐶

2𝑚
=

12.5×9.81

2×140
= 0.437 

Again, √
𝐾

𝑚
= √

3000×9.81

140
= 14.5 

140 N 

K =3kN/m 
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So the system is under damped. 

Example 3: 

An SDF system is excited by a sinusoidal force. At resonance the amplitude of displacement was 

measured to be 2 mm. At an exciting frequency of one-tenth of the natural frequency of the 

system, the displacement amplitude was measured to be 0.2 mm. Estimate the damping ratio of 

the system. 

Sol: 

Given: 

Umax= 2 mm 

u=0.2mm at the exciting frequency of one-tenth of the natural frequency (At small frequency) 

We know that 

𝑢 =

𝐹0
𝐾⁄

√(1 −
𝜔2

𝜔𝑛
2)

2 + 4𝜉2(
𝜔
𝜔𝑛

)2

 

At low frequency ratio 
𝑢

𝐹0
𝑘⁄
=1 

And 
𝑢𝑚𝑎𝑥
𝐹0

𝑘⁄
=

1

2𝜉√1−𝜉2
~

1

2𝜉
 

Hence 
0.2
𝐹0

𝐾⁄
= 1 

So 
𝐹0

𝐾
=0.2 

Now 
2

𝐹0
𝐾⁄
=

1

2𝜉
 , which gives 

2

0.2
=

1

2𝜉
 

Hence ξ=
0.2

4
= 0.05 or 5% 

Example 4: 

A body weighing 600 N is suspended from a spring which deflects 12 mm under the load. It is 

subjected to a damping effect adjusted to a value 0.2 times that required for critical damping. 

Find the natural frequency of the un-damped and damped vibrations, and in the latter case, 

determine the ratio of successive amplitudes. 

Sol:   

𝐾 =
𝑊

𝛿
=

600

12 × 10−3
= 5 × 104𝑁 𝑚⁄  

m=60 kg 

Damping ratio 𝜉 =
𝐶

𝐶𝑐
= 0.2 

Natural Frequency=√
𝐾

𝑚
=√

5×104

60
=28.86 rpm 

Damping frequency 𝜔𝑑 = 𝜔𝑛√1 − 𝜉2 = 28.86 × √1 − 0.22 = 28.27 

Now 𝛿 = 2𝜋𝜉 = 𝑙𝑛
𝑍1

𝑍2
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So 2𝜋 × 0.2 = ⁡𝑙𝑛
𝑍1

𝑍2
 

Or 
𝑍1

𝑍2
= 𝑒2𝜋×0.2 = 3.51 

Problem No.1 

For a machine foundation, given weight = 60 kN, spring constant = 11,000 kN/m, and c = 200 

kN-s/m, determine 

(a) whether the system is overdamped, underdamped, or critically damped, 

(b) the logarithmic decrement, and 

(c) the ratio of two successive amplitudes. 

Problem No.2 

For Problem No.1, determine the damped natural frequency. 

Problem No. 3 

A machine and its foundation weight 140 kN. The spring constant and the damping ratio of the 

soil supporting the soil may be taken as 12 × 104 kN/m and 0.2, respectively. Forced vibration of 

the foundation is caused by a force that can be expressed as Q (kN) = Q0 sin ωt 

Q0 = 46 kN,ω = 157 rad/s 

Determine 

(a) the undamped natural frequency of the foundation, 

(b) amplitude of motion, and 

(c) maximum dynamic force transmitted to the sub-grade. 

1.4 TWO DEGREES OF FREEDOM SYSTEMS 

1.4.1 Undamped free vibration 

 Figure 1.10 shows a mass-spring system with two degrees of freedom.  

 
Fig.1.10: Free vibration of two degree freedom system 

Let Z1 and Z2 be the displacements of mass m1 and mass m2 respectively. The equations of 

motion of the system can be written: 
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𝑚1𝑍̈1 + 𝐾1𝑍1 +𝐾2(𝑍1 − 𝑍2 = 0)----------------      Eq.1.58 

AND  

𝑚2𝑍̈2 + 𝐾3𝑍2 + 𝐾2(𝑍2 − 𝑍1 = 0)----------------      Eq.1.59 

 

The solutions of Eq. (1.58) and (1.59) will be of the following form 

𝑍1 = 𝐴1sin⁡(𝜔𝑛𝑡)--------------- --------------------     Eq.1.60 

𝑍2 = 𝐴2sin⁡(𝜔𝑛𝑡)-----------------------------------      Eq.1.61 

 

Substitution of  Eqs. (1.20) and (1.61), into Eqs. (1.58) and (1.59) yields: 

(𝐾1 + 𝐾2 −𝑚1𝜔𝑛
2)𝐴1 − 𝐾2𝐴2 = 0--------------     Eq.1.62 

(𝐾2 + 𝐾3 −𝑚2𝜔𝑛
2)𝐴2 + 𝐾2𝐴1 = 0--------------     Eq.1.63 

For nontrivial solutions of 𝜔𝑛 in Eqs. (1.62) and (1.63), 

|
𝐾1 +𝐾2 −𝑚1𝜔𝑛

2 −𝐾2
−𝐾2 𝐾2 + 𝐾3 −𝑚2𝜔𝑛

2| = 0--------     Eq.1.64 

Or 

𝜔𝑛
4 − (

𝐾1+𝐾2

𝑚1
+

𝐾2+𝐾3

𝑚2
)𝜔𝑛

2 +
𝐾1𝐾2+𝐾2𝐾3+𝐾3𝐾1

𝑚1𝑚2
= 0-----------    Eq.1.65 

Equation (1.65) is quadratic in 𝜔𝑛
2, and the  roots of this equation are: 

𝜔𝑛
2 −

1

2
[
𝐾1+𝐾2

𝑚1
+

𝐾2+𝐾3

𝑚2
] ± √(

𝐾1+𝐾2

𝑚1
−

𝐾2+𝐾3

𝑚2
)2 +

4𝐾2
2

𝑚1𝑚2
---------------   Eq.1.66 

From Eq.(9),two values of natural frequencies (𝜔𝑛1)and (𝜔𝑛2) can be obtained.  

𝜔𝑛1, is corresponding to the first mode and 𝜔𝑛2⁡is of the second mode of vibration 

The general equation of motion of the two masses can now be written as 

𝑍1 = 𝐴1
1𝑠𝑖𝑛𝜔𝑛1𝑡 + 𝐴1

2𝑠𝑖𝑛𝜔𝑛2𝑡-------------------     Eq.1.67 

𝑍2 = 𝐴2
1𝑠𝑖𝑛𝜔𝑛1𝑡 + 𝐴2

2𝑠𝑖𝑛𝜔𝑛2𝑡-------------------     Eq.1.68 

The superscripts in A represent the mode. 

The relative values of amplitudes A1 and A2 for the two modes can be obtained using Eqs.1.62 

and 1.63. Thus 

𝐴1
1

𝐴2
1 =

𝐾2

𝐾1+𝐾2−𝑚1𝜔𝑛1
2 =

𝐾2+𝐾3−𝑚2𝜔𝑛1
2

𝐾2
--------------      Eq.1.69 

𝐴1
2

𝐴2
2 =

𝐾2

𝐾1+𝐾2−𝑚1𝜔𝑛2
2 =

𝐾2+𝐾3−𝑚2𝜔𝑛2
2

𝐾2
--------------      Eq.1.70 

1.4.2 Undamped forced vibrations 

Consider the system shown in Figure 1.11 with excitation force  

F0 sin (ω t ) acting on mass m1. In this case, equations of motion will be: 

𝑚1𝑍1̈ + 𝐾2𝑍1 +𝐾2(𝑍1 − 𝑍2) = 𝐹0𝑠𝑖𝑛𝜔𝑡------------      Eq.1.71 

AND 

𝑚2𝑍2̈ + 𝐾3𝑍2 + 𝐾2(𝑍2 − 𝑍1) =0----------------      Eq.1.72 

For steady state, the solutions will be as 

𝑍1 = 𝐴1𝑠𝑖𝑛𝜔𝑡------------         Eq.1.73 

AND  

𝑍2 = 𝐴2𝑠𝑖𝑛𝜔𝑡--------          Eq.1.74 
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Substituting  Eqs. (1.73) and (1.74) in Eqs. (1.71) and (1.72), we get 

(𝐾1 + 𝐾2 −𝑚1𝜔
2)𝐴1 −𝐾2𝐴2 = 𝐹0---------------      Eq.1.75 

AND 

−𝐾2𝐴1 + (𝐾2 +𝐾3 −𝑚2𝜔
2)𝐴2 = 0----------      Eq.1.76 

 

 
Fig. 1.11: Mass spring arrangement for Two degree of freedom 

Solving for A1 and A2 from the above two equations, we get 

𝐴1 =
(𝐾1+𝐾2−𝑚2𝜔

2)𝐹0

𝑚1𝑚2[𝜔
4−(

𝐾1+𝐾2
𝑚1

+
𝐾1+𝐾2
𝑚2

)𝜔2+
𝐾1𝐾2+𝐾2𝐾3+𝐾3𝐾1

𝑚1𝑚2
]
-----------    Eq.1.77 

𝐴2 =
(𝐾3𝐹0

𝑚1𝑚2[𝜔
4−(

𝐾1+𝐾2
𝑚1

+
𝐾2+𝐾3
𝑚2

)𝜔2+
𝐾1𝐾2+𝐾2𝐾3+𝐾3𝐾1

𝑚1𝑚2
]
---------------   Eq.1.78 

 

The above Two equations give steady state amplitude of vibration of the two masses 

respectively, as a function of ω. The denominator of the two equations is same. It may be noted 

that: 

(i) The expression inside the bracket of the denominator of Eqs.1.77 and 1.78 is of the same type 

as the expression of natural frequency given by Eq. (1.66). Therefore at 𝜔 = 𝜔𝑛1 and 𝜔 =

𝜔𝑛2values of A1 and A2 will be infinite as the denominator will become zero. 

(ii) The numerator of the expression for Al becomes zero when 

𝜔 = √
𝐾1+𝐾3

𝑚2
--------------------        Eq.1.79 

Thus it makes the mass m1 motionless at this frequency. No such stationary condition exists for 

mass m1. The fact that the mass which is being excited can have zero amplitude of vibration 

under certain conditions by coupling it to another spring-mass system forms the principle of 

dynamic vibration absorbers which will be discussed latter on. 
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1.5 SYSTEM WITH n DEGREES OF FREEDOM 

1.5.1  Undamped free vibrations 

Consider a system shown in Figure 1.12 having n-degree of freedom. 

If Z1, Z2, Z3 ... Zn are the displacements of the respective masses at any instant, then equations of 

motion are: 

𝑚1𝑍1̈ + 𝐾1𝑍1 +𝐾2(𝑍1 − 𝑍2) = 0---------------------     Eq.1.80 

𝑚2𝑍2̈ − 𝐾2(𝑍1 − 𝑍2) + 𝐾3(𝑍2 − 𝑍3) = 0------------     Eq.1.81 

----------------------------------- 

------------------------------------- 

𝑚𝑛𝑍𝑛̈ −𝐾𝑛(𝑍𝑛−1 − 𝑍𝑛) = 0---------------------------      Eq.1.82 

The solution of  Eqs. (1.80) to (1.82) will be of as follows; 

𝑍1 = 𝐴1𝑠𝑖𝑛𝜔𝑛𝑡------------------        Eq.1.83 

𝑍2 = 𝐴2𝑠𝑖𝑛𝜔𝑛𝑡-------------------        Eq.1.84 

--------------------- 

𝑍𝑛 = 𝐴𝑛𝑠𝑖𝑛𝜔𝑛𝑡------------------        Eq.1.85 

Substitution of Eqs. (1.83) to (1.85) into Eqs. (1.80) to (1.82), yields: 

[(𝐾1 +𝐾2) − 𝑚1𝜔𝑛
2]𝐴1 −𝐾2𝐴2 = 0--------------------------------  Eq.1.86 

−𝐾2𝐴1 + [(𝐾2 + 𝐾3) − 𝑚2𝜔𝑛
2]𝐴2 −𝐾3𝐴3 = 0--------    Eq.1.87 

−𝐾3𝐴2 + [(𝐾2 + 𝐾4) − 𝑚3𝜔𝑛
2]𝐴3 −𝐾4𝐴4 = 0--------------   Eq.1.88 

------------------------------- 

------------------------------- 

−𝐾𝑛𝐴𝑛−1 + [𝐾𝑛 −𝑚𝑛𝜔𝑛
2]𝐴𝑛 = 0-------------------     Eq.1.89 

 

The nontrivial solution of 𝜔𝑛 is in the form of  

⌈

[(𝐾1 + 𝐾2) − 𝑚1𝜔𝑛
2] −𝐾2 0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡0

−𝐾2 [(𝐾2 +𝐾3) − 𝑚2𝜔𝑛
2] 0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡0

0 0 −𝐾𝑛⁡⁡⁡⁡⁡⁡⁡⁡⁡[𝐾𝑛 −𝑚𝑛𝜔𝑛
2]

⌉ = 0--Eq.1.90 

 

Equation (1.90) is of nth degree in 𝜔𝑛
2 and therefore gives n values of 𝜔𝑛  corresponding to n 

natural frequencies. The mode shapes can be obtained from Eq. (1.86 to 1.89) by using, at one 

time, one of the various values of 𝜔𝑛  obtained from Eq. (1.90). 

When the number of degrees of freedom exceeds three, the problem of forming the frequency 

equation and solving it for determination of frequencies and mode shapes becomes tedious. 

Numerical techniques are more useful in such cases. , 

Holzer's numerical technique is a convenient method of solving the problem for an idealized 

system 
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Fig. 1.12: Undamped free vibrations of a multi-degree freedom system 

 

.  

Fig. 1.13: An idealized multiple degree of freedom system 

Inertia force at a level below mass 𝑚𝑖−1 = ∑ 𝑚𝑗𝑍̈𝑗
𝑖−1
𝑗=1 --------------------  Eq.1.91 

Spring force at that level corresponding to the difference of adjoining masses 



Lecture Notes on DSF 2021 
 

22 
 

𝐾𝑖−1(𝑍𝑖 − 𝑍𝑖−1)------------------------- -     Eq.1.92 

Equating the above eqs, we obtain 

∑ 𝑚𝑗𝑍̈𝑗
𝑖−1
𝑗=1 = 𝐾𝑖−1(𝑍𝑖 − 𝑍𝑖−1)-------------------     Eq.1.93 

Putting 𝑍𝑖 = 𝐴𝑖𝑠𝑖𝑛𝜔𝑛𝑡 in Eq.1.93, we get 

∑ 𝑚𝑗
𝑖=1
𝑗=1 (−𝐴𝑖𝜔𝑛

2𝑠𝑖𝑛𝜔𝑛𝑡) = 𝐾𝑖−1(𝐴𝑖𝑠𝑖𝑛𝜔𝑛𝑡 − 𝐴𝑖−1𝑠𝑖𝑛𝜔𝑛𝑡)--------------- Eq.1.94 

Or 𝐴𝑖 = 𝐴𝑖−1 −
𝜔𝑛
2

𝐾𝑖−1
∑ 𝑚𝑗𝑍̈𝑗
𝑖−1
𝑗=1 -------------------    Eq.1.95 

Equation (1.95) gives a relationship between any two successive amplitudes. Starting with any 

arbitrary value of Ai amplitude of all other masses can be determined. A plot of An+1 versus 𝜔𝑛
2 

would have the shape as shown in Figure 1.14. Finally An+1 should worked out to zero because 

of base fixity. 

The intersection of the curve with (𝜔𝑛
2) axis would give various⁡⁡𝜔𝑛

2. The mode shape can be 

obtained by substituting the value of 𝜔𝑛
2⁡ in Eq. (1.95). 

 
Fig.1.14: Residual as a function of frequency in Holzer method 

1.5.2 Forced vibration 

 Let an undamped n degree of freedom system be subjected to forced vibration, and Fi (t) 

represents the force on mass mi . The equation of motion for the mass 𝑚𝑖  will be 

𝑚𝑖𝑍̈𝑖 +∑ 𝐾𝑖𝑗𝑍𝐽
𝑛
𝑖=1 = 𝐹𝑖(𝑡)--------------                Eq.1.96 

Where i=1,2,3-------n 

The amplitude of vibration of a mass is the algebraic sum of the amplitudes of vibration in 

various modes. The individual modal response would be some fraction of the total response with 

the sum of fractions being equal to unity. If the factors by which the modes of vibration are 

multiplied are represented by the coordinates “d”, then for mass 𝑚𝑖 

𝑍𝑖 = 𝐴𝑖
(1)
𝑑1 + 𝐴𝑖

(2)
𝑑2 + −− +𝐴𝑖

(𝑟)
𝑑𝑟 + −−− + 𝐴𝑖

(𝑛)
𝑑𝑛--                Eq.1.97 

The above equation can be rewritten as 

𝑍𝑖 = ∑ 𝐴𝑖
(𝑟)
𝑑𝑟

𝑛
𝑟=1 --------------                   Eq.1.98 

Substituting Eq.1.98 in 1.96, yields 

∑ 𝑚𝑖
𝑛
𝑟=1 𝐴𝑖

(𝑟)
𝑑𝑟̈ + ∑ ∑ 𝐾𝑖𝑗

𝑛
𝑗=1

𝑛
𝑟=1 𝐴𝑖

(𝑟)
𝑑𝑟 = 𝐹𝑖(𝑡)-----                 Eq.1.99 

For free vibration, it can be shown  

∑ 𝐾𝑖𝑗
𝑛
𝑗=1 𝐴𝑖

(𝑟)
𝑑𝑟 = 𝜔𝑛𝑟

2 𝑚𝑖𝐴𝑖
(𝑟)

----------------------------                    Eq.1.100 

Substituting Eq. 1.100 in 1.99, we 
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∑ 𝑚𝑖
𝑛
𝑟=1 𝐴𝑖

(𝑟)
𝑑𝑟̈ + ∑ 𝜔𝑛𝑟

2 𝑚𝑖
𝑛
𝑟=1 𝐴𝑖

(𝑟)
𝑑𝑟 = 𝐹𝑖(𝑡)-------            Eq.1.101 

Or ∑ 𝑚𝑖
𝑛
𝑟=1 𝐴𝑖

(𝑟)(𝑑̈𝑟 +𝜔𝑛𝑟
2 𝑑𝑟) = 𝐹𝑖(𝑡)-------------            Eq.1.102 

Since the left hand side is a summation involving different modes of vibration, the right hand 

side should also be expressed as a summation of equivalent force contribution in corresponding 

modes. 

Let 𝐹𝑖(𝑡) be expressed as 

𝐹𝑖(𝑡) = ∑ 𝑚𝑖
𝑛
𝑟=1 𝐴𝑖

(𝑟)𝑓𝑟(𝑡)-----------------             Eq.1.103 

Where 𝑓𝑟(𝑡) is the modal force and is given by 

𝑓𝑟(𝑡) =
∑ 𝐹𝑖(𝑡)𝐴𝑖

(𝑟)𝑛
𝑟=1

∑ 𝑚[𝐴𝑖
(𝑟)

]2𝑛
𝑖=1

------------------              Eq.1.104 

Substituting Eq.1.103 in Eq.1.102 we have 

𝑑̈𝑟 + 𝜔𝑛𝑟
2 𝑑𝑟 = 𝑓𝑟(𝑡)------------------------            Eq.1.105 

Now the equation 1.105 is a single degree freedom equation and solution can be expressed as 

𝑑𝑟 =
1

𝜔𝑛𝑟
∫ 𝑓𝑟(𝑡)
𝑡

0
𝑠𝑖𝑛𝜔𝑛𝑟(𝑡 − 𝜏)𝑑𝜏-------------- 

Where, 0 < 𝜏 < 1 

It is observed that the co-ordinate d, uncouples the n degree of freedom system into n systems of 

single degree of freedom. The d's are termed as normal co-ordinates and this approach is known 

as normal mode theory. Therefore the total solution is expressed as a sum of contribution of 

individual modes. 

1.6 APPLICATION OF VIBRATION THEORY 

1.6.1 Rotating mass type excitation 

Machines with unbalanced rotating masses develop alternating force as shown in Fig. 1.15 a. 

Since horizontal forces on the foundation at any instant cancel, the net vibrating force on the 

foundation is vertical and equal to 2𝑚𝑒𝑒𝜔
2𝑠𝑖𝑛𝜔𝑡,where me is the mass of each rotating element, 

placed at eccentricity e from the centre of rotating shaft and ω is the angular frequency of 

masses. Fig. 1.15 b shows such a system mounted on elastic supports with dashpot representing 

viscous damping.  

 

 

 

 

 

 

 

 

 

 

 

(a) Rotating mass type excitation     (b) Mass-spring-dash pot system 

Fig.1.15:   Single degree freedom system with rotating mass type excitation 
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The equation of motion can be written as 

𝑚𝑍̈ + 𝐶𝑍̇ + 𝐾𝑍 = 2𝑚𝑒𝑒𝜔
2𝑠𝑖𝑛𝜔𝑡---------------------            Eq.1.106 

Where, m is the mass of foundation including 2me. The solution of Eq. (1.106) may be written as, 

𝑍 = 𝐴𝑍sin⁡(𝜔𝑡 + 𝜃)-------------------------- ----------            Eq.1.107 

Where  

𝐴𝑍 =
(2𝑚𝑒𝑒

𝑚⁄ )𝜂2

√(1−
𝜔2

𝜔𝑛
2)

2

+4𝜉2(
𝜔

𝜔𝑛
)
2

--------------------------------------------           Eq.1.108 

𝐹0

𝑘
= 2𝑚𝑒𝑒

𝜔2

𝐾
= 2𝑚𝑒𝑒

𝜔2

𝑚𝜔𝑛
2 = (2𝑚𝑒

𝑒

𝑚
)𝜉2----------            Eq.1.109 

𝜃 = 𝑡𝑎𝑛−1 (
2𝜂𝜉

1−𝜂2
)--------------- ----------------------            Eq.1.110 

 

 

 

 

 

 

 

Fig.1.16: Response of a mass rotating system 

The Eq. (1.108) can be expressed in non-dimensional form as given below: 

𝐴𝑍
(2𝑚𝑒𝑒

𝑚⁄ )
=

𝜂2

√(1−
𝜔2

𝜔𝑛
2 )

2+4𝜉2(
𝜔

𝜔𝑛
)2

----------------------------------           Eq.1.111 

Differentiating Eq. (1.111) with respect to η and equating to zero. It can be shown that resonance 

will occur at a frequency ratio given by: 

𝜂 =
1

√1−2𝜉2
------------------  ----------------               Eq.1.112 

Or 𝜔𝑑 =
𝜔𝑛

√1−2𝜉2
-------------------------- ------               Eq.1.113 

By substituting Eq. (1.113) in Eq. (1.111), we get: 
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𝐴𝑍
(2𝑚𝑒𝑒

𝑚⁄ )𝑚𝑎𝑥

=
1

2𝜉√1−𝜉2
-----------------              Eq.1.114 

=
1

2𝜉
For small damping 

 

1.7 VIBRATION ISOLATION 

In case a machine is rigidly fastened to the foundation, the force will be transmitted directly to 

the foundation and may cause objectionable vibrations. It is desirable to isolate the machine from 

the foundation through a suitably designed mounting system in such a way that the transmitted 

force is reduced.  

For example, the inertial force developed in a reciprocating engine or unbalanced forces 

produced in any other rotating machinery should be isolated from the foundation so that the 

adjoining structure is not set into heavy vibrations. Another example may be the isolation of 

delicate instruments from their supports which may be subjected to certain vibrations. In either 

case the effectiveness of isolation may be measured in terms of the force or motion transmitted to 

the foundation. The first type is known as force isolation and the second type as motion 

isolation. 

1.7.1 Force Isolation 

Figure 1.17 shows a machine of mass m supported on the foundation by means of an isolator 

having an equivalent stiffness K and damping coefficient C. The machine is excited with 

unbalanced vertical force of magnitude 2𝑚𝑒𝑒𝜔
2𝑠𝑖𝑛𝜔𝑡 .The equation of motion of the machine 

can be written as: 

𝑚𝑍̈ + 𝐶𝑍̇ + 𝐾𝑍 = 2𝑚𝑒𝑒𝜔
2𝑠𝑖𝑛𝜔𝑡--------------------    Eq.1.115 

The steady state motion of the mass of machine can be worked out as 

𝑍 =
2𝑚𝑒𝑒𝜔

2

𝐾
⁄

√(1−𝜔2

𝜔𝑛
2
)
2

+4𝜉2( 𝜔
𝜔𝑛
)
2
sin⁡(𝜔𝑡 − 𝜃)-----------------    Eq.1.116 

=

2𝑚𝑒𝑒𝜔
2

𝐾
⁄

√(1−𝜂2)2+4𝜉2(𝜂)2
sin⁡(𝜔𝑡 − 𝜃) 

Where, 𝜃 = 𝑡𝑎𝑛−1 [
2𝜂𝜉

1−𝜂2
]--------------     Eq.1.117 

The only force which can be applied to the foundation is the spring force KZ and the damping 

force, 𝐶𝑍̇; hence the total force transmitted to the foundation during steady state forced vibration 

is 

𝐹𝑡 = 𝐾𝑍 + 𝐶𝑍̇---------------------------- --------------------------------------------Eq.1.118 

Now substituting Eq. (1.116) in Eq. (1.118), we get 

𝐹𝑡 =
2𝑚𝑒𝑒𝜔

2

√(1−𝜂2)2+4𝜉2(𝜂)2
sin(𝜔𝑡 − 𝜃) + Cω

2𝑚𝑒𝑒𝜔
2

𝐾
⁄

√(1−
𝜔2

𝜔𝑛
2)

2

+4𝜉2(
𝜔

𝜔𝑛
)
2

cos(𝜔𝑡 − 𝜃)---------- Eq.1.119 
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Fig.1.17: Machine isolation foundation system 

Equation (1.119) can be written as: 

𝐹𝑡 = 2𝑚𝑒𝑒𝜔
2 √1+(2𝜂𝜉)2

√(1−𝜂2)2+4𝜉2(𝜂)2
sin⁡(𝜔𝑡 − 𝛽)------------------- ------------------------Eq.1.120 

Where β is the phase difference between the exciting force and the force transmitted to the 

foundation and is given by, 

𝛽 = 𝜃 − 𝑡𝑎𝑛−1 [
𝐶𝜔

𝐾
]--------------------- ---------------------------------------------Eq.1.121 

Since the force 2𝑚𝑒𝑒𝜔
2 is the force which would be transmitted if springs are infinitely rigid, a 

measure of the effectiveness of the isolation mounting system is given by, 

𝜇𝑇 =
𝐹𝑡

2𝑚𝑒𝑒𝜔
2 =

√1+(2𝜂𝜉)2

√(1−𝜂2)2+4𝜉2(𝜂)2
--------------- ----------------------------------------Eq.1.122 

𝜇𝑇  is called the transmissibility of the system.  

A plot of 𝜇𝑇 ⁡versus η for different values of ξ is shown in Fig.1.18 

 

It will be noted from the figure that for any frequency ratio greater than√2, the force transmitted 

to the foundation will be less than the exciting force. However in this case, the presence of 

damping reduces the effectiveness of the isolation system as the curves for damped case are 

above the undamped ones for η>√2. A certain amount of damping, however, is essential to 

maintain stability under transient conditions and to prevent excessive amplitudes when the 

vibrations pass through resonance during the starting or stopping of the machine. Therefore, for 

the vibration isolation system to be effective η should be greater than√𝟐. 
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Fig.1.18: Transmisibilty versus frequency ratio plot 

1.7.2 Motion Isolation 

In many situations, it would be necessary to isolate structure or mechanical systems from 

vibrations transmitted from the neighboring machines. Again we require a suitable mounting 

system so that least vibrations are transmitted to the system due to the vibrating base. We 

consider a system mounted through a spring and dashpot and attached to the surface which 

vibrates harmonically with frequency (ω) and amplitude Y0 as shown in Figure 1.19. 

Let Z be the absolute displacement of mass; the equation of motion of the system can be written 

as: 

𝑚𝑍̈ + 𝐶(𝑍̇ − 𝑌̇) + 𝐾(𝑍 − 𝑌) = 0--------------- ----------------------------  Eq.1.123 

 

OR 𝑚𝑍̈ + 𝐶𝑍̇ + 𝐾𝑍 = 𝐶𝑌̇ + 𝐾𝑌 = 𝐶𝜔𝑌0𝑐𝑜𝑠𝜔𝑡 + 𝐾𝑌0𝑠𝑖𝑛𝜔𝑡------------  Eq.1.124 

Or 𝑚𝑍̈ + 𝐶𝑍̇ + 𝐾𝑍 = 𝑌0√𝐾2 + (𝐶𝜔)2sin⁡(𝜔𝑡 + 𝛼)---------------- -------  Eq.1.125 

Where, 𝛼 = 𝑡𝑎𝑛−1 (
𝐶𝜔

𝐾
)--------------------------------------------------------  Eq.1.126 

The solution of Eq. (1.125) will give the maximum amplitude as: 
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𝑍𝑚𝑎𝑥 = 𝑌0
√1+(2𝜂𝜉)2

√(1−𝜂2)2+(2𝜂𝜉)2
-------------------------------------------------------------  Eq.1.127 

The effectiveness of the mounting system (transmissibility) is given by 

µ𝑇 =
𝑍𝑚𝑎𝑥

𝑌0
=

√1+(2𝜂𝜉)2

√(1−𝜂2)2+(2𝜂𝜉)2
----------------------------------------------------------  Eq.1.128 

 

Fig.1.19: Motion isolation system 

Equation (1.128) is the same expression as Eq. (1.122) obtained earlier. Transmissibility of such 

system can also be studied from the response curves shown in Fig.1.18. It is again noted that for 

the vibration isolation to be effective, it must be designed in such a way that η>√𝟐. 

1.7.3 Materials Used In Vibration Isolation 

Materials used for vibration isolation are rubber, felt, cork and metallic springs. The 

effectiveness of each depends on the operating conditions. 

i) Rubber:  Rubber is loaded in compression or in shear; the latter mode gives higher 

flexibility. With loading greater than about 0.6 N per sq mm, it undergoes much faster 

deterioration. Its damping and stiffness properties vary widely with applied load, 

temperature, shape factor, excitation frequency and the amplitude of vibration. The 

maximum temperature up to which rubber can be used satisfactorily is about 65°c. It 

must not be used in presence of oil which attacks rubber. It is found very suitable for 

high frequency vibrations. 

ii) Felt: Felt is used in compression only and is capable of taking extremely high loads. 

It has very high damping and so is suitable in the range of low frequency ratio. It is 

mainly used in conjunction with metallic springs to reduce noise transmission. 
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iii) Cork:  Cork is very useful for acoustic isolation and is also used in small pads placed 

underneath a large concrete block. For satisfactory working it must be loaded from 10 

to 25 N/sq mm. It is not affected by oil products or moderate temperature changes. 

However, its properties change with the frequency of excitation. 

iv) Metallic springs: Metallic springs are not affected by the operating conditions or the 

environments. They are quite consistent in their behaviour and can be accurately 

designed for any desired conditions. They have high sound transmissibility which can 

be reduced by loading felt in conjunction with it. It has negligible damping and so is 

suitable for working in the range of high frequency ratio. 

1.8 THEORY OF VIBRATION MEASURING INSTRUMENTS 
 

The purpose of a vibration measuring instrument is to give an output signal which represents, as 

closely as possible, the vibration phenomenon. This phenomenon may be displacement, velocity 

or acceleration of the vibrating system and accordingly the instrument which reproduces signals 

proportional to these are called vibrometers, velometers or accelerometers. 

There are essentially two basic systems of vibration measurement. One method is known as the 

directly connected system in which motions can be measured from a reference surface which is 

fixed. More often such a reference surface is not available. The second system, known as 

“Seismic System" does not require a fixed reference surface and therefore is commonly used for 

vibration measurement. 

 

Fig.1.20: Schematic diagram of vibration measuring instrument 

Figure 1.20 shows a Vibration measuring instrument which is used to measure any of the 

vibration phenomena. It consists of a frame in which the mass “m” is supported by means of a 

spring K and dashpot C. The frame is mounted on a vibrating body and vibrates along with it. 

The system reduces to a spring mass dashpot system having base on support excitation as 

discussed earlier in illustrating motion isolation. 

Let the surface S of the structure be vibrating harmonically with unknown amplitude Y0 and an 

unknown frequency ω. The output of the instrument will depend upon the relative motion 

between the mass and the structure, since it is this relative motion which is detected and 
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amplified. Let Z be the absolute displacement of the mass, then the output of the instrument will 

be proportional to X =Z - Y. 

The equation of motion of the system can be written as 

𝑚𝑍̈ + 𝐶(𝑍̇ − 𝑌̇) + 𝐾(𝑍 − 𝑌) = 0--------------------------    Eq.1.129 

Subtracting  𝑚𝑌̈ from both sides, 

𝑚𝑋̈ + 𝐶𝑋̇ + 𝐾𝑋 = −𝑚𝑌̈ = 𝑚𝑌0𝜔
2𝑠𝑖𝑛𝜔𝑡-----------------    Eq.1.130 

The solution can be written as 

𝑋 =
𝜂2

√(1−𝜂2)2+(2𝜂𝜉)2
𝑌0sin⁡(𝜔𝑡 − 𝜃)------------------- ------------------------- Eq.1.131 

 

Where 𝜂 =
𝜔

𝜔𝑛
= Frequency ratio 

𝜉 =⁡damping ratio 

𝜃 = 𝑡𝑎𝑛−1(
2𝜂𝜉

1−𝜂2
)------------------- ---------------------------    Eq.1.132 

Equation (1.131)can be rewritten as 

𝑿 = 𝜼𝟐µ𝒀𝟎𝐬𝐢𝐧⁡(𝝎𝒕 − 𝜽)------------ --------------------------    Eq.1.133 

Where 

µ =
1

√(1−𝜂2)2+(2𝜂𝜉)2
---------------------------------------------   Eq.1.134 

 
1.8.1 Displacement Pickup 

The instrument will read the displacement of the structure directly if 𝜂2µ = I and θ =0.The 

variation of𝜂2µ with η and ξ is shown in Figure 1.21 

  

Fig.1.21: Response of a vibration measuring instrument to a vibrating base 
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It is seen when η is large, 𝜂2µ is approximately equal to 1 and θ is approximately equal to 180°. 

Therefore to design a displacement pickup, η should be large which means that the natural 

frequency of the instrument itself 'should be low compared to the frequency to be measured. Or 

in other words, the instrument should have a soft spring and heavy mass. The instrument is 

sensitive, flimsy and can be used in a weak vibration environment. The instrument cannot be 

used for measurement of strong vibrations. 

1.8.2 Acceleration Pickup (Accelerometer) 

 Equation (1.133) can be rewritten as 

𝑋̈ =
1

𝜔𝑛
2 µ𝜔

2𝑌0sin⁡(𝜔𝑡 − 𝜃)-----------------------------------------   Eq.1.135 

The output of the instrument will be proportional to the acceleration of the structure if µ is 

constant. It is seen that µ is approximately equal to unity for small values of η. Therefore to 

design an acceleration pick up, it should be small which means that the natural frequency of the 

instrument itself should be high compared to the frequency to be measured. In other words, the 

instrument should have a stiff spring and small mass. The instrument is less sensitive and 

suitable for the measurement of strong motion. The instrument size is small. 

1.8.3 Velocity Pickup 

Equation (1.133) can be rewritten as 

𝑋̇ =
1

𝜔𝑛
𝜂µ𝑌0𝜔sin⁡(𝜔𝑡 − 𝜃)-----------------------------------------   Eq.1.136 

The output of the instrument will be proportional to velocity of the structure if 
1

𝜔𝑛
𝜂µ  is a 

constant. 

At η= 1, Eq. (1.136) can be written as 

𝑋́ =
1

𝜔𝑛

1

2𝜉
𝑌0𝜔sin⁡(𝜔𝑡 − 𝜃)-----------------------------------------Eq.1.137 as at η=1,µ =

1

2𝜉
 

Since 𝜔𝑛 and ξ are constant, the instrument will measure the velocity at η= 1. 

It may be noted that the same instrument can be used to measure displacement, acceleration and 

velocity in different frequency ranges. 

𝑋𝛼𝑌, 𝑖𝑓⁡𝜂 ≫ 1, Displacement pickup (Vibrometer) 

𝑋𝛼𝑌, 𝑖𝑓⁡𝜂 ≪ 1, Acceleration pickup (Accelerometers) 

𝑋𝛼𝑌, 𝑖𝑓⁡⁡𝜂 = 1, Velocity pickup (Velometers) 

Displacement and velocity pickups have the disadvantage of having rather a large size if motions 

having small frequency of vibration are to be measured. Calibration of these pickups is not 
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simple. Further corrections have to be made in the observations as the response is not flat in the 

starting regions. From the point of view of small size, flat frequency response, sturdiness and 

ease of calibration, acceleration pickups are to be favored. They are relatively less sensitive and 

this disadvantage can easily be overcome by high gain electronic instrumentation. 

 

1.8.4 Transducer 

A transducer is a device for converting the mechanical motion of vibration into an electrical 

signal, commonly called pickup. 

There are three kinds of transducers: Displacement, Velocity, and Acceleration 

 
1.8.5 Displacement Transducer 

 

It is the most common type of transducer which is operated on the eddy current principle. It sets 

up a high-frequency electric field in the gap between the end of the Proximity Probe and the 

metal surface that is moving. It senses the change in the gap and measures relative displacement 

not absolute displacement. 

Proximity Probe 

 

Fig.1.22: Schematic diagram of proximity probe 

It is sensitive to shaft surface defects such as scratches, dents and vibrations in conductivity and 

permeability. 

Senses shaft run out, and it is very difficult to distinguish vibration from run out. 

The practical maximum frequency of proximity probes is about 1500Hz.The minimum frequency 

is zero. It can also measure static displacement. A useful application of proximity probes is to 

measure very slow relative movement like thermal expansion. It is useful in situations where the 

vibrating part cannot tolerate the mass of the pickup. 
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1.8.6 Velocity Transducer 

 

Velocity transducer is also called seismic pickup. 

The relative motion between the permanent magnet and the coil generates a voltage that is 

proportional to the velocity of the motion. The velocity transducer has an internal natural 

frequency of about 8 Hz. The velocity transducer is rather large. On small devices this added 

mass can significantly affect the vibration output. The coil in the velocity pickup is sensitive to 

external electromagnetic fields. 

 
Fig.1.23: Velocity transducer 

1.8.7 Acceleration Transducers 

 

Fig.1.24: Accelerator transducer  
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The most common acceleration transducer is the piezoelectric accelerometer It consist of quartz 

crystal with a mass bolted on top and a spring compressing the quartz. A property of 

piezoelectric material is that it generates an electrical charge output when it is compressed. The 

charge output is proportional to force F= ma, force is also proportional to acceleration. 

Typically accelerometer has very high natural frequency, typically 25000 Hz Its response is 

linear for about 1/3 of this range. It has a useful frequency range of from about 5 to 

approximately 100000 Hz depending on its size. The primary considerations in selecting an 

accelerometer are sensitivity and frequency response. 

If high-amplitude motions are to be measured, i.e. greater than 10g, such as in shock 

measurement, then a low-sensitivity accelerometer is appropriate 10 mV/g or less. 

If the level motion is to be measured, such as building or structural motions at low frequencies 

then a high sensitivity accelerometer should be chosen 1000 mv/g. 

For most machinery monitoring,100 mV/g sensitivity accelerometer provide the right balance of 

sensitivity and frequency response. Other considerations in accelerometer selection or transducer 

are Temperature exposure 

Linearity - It is expressed as the percent deviation from a constant value of the sensitivity. 

Transverse Sensitivity is the ability of the transducer to detect motion in directions perpendicular 

to its sensitive axis. 

Damping is very low in piezoelectric accelerometer but can be significant in other types, such as 

piezo-resistive accelerometer. Strain sensitivity is the ability of the transducer to generate a 

signal when the base is distorted, such as when it is clamped against a non flat surface. 
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2.0 WAVE PROPAGATION; BASIC ELASTIC PROPERTIES AND RELATIONSHIP 

2.1 Elastic Constants 

An elastic material is one which obeys Hook's law of proportionally between stress and strain. 

For an isotropic elastic material subjected to normal stress 𝜎𝑥in the x-direction, the strains in x, y, 

z directions are given as 

 

𝜀𝑥 =
𝜎𝑥

𝐸
---------------          Eq.2.1 

𝜀𝑦 = 𝜀𝑧 = −𝜇
𝜎𝑥

𝐸
----------         Eq.2.2 

 

If the element of the material is subjected to normal stress 𝜎𝑥 , 𝜎𝑦, 𝜎𝑧 ,⁡then by superposition we 

obtain 

𝜀𝑥 =
1

𝐸
[𝜎𝑥 − 𝜇(𝜎𝑦 + 𝜎𝑧)]--------------       Eq.2.3 

𝜀𝑦 =
1

𝐸
[𝜎𝑦 − 𝜇(𝜎𝑥 + 𝜎𝑧)]------------------       Eq.2.4 

𝜀𝑧 =
1

𝐸
[𝜎𝑧 − 𝜇(𝜎𝑥 + 𝜎𝑦)]----------------       Eq.2.5 

In the above expressions, E is the modulus of elasticity and µ is Poisson's ratio. It may be noted 

that here E is dynamic modulus of elasticity.  

Equations (3to 5) can be rearranged so, that the stresses are expressed in terms of the strains as 

follows: (Timoshenko and Goodier, 1951; Kolsly, 1963). 

𝜎𝑥 =
𝜇𝐸

(1+𝜇)(1−2𝜇)
[𝜀𝑥 + 𝜀𝑦 + 𝜀𝑧] +

𝐸

1+𝜇
𝜀𝑥-----------      Eq.2.6 

𝜎𝑦 =
𝜇𝐸

(1+𝜇)(1−2𝜇)
[𝜀𝑥 + 𝜀𝑦 + 𝜀𝑧] +

𝐸

1+𝜇
𝜀𝑦-----------      Eq.2.7 

𝜎𝑧 =
𝜇𝐸

(1+𝜇)(1−2𝜇)
[𝜀𝑥 + 𝜀𝑦 + 𝜀𝑧] +

𝐸

1+𝜇
𝜀𝑧-----------      Eq.2.8 

For simplicity the equations may be written 

𝜎𝑥 = 𝜆𝜀̅ + 2𝐺𝜀𝑥----------------------------------------      Eq.2.9 

𝜎𝑦 = 𝜆𝜀̅ + 2𝐺𝜀𝑦----------------------------------------               Eq.2.10 

𝜎𝑧 = 𝜆𝜀̅ + 2𝐺𝜀𝑧-----------------------------------------               Eq.2.11 

In which 

𝜀̅ = 𝜀𝑥 + 𝜀𝑦 + 𝜀𝑧------------------ ---------------------                Eq.2.12 

𝜆 =
µ𝐸

(1+𝜇)(1−2𝜇)
------------------------------------------                Eq.2.13 

𝐺 =
𝐸

2(1+𝜇)
------------------------------------------------                Eq.2.14 

Similarly in an isotropic elastic material, there exists linear relation between shear stress and 

shear strain. Thus 

𝛾𝑥𝑦 =
𝜏𝑥𝑦

𝐺
------------------ -------------------------------                Eq.2.15 

𝛾𝑦𝑧 =
𝜏𝑦𝑧

𝐺
--------------------------------------------------                Eq.2.16 

𝛾𝑥𝑧 =
𝜏𝑥𝑧

𝐺
---------------------------------------------------                Eq.2.17 

G is the shear modulus or rigidity modulus and is the same as given by Eqs. (2.9 to 2.11). 
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Equations (2.9 to 2.11) and (2.15 to 2.17) comprise six equations that define the stress-strain 

relationship 

 

2.2 WAVE PROPAGATION IN AN INFINITE, HOMOGENEOUS, ISOTROPIC, 

ELASTIC MEDIUM 

 
' 

In this section, the propagation of stress waves in an infinite, homogeneous, isotropic medium 

presented in Figure.2.1 shows the stresses acting on a soil  element with sides dx, dy, dz.  For 

obtaining the differential equations of motion, the sum of the forces acting parallel to each axis is 

considered. 

In the x-direction the equilibrium equation is given as  

 
Fig. 2.1: Stress on an element of an infinite elastic medium 

⌊𝜎𝑥 − (𝜎𝑥 +
𝜕𝜎𝑥

𝜕𝑥
𝑑𝑥)⌋ (𝑑𝑦. 𝑑𝑧) + ⌊𝜏𝑥𝑧 − (𝜏𝑥𝑧 +

𝜕𝜏𝑥𝑧

𝜕𝑧
𝑑𝑧)⌋ (𝑑𝑥. 𝑑𝑦) + ⌊𝜏𝑦𝑥 − (𝜏𝑦𝑥 +

𝜕𝜏𝑦𝑥

𝜕𝑦
𝑑𝑦)⌋ (𝑑𝑥. 𝑑𝑧) + 𝜌(𝑑𝑥. 𝑑𝑦. 𝑑𝑧)

𝜕2𝑢

𝜕𝑡2
= 0----------------------------   Eq.2.18 

Or, 

𝜌
𝜕2𝑢

𝜕𝑡2
=

𝜕𝜎𝑥

𝜕𝑥
+

𝜕𝜏𝑥𝑦

𝜕𝑦
+

𝜕𝜏𝑥𝑧

𝜕𝑧
------------------------------------------------   Eq.2.19 (a) 

Equations similar to Eq. (1), it can be written for the y -and z -directions. These will give 

𝜌
𝜕2𝑣

𝜕𝑡2
=

𝜕𝜏𝑦𝑧

𝜕𝑥
+

𝜕𝜎𝑦

𝜕𝑦
+

𝜕𝜏𝑥𝑧

𝜕𝑧
-------------------------------------------------   Eq.2.19 (b) 

𝜌
𝜕2𝜔

𝜕𝑡2
=

𝜕𝜏𝑥𝑧

𝜕𝑥
+

𝜕𝜏𝑥𝑦

𝜕𝑦
+

𝜕𝜎𝑧

𝜕𝑧
-------------------------------------------------   Eq.2.19 (c) 
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In the above expressions, ρ is the mass density of the soil; u, v and ω are displacements in the x, 

y, and z directions respectively. To express the right hand sides of these Eqs., the relationship for 

an elastic medium given is used. The equations for strains and rotations of elastic and isotropic 

materials in terms of displacements are as follows: 

 

2.2.1 Axial Strains 

𝜀𝑥 =
𝜕𝑢

𝜕𝑥
-----------------         Eq.2. 20(a) 

𝜀𝑦 =
𝜕𝑣

𝜕𝑦
----------------         Eq.2. 20(b) 

𝜀𝑧 =
𝜕𝜔

𝜕𝑧
---------------         Eq.2. 20(c) 

Shearing Strains: 

𝛾𝑥𝑦 =
𝜕𝑣

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
------------        Eq.2. 21(a) 

𝛾𝑦𝑧 =
𝜕𝜔

𝜕𝑦
+

𝜕𝑣

𝜕𝑧
----------------        Eq.2 .21(b) 

𝛾𝑥𝑧 =
𝜕𝜔

𝜕𝑥
+

𝜕𝑢

𝜕𝑧
--------------------       Eq.2. 21(c) 

Rotations: 

2𝜔𝑥̅̅̅̅ =
𝜕𝜔

𝜕𝑦
−

𝜕𝑣

𝜕𝑧
------------        Eq.2. 22(a) 

2𝜔𝑦̅̅ ̅̅ =
𝜕𝑢

𝜕𝑧
−

𝜕𝜔

𝜕𝑥
-------------        Eq.2 .22(b) 

2𝜔𝑧̅̅̅̅ =
𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
----------------        Eq.2. 22(c) 

2.2.2 Compression Waves 

Substitution  of  Eq.2. 9,  2 .15 and 2.17 in Eq.2. 19 (a) gives 

𝜌
𝜕2𝑢

𝜕𝑡2
=

𝜕

𝜕𝑥
(𝜆𝜀̅ + 2𝐺𝜀𝑥) +

𝜕

𝜕𝑦
(𝐺𝛾𝑥𝑦) +

𝜕

𝜕𝑧
(𝐺𝛾𝑥𝑧)--------------    Eq.2. 23 

Or 

𝜌
𝜕2𝑢

𝜕𝑡2
=

𝜕

𝜕𝑥
(𝜆𝜀̅ + 2𝐺𝜀𝑥) + 𝐺

𝜕

𝜕𝑦
(
𝜕𝑣

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
) + 𝐺

𝜕

𝜕𝑧
(
𝜕𝑢

𝜕𝑧
+

𝜕𝜔

𝜕𝑥
)-----------   Eq.2. 24 

𝜌
𝜕2𝑢

𝜕𝑡2
=

𝜕

𝜕𝑥
(𝜆𝜀̅ + 2𝐺𝜀𝑥) + 𝐺

𝜕

𝜕𝑦
(
𝜕𝑣

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
) + 𝐺

𝜕

𝜕𝑧
(
𝜕𝑢

𝜕𝑧
+

𝜕𝜔

𝜕𝑥
)-----------   Eq.2. 25 

𝜌
𝜕2𝑢

𝜕𝑡2
= 𝜆

𝜕𝜀̅

𝜕𝑥
+ 𝐺 ⌈

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑥𝜕𝑦
+

𝜕2𝜔

𝜕𝑥𝜕𝑧
+

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
+

𝜕2𝑢

𝜕𝑧2
⌉---------------  Eq.2. 26 

As 
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑥𝜕𝑦
+

𝜕2𝜔

𝜕𝑥𝜕𝑧
=

𝜕𝜀̅

𝜕𝑥
 

The equation  Eq.2. 26 can be rewritten as 

𝜌
𝜕2𝑢

𝜕𝑡2
= (𝜆 + 𝐺)

𝜕𝜀̅

𝜕𝑥
+ 𝐺∇2𝑢-------------------------------------------------  Eq. 2. 27(a) 

Where ∇2=
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
 

Similarly corresponding equations in other directions can be written as 

𝜌
𝜕2𝑣

𝜕𝑡2
= (𝜆 + 𝐺)

𝜕𝜀̅

𝜕𝑦
+ 𝐺∇2𝑣------------ ---------------------------------   Eq.2. 27(b) 

𝜌
𝜕2𝜔

𝜕𝑡2
= (𝜆 + 𝐺)

𝜕𝜀̅

𝜕𝑧
+ 𝐺∇2𝜔--------------------------------------------    Eq. 2. 27(c) 
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Equations (2. 27) are the equations of motion of an infinite homogeneous, isotropic, and 

elastic medium. On differentiating these equations with respect to x, y and z, respectively, and 

adding, we get 

𝜌
𝜕2

𝜕𝑡2
[
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝜔

𝜕𝑧
] = (𝜆 + 𝐺) [

𝜕2𝜀̅

𝜕𝑥2
+

𝜕2𝜀̅

𝜕𝑦2
+

𝜕2𝜀̅

𝜕𝑧2
] + 𝐺∇2 (

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝜔

𝜕𝑧
)------------- Eq.2. 28 

𝜌
𝜕2𝜀̅

𝜕𝑡2
= (𝜆 + 𝐺)(∇2𝜀)̅ + (𝐺∇2𝜀)̅-----------------------        Eq.2. 29 

Hence,  𝜌
𝜕2𝜀̅

𝜕𝑡2
= (𝜆 + 2𝐺)(∇2𝜀)̅---------------         Eq.2. 30 

0r 

𝜕2𝜀̅

𝜕𝑡2
=

(𝜆+2𝐺)

𝜌
(∇2𝜀)̅ = 𝑉𝑝

2∇2𝜀-̅-----------------         Eq.2. 31 

Where 𝑉𝑝
2 =

(𝜆+2𝐺)

𝜌
-----------------------------         Eq.2.32 

Vp is the ve1ocity of compression waves which is also referred as primary wave or, P-wave. It is 

important to note the difference in the wave velocities for an infinite elastic medium with those 

obtained for an elastic rod is, 𝑉𝑐 = √𝐸 𝜌⁄ : but in the infinite medium, 𝑉𝑝 = √
(𝜆+2𝐺)

𝜌
. This means 

that Vp >Vc, that is compression wave travels faster in infinite medium. It is due to the fact that 

in infinite medium, there are no lateral displacements, while in the elastic rod lateral 

displacements are possible. 

 

2.2.3 Shear-Waves 

Differentiating Eq. (2.27,b) with respect to z and Eq. (2.27,c) with respect to y, we get 

𝜌
𝜕2

𝜕𝑡2
(
𝜕𝑣

𝜕𝑧
) = (𝜆 + 𝐺)

𝜕𝜀̅

(𝜕𝑦)(𝜕𝑧)
+ 𝐺∇2

𝜕𝑣

𝜕𝑧
-----------------    Eq. 2.33 

𝜌
𝜕2

𝜕𝑡2
(
𝜕𝜔

𝜕𝑦
) = (𝜆 + 𝐺)

𝜕𝜀̅

(𝜕𝑦)(𝜕𝑧)
+ 𝐺∇2

𝜕𝜔

𝜕𝑦
---------------     Eq.2.34 

Subtracting Eq.2.34 from Eq.2.33, we get 

𝜌
𝜕2

𝜕𝑡2
(
𝜕𝜔

𝜕𝑦
−

𝜕𝑣

𝜕𝑧
) = 𝐺∇2 (

𝜕𝜔

𝜕𝑦
−

𝜕𝑣

𝜕𝑧
)-----------------------    Eq.2.35 

FromEq.(2.22,a) 

2𝜔𝑥̅̅̅̅ =
𝜕𝜔

𝜕𝑦
−
𝜕𝑣

𝜕𝑧
 

Therefore,  

𝜌
𝜕2𝜔𝑥̅̅ ̅̅

𝜕𝑡2
= 𝐺∇2𝜔𝑥̅̅̅̅ ---------------------       Eq.2.35 

Or,  

𝜕2𝜔𝑥̅̅ ̅̅

𝜕𝑡2
=

𝐺

𝜌
∇2𝜔𝑥̅̅̅̅ = 𝑉𝑠

2∇2𝜔𝑥̅̅̅̅ ---------------------      Eq.2.36 (a) 

Similar expression can be obtained for 𝜔̅𝑦 ⁡𝑎𝑛𝑑⁡𝜔𝑧̅̅̅̅  as  

𝜕2𝜔𝑦̅̅ ̅̅

𝜕𝑡2
=

𝐺

𝜌
∇2𝜔𝑦̅̅ ̅̅ = 𝑉𝑠

2∇2𝜔𝑦̅̅ ̅̅ ----------------------     Eq.2. 36 (b) 

𝜕2𝜔𝑧̅̅ ̅̅

𝜕𝑡2
=

𝐺

𝜌
∇2𝜔𝑧̅̅̅̅ = 𝑉𝑠

2∇2𝜔𝑧̅̅̅̅ ---------------------      Eq.2. 36 (c) 

The above expressions indicate that the Rotation is propagated with velocity Vs which is equal to 
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√𝐺 𝜌⁄ . Shear wave is also referred as distortion wave or S-wave. It may be noted that shear wave 

propagates at the same velocity in both the rigid elastic medium like rod or bar and the infinite-

medium. 

2.3 WAVEPROP AGATION IN ELASTIC HALF-SPACE  

In an elastically homogeneous ground, stressed suddenly at a point 'S' near its surface  as shown 

in (Figure 2.2), three elastic waves travel outwards at different speeds. Two are body waves; 

which are propagated as spherical, fronts affected only a minor extent by the free surface of the 

ground, and the third is a surface wave which is confined to the region, near the free surface. 

 

Fig.2.2: Pulse fronts of the P, S and R waves 

The stresses in the P wave, which is a longitudinal wave like a sound wave in air, are thus due to 

uniaxial compression, while during the passage of an S wave the medium is subjected to shear 

stress. The surface wave travels more slowly than either body wave, and is generally complex. 

This wave was first studied by Rayleigh (1885) and later was, described in detail by Lamb 

(1904). It is referred as Rayleigh wave or R-wave. The influence of Raleigh wave decreases 

rapidly with depth. 

The half space is defined as the x-y plane with z assumed to be positive toward the interior of the 

half-space as shown in Figure 2.3. Let u and w represent the displacements in the directions x 

and z, respectively and are independent of y, then 

𝑢 =
𝜕∅

𝜕𝑥
+

𝜕𝜑

𝜕𝑧
-------------------------------------------------------------------Eq.2.37 

𝜔 =
𝜕∅

𝜕𝑧
−

𝜕𝜑

𝜕𝑥
------------------------------------------------------------------ Eq.2.38 

Where ∅⁡and φ are two potential function. As 
𝜕𝑣

𝜕𝑦
=0, the dilation 𝜀 ̅of the wave can be written as  

𝜀̅ =
𝜕𝑢

𝜕𝑥
+

𝜕𝜔

𝜕𝑧
= [

𝜕2∅

𝜕𝑥2
+

𝜕2𝜑

𝜕𝑥𝜕𝑧
] + [

𝜕2∅

𝜕𝑧2
−

𝜕2𝜑

𝜕𝑥𝜕𝑧
]------------------------------- Eq.2.38 

Or, 𝜀̅ =
𝜕2∅

𝜕𝑥2
+

𝜕2∅

𝜕𝑧2
= ∇2∅----------------------------------------------------- Eq.2.39 

Similarly the rotation in x-z plane is given by 

2𝜔𝑦̅̅ ̅̅ =
𝜕𝑢

𝜕𝑧
−

𝜕𝜔

𝜕𝑥
=

𝜕2𝜑

𝜕𝑥2
+

𝜕2𝜑

𝜕𝑧2
= ∇2𝜑-----------------------------------------Eq.2.40 
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Fig.2.3: Wave propagation in Elastic half space 

𝑢 =
𝜕∅

𝜕𝑥
+

𝜕𝜑

𝜕𝑧
-------------------------------------------------------------------  Eq.2.41 

𝜔 =
𝜕∅

𝜕𝑧
−

𝜕𝜑

𝜕𝑥
------------------------------------------------------------------   Eq.2.42 

Where ∅⁡and φ are two potential function. As 
𝜕𝑣

𝜕𝑦
=0, the dilation 𝜀 ̅of the wave can be written as  

𝜀̅ =
𝜕𝑢

𝜕𝑥
+

𝜕𝜔

𝜕𝑧
= [

𝜕2∅

𝜕𝑥2
+

𝜕2𝜑

𝜕𝑥𝜕𝑧
] + [

𝜕2∅

𝜕𝑧2
−

𝜕2𝜑

𝜕𝑥𝜕𝑧
]-------------------------------   Eq.2.43 

Or, 𝜀̅ =
𝜕2∅

𝜕𝑥2
+

𝜕2∅

𝜕𝑧2
= ∇2∅-----------------------------------------------------   Eq.2.44 

Similarly the rotation in x-z plane is given by 

2𝜔𝑦̅̅ ̅̅ =
𝜕𝑢

𝜕𝑧
−

𝜕𝜔

𝜕𝑥
=

𝜕2𝜑

𝜕𝑥2
+

𝜕2𝜑

𝜕𝑧2
= ∇2𝜑-----------------------------------------  Eq.2.45 

Substituting u and w from Eq.1 and 2 in, we get 

𝜌
𝜕

𝜕𝑥
(
𝜕2∅

𝜕𝑡2
) + 𝜌

𝜕

𝜕𝑧
(
𝜕2𝜑

𝜕𝑡2
) = (𝜆 + 2𝐺)

𝜕

𝜕𝑥
(∇2∅) + 𝐺

𝜕

𝜕𝑧
(∇2𝜑)-------------   Eq.2.46 

And 𝜌
𝜕

𝜕𝑧
(
𝜕2∅

𝜕𝑡2
) − 𝜌

𝜕

𝜕𝑥
(
𝜕2𝜑

𝜕𝑡2
) = (𝜆 + 2𝐺)

𝜕

𝜕𝑧
(∇2∅) − 𝐺

𝜕

𝜕𝑥
(∇2𝜑)--------  Eq.2.47 

The above Eqs (2.46 and2.47) are satisfied if 

𝜕2∅

𝜕𝑡2
=

(𝜆+2𝐺)

𝜌
∇2∅ = 𝑉𝑝

2∇2∅----------------------------------------------------   Eq.2.48 

And 
𝜕2𝜑

𝜕𝑡2
=

𝐺

𝜌
∇2𝜑 = 𝑉𝑠

2∇2𝜑----------------------------------------------------   Eq.2.49 

Now, consider a sinusoidal wave traveling in the positive x direction. Let the solution of ∅ and 𝜑 

be expressed as 

∅ = 𝐹(𝑧) exp[𝑖(𝜔𝑡 − 𝑓𝑥)]----------------------      Eq.2.50 

And  

𝜑 = 𝐺(𝑧) exp[𝑖(𝜔𝑡 − 𝑓𝑥)]-----------------------      Eq.2.51 

Where F(z) and G(z) are function of depth 

And 𝑓 =
2𝜋

𝑤𝑎𝑣𝑒⁡𝑙𝑒𝑛𝑔𝑡ℎ
 

Now substituting Eq. 2.50 into Eq. 2.48 , we get 
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(
𝜕2

𝜕𝑡2
) {𝐹(𝑧) exp[𝑖(𝜔𝑡 − 𝑓𝑥)]}=𝑉𝑝

2∇2{𝐹(𝑧) exp[𝑖(𝜔𝑡 − 𝑓𝑥)]}----------  Eq.2.52 

Or −𝜔2𝐹(𝑧) = 𝑉𝑝
2[𝐹"(𝑧) − 𝑓2𝐹(𝑧)]---------------------------------------   Eq.2.53 

Where F(z) and G(z) are functions of depth  

Similarly, substituting Eq. (2.51) into Eq. (2.49) results in 

−𝜔2𝐺(𝑧) = 𝑉𝑠
2[𝐺"(𝑧) − 𝑓2𝐺(𝑧)]----------------   Eq.2.54 

Where 

𝐹"(𝑧) =
𝜕2𝐹(𝑧)

𝜕𝑧2
----------------------------------------   Eq.2.55 

and 

𝐺"(𝑧) =
𝜕2𝐺(𝑧)

𝜕𝑧2
-------------------------------------------------   Eq.2.56 

Now Equations (2.53) and (2.54) can be rearranged to the form 

𝐹"(𝑧) − 𝑞2𝐹(𝑧) = 0--------------------------------   Eq.2.57 

𝐺"(𝑧) − 𝑠2𝐹(𝑧) = 0---------------------------------   Eq.2.58 

Where  

𝑞2 = 𝑓2 −
𝜔2

𝑉𝑝
2-----------------------------------------------  Eq.2.59 

𝑠2 = 𝑓2 −
𝜔2

𝑉𝑠
2-------------------     Eq.2.60 

Solutions to Eqs. (2.57) and (2.48) can be given as 

𝐹(𝑧) = 𝐴1𝑒
−𝑞𝑧 + 𝐴2𝑒

𝑞𝑧---------------    Eq.2.61 

𝐺(𝑧) = 𝐵1𝑒
−𝑠𝑧 + 𝐵2𝑒

𝑠𝑧----------------    Eq.2.62 

where A1, A2, B1, and B2 are constants. 

It can be seen from Eqs. (2.61) and (2.62) that A2 and B2 must equal zero; otherwise F(z) and 

G(z) will approach infinity with depth, which is not the type of wave that is considered here. 

With A2 and B2 equal zero, we have 

𝐹(𝑧) = 𝐴1𝑒
−𝑞𝑧---------------      Eq.2.63 

𝐺(𝑧) = 𝐵1𝑒
−𝑠𝑧----------------      Eq.2.64 

Now combining Eqs. (2.50) and (2.63) and Eqs. (2.51) and  (2.64), we get 

∅ = (𝐴1𝑒
−𝑞𝑧)[exp 𝑖(𝜔𝑡 − 𝑓𝑥)]----------------------      Eq.2.65 

𝜑 = (𝐵1𝑒
−𝑠𝑧)[𝑒𝑥𝑝𝑖(𝜔𝑡 − 𝑓𝑥)]------------------------      Eq.2.66 

The boundary conditions for the two preceding equations are at z = 0, σz = 0, τzx = 0, and τzy = 0.  

We have 

𝜎𝑧(𝑧=0) = 𝜆𝜀̅ + 2𝐺𝜀𝑧 = 𝜆𝜀̅ + 2𝐺 (
𝜕𝜔

𝜕𝑧
) = 0-------------    Eq.2.67 

Combining  Eqs. (2.42), (2.444), and (2.65)–(2.67), one obtains 

𝐴1[(𝜆 + 2𝐺)𝑞2 − 𝜆𝑓2] − 2𝑖𝐵1𝐺𝑓𝑠 = 0-----------      Eq.2.68 
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And 
𝐴1

𝐵1
=

2𝑖𝐺𝑓𝑠

(𝜆+2𝐺)𝑞2−𝜆𝑓2
-----------------       Eq.2.69  

Similarly, 𝜏𝑧𝑥(𝑧=0) = 𝐺𝛾𝑧𝑥 = 𝐺 (
𝜕𝜔

𝜕𝑥
+

𝜕𝑢

𝜕𝑧
) = 0-----      Eq.2.70 

Again, combining Eqs. (2.21), (2.23), (2.65), (2.66), and (2.70), 

2𝑖𝐴1𝑓𝑞 + (𝑠2 + 𝑓2)𝐵1 = 0-------------       Eq.2.71 

OR 
𝐴1

𝐵1
=

(𝑠2+𝑓2)

2𝑖𝑓𝑞
---------------         Eq.2.72 

Equating the right-hand sides of Eqs.( 2.69) and (2.72),  

2𝑖𝐺𝑓𝑠

(𝜆+2𝐺)𝑞2−𝜆𝑓2
=

(𝑠2+𝑓2)

2𝑖𝑓𝑞
--------------     Eq.2.73 

4𝐺𝑓2𝑠𝑞 = (𝑠2 +𝑓2) [(𝜆 + 2𝐺)𝑞2 − 𝜆𝑓2]-------   Eq.2.74 

Or, 16𝐺2𝑓4𝑠2𝑞2 = (𝑠2 + 𝑓2)2[(𝜆 + 2𝐺)𝑞2 − 𝜆𝑓2]----------Eq.2.75 

Substituting for q and s and then dividing both sides of Eq. (2.75) by G2f8, we get 

16 (1 −
𝜔2

𝑉𝑝
2𝑓2

) (1 −
𝜔2

𝑉𝑠
2𝑓2

) = [2 − (
𝜆+2𝐺

𝐺
)

𝜔2

𝑉𝑝
2𝑓2

]
2

[2 −
𝜔2

𝑉𝑠
2𝑓2

]
2

----------------------  Eq.2.76 

 However,𝑤𝑎𝑣𝑒⁡𝑙𝑒𝑛𝑔𝑡ℎ =
𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦⁡𝑜𝑓⁡𝑤𝑎𝑣𝑒

𝜔
2𝜋⁄

 

𝑓 =
𝜔

𝑉𝑟
-----------------          Eq.2.77 

So, 
𝜔2

𝑉𝑝
2𝑓2

=
𝜔2

𝑉𝑝
2(𝜔

2

𝑉𝑟
2⁄ )
=

𝑉𝑟
2

𝑉𝑝
2=𝛼

2𝑉2----------------      Eq.2.78 

Similarly, 
𝜔2

𝑉𝑠
2𝑓2

=
𝜔2

𝑉𝑠
2(𝜔

2

𝑉𝑟
2⁄ )
=

𝑉𝑟
2

𝑉𝑠
2=𝑉

2-----------------      Eq.2.79 

Where 𝛼2 =
𝑉𝑠
2

𝑉𝑝
2 

However, 𝑉𝑝
2 = 𝜆 + 2𝐺

𝜌⁄  and 𝑉𝑠
2 = 𝐺

𝜌⁄   

So, 𝛼2 =
𝑉𝑠
2

𝑉𝑝
2 =

𝐺

𝜆+2𝐺
------------------        Eq.2.80 

The term 𝛼2 can also be expressed in terms of Poisson’s ratio. From the relations given in Eq. 

(2.81),  

2𝜇𝐺

1−2𝜇
----------------------         Eq.2.81 

Substitution of this relation in Eq. (2.80) yields, 

𝛼2 =
𝐺

𝜆+2𝐺
=

(1−2𝜇)

2(1−𝜇)
---------------        Eq.2.82 

Again, substituting Eqs. (2.78), (2.79), and (2.80) into Eq. (2.76), 

16(1 − 𝛼2𝑉2)(1 − 𝑉2) = (2 − 𝑉2)(2 − 𝑉2)2 

Or, 𝑉6 − 8𝑉4 − (16𝛼2 − 24)𝑉2 − 16(1 − 𝛼2) = 0-------------   Eq.2.83 
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Equation (2.83) is a cubic equation in V2. For a given value of Poisson’s ratio, the proper value 

of V2 can be found and, hence, so can the value of Vr  in terms of Vp  or Vs. 

Example 1: 

Given μ = 0.25, determined the value of the Rayleigh wave velocity in terms of Vs 

Solution: 

𝑉6 − 8𝑉4 − (16𝛼2 − 24)𝑉2 − 16(1− 𝛼2) = 0 

For µ=0.25 

𝛼2 =
1 − 2𝜇

2 − 2𝜇
= 1/3 

𝑉6 − 8𝑉4 − (16 ×
1

3
− 24)𝑉2 − 16(1 −

1

3
) = 0 

3𝑉6 − 24𝑉4 + 56𝑉2 − 32 = 0 

(𝑉2 − 4)(3𝑉4 − 12𝑉2 + 8) = 0 

Therefore, 𝑉2 = 4, 2 +
2

√3
, 2 −

2

√3
 

If V2=4, 
𝑆2

𝑓2
= 1 − 𝑉2 = 1 − 4 = −3 

So  S/f is imaginary. This is also the case for V2=2 +
2

√3
 

It can be seen that when q/f and s/f are imaginary, it does not yield the primary and secondary 

waves as discussed.  

For V2=2 −
2

√3
, 𝑣 =

𝑣𝑟

𝑣𝑠
=0.9194  

Or 𝑣𝑟=0.9194𝑣𝑠  
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3.0 LIQUEFACTION OF SOIL 

Previous earthquake devastation was an illustration of catastrophic damages to structures and 

resulting in loss of life which was due to liquefaction phenomenon.  Liquefaction is defined as a 

condition where a soil will undergo continuation of deformation at a constant low residual stress 

or with no residual resistance, due to the build-up and maintenance of high pore water pressure 

which reduces the effective confining pressure to a very low value. The pore pressure so build-up 

leading to true liquefaction of this type may be due either to static or cyclic stress applications. 

 

3.1 Initial Liquefaction 

 

It denotes a condition where, during the course of cyclic stress applications, the residual pore water 

pressure on completion of any full stress -cycle becomes equal to the applied confining stress. 

MECHANISM OF LIQUEFACTION: 

The strength of sand is primarily due to internal friction. In saturated state it may be expressed as  

𝑠 = 𝜎𝑛̅̅ ̅tanφ------          Eq.3.1 

Where S= Shear strength of sand 

𝜎𝑛̅̅ ̅= Effective normal stress on any plane at a depth of z 

Φ= Angle of internal friction 

 
Fig.3.1. Section of ground showing the position of water table 

When a saturated sand is subjected to ground vibrations, it tends to compact and decrease 

volume, if drainage is restrained the tendency to decrease in volume results in an increase in pore 

pressure. 

The strength may now be expressed as, 

𝑆𝑑𝑦𝑛 = (𝜎𝑛̅̅ ̅ − 𝑢𝑑𝑦𝑛)𝑡𝑎𝑛⁡∅𝑑𝑦𝑛-------------       Eq.3.2 

𝑆𝑑𝑦𝑛=Shear strength of soil under vibration 

𝑢𝑑𝑦𝑛=Excess pore water due to ground vibration 

∅𝑑𝑦𝑛=angle of internal of friction under vibration 

It is observed that with development of additional positive pore pressure, the strength of sand is 

reduced. 

For complete loss of strength, shear strength becomes zero, 𝑆𝑑𝑦𝑛=0 

Thus, 𝜎𝑛̅̅ ̅ − 𝑢𝑑𝑦𝑛=0 
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Or  𝜎𝑛̅̅ ̅=𝑢𝑑𝑦𝑛, hence 
𝑢𝑑𝑦𝑛

𝜎𝑛̅̅ ̅̅
=1---------        Eq.3.3  

Now 𝑢𝑑𝑦𝑛can be expressed in terms of rise in water head and be written as 

𝛾𝑤ℎ𝑤
𝐺−1

1+𝑒
𝛾𝑤𝑍

=1----           Eq.3.4 

Or 
ℎ𝑤

𝑍
=

𝐺−1

1+𝑒
---------          Eq.3.5 

This is the critical hydraulic gradient. 

It is seen that, because of increase in pore water pressure the effective stress reduces, resulting in 

loss of strength. Transfer of inter granular stress takes place from soil grains to pore water. Thus 

if this transfer is completed, there is complete loss of strength, resulting in what is known as 

complete liquefaction. However, if only partial transfer of stress from the grains to the pore 

water occurs, there is partial loss of strength resulting in partial liquefaction. In case of complete 

liquefaction, the effective stress is lost and the sand-water mixture behaves as a viscous material 

and process of consolidation starts. Due to surface settlement, resulting in closer packing of sand 

grains occurs. Thus the structures resting on such a material start sinking. The rate of sinking of 

structures depends upon the time for which the sand remains in liquefied state. Liquefaction of 

sand may develop at any zone of a deposit, where the necessary combination of in-situ density, 

surcharge conditions and vibration characteristics occur. Such a zone may be at the surface or at 

some depth below the ground surface, depending only on the state of sand and the induced 

motion. 

 

3.3 FACTORS AFFECTING LIQUEFACTION 

 

 The factors affecting liquefaction are summarised below 

a)  Soil Type: Liquefaction occurs in cohesion-less soils as they lose their strength 

completely under vibration due to the development of pore pressures which in turn 

reduce the effective stress to zero. Liquefaction does not occur in case of cohesive soils. 

Only highly sensitive clays may lose their strength substantially under vibration. 

b)  Grain Size and Its Distribution: Fine and uniform sands are more prone to liquefaction 

than coarser ones. Since the permeability of coarse sand is greater than fine sand, the pore 

pressure developed during vibrations can dissipate faster. 

c)  Initial Relative Density: It is one of the most important factors controlling liquefaction. 

Both pore pressures and settlement are considerably reduced during vibrations with 

increase in initial relative density and hence chances of liquefaction and excessive 

settlement reduce with increased relative density. 

d) Vibration Characteristics: Out of the four parameters of dynamic load namely (i) 

frequency; (ii) amplitude; (iii) acceleration; and (iv) velocity; frequency and acceleration 

are more important. Frequency .of the dynamic load plays vital role, only if it is close to 

the natural frequency of the system. Further the liquefaction depends on the type of the 

dynamic load i.e. whether it is a transient load or the load that causes steady vibration. 

For a given acceleration, liquefaction occurs only after a certain number of cycles 
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imparted to the deposit. Further, horizontal vibrations have more severe effect than 

vertical vibrations. Multi directional shaking is more severe than one directional loading 

(Seed at al.1977), as the pore water pressure build up is much faster and the stress ratio 

required is about 10 percent less than that required for unidirectional shaking. 

e)  Location of Drainage and Dimension of Deposit: Sands are more pervious than fine 

grained soil. However, if a pervious deposit has large dimensions, the drainage path 

increases and the deposit may behave as un-drained, thereby, increasing the chances of 

liquefaction of such a deposit. The drainage path is reduced by the introduction of drains 

made out of highly pervious material. 

f) Surcharge Load: If the surcharge load, i.e. the initial effective stress is large, then 

transfer of stress from soil grains to pore water will require higher intensity vibrations or 

vibration for a longer duration. If the initial stress condition is not isotropic as in field, 

then stress condition causing liquefaction depends upon K0 (coefficient of earth pressure 

at rest) and for K0> 5, the stress condition required to cause liquefaction increases by at 

least 50%. 

g) Method of Soil Formation: Sands unlike clays do not exhibit a characteristics structure. 

But recent investigations show that liquefaction characteristics of saturated sands under 

cyclic loading are significantly influenced by method of sample preparation and by soil 

structure. 

h) Period under Sustained Load: Age of sand deposit may influence liquefaction 

characteristics. A 75% increase in liquefaction resistance has been reported on 

liquefaction of undisturbed sand compared to its freshly prepared sample which may be 

due to some form of cementation or welding at contact points of sand particles and 

associated with secondary compression of soil. 

i) Previous Strain History: Studies on liquefaction characteristics of freshly deposited 

sand and of similar deposit previously subjected to some strain history reveal, that 

although the prior strain history caused no significant change in the density of the sand, it 

increased the stress that causes liquefaction by a factor of 1.5. 

j)  Trapped Air: If air is trapped in saturated soil and pore pressure develop, a part of it is 

dissipated due to the compression of air, hence trapped air helps to reduce the possibility 

of liquefaction. 

k) Groundwater Table: The most conducive condition to liquefaction is near the surface of 

ground water table. Unsaturated soil located above the groundwater table will not liquefy. 

At the location where groundwater table significantly fluctuates, the liquefaction will also 

fluctuate. 

 

3.4 EVALUATION OF ZONE OF LIQUEFACTION IN FIELD 

 

At a depth below the ground surface, liquefaction will occur if shear stress induced by 

earthquake is more than the shear stress predicted. By comparing the induced and predicted shear 

stresses at various depths, liquefaction zone can be obtained. 
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In a sand deposit consider a column of soil of height h and unit area of cross section subjected to 

maximum ground acceleration Qmax(Fig.3.2).  

 

 

 

 

 

 

 

 

 

 

Fig.3.2: Maximum shear stress at a depth for a rigid soil column 

 

Assuming the soil column to behave as a rigid body, the inertia force F can be obtained as 

𝐹 =
𝑊

𝑔
𝑎𝑚𝑎𝑥---------         Eq.3.6 

Or =
𝛾𝑧

𝑔
𝑎𝑚𝑎𝑥 = 𝜎0

𝑎𝑚𝑎𝑥

𝑔
--------------       Eq.3.7 

The maximum shear stress 𝜏𝑚𝑎𝑥 at a depth h is given by 

𝜏𝑚𝑎𝑥 =
𝐹

𝐴
=𝜎0

𝑎𝑚𝑎𝑥

𝑔
-----------------       Eq.3.8 

As base area of soil column is taken as unity 

Where g = Acceleration due to gravity and γ = Unit weight of soil 

Since the soil column behaves as a deformable body, the actual shear stress at depth h, (𝜏𝑚𝑎𝑥) is 

taken as 

𝜏𝑎𝑐𝑡 = 𝑟𝑑𝜏𝑚𝑎𝑥 = 𝑟𝑑(
𝛾ℎ

𝑔
)𝑎𝑚𝑎𝑥------        Eq.3.9 

Where 𝑟𝑑= Depth reduction factor 

If linear variation is assumed between reduction factor and depth, than rd can be taken as 

𝑟𝑑 = 1 − 0.012𝑧-------                  Eq.3.10 

The above relation is valid for depth up to 15 m. 

According to Seed and Idriss (1971), the average equivalent uniform shear stress 𝜏𝑎𝑣𝑔 is about 

65 percent of the maximum shear stress 𝜏𝑚𝑎𝑥 .Therefore 

 𝜏𝑎𝑣𝑔 = 0.65
𝛾𝑧

𝑔
𝑎𝑚𝑎𝑥𝑟𝑑--------                  Eq.3.11 

The corresponding number of significant cycles Ns for 𝜏𝑎𝑣𝑔 is given in table Table.3.1 

Table 3.1: Significant cycles Ns corresponding to 𝜏𝑎𝑣𝑔 

Earthquake magnitude, M on Richter’s scale Ns 

7 10 

7.5 20 

8.0 30 
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In order to felicitate liquefaction analysis one non dimensional parameter known as Cyclic Stress 

Ratio (CSR) or Seismic Stress Ratio (SSR), can be defined as 

 𝐶𝑆𝑅𝑜𝑟⁡𝑆𝑆𝑅 =
𝜏𝑎𝑣𝑔

𝜎0
′ ----------                  Eq.3.12 

Thus, 𝐶𝑆𝑅𝑜𝑟⁡𝑆𝑆𝑅 = 0.65𝑟𝑑(
𝜎0

𝜎0
′)

𝑎𝑚𝑎𝑥

𝑔
------                 Eq.3.13 

Seed and Idriss (1971) suggested the value of cyclic stress ratio values Cr as given in Table 3.2 

 

Table 3.2: Values of Cr corresponding to Relative density 

Relative density DR (%) Cr 

0-50 0.57 

60 0.60 

80 0.68 

 

It was observed that up to a relative density of 80%, the peak pulsating shear stress causing 

liquefaction increases almost linearly with the increase in relative density. Keeping this fact in 

view, the following general relation is suggested: 

(
𝜏ℎ

𝜎𝑣̅̅̅̅
)𝑓𝑖𝑒𝑙𝑑𝐷𝑅 = (

𝜎𝑑

2𝜎3
)𝑡𝑟𝑖𝑎𝑥,50𝐶𝑟

𝐷𝑅

50
----------                     Eq.3.14 

Where, (
𝜏ℎ

𝜎𝑣̅̅̅̅
)𝑓𝑖𝑒𝑙𝑑𝐷𝑅= Cyclic shear stress ratio in field at relative density of DR percentage 

(
𝜎𝑑

2𝜎3
)𝑡𝑟𝑖𝑎𝑥,50=Stress ratio obtained from triaxial test at relative density of 50%. It can be 

determined from Fig.3.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.3: Stress condition causing liquefaction of sands (Seed and Idriss, 1971) 

 

3.5 THE PROCEDURE OF LOCATING LIQUEFACTION ZONE CAN BE SUMMARISED 

IN FOLLOWING STEPS 

i) Establish the design earthquake, and obtain peak ground acceleration amax. Also obtain 

number of significant cycles Ns corresponding to earthquake magnitude using Table.2  
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ii) Using Eq. 11 determine 𝜏𝑎𝑣𝑔 at depth h below ground surface. 

iii) Using Fig.2, determine the value of  
𝜎𝑑

2𝜎3
⁡for given value of D50 of soil and number of 

equivalent cycles NS for the relative density of 50%. 

iv) Using Eq. 12, determine the value of (
𝜏ℎ

𝜎𝑣̅̅̅̅
)𝑓𝑖𝑒𝑙𝑑𝐷𝑅  for the relative density of DR of the 

soil at site. Multiplying (
𝜏ℎ

𝜎𝑣̅̅̅̅
)𝑓𝑖𝑒𝑙𝑑𝐷𝑅   with effectives stress at depth h, we can obtain 

the value of shear stress 𝜏ℎ required for causing liquefaction. 

v) At depth h, liquefaction will occur if 𝜏𝑎𝑣𝑔 > 𝜏ℎ 

vi) Repeat steps (ii) to (iv) for other values of h to locate the zone of liquefaction.  

 𝜏𝑎𝑣𝑔 and  𝜏ℎ can be plotted in a graph to identify the zone of liquefaction. 

Problem No.1 

At a given site, a boring supplemented with standard penetration tests was done up to 15.0m 

depth. The results of the boring are as given below: 

Depth 

(m) 

Classification of soil D50 

(mm) 

N-Value DR  

(%) 

Remarks 

1.5 SP 0.18 3 19 Position of ground water 

lies 1.5 m below the ground 

surface 

3.0 SP 0.2 5 30 

4.5 SM 0.12 6 35 

6.0 SM 0.14 9 40 

7.5 SM 0.13 12 45 𝛾𝑚𝑜𝑖𝑠𝑡=19 kN/m3 

𝛾𝑠𝑢𝑏=10 kN/m3 

 

 

9.0 SP 0.16 17 52 

10.5 SW 0.2 20 52 

12.0 SW 0.22 18 46 

13.0 SW 0.22 24 60 

15.0 SW 0.24 30 65 

 

The site is located in seismically, active region, and is likely to be subjected by an earthquake of 

Magnitude 7.5. Determine the zone of liquefaction using Seed and ldriss (1971) method. 

 

3.6 EVALUATION OF LIQUEFACTION POTENTIAL USING STANDARD 

PENETRATION  RESIST ANCE 

The standard penetration test is most commonly used in-situ test in a bore hole to have fairly 

good estimation of relative density of cohesion-less soil. Since liquefaction primarily depends on 

the initial relative density of saturated sand, many researchers have made attempt to develop 

correlations in liquefaction potential and standard penetration resistance. IS: 2131-1981 gives the 

standard procedure to carry out standard penetration test. SPT values (N) obtained in the field for 

sand have to be corrected for accounting the effect of over burden pressure as below: 

𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝐶𝑁𝑁𝑓𝑖𝑒𝑙𝑑------------       Eq.3.15 

CN = Correction factor obtained from Figure 3.4 or it can be also be found from the expression  

𝐶𝑁 = √
100

𝜎̅
------         Eq.3.16 

 𝜎̅ is the effective stress in kN/m2          
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Fig. 3.4: Chart for correction of N value for over burden pressure 

3.7 FOLLOWING PROCEDURE FOR LIQUEFACTION ANALYSIS IS USED 

i)  Establish the design earthquake, and obtain the peak ground acceleration amax. Also 

obtain number of significant cycles corresponding to the magnitude of earthquake 

using Table 3.1. 

ii) Using Eq. 3.11 determine 𝜏𝑎𝑣𝑔 at depth h below ground surface. 

iii) Determine the value of standard penetration resistance value (N) at depth h below 

ground surface. Obtain corrected Ncorrected value after applying overburden correction 

to N using Fig.3.4 

iv) Using Fig.3.3, determine 
𝜏ℎ

𝜎𝑣̅̅̅̅
for the given magnitude of earthquake and Ncorrected value 

obtained in step (iii). Multiplying 
𝜏ℎ

𝜎𝑣̅̅̅̅
 with effective stress at depth h below ground 

surface, obtain the value of shear stress 𝜏ℎ⁡required for causing liquefaction. 

v) At depth h, liquefaction will occur if 

𝜏𝑎𝑣𝑔 > 𝜏ℎ 

vi) Repeat steps (ii) to (v) for other values of h to locate the zone of liquefaction. 

Example No.1 

At a given site boring supplement with SPT was done up to 20 m depth. The results of the boring 

are given below. Water table lies 2 m below the ground surface. Take 𝛾𝑠𝑢𝑏=10 kN/m3. The site is 

located in seismically active zone and the likely to be subjected by an earthquake of magnitude 

7.5 and maximum ground acceleration is 0.15g. Find the zone of liquefaction if any. 

Depth(m) 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 

Nfield 4 4 5 7 9 10 12 14 16 18 

 

Solution: 

The effective stress, 𝜎′ = 𝛾𝑠𝑢𝑏𝑍, Reduction factor 𝑟𝑑 = 1 − 0.012𝑧 

The calculation are tabulated as below 
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Depth 

(m) 

N 𝜎′ 𝐶𝑁

= √
100

𝜎′
 

𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡  

=NCN 

𝜏ℎ
𝜎′

 𝜎0 𝑟𝑑 𝑎𝑚𝑎𝑥

𝑔
0.65

× 𝑟𝑑 

𝜏ℎ 𝜏𝑎𝑣𝑔 

2 4 20 2.24 8.96 0.09 20 0.976 0.0952 1.8 1.9 

4 4 40 1.58 6.32 0.07 60 0.952 0.0928 2.8 5.56 

6 5 60 1.29 6.45 0.075 100 0.928 0.0905 4.5 9.05 

8 7 80 1.12 7.84 0.08 140 0.904 0.0881 6.4 12.33 

10 9 100 1.0 9.0 0.1 180 0.88 0.0858 10 15.44 

12 10 120 0.91 9.1 0.1 220 0.856 0.0835 12 18.37 

14 12 140 0.84 10.8 0.12 260 0.832 0.0811 16.8 21.08 

16 14 160 0.79 11.06 0.13 300 0.808 0.0788 20.8 23.64 

18 16 180 0.74 11.84 0.14 340 0.784 0.0764 25.2 25.97 

20 18 200 0.707 12.73 0.16 380 0.76 0.0741 32 28.15 

 

From the above calculation, it is found that up to 18 m depth, 𝜏𝑎𝑣𝑔 > 𝜏ℎ. Hence liquefaction can 

occur up to depth of 18 m from the ground surface. 

 

3.8 FACTOR OF SAFETY AGAINST LIQUEFACTION 

The liquefaction analysis can also provide the determination of factor of safety against 

liquefaction. If the cyclic stress ratio (CSR) caused by the anticipated earthquake is greater than 

the cyclic resistance ratio (CRR) of the in-situ soil, the liquefaction could occur during the 

earthquake. The cyclic resistance ratio represents the liquefaction resistance of the soil, which 

can be obtained from the standard penetration test. It was observed that the resistance to 

liquefaction increased with increase in the corrected N value. Figure 3.5 presents a chart that can 

be used to obtain the cyclic resistance of the in-situ soil. 

 

So the factor of safety (FS) against liquefaction may be defined as  

𝐹𝑆 =
𝐶𝑅𝑅

𝐶𝑆𝑅
---------------         Eq.3.17 

Higher the factor of safety more is the resistance of the soil to liquefaction. However, soil having 

FS slightly more than 1.0 may still liquefy during the earthquake. 
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Fig.3.5: Chart to determine the cyclic resistance ratio for clean and silty sand for M=7.5 

earthquake (After Seed et al.1975) 

Example No.2 

The sand deposit of fine sand (finer ≤ 5%) of finite thickness is located at a depth of 3.0 m from 

the ground surface and ground water table is located at 1.5m below the ground surface. This is 

located in seismic prone area where the anticipated GPA is 0.40g.The standard penetration test 

was performed at depth of 3.0m. The corrected N value is 8. The unit weight of sand is taken 

as18.4 kN/m3. Calculate the factor of safety against liquefaction for the saturated sand. 

Sol:  

Ncorrected = 8, Unit weight of sand = 18.4 kN/m3 

Submerged unit weight = 8.59 kN/m3 

PGA=0.4g 

Effective stress 𝜎0
′ = 𝜎0 − 𝑢=18.4x1.5+1.5x8.59=40.485 kN/m3 

Total stress 𝜎0 = 𝜎0
′ + 𝑢=40.485+1.5x9.81=55.2 kN/m3 

Now using the linear relationship for the stress, depth reduction factor can be computed as 

𝑟𝑑 = 1 − 0.012𝑧=1-0.012x3=0.964 
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So CSR=0.65x𝑟𝑑 (
𝜎0

𝜎0
′) (

𝑎𝑚𝑎𝑥

𝑔
)=0.65 × 0, .964 ×

55.2

40.485
× 0.4=0.342 

Using Fig.4 with Ncorrected=8, CRR can be obtained as 0.09 

Hence 𝐹𝑆 =
0.09

0.342
=0.263 

So based on the calculation of factor of safety against liquefaction, the sand deposit liquefy. 

 

Problem No 1: 

A 10 m thick loose sand deposit (Dr=42%, finer≤5%) is saturated below a depth of 4 m. The 

sand layer region is highly prone to liquefaction. Estimate the ground acceleration that would be 

required to produce sand soils in a M=7.5 earthquake. 
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4.0 DYNAMIC SOIL PROPERTIES 

4.1 Laboratory Method 

The soil properties which are needed in analysis and design of a structure subjected to dynamic 

loading are: 

(a) Dynamic moduli, such as Young's modulus E, shear modulus G, and bulk modulus K 

(b) Poisson's ratio µ 

(c) Dynamic elastic constants, such as coefficient of elastic uniform compression Cu, coefficient 

of elastic uniform shear, 𝐶𝜏, coefficient of elastic non-uniform Compression 𝐶∅ and coefficient of 

elastic non-uniform shear 𝐶𝜑 

(d) Damping ratio, ξ 

(e) Liquefaction parameters, such as cyclic stress ratio, cyclic deformation and pore pressure 

response. 

f) Strength-deformation characteristics in terms of strain rate effects. 

Since the dynamic properties of soils are strain dependent various laboratory and field techniques 

have been developed to measure these properties over a wide range of strain amplitudes. 

4.2  LABORATORY TECHNIQUES  

The laboratory methods used for determining the dynamic properties of soils are: 

i) Resonant column test, 

ii) Ultrasonic pulse test, 

iii) Cyclic simple shear test, 

iv) Cyclic torsional simple shear test, and 

v) Cyclic triaxial compression test 

 

 4.2.1 Resonant Column Test: 

The resonant column test is used to obtain the elastic modulus E, shear modulus G and damping 

characteristics of soils at low strain amplitudes. This test is based on the theory of wave 

propagation in prismatic rods (Richart, Hall and Woods, 1970). Either a cyclically varying axial 

load or torsional load is applied to one end of the prismatic or cylindrical specimen of soil. This 

in turn will propagate either a compression wave or a shear wave in the specimen. In this 

technique the excitation frequency generating the wave is adjusted until the specimen 

experiences resonance. The value of the resonant frequency is used to find the value of E and G 

depending on the type of the excitation (axial or torsional). 

i)  Fixed-free end Condition: 

Hall and Richart (1963) described the apparatus with fixed-free end condition. In this 

arrangement one end of the specimen is fixed against rotation and the other end is free to rotate 

under the applied torsion (Figure 4.1a).Anode occurs at the fixed end and the distribution of 

angular rotation 𝜃 along the specimen is a 
1

4
𝑠𝑖𝑛𝑒⁡wave. 

As shown in Figure 4.1b, by adding a mass at the free end, the variation of θ along the specimen 

becomes nearly linear. J and J0 are respectively the polar moment of inertias of the specimen and 

the added mass respectively. Dmevich (1967) used the concept of added mass to obtain a 

uniform strain distribution 'throughout the length of the specimen. 
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Fig.4.1: Resonance Column test 

Calibration and determination of G and ξ: 

Hardin (1970) suggested the following procedure of calibration of the apparatus 

described in Fig. 1b: 

(i) For this model the vibration excitation device itself, without a specimen attached is a single 

degree of freedom system. Firstly remove the specimen cap and the additional rigid mass, 

connect the sine wave generator to the vibration excitation device and vary the excitation 

frequency to determine the resonant frequency 𝑓𝑛1 of the device.  

(ii) Attach the additional rigid mass of polar moment of inertia Jo' and determine the resonant 

frequency 𝑓𝑛𝐴  of the new system. 

The rotational spring constant (torque per unit rotation), K0, of the spring about the axis of 

specimen can be obtained using Eq.4. 1 

𝐾0 =
4𝜋−𝐽𝐴𝑓𝑛𝐴

2

[1−(
𝑓𝑛𝐴
𝑓𝑛1

)2
---------------------        Eq.4.1 

(iii) With the added mass removed and with the specimen cap, specimen and all apparatus, 

determine the resonant frequency, 𝑓𝑛0. The value of mass polar moment of inertia of the rigid 

mass, J0 can be computed using Eq.4.2. 

𝐽0 =
𝐾0

4𝜋𝑓𝑛0
2 ----------------------         Eq.4.2 

Now at resonance cut off the power and record the decay curve for the vibration, From the decay 

curve compute the logarithmic decrement for the apparatus, as follows 

𝛿 =
1

𝑛
𝑙𝑜𝑔𝑒

𝐴1

𝐴2
----------------          Eq.4.3 

Under steady state vibrations, the apparatus damping constant, D is given by 

𝐷 =
𝛿

𝜋
√𝐾0𝐽0--------------------         Eq.4.4 

The procedure of obtaining G and ξ has been explained in the following steps: 

Calculate the mass density of the specimen, ρ, from Eq. (4.5), 

𝜌 =
4𝑊

𝜋𝑑2𝑙𝑔
--------------------------         Eq.4.5 

Where W =Total weight of specimen 
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l= Length of specimen 

d = Diameter of specimen  

g =Acceleration due to gravity, 

(ii) Calculate the inertia of the specimen about its axis J, as follows: 

𝐽 = 𝜌
𝜋

32
𝑑4𝑙--------------------          Eq.4.6 

(iii) Calculate the system factor, T as follows: 

𝑇 =
𝐽0

𝐽
−

𝐾0

4𝜋2𝑓𝑛𝑅
2 𝐽

--------------------         Eq.4.7 

Where J0 = Mass polar moment of inertia of the apparatus 

K0 = Rotational spring constant,  

J = Inertia of the specimen 

fnR = Resonant frequency of the complete system. 

iv) To measure the torque current constant, Kt excite the apparatus successively at frequencies 

(√2, 2), 𝑓𝑛0√2 and 2𝑓𝑛0, during the steady state vibration at each of these frequencies measure 

the current flowing through the coils, C in amperes, and the displacement amplitude of vibration, 

θ in radians. For each frequency compute the torque-current constant Kt as follows 

𝐾𝑡 =
𝐾0𝜃

𝐶𝑀𝑓
----------------          Eq.4.8 

Where Mf  is given in Table 4.1 

Frequency 𝑀𝑓 

(
√2

2
)𝑓𝑛0 

2 

(√2)⁡𝑓𝑛0 1 

2𝑓𝑛0 1/3 

(iv) Using Figure 4.2, determine the dimensionless frequency F for the value of T computed in 

step (ii). 

 
 

Fig.4.2: System factor T versus F 
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𝐺 = 4𝜋2𝜌[
𝑓𝑛𝑅

𝐹
𝑙]2-----------------         Eq.4.9 

For steady state vibration, the damping factor of the system is given as 

𝐷𝑠 =
1

4𝜋2𝐽2𝑓𝑛𝑅
2 ⌈

𝐾𝑡𝐶𝑅

𝜃𝑅
− 2𝜋𝐷𝐴𝐹𝑛𝑅⌉--------------                 Eq.4.10 

CR is the mode shape  

 

4.2.2 Cyclic Triaxial Compression Test 

In general the stress-deformation and strength characteristics of a soil depend on the following 

factors: 

1.  Type of soil 

2. Relative density in case of cohesionless soils; consistency limits, water content and state 

of disturbance in cohesive soils 

3.  Initial static stress level i.e. sustained stress 

4.  Magnitude of dynamic stress 

5.  Number of pulses of dynamic load 

6.  Frequency of loading 

7.  Shape of wave form of loading 

8.  One directional or two directional loading  

In one directional loading only compression of the sample is done while in two directional 

loading both compression and extension is done. All the factors listed above can be studied 

lucidly on a triaxial set up. 

 Casagrande and Shannon (1948, 1949) developed the following three types of apparatus for 

studying the strength of soils under transient loading (Table.4.2) 

Table 4.2: Type of Apparatus 

Type of apparatus Time of loading (seconds) Remarks 

(i) Pendulum loading 0.05 to 0.01 Suitable for 

performing fast 

transient tests 

(ii) Falling beam 0.5 to 300 

(iii) Hydraulic loading 0.05 to any desired larger value 

 

Time of loading was defined as the time between the beginning of test and the point at which the 

maximum compressive stress is reached (Figure 4.3). The pendulum loading apparatus (Figure 4. 

4) utilizes the energy of a pendulum which, when released from a selected height, strikes a spring 

connected to the piston rod of a hydraulic lower cylinder. This lower cylinder is connected 

hydraulically to an upper cylinder, which is mounted on a loading frame. 

 

i) Pendulum Loading Test: A pendulum loading system was first developed by 

Casagrande and Shannon (1948-49). The loading mechanism is based on the 

utilization of energy of a pendulum when released from a selected height and striking 

a spring connected to the piston rod of a hydraulic cylinder as shown in the Fig.4. 4(a) 

ii) The falling beam apparatus consists essentially of a beam with a weight and rider, a 

dashpot to control the velocity of the fall of the beam, and a yoke for transmitting the 
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load from the beam to the specimen (Fig. 4.4 b). A small beam mounted above the 

yoke counter-balances the weight of the beam. 

 

 

 

 

 

 

 

 

 

 

 

Fig.4.3 Time of loading in transient tests 

iii) Pendulum Loading Test: A pendulum loading system was first developed by 

Casagrande and Shannon (1948-49). The loading mechanism is based on the 

utilization of energy of a pendulum when released from a selected height and striking 

a spring connected to the piston rod of a hydraulic cylinder as shown in the Fig. 4.4(a) 

iv) The falling beam apparatus consists essentially of a beam with a weight and rider, a 

dashpot to control the velocity of the fall of the beam, and a yoke for transmitting the 

load from the beam to the specimen (Fig 4.4 b). A small beam mounted above the 

yoke counter-balances the weight of the beam. 

v) The hydraulic loading apparatus (Fig. 4.4 c) consists of a constant volume vane-type 

hydraulic pump connected to a hydraulic cylinder through valves by which either the 

pressure in the cylinder or the volume of the liquid delivered to the cylinder can be 

controlled. The peak load that can be produced by this apparatus is much greater than 

can be obtained by either the pendulum type or falling beam apparatus. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.4 (a) Pendulum loading apparatus (Casagrande and Shannon. 1948) 
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Fig.4.4 (b) Falling beam apparatus (Casagrande and Shannon. 1948) 

 

 
Fig. 4.4 c: Hydraulic loading apparatus (Casagrande & Shannon, 1948) 

 

For measuring load, a load gage of rectangular or cylindrical shape is used, with four strain gages 

mounted on the inside face. For measuring deflection, a thin flexible steel spring cantilever is 

used with strain gages mounted on the cantilever, the base of which is clamped to the loading 

piston. 

A simultaneous plot of stress and strain versus time from an unconfined compression test with a 

time of loading of 0.02 s on cambridge clay is shown in Figure 4.5. Similar plots were prepared 

for other times of loading on Manchester sand. Using this data, stress-strain plots were obtained 

as shown in Figs.6 a and b. In these figures, stress-strain curves for corresponding static tests are 
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also shown. Typical plots of maximum compressive stress versus time of loading (or unconfined 

and confined transient tests on Cambridge clay are shown in Fig. 4.7 a and b respectively. A 

typical plot in terms of principal stress ratio a failure and time of loading for Manchester sand is 

shown in Fig. 4.8. 

 
Fig.4.5: Time Vs stress and strain in an unconfined transient test on Cambridge clay (Casagrande & 

Shannon, 1948) 

 
Fig 4.6 (a): Stress vrs Strain curves 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.6(b): Stress Vs Strain Curves (Manchester sand) 
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Fig. 4.7(a): Maximum Compressive Stress (unconfined) versus Time of Loading for Cambridge clay 

 
Fig.4.7 (b): Maximum Compressive Stress (confined) versus Time of Loading for Cambridge 

clay 

 

 

 

 

 

 

 

 

 

 

Fig. 4.8: Maximum principal stress ratio versus time of loading for Manchestor sand 
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Modulus of deformation is defined as the slope of a line drawn from the origin through the point 

on the stress-deformation curve and corresponding to stress of one-half the strength. It is found 

that in case of clays, modulus of deformation in fast transient tests was about two times that 

obtained in static tests. In case of sands, modulus of deformation was found independent of the 

time of loading. 

4.2.3 Summary of Cyclic Tests 

In the preceding sections, various types of laboratory test methods were presented, from which 

the fundamental soil properties such as the shear modulus, modulus of elasticity, and damping 

ratio are determined. These parameters are used in the design and evaluation of the behavior of 

earthen, earth-supported, and earth-retaining structures. As was discussed in the preceding 

sections, the magnitudes of G and ξ are functions of the shear strain amplitude γ′. Hence, while 

selecting the values of G and ξ for a certain design work, it is essential to know the following: 

a. Type of test from which the parameters can be obtained 

b. Magnitude of the shear strain amplitude at which these parameters needs to be measured For 

example, strong ground motion and nuclear explosion can develop large strain amplitudes 

whereas some sensitive equipment such as electron microscopes may be very sensitive to small 

strain amplitudes. 

Figure 9 provides is a useful reference table for geotechnical engineers; as it gives the amplitude 

of shear strain levels, type of applicable dynamic tests, and the area of applicability of these test 

results. Despite the fact that laboratory testing is not ideal, it will continue to be important 

because soil conditions can be better controlled in the laboratory. Parametric studies necessary 

for understanding the soil behaviour of soils under dynamic loading conditions must be 

performed in the laboratory conditions. Table 4.3 provides a comparison of the relative qualities 

(what property can be measured and what is the degree of quality of the measured property) of 

various laboratory techniques for measuring dynamic soil properties. Similarly, Table 4.4 gives a 

summary of the different engineering parameters that can be measured in different dynamic or 

cyclic laboratory tests 

 
Fig. 4.9: Range and applicability of dynamic laboratory tests 

Table 4.3: Relative Quality of Laboratory Techniques for Measuring Dynamic Soil Propertiesa 
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Table 4.4: Parameters Measured in Dynamic or Cyclic Laboratory Testsa 

 
 

4.3 FIELD TEST METHOD 

 

Field methods generally depend on the measurement of velocity of waves propagating through 

the soil or on the response of soil structure systems to dynamic excitation. The following 

methods are in use for determining dynamic properties of soil: 

1. Seismic cross-bore hole survey 

2. Seismic up-hole survey 

3. Seismic down-hole survey 

4. Seismic refraction survey 

5. Vertical block resonance test 
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6. Horizontal block resonance test 

7. Cyclic plate load test 

8. Standard penetration test 

4.3.1 Seismic Cross-borehole Survey 

This method is based on the measurement of velocity of wave propagation from one borehole to 

another. Figure 4.10 shows the essentials of seismic cross-hole method outlined by Stoke and 

Woods (1972).A source of seismic energy is generated at the bottom of one borehole and the 

time of travel of the shear wave from this borehole to another at known distance is measured. 

Shear wave velocity is then computed by dividing the distance between the boreholes by the 

travel time. 

As discussed above, seismic cross-borehole survey can be done using two boreholes one has the 

source for causing wave generation and another having geophone for recording travel time. 

However, for extensive investigations and better accuracy, three or more boreholes arranged in a 

straight line should be used. 

In this case the wave velocities can be calculated from the time intervals between succeeding 

pairs of holes, eliminating most of the concern over triggering the timing instruments and the 

effects of borehole casing and backfilling (Stokoe and Hour, 1978). Also this arrangement of 

bore holes in a straight line overcomes problems of site anisotropy by examining one direction 

only at a time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.10: Multiple hole seismic cross hole survey 

4.3.2 Seismic Up-Hole Survey 

Seismic up-hole survey is done by using only one borehole. In this method the receiver is placed 

at the surface, and shear waves are generated at different depths within the borehole. Figure 

4.11shows the schematic presentation of the arrangement used in seismic up-hole survey (Gote et 
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al., 1977).This method gives the average value of wave velocity for the soil between the 

excitation and the receivers if one receiver is used, or between the receivers. 

The major disadvantage in seismic up-hole survey is that it is more difficult to generate waves of 

the desired type. 

 
Fig.4.11: Seismic Up-hole survey 

4.3.3 Seismic Down-hole Survey 

In this method, seismic waves are generated at the surface of the ground near the top of the 

borehole, and travel times of the body waves between the source and the receivers which have 

been clamped to the borehole wall at predetermined depths are obtained. The arrangement used 

in seismic down-hole survey is shown schematic ally in Figure 4.12. This also requires only one 

borehole. 

The main advantage of this method is that low velocity layers can be detected even if trapped 

between layers of greater velocity provided the geophone spacings are close enough. 

4.3.4 Vertical Block Resonance Test  

The vertical block resonance test is used for determining the values of coefficient of elastic 

uniform compression (Cu), Young's modulus (E) and damping ratio (ξ) of the soil. 

According to IS 5249: 1984, a test block of size 1.5 m x 0.75 m x 0.70 m high is casted in 

M15concrete in a pit of plan dimensions 4.5 m x 2.75 m and depth equal to the proposed depth of 

foundation. Foundation bolts should be embedded into the concrete block at the time of casting 

for fixing the oscillator assembly. The oscillator assembly is mounted on the block so that it 

generates purely vertical sinusoidal vibrations. The line of action of vibrating force should pass 

through the centre of gravity of the block. Two acceleration or displacement pickups are 

mounted on the top of the block as shown in Figure 4.13 such that they sense the vertical motion 

of the block. A schematic diagram of the set up is shown in Figure 4.13. 

The mechanical oscillator works on the principle of eccentric masses mounted on two shafts 

rotating in opposite directions. The force generated by the oscillator is given by 

𝐹𝑑 = 2𝑚𝑒𝑒
2𝜔---------------         Eq.4.11 
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Fig. 4.12: Seismic Down-hole survey 

 

 
Fig.4.13: Set-up for block resonance test 

The oscillator is first set at a particular eccentricity (e).As evident from Eq. (4.11) higher the 

eccentricity more will be the force level. It is then operated at constant frequency and the 

acceleration of the oscillatory motion of the block is monitored. The oscillator frequency is 

increased in steps, and the signals of monitoring pickups are recorded. At any eccentricity and 

frequency the dynamic force should not exceed 20 percent of the total mass of the block and 

oscillator assembly. The amplitude of vibration (AZ) at a given frequency is given by 

𝑨𝒁 =
𝒂𝒛

𝟒𝝅𝟐𝒇𝟐
--------------------------       Eq.4.12 
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az = Vertical acceleration of the block, mm/s2 

f = frequency, Hz. 

Amplitude versus frequency curves are plotted for each eccentricity to determine the natural 

frequency of the foundation-soil system (Fig.4.14).  

 
Fig.4.14: Amplitude versus frequency plot for vertical vibration test 

The natural frequency,𝑓𝑛𝑧, at different eccentricity (i.e. force level) is different because different 

forces cause different strain levels of the block which may be accounted for when appropriate 

design parameters are being chosen. 

The coefficient of elastic uniform compression (Cu) of the soil is then determined using Eq. 

(4.13) 

𝐶𝑢 =
4𝜋2𝑓𝑛𝑧

2𝑚

𝐴
----------        Eq.4.13 

Where, fnz = Natural frequency of foundation-soil system, Hz 

m = Mass of the block oscillator and motor, Kg –sec2/m 

A = Base contact area of the block, m2 
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From the value of Cu obtained from Eq. (3) for the test block of contact area A the value of Cu1 

for the actual foundation having contact area A1 may be obtained from Eq. (4.14) 

𝐶𝑢1 = 𝐶𝑢√
𝐴

𝐴1
----------------         Eq.4.14 

The Eq. (4.14) is valid for base areas of foundations up to 10 m2. For areas larger than 10 m2, 

the value Cu obtained for 10 m2 is used. 

The value of damping ratio ξ is determined using Eq. (4.15) as 

𝜉 =
𝑓2−𝑓1

2𝑓𝑛𝑧
----------------        Eq.4.15 

Where, f1, f2= Two frequencies at which amplitudes is equal to 
𝐴𝑚𝑎𝑥

√2
 

 Amax= Maximum amplitude 

fnz = Resonant frequency 

The coefficient of elastic uniform compression (Cu) is related to the elastic Young's modulus (E) 

by Eq (6) which is in the form of Boussinesq relationship for the elastic settlement of a surface 

footing. 

𝐶𝑢 =
𝐸

1−𝜇2
𝐶𝑠

√𝐵𝐿
-------------------        Eq.4.16 

where 𝜇 = Poisson's ratio 

B = Width of base of the block 

L = Length of base of the block 

Cs = Coefficient depending on 𝐿 𝐵⁄  ratio 

Barkan (1962) recommended the values of Cs for various 𝐿 𝐵⁄  ratios as listed in Table 4.5 

Table 4.5: values of Cs for various 𝐿 𝐵⁄  ratios 

𝐿
𝐵⁄  Cs 

1.0 1.06 

1.5 1.07 

2.0 1.09 

3.0 1.13 

5.0 1.22 

10.0 1.41 

 

The value of damping ratio ξ is determined using Eq. (4.17) as 

𝜉 =
𝑓2−𝑓1

2𝑓𝑟𝑧
---------------------------       Eq.4.17 

Where,  f1,f2 = Two frequencies at which amplitudes is equal to 
𝐴𝑚𝑎𝑥

√2
 

Amax = Maximum amplitude 

frz= Resonant frequency 

Example No.1 
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A vertical vibration test was conducted on a 1.5m x 0.75 m x 0.70 m high concrete block in an 

open pit having depth 2.0 which is equal to the anticipated depth of actual foundation. The test 

was repeated at different settings (e) of eccentric masses. 

The data obtained from the tests are given below: 

Sl.No θ(degree) 𝑓𝑛𝑧 Amplitude at Resonance 

(Micron) 

1 36 41.0 13.0 

2 72 40.0 24.0 

3 108 34.0 32.0 

4 144 31.0 40.0 

The soil is sandy in nature having angle of internal friction is 35° and saturated density is 20 kN/ 

m3). The water table lies at a depth of 3.0 m below the ground surface. Probable size of the actual 

foundation is 4.0 x 3.0 x 3.5 m high. Determine the values of Cu, E and G to be adopted for the   

design of actual foundation. 

Limiting vertical amplitude of the machine is 150 microns. 

Sol: 

1 Area of Block=1.5x0.75=1.125 m2 

Mass of Block=1.125x0.75x2400=1890 kg 

Mass of oscillator and motor=100 kg (assumed) 

Mass of block, oscillator and motoa=1890+100=1990 kg  

2  𝐶𝑢 =
4𝜋2𝑓𝑛𝑧

2𝑚

𝐴
=

4𝜋2×𝑓𝑛𝑧
2×1990

1.125×100
= 69.84𝑓𝑛𝑧

2⁡𝑘𝑁/𝑚2 

The calculated values of 𝐶𝑢 for different observed resonance frequencies are tabulated as   

shown in Table 1 

Cu can be evaluated from Eq.4.6 as⁡𝐶𝑢 =
𝐸

1−𝜇2
𝐶𝑠

√𝐵𝐿
 for L/B=2 CS=1.09 

Assume µ=0.35, 𝐸 =
√1.125(1−0.352)

1.09
× 𝐶𝑢=0.854𝐶𝑢⁡𝑘𝑁/𝑚

2 

𝐺 =
𝐸

2(1+𝜇)
=

0.854𝐶𝑢

2(1+0.35))
=0.316𝐶𝑢 ⁡𝑘𝑁/𝑚

2 

For different values of 𝐶𝑢⁡, E and G values are calculated and tabulated as shown in table 1 

3 Correction for confining pressure and area 

The mean effective confining pressure  𝜎01̅̅ ̅̅ ⁡at depth of' one -half the width below the centre 

of block is given by 

𝜎01̅̅ ̅̅ = 𝜎𝑣̅̅ ̅
(1 + 2𝐾0)

3
 

Where 𝜎𝑣̅̅ ̅ = 𝜎𝑣1̅̅ ̅̅ + 𝜎𝑣2̅̅ ̅̅  

𝜎𝑣1̅̅ ̅̅  =Effective overburden pressure at the depth under consideration 

𝜎𝑣2̅̅ ̅̅ =Increase in vertical pressure due to the weight of block  

Assuming that the top 2.0 m soil has a moist unit weight of 18 kN/m3, and the next  1.0 m soil 

i.e. up to water table is saturated then 

𝜎𝑣1̅̅ ̅̅ = 18 × 2.0 + 20 ×
0.70

2
= 43⁡𝑘𝑁/𝑚2 



Lecture Notes on DSF 2021 
 

70 
 

𝜎𝑣2̅̅ ̅̅ =
4𝑞

4𝜋
[
2𝑚𝑛√𝑚2 + 𝑛2 + 1

𝑚2 + 𝑛2 + 1 +𝑚2𝑛2
×
𝑚2 + 𝑛2 + 2

𝑚2 + 𝑛2 + 1
+ 𝑠𝑖𝑛−1

2𝑚𝑛√𝑚2 + 𝑛2 + 1

𝑚2 + 𝑛2 + 1 +𝑚2𝑛2
] 

𝑚 =
𝐿/2

𝑍
=

1.5/2

0.7/2
=2.14 

𝑛 =
𝐵/2

𝑍
=

0.75/2

0.7/2
=1.07 

Where q=24x0.7=16.8 𝑘𝑁/𝑚2 

Substituting for the values of m and n, we get  

𝜎𝑣2̅̅ ̅̅ = 13.44⁡𝑘𝑁/𝑚2 

Now 𝜎𝑣̅̅ ̅ = 𝜎𝑣1̅̅ ̅̅ + 𝜎𝑣2̅̅ ̅̅ = 43 + 13.44 = 56.44⁡𝑘𝑁/𝑚2 

𝐾0 = 1 − 𝑠𝑖𝑛∅ = 0.426 

𝜎01̅̅ ̅̅ = 𝜎𝑣̅̅ ̅
(1 + 2𝐾0)

3
= 56.44 ×

1 + 2 × 0.426

3
= 34.84⁡𝑘𝑁/𝑚2 

For the actual foundation, 𝜎𝑣1̅̅ ̅̅ ̅=18x2.0+20x1.0+ (20-10)x0.5= 61 
𝑘𝑁

𝑚2 

𝑚 =
4.0/2

3.0/2
= 1.33 

𝑛 =
3.0/2

3.0/2
= 1.0 

𝑞 = 24 × 3.5 = 84
𝑘𝑁

𝑚2
 

Substituting the values of m, n and q we get 

𝜎02̅̅ ̅̅ =124.76[
1+2×0.426

3
] = 77.01

𝑘𝑁

𝑚2 

Area of actual foundation =4.0x0.3=12.0 m2 (> 10𝑚2) 

Hence, 
𝐶𝑢2

𝐶𝑢1
=

𝐸2

𝐸1
=
𝐺2

𝐺1
= (

𝜎02̅̅ ̅̅ ̅

𝜎01̅̅ ̅̅ ̅
)
0.5

× (
𝐴1

𝐴2
)
0.5

= (
77.0

34.84
)
0.5

× (
1.125

10
)
0.5

= 0.4986 

For actual foundation Cu =0.4986x Cu for block  

Table 1: 

Sl.

No 

θ 

in 

deg. 

𝑓𝑛𝑧 Amplitude  

at 

Resonance 

(micron) 

For Test Block For Actual Foundation 

Cu 

104kN/m2 

E 
104kN/m2 

G 
104kN/m2 

Cu 

104kN/m2 

E 
104kN/m2 

G 
104kN/m2 

1 36 41 13 11.74 10.03 3.71 5.85 5.00 1.85 

2 72 40 24 11.17 9.54 3.53 5.57 4.76 1.77 

3 108 34 32 7.15 6.11 2.26 3.56 3.05 1.13 

4 144 31 40 6.71 5.73 2.12 3.35 2.86 1.06 

 

Strain Level Correction 

The values of strain levels corresponding to values of Cu = amplitude at resonance per width of 

test block are given as 

Sl.No Cu (Test Block) Strain Level(10-4) 

1 11.74 0.173  (13x10-6/0.75) 

2 11.17 0.320  (24x10-6/0.75) 
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3 7.15 0.427 (32x10-6/0.75) 

4 6.71 0.533 (40x10-6/0.75) 

  

Strain in Actual foundation=
150×10−6

3.0
= 0.5 × 10−4 

The value of Cu, E and G corresponding to actual strain level of foundation can be obtained by 

interpolation as 

𝐶𝑢 = [3.56 − (3.56 − 3.35)
0.5−0.427

0.533−0.427
] × 104= 2.31x104 kN/m2 

𝐸 = [3.05 − (3.05 − 2.86)
0.5−0.427

0.533−0.427
] × 104 =1.97x104 kN/m2 

𝐺 = [1.13 − (1.13 − 1.06)
0.5−0.427

0.533−0.427
] × 104= 0.73x104 kN/m2 

 

4.3.5 Horizontal Block Resonance Test 

Horizontal block resonance test is also performed on the block set up as shown in Figure 4.14. In 

this test, the mechanical oscillator is mounted on the block so that horizontal sinusoidal 

vibrations are generated in the direction of the longitudinal axis of the block. Three acceleration 

or displacement pickups are mounted along the vertical centre line of the transverse face of the 

block to sense horizontal vibrations (Fig.4.14 a). The oscillator is excited in steps starting from 

rest condition. The signal of each acceleration pick up is amplified and recorded. Rest of the 

procedure is same as described for vertical block resonance test. Similar tests can be performed 

by exciting the block in the direction of transverse axis. 

The amplitude of Horizontal vibrations (Ax) is obtained using Eq. (4.18). 

𝐴𝑥 =
𝑎𝑥

4𝜋2𝑓2
-------------------------------       Eq.4.18 

Where, ax(mm) = Horizontal acceleration in the direction under consideration in mm/s2 

f = Frequency in Hz 

Amplitude versus frequency curves are plotted for each force level to obtain the natural 

frequency, fnz of the block soil system as done in vertical resonance test. A typical frequency 

versus amplitude plot is shown in Figure 4.15. It may be noted that the case of horizontal 

vibration is a problem of two degrees of freedom. 
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Fig.4.14 Experimental set up 

 

Fig.4.15: Amplitude versus frequency plots for horizontal resonance test 
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The coefficient of elastic uniform shear 𝐶𝜏 of soil is given as 

𝐶𝜏 =
8𝜋2𝑟𝑓𝑛𝑥

2

(𝐴0+𝐼0)±√(𝐴0+𝐼0)
2−4𝑟𝐴0𝐼0

---------------------      Eq.4.19 

Where 𝑟 =
𝑀𝑚

𝑀𝑚0
 

𝑓𝑛𝑥  = Horizontal resonant frequency of block soil system 

𝐴0 =
𝐴

𝑀
- 

A = Contact area of block with soil 

M = Mass of block, oscillator and soil 

𝐼0 = 3.46
𝐼

𝑀𝑚𝑜
-------------------------------------     Eq.4.20 

Mm = Mass moment of inertia of block, oscillator, motor, etc. about the horizontal axis passing 

through the centre of gravity of block and perpendicular to the direction of vibration 

Mmo = Mass moment of inertia of the block, oscillator; motor etc. about the horizontal axis 

passing through centre of contact area of block and soil and perpendicular to the direction of 

vibration. 

I = Moment of inertia of the foundation contact area about the horizontal axis passing through 

the centre of gravity of area and perpendicular to the direction of vibration. 

In Eq. (4.19), negative sign is taken when the system vibrates in first mode and positive sign 

when the system vibrates in second mode. For the size of the block recommended in IS 5249-

1977 and for first natural frequency, the Eq. (4.19) reduces to 

𝐶𝜏 = 92.3𝑓𝑛𝑥
2 -----------------    Eq.4.21 unit of 𝐶𝜏 in this equation is kN/m2 

The coefficient of elastic uniform shear (Cτ1) for actual area of foundation (A1) is given by 

𝐶𝜏1 = 𝐶𝜏√
𝐴

𝐴1
--------------------          Eq.4.22 

IS 5249: 1977 recommends the following relations between Cu and 𝑪𝝉, Cφ and Cψ 

Cu = 1.5 to 2.0 𝐶𝜏 --------------         Eq.4.23 

𝐶∅= 3.46 𝐶𝜏 -------------------           Eq.4.24 

𝐶𝜓= 0.75 Cu--------------------          Eq.4.25 

4.3.6 Cyclic Plate Load Test 

 
The cyclic plate load test is performed in a test pit dug up to the proposed base level of 

foundation. The equipment is same as used in static plate load test. Circular or square bearing 

plates of mild steel not less than 25 mm thickness and varying in size from 300 to 750 mm with   

grooved bottom are used. The test pit should be at least five times the width of the plate. The 

equipment is assembled according to details given in IS 1988-1982. A typical set up is shown in 

Figure 4.16. 
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Fig. 4.16: Experimental set up for Cyclic Plate Load test 

To commence the test, a seating pressure of about 7 kPa is first applied to the plate. It is then 

removed and dial gauges are set to read zero. Load is then applied in equal cumulative 

increments of not more than 100 kPa or of not more than one fifth of the estimated allowable 

bearing pressure. In cyclic plate load test, each incremental load is maintained constant till the 

settlement of the plate is complete. The load is then released to zero and the plate is allowed to 

rebound. The reading of final settlement is taken. The load is then increased to next higher 

magnitude of loading and maintained constant till the settlement is complete, which is recorded. 

The load is then reduced to zero and the settlement reading is taken. The next increment of load 

is then applied. The cycles of unloading and reloading are continued till the required final load 

is reached. 

The data obtained from a cyclic plate load test is shown in Figure 4.17. From this data, the load 

intensity versus elastic rebound is plotted as shown in Figure 4.18, and the slope of the line is 

coefficient of elastic uniform compression. 
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𝐶𝑢 =
𝑃

𝑆𝑒
(𝑘𝑁 𝑚3⁄ )------------------       Eq.4.26 

Where P=Load Intensity in kN/m2 

Se= Elastic rebound corresponding to P in mm 

  
Fig. 4.17: Load Intensity versus Settlement          Fig.4.19: Load Intensity versus Elastic rebound 

 

It can be shown theoretically (Barkan, 1962) that 

𝐶𝑢 =
𝑃

𝑆𝑒
= 1.13

𝐸

1−𝜇2
1

√𝐴
----------------       Eq.4.27 

Where Cu= Sub-grade modulus, E = Modulus of elasticity, μ = Poisson’s ratio and A = area of 

the plate. 

However 𝐺 =
𝐸

2(1+𝜇)
  

So, 𝐶𝑢 = 2.26
𝐺(1+𝜇)

1−𝜇2
1

√𝐴
------------        Eq.4.28 

OR, 𝐺 =
(1−𝜇)𝐶𝑢√𝐴

2.26
-----------------        Eq.4.29 

The magnitude of Cu can be obtained from the plot of q versus se (Figure 4). With the known 

value of A and a representative value of μ, the shear modulus can be calculated from Eq. (12). In 

non homogenous soils, it may be desirable to conduct the test at different depths or one may use 

different plate sizes to reflect the change in soil stiffness with depth. Again, it should be noted 

that this test suffers from the same limitations as reported in traditional geotechnical engineering 

practice for the design of foundations. 
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Example 1 

The plot of q versus s (settlement) obtained from a cyclic plate load test is shown in Figure 

below. The area of the plate used for the test was 0.3 m2. Calculate 

a. Kplate, and 

b. Shear modulus G (assume μ = 0.35). 

 

Sol: From the settlement curve the following can be 

determined 

 

 

 

 

 

From the graph  

𝐶𝑢 =
𝑃

𝑆𝑒
=

300

0.0021
= 142.86⁡𝑀𝑁 𝑚3⁄  

 

𝐾𝑝𝑙𝑎𝑡𝑒 =
𝑞𝐴

𝑆𝑒
= 142.86 × 0.3

= 42.86𝑀𝑁/𝑚 

 

𝐺 =
(1 − 𝜇)𝐶𝑢√𝐴

2.26
=
(1 − 0.35)142.86 × √0.3

2.26
= 22.5𝑀𝑃𝑎  

 

4.3.7 Standard Penetration Test 

The standard penetration test (SPT) is the most extensively used situ test in India and many other 

countries. This test is carried in a bore hole using a split spoon sampler. As per IS: 2131-1981, 

steps involved in carrying out this test are as follows: 

(i) The borehole is made to the depth at which the SPT has to be performed. The bottom of the 

borehole is cleaned. 

(ii) The split-spoon sampler, attached to standard drill rods of required length is lowered into the 

borehole and rested at the bottom. 

(iii) The split –spoon sampler is seated 150 mm by blows of a drop hammer of 65 kg falling 

vertically and 
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Freely from a height of 750 mm. Thereafter, the split spoon sampler shall be further driven 300 

mm in two steps each of 150 mm. The number of blows required to effect each 150 mm of 

penetration shall be recorded. The first 150 mm of drive may be considered to be seating drive. 

The total blows required for the second and third 150 mm of penetration is termed the 

penetration resistance N. 

If the split spoon sampler is driven less than 450 mm (total), then N-value shall be for the last 

300 mm penetration. In case, the total penetration is less than 300 mm for 50 blows, it is entered 

as refusal in the bore log. 

(iv) The split spoon sampler is then withdrawn and is detached from the drill rods. The split 

barrel is disconnected from the cutting shoe and the coupling. The soil sample collected inside 

the barrel is collected carefully and preserved for transporting the same to the laboratory for 

further tests. 

(v) Standard penetration tests shall be conducted at every change in stratum or intervals of not 

more than 1.5 m whichever is less. Tests may be done at lesser intervals (usually 0.75 m) if 

specified or considered necessary. 

The penetration test in gravelly soils requires careful interpretation since pushing a piece of 

gravel can greatly change the blow count. 

 

4.3.7.1  Corrections to observed SPT values (N) in cohesionless soils  

 

Following two types of corrections are normally applied to the observed SPT values (N) in 

cohesionless soils: 

i) Corrections due to dilatancy: 

In very fine, or silty, saturated sand, Terzaghi and Peck (1967) recommend that the observed N-

values be 

Corrected to N' if N was greater than 15 as 

𝑁′ = 15 +
1

2
(𝑁 − 15)------------------------Eq.4.30 

Bazaraa (1967) recommended the correction as 

N' = 0.6N (for N > 15) -------------------- Eq.4.31 

This correction is introduced with the view that in saturated dense sand (N > 15); the fast rate of 

application of shear through the blows of drop hammer, is likely to induce negative pore 

pressures and thus temporary increase in shear strength will occur. This will lead to a N-value 

higher than the actual one. Since sufficient experimental evidence is not available to confirm this 

correction, many engineers are not applying this correction. However this correction has also 

been recommended in IS: 2131-1981. 

ii) Correction due to overburden pressure: 

On the basis of field tests, corrections to the N-value for overburden effects were proposed by 

many investigators (Gibbs and Holtz 1957; Teng 1965; Bazaraa 1967; Peck, Hanson and 

Thornburn 1974). The methods which are normally used are: 

Bazaraa (1967) 
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For 𝜎̅0 < 75𝑘𝑃𝑎, 𝑁′ =
4𝑁

1+0.04𝜎0̅̅̅̅
-------------------     Eq.4.32 

For 𝜎̅0 > 75𝑘𝑃𝑎, 𝑁′ =
4𝑁

3.25+0.01𝜎0̅̅̅̅
------------------     Eq.4.34 

where 𝜎̅0 =effective over burden pressure, kPa 

Peck, Hanson and Thornburm (1974) recommended 

𝑁′ = 0.77𝑁⁡𝑙𝑜𝑔10
2000

𝜎̅0
----------------------      Eq.4.35 

Figure 1 gives the correction factor based on Eq.4.35. Use of this figure has been recommended 

in IS: 2131-1981. In this figure, 

𝐶𝑁 = 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜⁡𝑓𝑎𝑐𝑡𝑜𝑟 = 0.77𝑁⁡𝑙𝑜𝑔10
2000

𝜎̅0
-------------    Eq.4.36 

 
Fig. 4.20: Over burden correction 

There is a controversy whether the correction due to dilatancy should be applied first and then 

the correction due to over burden pressure or vice-versa. However in IS: 2131-1981, it is 

recommended that the correction due to overburden should be applied first. 

 

4.4 FACTORS AFFECTING SHEAR MODULUS, ELASTIC MODULUS AND 

ELASTIC CONSTANTS 

 

Hardin and Black (1968) have given the following factors which influence the shear modulus, 

elastic modulus and elastic constants: 
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(i) Type of soil including grain characteristics, grain shape, grain size, grading and mineralogy; 

(ii) Void ratio 

(iii) Initial average effective confining pressure; 

(iv) Degree of saturation; 

(v) Frequency of vibration and number of cycles of load 

(vi) Ambient stress history and vibration history 

(vii) Magnitude of dynamic stress; and 

(viii) Time effects 

Soil behavior over a wide range of strain amplitudes is nonlinear and on unloading follows a 

different stress-strain path forming a hysteresis loop as shown in Figure 4.21. The area inside this 

loop represents the energy absorbed by the soil during its deformation and is a measure of the 

internal damping within the soil. 

At very low strain amplitudes (≪ 0.0001 %) the soil acts essentially as a linear elastic material 

with little or no loss of energy. The shear modulus under these conditions is maximum, but as the 

strain amplitude is increased, the shear modulus decreases and the damping within the soil 

increase. 

 
 

Fig.4.21: Stress-strain loop at different cycles of loading after Headley, 1985 
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5.0 DESIGN OF MACHINE FOUNDATIONS 

5.1 Categories of machine foundations 

Reciprocating machines: 

It produces periodic unbalanced force and operating frequency is 600rpm. For designing 

unbalanced force is taken as varying sinusoidally. 

Impact machines: 

It produces impact loads at an operating frequency of 60-150 blows/min. Dynamic load attends 

the peak within short duration and then die out quickly. Designed as over tuned. 

Rotary machines: 

These are high speed machines with high operating frequency. Hence the foundations are 

designed as under tuned. 

 

5.2 TYPES OF MACHINE FOUNDATIONS 

 

 

Block type 

Caisson type 

Frame type 

 

 

 

 

 

 

 

 

Fig.5.1: Types of machine foundations 

• Block type machine foundation is a solid block made of concrete block of huge mass, 

area and depth. The pedestal machine will be positioned on the top of the block. 

• Box or caisson type is used to save some material of concrete in order to avoid an 

uneconomic design when the foundation requirement is huge size as well as height of the 

foundation is more. 

• Framed foundation are used when the machine are subjected to very high operating 

frequency like turbo generator etc.  

 

5.3 CRITERIA FOR THE DESIGN OF MACHINE FOUNDATIONS 



Lecture Notes on DSF 2021 
 

81 
 

• These foundations should be well design to take care of the static loads coming on the 

foundation. 

• No shear or bearing capacity failure should occur. That means, the bearing capacity of the 

foundation against shear failure is to be checked.  

• No excessive settlement, that is amount of settlement as calculated under static load and 

that has to be compared with different codal guidelines.  

•  Under the dynamic loading condition, the foundation should not resonate. 

• The natural frequency of foundation soil must be far away from machine to avoid the 

resonance.  

• Dynamic displacement amplitude must not exceed the permissible limit. 

• Vibration of the machine and foundation system together must not be annoying to the 

person working in the environment and it should not damage the adjacent structures. 

• Machine foundation should not design for a strong foundation to take care of the dynamic 

load but also safe against bearing capacity failure, as well as safe against the resonance 

criteria.  

5.3.1 Suggested Foundation for Various Types of Machines  

1.  Machine producing Impulse: Block type foundation  

Example: hammer, Presses etc  

2. Rotating type machine with low to medium frequency: Block type foundation with large 

contact area.  

Example: Large reciprocating engine, Compressor, large blower 

3. Rotating type machine with medium to high frequency:  Block type foundation resting on 

suitable elastic pad or spring.  

Example: Medium sized reciprocating engine, diesel engine and gas engine 

4. Rotating type with very high frequency: Framed foundation or massive block with 

minimum contact area.  

Example: internal combustion engine, electric motors, turbo-generators 

5.4 METHODS OF ANALYSIS  

Linear elastic weightless spring MSD model 

Linear elastic theory 

Indian standard design code: IS 2974, Part 1 provisions 

Machine foundation has to be designed by checking three criteria.  

1 Dimensional criteria,  

2 Vibration criteria  

3  Displacement criteria 

These are the three major criteria, which needs to be checked to design a machine foundation as 

per our Indian standard design code 2974. 

5.4.1 Check the Dimension 

For a block type of foundation, the criteria given that size of the foundation block must be larger 

than the base plate of the machine. 
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The second criteria says minimum all-around clearance of 150 mm. must be provided as per IS 

codal provision. 

A third criterion is that, the foundation block should be placed deep enough on good bearing 

strata. 

The combined centre of gravity of the machine plus foundation block should be as far below the 

top of the foundation as possible.  

5.4.2 Vibration Check 

Foundation which is having natural frequency either much higher or lower than the operating 

frequency of the machine, is called under tuned or over tuned respectively. 

If the ratio of operating frequency to the natural frequency is less than or equal to 0.5 that can be 

designed as Under tuned criterion. 

If the operating frequency is much higher than the natural frequency and frequency ratio 

𝜉 =
𝜔

𝜔𝑛
> 2 for important machine and 

 𝜉 =
𝜔

𝜔𝑛
> 1.5⁡for less important machine 

For both types of machine design criteria is Over tuned. 

• To design machine for which operating frequency is very high, over tuned criteria is used 

because an under tuned type of foundation design result will provide negative value of 

mass or no mass because of the value of k which has to be excessively high. 

• To design machine for which operating frequency is low, under tuned criteria is used. 

• However for the range of say 1000 rpm or even in the range of 600 rpm, it is always 

better to check your design for both over tuned and under tuned. 

5.4.3 Displacement Criteria 

• The amplitude of permissible dynamic displacement should be less than or equals to 0.2 

mm, If it exceeds, foundation is to be redesigned.  

• The permissible displacement should be checked using Richart’s chart. So, that it should 

not become annoying to the workers or adjacent structures. 

• Y-axis of the chart shows dynamic displacement amplitude and X axis represents 

operating frequency of the machine. 

 
Fig.5.2: Displacement amplitude vs. frequency (Richard 1962 
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5.5 LINEAR ELASTIC WEIGHTLESS SPRING MSD MODEL 

 

𝜔𝑛𝑧 = √
𝐾𝑧
𝑚

 

Vertical 

Vibration 

 
𝜔𝑛𝑥 = √

𝐾𝑥
𝑚

 

Horizontal 

Vibration 

 

𝜔𝑛∅ = √
𝐾𝑛∅
𝑀𝑚0

 

Rocking Mode 

 
𝜔𝑛𝜑 = √

𝐾𝑛𝜑

𝑀𝑚𝑧
 

Yawing Mode 

 

Coefficient of uniform elastic compression, Cu 

𝐶𝑢 =
𝑃

𝑆𝑒
----------------------        Eq.5.1 

Where P and Se are the load corresponding to elastic settlement 

Coefficient of linear elastic shear, 𝐶𝜏 =
𝜏

𝑆𝑒
------------------------    Eq.5.2 

Barken (1962) proposed the following values: 

Cu=2Cz , Cφ=2Cu , 𝐶𝜏 = 1.5⁡𝐶𝜑-------------------------     Eq.5.3 

According to IS: 5249: 

𝐶𝑢 = 1.73𝐶𝜏 and 𝐶𝜏 = 1.5⁡𝐶𝜑-------------------------------     Eq.5.4 

Vertical Vibration of the Block  

Load applied: 𝑃𝑧 = 𝑃0𝑠𝑖𝑛𝜔𝑡---------------------------------     Eq.5.5 

Equation of motion: 𝑚𝑍̈ + 𝐾𝑧𝑍 = 𝑃0𝑠𝑖𝑛𝜔𝑡--------------------    Eq.5.6 

Natural Frequency =⁡𝜔𝑛𝑧 = √
𝐶𝑢𝐴

𝑚
------------------------     Eq.5.7 

Amplitude of Vertical Vibration, 𝐴𝑧 =
𝑃𝑂𝑠𝑖𝑛𝜔𝑡

𝑚(𝜔𝑛𝑧
2 −𝜔2)

-----------------    Eq.5.8 

Maximum Amplitude of Vibration =
𝑃𝑧

𝑚(𝜔𝑛𝑧
2 −𝜔2)

---------------------    Eq.5.9 

Sliding Vibration of the Block 

Load applied: 𝑃𝑥 = 𝑃0𝑠𝑖𝑛𝜔𝑡------------------------      Eq.5.10 

Equation of motion: 𝑚𝑥̈ + 𝐾𝑧𝑥 = 𝑃0𝑠𝑖𝑛𝜔𝑡-----------------     Eq.5.11 

Natural Frequency =⁡𝜔𝑛𝑥 = √
𝐶𝑢𝐴

𝑚
------------------------     Eq.5.12 

Amplitude of Vertical Vibration, 𝐴𝑥 =
𝑃𝑂𝑠𝑖𝑛𝜔𝑡

𝑚(𝜔𝑛𝑧
2 −𝜔2)

-----------------    Eq.5.13 

Maximum Amplitude of Vibration =
𝑃𝑥

𝑚(𝜔𝑛𝑧
2 −𝜔2)

------------------    Eq.5.14 
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5.4.3 LINEAR ELASTIC THEORY 

(Based on Elastic Half Space Theory)  

In 1904, Lamb studied the problem of vibration of single vibrating force acting at a point on the 

surface of an elastic half-space. This study included cases in which the oscillating force R acts in 

the vertical direction and in the horizontal direction, as shown in Figure 5.3 a and b. This is 

generally referred to as the dynamic Boussinesq problem. 

In 1936, Reissner analyzed the problem of vibration of a uniformly loaded flexible circular area 

resting on an elastic half-space. The solution was obtained by integration of Lamb’s solution for 

a point load. Based on Reissner’s work, the vertical displacement at the center of the flexible 

loaded area (Figure 5.4 a) can be given by 

𝑍 =
𝑄𝑂𝑒

𝑖𝜔𝑡

𝐺𝑟0
(𝑓1 + 𝑖𝑓2)-----------------------       Eq.5.15 

Where Q0=amplitude of the exciting force acting on the foundation 

Z= periodic displacement at the centre of the loaded area 

𝜔= circular frequency of the applied load 

𝑟0 = radius of the loaded area 

G= shear modulus of the soil 

𝑓1, 𝑓2=Reissner’s displacement functions 

 

Fig. 5.3: Vibrating force on the surface of elastic half -space 
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Fig.5.4: a) Vibration of uniformly loaded circular flexible area, b) Flexible circular area 

subjected to force vibration 

The displacement functions⁡𝑓1⁡and 𝑓2 are related to the Poisson’s ratio of the medium and the 

frequency of the exciting force. Now, consider a flexible circular foundation of weight W (mass 

= m = W/g) resting on an elastic half-space and subjected to an exciting force of magnitude of 

(𝑄0𝑒
𝑖(𝜔𝑡+𝛼) as shown in Figure 5.4b. (Note: α is the phase difference between the exciting force 

and the displacement of the foundation.) 

Using the displacement relation given in Eq. (5.15) and solving the equation of equilibrium of 

force, Reissner obtained the following relationships: 

𝐴𝑧 =
𝑄0

𝐺𝑟0
𝑍----------------------         Eq.5.16 

Where Az = the amplitude of vibration 

Z= dimensionless amplitude 

=√
𝑓1
2+𝑓2

2

(1−𝑏𝑎0
2𝑓1)

2+(𝑏𝑎0
2𝑓2))

2---------------------      Eq.5.17 

b= dimensionless mass ratio 

=
𝑚

𝜌𝑟0
3 =

𝑊

𝑔
[

1

(
𝛾
𝑔⁄ )𝑟0

3] =
𝑊

𝛾𝑟0
3---------------------       Eq.5.18 

ρ= density of the elastic material 

γ=unit of soil  



Lecture Notes on DSF 2021 
 

86 
 

a0=dimensionless frequency=𝜔𝑟0√
𝜌

𝐺
=

𝜔𝑟0

𝑉𝑠
------------------     Eq.5.19 

Vs= velocity of shear wave in the elastic material on which the foundation is resting 

The classical work of Reissner was further extended by Quinlan (1953) and Sung (1953). As 

mentioned before, Reissner’s work related only to the case of flexible circular foundations where 

the soil reaction is uniform over the entire area (Figure 5.5a). Both Quinlan and Sung considered 

the cases of rigid circular foundations, the contact pressure of which is shown in Figure 5.3b, 

flexible foundations (Figure 5.5a), and the types of foundations for which the contact pressure 

distribution is parabolic, as shown in Figure 5.5c. The distribution of contact pressure q for all 

three cases may be expressed as follows. 

For flexible circular foundations  

𝑞 =
𝑄0𝑒

𝑖(𝜔𝑡+𝛼)

𝜋𝑟0
2  for 𝑟 ≤ 𝑟0---------------------       Eq.5.20 

For rigid circular foundations  

𝑞 =
𝑄0𝑒

𝑖(𝜔𝑡+𝛼)

2𝜋𝑟0√𝑟0
2−𝑟2

⁡(𝑓𝑜𝑟⁡𝑟 ≤ 𝑟0)⁡---------------------      Eq.5.21 

For foundations with parabolic contact pressure distribution  

𝑞 =
2(𝑟0

2−𝑟2)𝑄0𝑒
𝑖(𝜔𝑡+𝛼)

𝜋𝑟0
4 ⁡(𝑓𝑜𝑟⁡𝑟 ≤ 𝑟0)⁡-----------------------     Eq.5.22 

 

 

 

 

 

 

 

a) Uniform pressure distribution        b) pressure distribution  c) parabolic pressure 

            under rigid foundation distribution 

Fig. 5.5: Contact pressure distribution under circular footing of radius r0 

Quinlan derived the equations only for the rigid circular foundation; however, Sung presented 

the solutions for all the three class described. For all cases, the amplitude of motion can be 

expressed in a similar form to Eqs. (5.2 to 5.5). However, the displacement functions 𝑓1⁡and 

𝑓2will change, depending on the contact pressure distribution. 

Foundations, on some occasions, may be subjected to a frequency dependent excitation, in 

contrast to the constant-force type of excitation just discussed. Figure 5.6 shows a foundation 

excited by two rotating masses. The amplitude of the exciting force can be given as 
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𝑄 = 2𝑚𝑒𝑒𝜔
2 = 𝑚1𝑒𝜔

2-----------------------       Eq.5.23 

Where m1= total of the rotating masses 

ω= circular frequency of the rotating masses 

 

 
Fig. 5.6: Foundation vibration by a frequency dependent exciting force 

 

For the above condition, the amplitude of vibration Az can be expressed as 

𝐴𝑧 =
𝑚1𝑒𝜔

2

𝐺𝑟0
√

𝑓1
2+𝑓2

2

(1−𝑏𝑎0
2𝑓1)

2+(𝑏𝑎0
2𝑓2))

2-----------------      Eq.5.24 

Where 𝑎0 = 𝜔𝑟0√
𝜌

𝐺
⁡--------------------------------      Eq.5.25 

𝜔2 =
𝐺𝑎0

2

𝜌𝑟0
2--------------------------------------       Eq.5.26 

Substituting Eq. 5.26 into Eq. 5.24 we get 

𝐴𝑧 =
𝑚1𝑒𝑎0

2

𝜌𝑎0
3 √

𝑓1
2+𝑓2

2

(1−𝑏𝑎0
2𝑓1)

2
+(𝑏𝑎0

2𝑓2))
2
=

𝑚1𝑒

𝜌𝑟0
3 𝑍

′-------------     Eq.5.27 

Where 𝑍′ = 𝑎0
2√

𝑓1
2+𝑓2

2

(1−𝑏𝑎0
2𝑓1)

2+(𝑏𝑎0
2𝑓2))

2--------------------     Eq.5.28 

Figures 5.7 and 5.8 show the plots of the variation of the dimensionless amplitude with a0 

(Richart, 1962) for rigid circular foundations (for μ = Poisson’s ratio = 0.25 and b = 5, 10, 20, 

and 40). 
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Fig. 5.7: Plot of Z versus a0 for rigid circular                     Fig. 5.8: Variation of Z′ with a0 for        

foundation , Richart, 1962)                                                rigid circular foundation (redrawn  

                                                                              after Richart, 1962)                                                                                                 

 

5.4.4 Effect of Contact Pressure Distribution and Poisson’s Ratio 

The effect of the contact pressure distribution on the nature of variation of the non-dimensional 

amplitude Z′ with a0 is shown in Figure 5.9 (for b = 5 and μ = 0.25). As can be seen, for a given 

value of a0, the magnitude of the amplitude is highest for the case of parabolic pressure 

distribution and lowest for rigid bases. 

For a given type of pressure distribution and mass ratio (b), the magnitude of Z′ also greatly 

depends on the assumption of the Poisson’s ratio μ. This is shown in Figure 5.10. 
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Fig. 5.9: Effect of contact pressure distribution variation of Z’ with a0 (redrawn after Richart and 

Whitman, 1967) 

 
Fig.5.10: Effect of Poisson’s ratio on the variation of Z’ with a0 (redrawn after Richart and 

Whitman, 1967) 

 

5.4.5 Variation of Displacement Functions f1 and f2 

As mentioned before, the displacement functions are related to the dimensionless frequency a0 

and Poisson’s ratio μ. In Sung’s original study, it was assumed that the contact pressure 

distribution remains the same throughout the range of frequency considered; however, for 

dynamic loading conditions, the rigid-base pressure distribution does not produce uniform 

displacement under the foundation. For that reason, Bycroft (1956) determined the weighted 
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average of the displacements under a foundation. The variation of the displacement functions 

determined by the study is shown in Figure 5.11 

 
Fig.5.11: Variation of the displacement functions with a0 and μ 

 

5.5 Analog Solutions for Vertical Vibration of Foundations 

Lysmer’s Analog 

A simplified model was also proposed by Lysmer and Richart (1966), in which the expressions 

for kz and Cz were frequency independent. Lysmer and Richart (1966) redefined the 

displacement functions in the form 

𝐹 =
𝑓

[
1−𝜇

4
]
=

𝑓1+𝑖𝑓2

[
1−𝜇

4
]
= 𝐹1 + 𝑖𝐹2------------------      Eq.5.29 

The functions F1 and F2 are practically independent of Poisson’s ratio, as shown in Figure 5.11. 

The term mass ratio as expressed in Eq. (5.18) was also modified as 

𝐵𝑧 = [
1−𝜇

4
] 𝑏 = [

1−𝜇

4
]
𝑚

𝜌𝑟0
3-------------------------      Eq.5.30 

Where Bz = modified mass ratio 

In this analysis, it was proposed that satisfactory results can be obtained within the range of 

practical interest by expressing the rigid circular foundation vibration in the form 

𝑚𝑍̈ + 𝐶𝑧𝑍̇ + 𝐾𝑧𝑍 = 𝑄0𝑒
𝑖𝑤𝑡--------------------      Eq.5.31 

Where  
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𝐾𝑧 = 𝑠𝑡𝑎𝑡𝑖𝑐⁡𝑠𝑝𝑟𝑖𝑛𝑔⁡𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡⁡𝑓𝑜𝑟⁡𝑟𝑖𝑔𝑖𝑑⁡𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟⁡𝑓𝑜𝑢𝑛𝑑𝑎𝑡𝑖𝑜𝑛 =
4𝐺𝑟0

1−𝜇
--------- Eq.5.32 

And  

𝐶𝑧 =
3.4𝑟0

2

1−𝜇
√𝐺𝜌----------------------------       Eq.5.33 

 

 
Fig.5.12: Plot of F1 and -F2 against a0 for rigid circular foundation subjected to vertical 

vibration (after Lysmer and Richart, 1966) 

 

In Eqs. (5.32) and (5.33) the relationships for Kz and Cz are frequency independent. Equations 

(5.31 to 5.33) are referred to as Lysmer’s analog. 

 

5.6 CALCULATION PROCEDURE FOR FOUNDATION RESPONSE, VERTICAL 

VIBRATION 

Once the equation of motion of a rigid circular foundation is expressed in the form given in 

Equation (5.31), it is easy to obtain the resonant frequency and amplitude of vibration based on 
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the mathematical expressions presented in earlier section. The general procedure is outlined 

next. 

A. Resonant Frequency 

1. Calculation of natural frequency. as 

𝑓𝑛 =
1

2𝜋
√
𝐾𝑧

𝑚
=

1

2𝜋
√

4𝐺𝑟0

(1−𝜇)𝑚
-------------------- Eq.5.34 

2. Calculation of damping ratio ξ. As given 

Critical damping 𝐶𝑐 = 2√𝐾𝑧𝑚 = 2√
4𝐺𝑟0

(1−𝜇)
𝑚, substituting for m as 𝑚 =

4𝐵𝑧𝜌𝑟0
3

(1−𝜇)
 

= 4√(
4𝐺𝑟0

(1−𝜇)
)(

𝐵𝑧𝜌𝑟0
3

(1−𝜇)
) =

8𝑟0
2

(1−𝜇)
√𝐺𝜌𝐵𝑧------------------------ Eq.5.35 

Now , 𝜉 =
𝐶

𝐶𝐶
=

3.4𝑟0
2

1−𝜇
√𝐺𝜌

8𝑟0
2

(1−𝜇)
√𝐺𝜌𝐵𝑧

=
0.425

√𝐵𝑧
-------------------------- Eq.5.36 

3. Calculation of the resonance frequency (that is, frequency at maximum displacement). For 

constant force-type excitation, 

𝑓𝑚 = 𝑓𝑛√1− 2𝜉2 

⁡⁡⁡⁡=
1

2𝜋
√

4𝐺𝑟0

(1−𝜇)𝑚
× √1− 2(

0.425

√𝐵𝑧
)2--------------------- Eq.5.37 

It has also been shown by Lysmer that, for Bz ≥ 0.3, the following approximate relationship can 

be established: 

𝑓𝑚 =
1

2𝜋
√(

𝐺

𝜌
)(

1

𝑟0
) × √

𝐵𝑧−0.36

𝐵𝑍
----------------------- Eq.5.38 

For rotating mass-type excitation, Lysmer’s corresponding approximate relationship for fm is as 

follows: 

𝑓𝑚 =
1

2𝜋
√(

𝐺

𝜌
)(

1

𝑟0
) × √

0.9

𝐵𝑍−0.45
------------------------- Eq.5.39 

B. Amplitude of Vibration at Resonance 

The amplitude of vibration Az at resonance for constant force-type excitation can be determined 

as 

𝐴𝑧𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒 = (
𝑄𝑧

𝐾𝑧
)

1

2𝜉𝑧√1−𝜉𝑧
2
----------------- Eq.5.40 

Now substituting for  Kz  and 𝜉𝑧 we obtain 

𝐴𝑧𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒 =
𝑄0(1−𝜇)

4𝐺𝑟0
×

𝐵𝑧

0.85√𝐵𝑍−0.18
------------------------ Eq.5.41 

The amplitude of vibration for rotating mass-type vertical excitation can be given as [see Eq. 

(2.99)] 

𝐴𝑧𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒 =
𝑚1𝑒

𝑚
×

𝐵𝑧

0.85√𝐵𝑍−0.18
--------------------- Eq.5.42 

C. Amplitude of Vibration at Frequencies Other Than Resonance 

For constant force-type excitation, can be used for estimation of the amplitude of vibration, or 
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𝐴𝑧 =
𝑄0

𝐾𝑧
⁄

√(1−
𝜔2

𝜔𝑛
2 )

2

+4(𝜉𝑧)
2(

𝜔

𝜔𝑛
)
2
------------------- Eq.5.43 

Figure 5.13 shows the plot of 
𝐴𝑧

𝑄0
𝐾𝑧
⁄

versus (
𝜔

𝜔𝑛
 ). So, with known values of 𝜉𝑧 and (

𝜔

𝜔𝑛
 ), one can 

determine the value of 
𝐴𝑧

𝑄0
𝐾𝑧
⁄

 and, from that, Az can be obtained. 

In a similar manner, for rotating mass-type excitation, Eq. (2.95) can be used to determine the 

amplitude of vibration, or 

𝐴𝑧 =
(
𝑚𝑒𝑒

𝑚⁄ )(𝜔 𝜔𝑛⁄ )
2

√(1−
𝜔2

𝜔𝑛
2)

2

+4(𝜉𝑧)
2(

𝜔

𝜔𝑛
)
2
----------------------------- Eq.5.44 

 
Fig.5.13: Plot of various non-dimensional parameters against (𝜔 𝜔𝑛⁄ ) for constant force-type 

vibrator (Note: ξ = ξz for vertical vibration, ξ = ξθ for rocking, ξ = ξx for sliding; ξ = ξα for 

torsional vibration.) 
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Fig.5.14: Plot of various non-dimensional parameters against (𝜔 𝜔𝑛⁄ ) for rotating mass-type 

vibrator (Note: ξ = ξz for vertical vibration, ξ = ξθ  for rocking, ξ = ξx for sliding; ξ = ξα for 

torsional vibration.) 

The procedure here described relates to a rigid circular foundation having a radius of r0. If a 

foundation is rectangular in shape with length L and width B, it is required to obtain an 

equivalent radius, which can then be used in the preceding relationships as discussed in above. 

This can be done by equating the area of the given foundation to the area of an equivalent circle. 

Thus,  

𝜋𝑟0
2 = 𝐿𝐵 

where r0 = radius of the equivalent circle. 

It is obviously impossible to eliminate vibration near a foundation. 

However, an attempt can be made to reduce the vibration problem as much as possible. Richart 

(1962) compiled guidelines for allowable vertical vibration amplitude for a particular frequency 

of vibration, and this is given in Figure 5.15. 
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Fig.5.15: 

The data presented in Figure 5.15 refer to the maximum allowable amplitudes of vibration. 

These can be converted to maximum allowable accelerations by 

Maximum acceleration = (maximum displacement)𝜔2 

 

 5.7 GENERAL RULES FOR DESIGNING MACHINE FOUNDATION   

In the design of machine foundations, the following general rules may be kept in mind to avoid 

possible resonance conditions: 

1. The resonant frequency of foundation-soil system should be less than half the operating 

frequency for high-speed machines (that is operating frequency ≥ 1000 cpm). For this case, 

during starting or stopping the machine will briefly vibrate at resonant frequency. 

2. For low-speed machineries (speed less than about 350-400 cpm), the resonant frequency of 

the foundation-soil system should be at least two times the operating frequency. 

3. In all types of foundations, the increase of weight will decrease the resonant frequency. 

4. An increase of r0 will increase the resonant frequency of the foundation. 

5. An increase of shear modulus of soil (for example, by grouting) will increase the resonant 

frequency of the foundation. 

5.7 SLIDING MODE OF VIBRATION FOR FOUNDATION 

 

Arnold, Bycroft, and Wartburton (1955) have provided theoretical solutions for sliding vibration 

of rigid circular foundation (Figure 5.16) acted on by a force,𝑄 = 𝑄0𝑒
𝑖𝜔𝑡 . Hall (1967) 
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developed the mass-spring-dashpot analog for this type of vibration. According to this analog, 

the equation of motion of the foundation can be given in the form 

𝑚𝑥̈ + 𝐶𝑥𝑥̇ + 𝐾𝑥𝑥 = 𝑄0𝑒
𝑖𝜔𝑡------------------------ Eq.5.45 

where m= mass of the foundation 

 
 

Fig.5.16: Sliding mode of vibration of rigid circular foundation 

 

Spring constant for horizontal mode of vibration 

𝐾𝑥 =
32.4(1−𝜇)𝐺𝑟0

7−8𝜇
------------------ Eq.5.46 

Dash pot coefficient for horizontal mode of vibration 

𝐶𝑥 =
18.4(1−𝜇)𝑟0

2

7−8𝜇
√𝜌𝐺---------------------- Eq.5.47 

The natural frequency of the foundation for sliding can be calculated as 

𝑓𝑛 =
1

2𝜋
√
𝐾𝑥

𝑚
=

1

2𝜋
√
32(1−𝜇)𝐺𝑟0

(7−8𝜇)𝑚
-------------------------- Eq.5.48 

The critical damping and damping ratio in sliding can be evaluated as 

𝐶𝑐𝑥 = critical damping in sliding 

𝐶𝑐𝑥 = 2√𝐾𝑥𝑚 = 2√
32(1−𝜇)𝐺𝑟0

(7−8𝜇)
𝑚-------------------- Eq.5.48 

ξx = damping ratio in sliding 

𝜉𝑥 =
𝐶𝑥

𝐶𝑐𝑥
=

0.288

√𝐵𝑋
----------------- Eq.5.49 

Where , Bx is the dimensionless mass ratio expressed as 

𝐵𝑥 =
7−8𝜇

32(1−𝜇)

𝑚

𝜌𝑟0
3-------------------------- Eq.5.50 

Calculation Procedure for Foundation Response Using Eq. (5.51) 

Resonant Frequency 

1. Calculate the natural frequency fn using Eq. (5.45) 

2. Calculate the damping ratio ξx using Eq. (5.49). [Note: Bx can be obtained from Eq. (5.50)]. 
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3. For constant force excitation (that is, Q0 = constant), calculate 

𝑓𝑚 = 𝑓𝑛√1 − 2𝜉𝑥2--------------------------Eq.5.51 

4. For rotating mass type excitation, calculate 

𝑓𝑚 =
𝑓𝑛

√1−2𝜉𝑥
2
--------------------------------------Eq.5.52 

Amplitude of Vibration at Resonance 

 

1.  For constant force excitation, amplitude of vibration at resonance is 

𝐴𝑥(𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒) =
𝑄0

𝐾𝑥

1

2𝜉𝑥√1−𝜉𝑥
2
-----------------------Eq.5.53 

2.  For rotating mass-type excitation 

𝐴𝑥(𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒) =
𝑚𝑒𝑒

𝑚

1

2𝜉𝑥√1−𝜉𝑥
2
---------------------Eq.5.54 

where m1 = total rotating mass causing excitation 

e = eccentricity of each rotating mass 

 

Amplitude of Vibration at Frequency Other than Resonance 

1. For constant force-type excitation 

𝐴𝑧 =
𝑄0

𝐾𝑥
⁄

√(1−
𝜔2

𝜔𝑛
2 )

2

+4(𝜉𝑥)
2(

𝜔

𝜔𝑛
)
2
--------------------------- Eq.5.55 

2. For rotating mass-type excitation, 

𝐴𝑧 =
(
𝑚𝑒𝑒

𝑚⁄ )(𝜔 𝜔𝑛⁄ )
2

√(1−
𝜔2

𝜔𝑛
2 )

2

+4(𝜉𝑥)
2(

𝜔

𝜔𝑛
)
2
------------------------------ Eq.5.56 

Same figures 5.13 & 5.14 are used to calculate various non-dimensional parameters against 

(𝜔 𝜔𝑛⁄ ) for constant force and rotating mass-type vibrator respectively. 

5.8 TORSIONAL VIBRATION OF FOUNDATIONS 

Figure 5.21a shows a circular foundation of radius r0 subjected to a torque 𝑇 = 𝑇0𝜃
𝑖𝜔𝑡 about an 

axis z-z. The vibration problem of this type was solved by Reissner (1937) solved considering a 

linear distribution of shear stress 𝜏𝑧𝜃⁡(shear stress zero at center and maximum at the periphery 

of the foundation), as shown in Figure 5.17b which represents the case of a flexible foundation. 
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Fig.5.17 Torsional variation of rigid circular foundation 

In 1944 Reissner and Sagoli solved the same problem for the case of a rigid foundation 

considering a linear variation of displacement from the center to the periphery of the foundation.  

Similar to the cases of vertical, rocking, and sliding modes of vibration, the equation for the 

torsional vibration of a rigid circular foundation can be written as 

𝐽𝑧𝑧𝛼̈ + 𝐶𝛼𝛼̇ + 𝐾𝛼𝛼 = 𝑇0𝑒
𝑖𝜔𝑡------------------------- Eq.5.57 

Where,  Jzz= mass moment of inertia of the foundation about the axis z-z 

Cα = dashpot coefficient for torsional vibration 

Kα = static spring constant for torsional vibration = 
16

3
𝐺𝑟0

3 

α = rotation of the foundation at any time due to the application of a torque 𝑇 = 𝑇0𝑒
𝑖𝜔𝑡 

The damping ratio ξα for this mode of vibration has been determined as (Richart, Hall, and 

Wood, 1970) given below 

𝜉𝛼 =
0.5

1+2𝐵𝛼
----------------------- Eq.5.58 

Where 

Bα = the dimensionless mass ratio for torsion at vibration=
𝐽𝑧𝑧

𝜌𝑟0
5---------------- Eq.5.59 

Calculation Procedure for Foundation Response Using Eq. (5.51) 

Resonant Frequency 

1. Calculate the natural frequency fn  

𝑓𝑛 =
1

2𝜋
√
𝐾𝛼

𝐽𝑧𝑧
--------------------- Eq.5.60 

2. Calculate the damping ratio Bα using Eq. (5.59) and damping ratio 𝜉𝛼 by Eq. 5.58 

3. For constant force excitation (that is, T0 = constant), calculate 

𝑓𝑚 = 𝑓𝑛√1 − 2𝜉𝛼2--------------------------Eq.5.61 
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4. For rotating mass type excitation, calculate 

𝑓𝑚 =
𝑓𝑛

√1−2𝜉𝛼
2
--------------------------------------Eq.5.62 

Amplitude of Vibration at Resonance 

1.  For constant force excitation, amplitude of vibration at resonance is 

𝛼(𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒) =
𝑇0

𝐾𝛼

1

2𝜉𝛼√1−𝜉𝛼
2
-----------------------Eq.5.63 

2.  For rotating mass-type excitation 

𝛼(𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒) =
𝑚𝑒𝑒(

𝑥
2⁄ )

𝐽𝑧𝑧

1

2𝜉𝛼√1−𝜉𝛼
2
---------------------Eq.5.64 

where m1 = total rotating mass causing excitation 

e = eccentricity of each rotating mass 

Amplitude of Vibration at Frequency Other than Resonance 

3. For constant force-type excitation 

𝛼 =
𝑇0

𝐾𝛼
⁄

√(1−
𝜔2

𝜔𝑛
2 )

2

+4(𝜉𝛼)
2(

𝜔

𝜔𝑛
)
2
---------------------------      Eq.5.65 

4. For rotating mass-type excitation, 

𝛼 =
(
𝑚𝑒𝑒(

𝑥
2⁄ )

𝐽𝑧𝑧
⁄ )(𝜔 𝜔𝑛⁄ )

2

√(1−
𝜔2

𝜔𝑛
2 )

2

+4(𝜉𝛼)
2(

𝜔

𝜔𝑛
)
2
------------------------------      Eq.5.66 

For constant force excitation, calculate 𝜔 𝜔𝑛⁄ and then refer to Figure 5.13 to obtain α/(T0/Kα). 

For rotating mass-type excitation, calculate 𝜔 𝜔𝑛⁄  and then refer to Figure 5.14 to obtain α/[m1 

e(x/2)/Jzz]. 

For a rectangular foundation with dimensions B × L, the equivalent radius may be given by 

  𝑟0 = √
𝐵𝐿(𝐵2+𝐿2)

6𝜋
--------------------        Eq.5.67 

The torsional vibration of foundations is uncoupled motion and hence can be treated 

independently of any vertical motion. Also, Poisson’s ratio does not influence the torsional 

vibration of foundations 

5.9 ROCKING VIBRATION OF FOUNDATIONS 

A theoretical solution for foundations subjected to rocking vibration was presented by Arnold, 

Bycroft, and Wartburton (1955) and Bycroft (1956). Rocking mode of vibration for rigid 

circular foundations is shown in Figure 5.18. 
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Fig. 5.18: Rocking vibration of a circular rigid foundation 

A mass-spring-dashpot model for rigid circular foundations was developed by Hall (1967) in the 

same manner as Lysmer and Richart (1966) developed for vertical vibration. According to Hall, 

the equation of motion for a rocking vibration can be given as 

𝐼0𝜃̈ + 𝐶𝜃𝜃̇ + 𝐾𝜃𝜃 = 𝑀𝑦𝑒
𝑖𝜔𝑡-------------------      Eq.5.68 

Where θ = rotation of the vertical axis of the foundation at any time t 

I0 = mass moment of inertia about the y axis (through its base)=
𝑊0

𝑔
(
𝑟0
2

4
+

ℎ2

3
)------- Eq.5.69 

where  W0= weight of the foundation 

g = acceleration due to gravity 

h = height of the foundation 

Static spring constant, 𝐾𝜃 =
8𝐺𝑟0

3

3(1−𝜇)
-------------------      Eq.5.70 

Dashpot coefficient, 𝐶𝜃 =
0.8𝑟0

4

(1−𝜇)(1+𝐵𝜃)
√𝐺---------------------     Eq.5.71 

Inertia ratio, 𝐵𝜃 = (
3(1−𝜇)

8
)

𝐼0

𝜌𝑟0
5---------------------------     Eq.5.72 
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A. Resonant Frequency 

1. Calculate the natural frequency:⁡𝑓𝑛 =
1

2𝜋
√
𝐾𝜃

𝐼0
------------------------   Eq.5.73 

2. Calculate the damping ratio , 

Critical damping coefficient, 𝐶𝑐𝜃 = 2√𝐾𝜃𝐼0----------------------    Eq.5.74 

𝜉𝜃 =
0.15

(1+𝐵𝜃)√𝐵𝜃
---------------------------       Eq.5.75 

3. Calculate the resonant frequency: 

𝑓𝑚 = 𝑓𝑛√1− 2𝜉𝜃
2 ----(for constant force excitation)-----------    Eq.5.76 

𝑓𝑚 =
𝑓𝑛

√1−2𝜉𝜃
2
 -----------(for rotating mass-type excitation)----------------   Eq.5.77 

B. Amplitude of Vibration at Resonance 

Constant force type vibration 

𝜃𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒 =
𝑀𝑦

𝐾𝜃

1

2𝜉𝜃√1−𝜉𝜃
2
---------------------       Eq.5.78 

For rotating type excitation 

𝜃𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒 =
𝑚1𝑒𝑍

′

𝐼𝜃

1

2𝜉𝜃√1−𝜉𝜃
2
---------------------      Eq.5.79 

Where,  m1 = total rotating mass causing excitation 

e = eccentricity of each mass 

C. Amplitude of Vibration at Frequencies Other than Resonance 

For constant force-type excitation 

𝜃 =

𝑀𝑦
𝐾𝜃

⁄

√(1−
𝜔2

𝜔𝑛
2)

2

+4(𝜉𝛼)
2(

𝜔

𝜔𝑛
)
2
-----------------       Eq.5.80 

For rotating mass type vibration 
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𝜃 =
(
𝑚1𝑒𝑧

,

𝐼0
⁄ )(𝜔 𝜔𝑛⁄ )

2

√(1−
𝜔2

𝜔𝑛
2)

2

+4(𝜉𝛼)
2(

𝜔

𝜔𝑛
)
2
----------------------       Eq.5.81 

In the case of rectangular foundation, the preceding relationships can be used by determining the 

equivalent radius as 

𝑟0 = √
𝐵𝐿3

3𝜋

4
--------------         Eq.5.82 

Table 5.1: Values of various Lysmer’s  Analog Parameters 

Mode of 

Vibration 

Equivalent 

Radius 

Mass ratio Damping factor Spring Constant 

 

Vertical 𝑟0 = √
𝐵𝐿

𝜋
 𝐵𝑧 =

(1 − 𝜇)𝑚

4𝜌𝑟0
3  𝜉𝑍 =

0.425

√𝐵𝑧
 𝐾𝑧 =

4𝐺𝑟0
1 − 𝜇

 

Horizontal 

𝑟0 = √
𝐵𝐿

𝜋
 

𝐵𝑥 =
7 − 8𝜇

32(1 − 𝜇)

𝑚

𝜌𝑟0
3 𝜉𝑥 =

0.288

√𝐵𝑋
 𝐾𝑥 =

32.4(1 − 𝜇)𝐺𝑟0
7 − 8𝜇

 

Torsional 
𝑟0 = √

𝐵𝐿(𝐵2+ 𝐿2)

6𝜋
 𝐵𝛼 =

𝐽𝑧𝑧

𝜌𝑟0
5 𝜉𝛼 =

0.5

1 + 2𝐵𝛼
 𝐾𝛼 =

16

3
𝐺𝑟0

3 

Rocking 
𝑟0 = √

𝐵𝐿3

3𝜋

4

 
𝐵𝜃 = (

3(1 − 𝜇)

8
)
𝐼0
𝜌𝑟0

5 𝜉𝜃 =
0.15

(1 + 𝐵𝜃)√𝐵𝜃
 𝐾𝜃 =

8𝐺𝑟0
3

3(1 − 𝜇)
 

 

Example No.1: A concrete foundation is 2.5 m in diameter. The foundation is supporting a 

machine. The total weight of the machine and the foundation is 270 kN. The machine imparts a 

vertical vibrating force Q = Q0 𝑠𝑖𝑛𝜔𝑡. Given 

Q0=27 kN (not frequency dependent). The operating frequency is 150 cpm. For the soil 

supporting the foundation, unit weight = 19.5 kN/m3, shear modulus = 45000 kPa. , and Poisson’ 

ratio = 0.3. Determine: 

a. resonant frequency, 

b. the amplitude of vertical vibration at resonant frequency, and 

c. the amplitude of vertical vibration at the operating frequency 

Sol: 

The machine imparts a vertical vibrating force Q = Q0 𝑠𝑖𝑛𝜔𝑡 where Q0=27 kN 

The operating frequency = 150 cpm=2.5 Hz 

Equivalent radius 𝑟0 = 1.25⁡𝑚 

Total weight of the machine and the foundation =270 kN 

Mass ratio 

𝐵𝑧 =
(1−𝜇)𝑚

4𝜌𝑟0
3 =

(1−𝜇)𝑊

4𝛾𝑟0
3 =

(1−0.3)×270

4×19.5×1.253
=1.24 

Damping factor 
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𝜉𝑍 =
0.425

√𝐵𝑧
=
0.425

√1.24
= 0.382 

Spring constant  

𝐾𝑧 =
4𝐺𝑟0

1−𝜇
=
4×4500×1.25

1−0.3
=32142.86 kN/m2 

Natural frequency 𝑓𝑛 =
1

2𝜋
√

4𝐺𝑟0

(1−𝜇)𝑚
=

1

2𝜋
√

4×4500×1.25

(1−0.3)×270 9.81⁄
=5.44 Hz 

a) Resonance frequency 𝑓𝑚 = 𝑓𝑛√1− 2𝜉2=5.44× √1 − 2 × 0.3822=4.58 Hz 

 

b) Amplitude of vertical vibration at resonant frequency: 

𝐴𝑧𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒 =
𝑄0(1−𝜇)

4𝐺𝑟0
×

𝐵𝑧

0.85√𝐵𝑍−0.18
=

27(1−0.3)

4×4500×1.25
×

1.24

0.85√1.24−0.18
= 

 

c) The amplitude of vertical vibration at the operating frequency: 

 

𝐴𝑧 =
𝑄0

𝐾𝑧
⁄

√(1−
𝜔2

𝜔𝑛
2 )

2

+4(𝜉𝑧)
2(

𝜔

𝜔𝑛
)
2
=

27
32142.86⁄

√(1−
2.52

5.442
)
2

+4(0.382)2(
2.5

5.44
)
2

= 

Example No.2: 

A radar antenna foundation is shown below. For torsional vibration of the foundation, given 

T0 = 250 kN-m (due to inertia) 

T0 = 83 kN-m (due to wind) 

Mass moment of inertia of the tower about the axis z-z = 13 × 106 kg·m2, and the unit weight of 

concrete used in the foundation = 24 kN/m3. Calculate 

a)  the resonant frequency for torsional mode of vibration; and 

b) angular deflection at resonance. 

 
Fig: Foundation for radar of antenna 

Solution: 
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a) 

 

 
Damping factor  

 

 

 
b) Angular frequency at resonance 

 

 
Angular deformation due to torque produced by inertia 
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5.10 DYNAMIC BEARING CAPACITY OF SHALLOW FOUNDATION 

During the application of single pulse dynamic loads which may be in vertical or horizontal 

directions, the foundation may get excessive settlement. Horizontal dynamic loads on 

foundations are due mostly to earthquakes. These types of loading may induce large 

permanent deformation in foundations. Isolated column footings, strip footings, mat footings, 

and even pile foundations all may fail during seismic events. Such failures are generally 

attributed to liquefaction. However, a number of failures have occurred where field 

conditions indicate there was only partial saturation or a dense soil and therefore liquefaction 

alone is a very unlikely explanation. Rather, the reason for the seismic settlements of these 

foundations seems to be that the bearing capacity was reduced (Richards, Elms and 

Budhu,1993). 

During the analysis of the time dependent motion of a foundation subjected to dynamic 

loading or estimating the bearing capacity under dynamic conditions several factors need to 

be considered. 

Most important of these factors are 

a)  Nature of variation of the magnitude of the loading pulse, 

b)  Duration of the pulse, and 

c)  Strain-rate response of the soil during deformation 

 

5.10.1 Ultimate Dynamic Bearing Capacity 

Bearing Capacity in Sand 

The equations for static ultimate bearing capacity evaluation are valid for dense sands where 

the failure surface in the soil extends to the ground surface. This is referred as the case of 

general shear failure. For shallow foundations (i.e., 
𝐷𝑓

𝐵
⁄ ≤ 1), if the relative density of 

granular soils RD is less than about 70%, local or punching shear failure may occur. Hence, 

for static ultimate bearing capacity calculation, if 0 ≤ RD ≤ 0.67, the values of internal angle 

of friction, φ should be replaced by the modified friction angle 

∅′ = 𝑡𝑎𝑛−1[(0.67+ 𝑅𝐷 − 0.75𝑅𝐷
2)𝑡𝑎𝑛∅]-------     Eq.5.83 

However, when load is applied rapidly to a foundation to cause failure, the ultimate bearing 

capacity changes by somewhat. This fact has been shown experimentally by Vesic, Banks, 

and Woodward (1965), who conducted several laboratory model tests with a 101.6 mm 

diameter rigid rough model footing placed on the surface of a dense river sand (i.e., Df = 0), 

both dry and saturated. The rate of loading to cause failure was varied in a range of 2.54 × 

10-4 mm/s to over 254 mm/s. Hence, the rate was in the range of static (2.54 × 10-4 mm /s) to 

impact (254 mm/s) loading conditions. All but the four Based on the experimental results 

available, the following general conclusions regarding the ultimate dynamic bearing capacity 

of shallow foundations in sand can be drawn: 

1. For a foundation resting on sand and subjected to an acceleration level of amax ≤ 13g, it is 

possible for general shear type of failure to occur in soil (Heller, 1964). 
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2. For a foundation on sand subjected to an acceleration level of amax > 13g, the nature of soil 

failure is by punching (Heller, 1964). 

3. The difference in the nature of failure in soil is due to the inertial restrain of the soil 

involved in failure during the dynamic loading. The restrain has almost a similar effect as the 

overburden pressure as observed during the dynamic loading which causes the punching 

shear type failure in soil. 

4. The minimum value of the ultimate dynamic bearing capacity of shallow foundations on 

dense sands obtained between static to impact loading range can be estimated by using a 

friction angle ∅𝑑𝑦 , such that (Vesic, 1973) 

∅𝑑𝑦 = ∅− 20------------------         Eq.5.84 

The value of ∅𝑑𝑦can be subsequently used to find various bearing capacity factors. 

However, if the soil strength parameters with proper strain rate are known from laboratory 

testing, they should be used instead of the approximate equation. 

5. The increase of the ultimate bearing capacity at high loading rates is due to the fact that the 

soil particles in the failure zone do not always follow the path of least resistance. This results 

in at higher shear strength of soil, which leads to a higher bearing capacity. 

6. In the case of foundations resting on loose submerged sands, transient liquefaction effects 

may exist (Vesic, 1973). This may results in unreliable prediction of ultimate bearing 

capacity. 

7. The rapid increase of the ultimate bearing capacity in dense saturated sand at fast loading 

rates is due to the development of negative pore water pressure in the soil. 

 

The dynamic bearing capacity problem attracted attention of the investigators in 1960 when the 

performance of foundations under transient loads became of concern to the engineering 

profession (Wallace, 1961; Cunny and Sloan, 1961; Fisher, 1962; Johnson and Ireland, 1963; 

Mckee and shenkman 1962: White, 1964; Chummar, 1965; Triandafilidis, 1965).  

All analytical approaches are based on the assumption that soil rupture under transient 

loads occurs along a static rupture surface. In this section the salient features of the analysis 

developed by Triandafilidis (1965) and Wallace (1961) for transient vertical load; and by 

Chummar (1965) for transient horizontal load have been presented. 
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5.10.2  Triandafilidis’s Solution:  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.19: Illustrations of mode of failure and dynamic equilibrium of moving soil mass 

 

TriandafiIidis's Analysis 

 

Triandafilidis (1965) has presented a solution for dynamic response of continuous surface 

footing supporting by saturated cohesive soil (φ=0 condition) and subjected to vertical transient 

load. The analysis is based on the following assumptions: 

(i) The failure surface of soil is cylindrical for evaluation of bearing capacity under static 

condition (Fig.5.19). 

(ii) The saturated cohesive soil (φ= 0) behaves as a rigid plastic material (Fig. 5.20). 

(iii) The forcing function is assumed to be an exponentially decaying pulse (Fig.5.21) 

(iv) The influence of strain rate on the shear strength is neglected. 

(v) The dead weight of the foundation is neglected. 
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Fig. 5.20 Assumed Stress-strain relationship                 Fig. 5.21 Transient Vertical Load 

Analysis 

Let the transient stress pulse be expressed in the form 

𝑞𝑑 = 𝑞0𝑒
−𝛽𝑡 = 𝜆𝑞𝑢𝑒

−𝛽𝑡--------       Eq.5.85 

Where 𝑞𝑑= Stress at any time t 

𝛽= Decaying function 

𝑞𝑢= Static bearing capacity of continuous footing 

𝑞0=instantaneous peak intensity of stress pulse  

𝜆= Over load factor = 
𝑞0

𝑞𝑢
 

The rupture surface is shown in Fig. 5.19 with centre of rotation at point0 located at a height of 

0.43 B above the ground surface.  

The equation of motion is written by equating the moment of the disturbing and restoring forces 

taken about the point O. The only disturbing and restoring force is an externally applied dynamic 

pulse. The restoring forces consist of shearing resistance along the rupture surface, the inertia of 

the soil mass taken in the motion and the resistance caused by the displacement of centre of 

gravity of soil mass. 

Disturbing moment 𝑀𝑑𝑝 due to applied dynamic pulse is given as 

𝑀𝑑𝑝 =
1

2
𝑞𝑑𝐵

2---------         Eq. 5.86 

Where B=Width of the footing 
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The static bearing capacity of a continuous footing along the failure surface (Fellenius, 1948) is given as 

𝑞𝑢 = 5.54𝑐𝑢 

Where cu is the un-drained shear strength of soil 

Now Resisting moment Mrsdue to shear strength is taken as  

𝑀𝑟𝑠 =
1

2
𝑞𝑢𝐵

2-------------        Eq.5.87 

Due to the application of pulse, the soil mass is subjected to an acceleration. So the resisting 

moment 𝑀𝑟𝑖due to the rigid body motion of the failed soil mass is given as 

𝑀𝑟𝑖 = 𝐽0𝜃̈-------         Eq.5.88 

𝐽0=Polar mass moment of inertia=
𝑊𝐵2

1.36𝑔
 

W=Weight of the cylindrical soil mass=0.31𝛾𝜋𝐵2 

Where 𝛾is the unit weight of soil  

There fore 𝑀𝑟𝑖 =
𝑊𝐵2

1.36𝑔
𝜃̈-------       Eq.5.89 

The displaced position of the soil mass generates a restoring moment 𝑀𝑟𝑤  which may be expressed as 
 

𝑀𝑟𝑤 = 𝑊𝑟̅𝑠𝑖𝑛𝜃--------        Eq.5.90 

For small rotation 𝑀𝑟𝑤 = 𝑊𝑟̅𝜃 where 𝑟̅ =
2.205𝐵

𝜋
 

By equating the moments of disturbing forces to those of the restoring forces, the following 

equation of motion is obtained 

Mdp = Mrs +Mri +Mrw------       Eq.5.91 

Substituting for moments and rearranging, we get 

𝜃̈ +
3𝑔

𝜋𝐵
𝜃 = [

0.68𝑔

𝑊
] 𝑞𝑢[𝜆𝑒

−𝛽𝑡 − 1]------      Eq.5.92 

Equation (5.92) is a second order, non-homogeneous, linear differential equation with constant 

coefficients. The natural frequency and the time period of the system are given by 

𝜔𝑛 = √
3𝑔

𝜋𝐵
---------         Eq.5.93 

Time period of vibration  

𝑇 =
1

2𝜋
√
𝜋𝐵

3𝑔
--------         Eq.5.94 

Solution of Eq. (5.92) gives the following relation 

𝑊

0.68𝑔𝑞𝑢
(𝜃) =

𝑇2

4𝜋2+𝛽2𝑇2
[{1 − 𝜆 +

𝛽2𝑇2

4𝜋2
} cos (

2𝜋𝑡

𝑇
) +

𝛽𝜆𝑇

2𝜋
sin(

2𝜋𝑡

𝑇
) + 𝜆𝑒−𝛽𝑡 −

𝛽2𝑇2

4𝜋2
− 1]------Eq.5.95 
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The above re1ation can be used to trace the history of motion of the foundation. For   

determination of the maximum angular deflection⁡𝜃, Eq. (5.95) can be differentiated with respect 

to time. Thus 

𝑊

0.68𝑔𝑞𝑢
(𝜃̇) =

2𝑇𝜋

4𝜋2+𝛽2𝑇2
[{𝜆 − 1 −

𝛽2𝑇2

4𝜋2
} sin (

2𝜋𝑡

𝑇
) +

𝛽𝜆𝑇

2𝜋
cos (

2𝜋𝑡

𝑇
) −

𝛽𝜆𝑇

2𝜋
𝑒−𝛽𝑡]-------    Eq. 5.96 

 

For obtaining the critical time 𝑡 = 𝑡𝑐𝑟 which corresponds to 𝜃 = 𝜃𝑚𝑎𝑥 the right-hand side of Eq. 

(5.96) is equated to zero. Since 
2𝜋𝑇

4𝜋2+𝛽2𝑇2
 cannot be zero, 

[{𝜆 − 1 −
𝛽2𝑇2

4𝜋2
} sin (

2𝜋𝑡

𝑇
) +

𝛽𝜆𝑇

2𝜋
cos (

2𝜋𝑡

𝑇
) −

𝛽𝜆𝑇

2𝜋
𝑒−𝛽𝑡] = 0------   Eq. 5.97 

By using small increments of time t in Eq. (5.97), the value of tcr can be obtained. This value of t 

= tcr can then be substituted in to Eq. (5.96) with known values of λ,⁡𝛽⁡𝑎𝑛𝑑⁡𝐵 to obtain  

𝑊

0.68𝑔𝑞𝑢
𝜃𝑚𝑎𝑥 = 𝐾,⁡⁡is the dynamic load factor. 

Figures 5.22 to 5. 24 give the values of K (s2) for B = 0.6, 1.5 and 3.0 m, respectively, with λ = 

1-5 and 𝛽= 0-50 s-1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5.22 Relationship between overload ratio and dynamic load factor for continuous footings 

0.6 m wide 
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Fig. 5.23Relationship between overload ratio    Fig.5.24 Relationship between overload 

ratio and dynamic load factor for continuous   dynamic load factor for continuous wide 

footings footing of width 1.5 m                 3.0 m wide 

5.10.3  Chummar's Solution 

Chummar (1965) presented as solution for dynamic response of a strip footing supported by 

cohesive soil and .The analysis is based on the following assumptions:  

(i) The failure of the footing occurs with the application of horizontal dynamic load 

acting at a certain height above the base of the footing.  

(ii) The resulting motion in the footing is of a rotatory nature. The failure surface is a 

logarithmic spiral with its centre on the base corner of the footing, which is also the 

centre of rotation as shown in (Fig.5.25).  

(iii) The rotating soil mass is considered to be a rigid body rotating about a fixed axis.  

(iv) The soil exhibits rigid plastic, stress-strain characteristics. 

 

Fig.5.25: Transient horizontal load on a continuous strip footing resting on ground surface 
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Analysis: The static bearing capacity of the footing is calculated by assuming that the 

footing fails when acted upon by a vertical static load, which causes rotation of the logarithmic 

spiral failure. The ultimate static bearing capacity qu is given by: 

𝑞𝑢 = 𝑐𝑁𝑐 +
1

2
𝛾𝑁𝛾𝐵         Eq. 5.98 

Where c =Cohesion 

B= Footing width and equal to the initial radius of spiral curve. 

γ=Unit weight of the soil. 

𝑁𝑐and⁡𝑁𝛾are bearing capacity factors for the assumed type of failure. 

Now considering moment of the forces about0, the centre of rotation: 

Moment due to cohesion c, 𝑀𝑅𝐶 = 𝛹𝑐𝐵2, where 
(𝑒2𝜋𝑡𝑎𝑛∅−1)

2𝑡𝑎𝑛∅
= 𝛹-----------  Eq.(5.99) 

Moment due to weight W of soil wedge, 𝑀𝑅𝑊=𝜀𝛾𝐵3 , where 
𝑡𝑎𝑛∅(𝑒3𝜋𝑡𝑎𝑛∅+1)

9𝑡𝑎𝑛2∅+1
= 𝜀-----Eq.(5.100) 

∅⁡is the angle of internal friction 

Moment due to qu about point O is given as qu
𝐵2

2
 

Under equilibrium condition, we get qu
𝐵2

2
=𝑀𝑅𝐶 +𝑀𝑅𝑊, which gives 

𝑞𝑢 =
𝑐

𝑡𝑎𝑛∅
(𝑒2𝜋𝑡𝑎𝑛∅ − 1) +

2𝛾𝐵𝑡𝑎𝑛∅(𝑒3𝜋𝑡𝑎𝑛∅+1)

9𝑡𝑎𝑛2∅+1
---     Eq. (5.101) 

Combining Eq.(5.98) and (5.101), yields 

𝑁𝛾 =
4𝑡𝑎𝑛∅(𝑒3𝜋𝑡𝑎𝑛∅+1)

9𝑡𝑎𝑛2∅+1
 ---------------       Eq. (5.102) 

𝑁𝑐 =
𝑒2𝜋𝑡𝑎𝑛∅−1

9𝑡𝑎𝑛2∅+1
---------------------------------      Eq. (5.103) 

By considering a suitable factor of safety F, the static vertical force on the foundation per unit 

length can be given as  

𝑄 =
𝐵

𝐹
(𝑐𝑁𝑐 +

1

2
𝛾𝐵𝑁𝛾)-------------------------      Eq. (5.104) 

The variation of dynamic force in the above analysis is considered as  

𝑄𝑑(max) = 𝜆𝑄---------------------------------      Eq. (5.105) 

 

 
Fig.5.26: Loading factor. 
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Where, 𝑄𝑑(max)is the maximum value of horizontal transit load per unit length acting at height H 

above base of the footing and 𝜆⁡is over load factor. 

For considering of the dynamic equilibrium of the foundation with the horizontal transient load, 

the moment of each of the forces (per unit length) about the centre of the log-spiral needs to be 

considered: 

1. Moment due to the vertical force Q,𝑀1 =
1

2
𝑄𝐵--------------------   Eq. (5.106) 

2. Moment due to the horizontal force Qd at any time t,    

𝑀2 = 𝑄𝑑𝐻 =
𝑄𝑑(𝑚𝑎𝑥)𝐻𝑡

𝑡𝑑
 =
𝑀𝑑(𝑚𝑎𝑥)𝑡

𝑡𝑑
--------------------------------------  Eq. (5.107) 

3. Moment due to the cohesive force acting along the failure surface is given by Eq.(5.88) 

4. Moment due to weight of soil mass in the failure wedge is given by Eq. (5.89) 

5. Moment of the force due to displacement of the centre of gravity of the failure wedge (as 

shown in Fig.5.26) from its initial position:  

M3 =W X ----------------------------      Eq. (5.108) 

Where W is the weight of the failure wedge, and given by 

𝑊 =
(𝑒2𝜋𝑡𝑎𝑛∅−1)𝛾𝐵2

4𝑡𝑎𝑛∅
-------------------------     Eq. (5.109) 

∆𝑋̅ = 𝑅𝑐𝑜𝑠(𝜂 − 𝛼) − 𝑅𝑐𝑜𝑠𝜂------------------     Eq. (5.110) 

When α is small, Eq.(5.110) can be written as ∆𝑋̅ = (𝑅𝑠𝑖𝑛⁡𝜂)𝛼--------------  Eq. (5.111) 

But 𝑅 = √𝑥̅2 + 𝑧̅2 and 

𝑥̅ =
−4𝐵𝑡𝑎𝑛2∅(𝑒3𝜇𝑡𝑎𝑛∅+1)

(9𝑡𝑎𝑛2∅+1)(𝑒2𝜋𝑡𝑎𝑛∅−1)
--------------------------------------   Eq. (5.112) 

 

𝑧̅ =
4𝐵𝑡𝑎𝑛2∅(𝑒3𝜇𝑡𝑎𝑛∅+1)

3(√9𝑡𝑎𝑛2∅+1)(𝑒2𝜋𝑡𝑎𝑛∅−1)
--------------------------------------   Eq. (5.113) 

Now Eq. (5.108) becomes, 𝑀3 = 𝛽𝐵3(𝑠𝑖𝑛𝜂)𝛼-----------------------   Eq. (5.116) 

Where 𝛽 =
(𝑒3𝜇𝑡𝑎𝑛∅+1)

3(√9𝑡𝑎𝑛2∅+1)
---------------------------------------    Eq. (5.117) 

6. Moment due to inertia force of soil wedge 

𝑀𝑑 = (
𝜕2𝛼

𝜕𝑡2
) 𝐽  -------------     Eq. (5.118) 

Where J is the mass moment of inertia of the soil wedge about the axis of rotation 

𝐽 = ⌊
𝛾𝐵4

16𝑔𝑡𝑎𝑛∅
⌋ (𝑒2𝜋𝑡𝑎𝑛∅ − 1)---------------    Eq. (5.119) 

Now substituting for J in Eq. (5.118), we get 

𝑀𝑑 = (
𝜕2𝛼

𝜕𝑡2
)
𝜇𝑐𝛾𝐵

4

𝑔
 --------------------------------                 Eq. (5.120) 

Where 𝜇𝑐 =
𝑒4𝜋𝑡𝑎𝑛∅−1

16𝑡𝑎𝑛∅
----------------------------     Eq. (5.121) 

Moment due to the frictional resistance along the failure surface will be zero as its resultant will 

pass through the centre of log-spiral. Now for the equation of motion,  

𝑀1 +𝑀2 = 𝑀𝑅𝐶 +𝑀𝑅𝑊 +𝑀3 +𝑀4---------------------------------             Eq. (5.122) 
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Substitution of the proper terms for the moments in Eq. (5.122) gives 

(
𝜕2𝛼

𝜕𝑡2
) + 𝐾2𝛼 = 𝐴 ⌊(

𝑀𝑑(𝑚𝑎𝑥)𝑡

𝑡𝑑
) +

1

2
𝑄𝐵 − 𝐸⌋----------------------   Eq. (5.123) 

Where 𝐾 = √
𝑔𝛽𝑠𝑖𝑛𝜂

𝜇𝐶𝐵
   ,  𝐴 =

𝑔

𝛾𝐵4𝜇𝐶
   and ⁡𝐸 = 𝜓𝑐𝐵2 + 𝜖𝛾𝐵3------   Eq. (5.124) 

Now general solution to the second order differential Eq. (5.123) can be found as  

For 𝑡 ≤ 𝑡𝑑 

𝛼 =
𝐴

𝐾2
(𝐸 −

1

2
𝑄𝐵) cos(𝐾𝑡) −

𝐴

𝐾3

𝑀𝑑(𝑚𝑎𝑥)

𝑡𝑑
sin(𝐾𝑡) +

𝐴

𝐾2
(
𝑀𝑑(𝑚𝑎𝑥)

𝑡𝑑
+

1

2
𝑄𝐵 − 𝐸)------ Eq. (5.125) 

For 𝑡 > 𝑡𝑑 

𝛼 = [
1

𝐾
][𝐺1𝐾 cos(𝐾𝑡𝑑) − 𝐺2 sin(𝐾𝑡𝑑)]cos⁡(Kt) + (

1

𝐾
)[𝐺1𝐾𝑠𝑖𝑛(𝐾𝑡𝑑) 

−G2cos(𝐾𝑡𝑑) ]sin(𝐾𝑡) + (
𝐴

𝐾2
) (

1

2
𝑄𝐵 − 𝐸)-------------- Eq. (5.126) 

Where 𝐺1 =
𝐴

𝐾2
(𝐸 −

1

2
𝑄𝐵) cos(𝐾𝑡𝑑) −

𝐴

𝐾3

𝑀𝑑(𝑚𝑎𝑥)

𝑡𝑑
sin(𝐾𝑡𝑑) +

𝐴𝑀𝑑(𝑚𝑎𝑥)

𝐾2
------------ Eq. (5.127) 

and  𝐺2 =
𝐴

𝐾
(𝐸 −

1

2
𝑄𝐵) sin(𝐾𝑡𝑑) −

𝐴

𝐾2

𝑀𝑑(𝑚𝑎𝑥)

𝑡𝑑
cos(𝐾𝑡𝑑) +

𝐴𝑀𝑑(𝑚𝑎𝑥)

𝐾2𝑡𝑑
--------------- Eq. (5.128) 

 

Example No.2.1 

A 2.5m wide continuous surface footing is subjected to a horizontal transient load of duration 

0.4s applied at a height of 4.0 m from the base of footing. The properties of the soil are 

γ=17kN/m3, c=30kN/m3 and φ =32°.Determine the value of the maximum horizontal load that 

can be applied on the footing. Also compute the angular rotation at time equal to 0.6 s. 

Sol: Given that 

 γ=17kN/m3, c =30kN/m3and φ =32°.H= 4.0 m, td=0.4 s 

Nc=
(𝑒2𝜋𝑡𝑎𝑛∅−1)

𝑡𝑎𝑛∅
=79.4, Nγ=

4𝑡𝑎𝑛∅(𝑒3𝜋𝑡𝑎𝑛∅+1)

9𝑡𝑎𝑛2∅+1
 =200 

Q=
𝐵

2
(𝑐𝑁𝑐 +

1

2
𝛾𝐵𝑁𝛾)=8290 Taking a suitable value of factor of safety as 2.0 

i) Determination of various parameters 

ψ=
(𝑒2𝜋𝑡𝑎𝑛∅−1)

2𝑡𝑎𝑛∅
=39.7,       ϵ=

𝑡𝑎𝑛∅(𝑒3𝜋𝑡𝑎𝑛∅+1)

9𝑡𝑎𝑛2∅+1
 = 50 

(𝑒3𝜇𝑡𝑎𝑛∅+1)

3(√9𝑡𝑎𝑛2∅+1)
=56.6,           𝜇𝑐 =

𝑒4𝜋𝑡𝑎𝑛∅−1

16𝑡𝑎𝑛∅
= 256 

𝑥̅ =
−4𝐵𝑡𝑎𝑛2∅(𝑒3𝜇𝑡𝑎𝑛∅+1)

(9𝑡𝑎𝑛2∅+1)(𝑒2𝜋𝑡𝑎𝑛∅−1)
 =-2.52 B, 𝑧̅ =

4𝐵𝑡𝑎𝑛2∅(𝑒3𝜇𝑡𝑎𝑛∅+1)

3(√9𝑡𝑎𝑛2∅+1)(𝑒2𝜋𝑡𝑎𝑛∅−1)
=2.85 B 

And, 𝑠𝑖𝑛𝜂=
𝑧̅

√𝑥̅2+𝑧̅2
=0.75 

ii) Determination of  K, A and E 

𝐾 = √
𝑔𝛽𝑠𝑖𝑛𝜂

𝜇𝐶𝐵
  = 807,  𝐴 =

𝑔

𝛾𝐵4𝜇𝐶
  = 0.0000577, and ⁡𝐸 = 𝜓𝑐𝐵2 + 𝜖𝛾𝐵3= 20700 kN 

iii) Determination of  Md(max) in terms of λ 

Md(max)=HQd(max)=HQλ 

 = 4x8290λ=33160λ 

iv) Determination of λcr which corresponds to α=0 



Lecture Notes on DSF 2021 
 

116 
 

𝛼 =
𝐴

𝐾2
(𝐸 −

1

2
𝑄𝐵) cos(𝐾𝑡) −

𝐴

𝐾3

𝑀𝑑(𝑚𝑎𝑥)

𝑡𝑑
sin(𝐾𝑡) +

𝐴

𝐾2
(
𝑀𝑑(𝑚𝑎𝑥)

𝑡𝑑
+
1

2
𝑄𝐵 − 𝐸) 

For t=td equals to 0.4s 

𝛼 =
0.0000577

0.8072
(20700 −

1

2
8290 × 2.5) cos(0.8070 × 0.4) −

0.0000577

0.8073
33160𝜆

0.4
sin(0.8070 × 0.4)

+
0.0000577

0.8072
(
33160𝜆

0.4
+
1

2
8290 × 2.5 − 20700) 

=0.9159 cos(0.3228) 9.10𝜆 sin(0.3228) + 2.94𝜆0.9181 − 1.834 

=0.05λ−0.0474 

For α=0, λ=0.948=𝜆𝑐𝑟 

v) Determination of Md(max) for λ=𝜆𝑐𝑟 

Md(max)=33160λcr= 33160 0.948=31436 kNm 

vi) Determination of G1 and G2 

𝐺1 =
𝐴

𝐾2
(𝐸 −

1

2
𝑄𝐵) cos(𝐾𝑡𝑑) −

𝐴

𝐾3

𝑀𝑑(𝑚𝑎𝑥)

𝑡𝑑
sin(𝐾𝑡𝑑) +

𝐴𝑀𝑑(𝑚𝑎𝑥)

𝐾2
=0.9159 

𝐺2 =
𝐴

𝐾
(𝐸 −

1

2
𝑄𝐵) sin(𝐾𝑡𝑑) −

𝐴

𝐾2

𝑀𝑑(𝑚𝑎𝑥)

𝑡𝑑
cos(𝐾𝑡𝑑) +

𝐴𝑀𝑑(𝑚𝑎𝑥)

𝐾2𝑡𝑑
= −4.05 

vii) Determination of α for t=0.6 s 

𝛼 = [
1

𝐾
][𝐺1𝐾 cos(𝐾𝑡𝑑) − 𝐺2 sin(𝐾𝑡𝑑)]cos⁡(Kt) + (

1

𝐾
)[𝐺1𝐾𝑠𝑖𝑛(𝐾𝑡𝑑) 

−𝐺2 cos(𝐾𝑡𝑑) ]sin(𝐾𝑡) +
𝐴

𝐾2
(
1

2
𝑄𝐵 − 𝐸)⁡= -8229 rad 

 

5.10.4  Wallace's Solution 

 

Analysis presented by Trianadafilidis (1965) is based on rotational mode of failure. However, it 

is possible that a foundation may fail by vertically punching into the soil mass due to the 

application of vertical transient load. Wallace (1961) presented a procedure for the estimation of 

the vertical displacement of continuous footing considering punching mode of failure. The 

analysis is based on the following assumptions: 

(i)  The failure surface in the soil mass is assumed to be of similar type as suggested by 

Terzaghi (1943) for the evaluation of static bearing capacity of strip footings. This is shown in 

Figure 5.27 

 

Fig. 5.27: Failure Surface 
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Fig.5.28: Loading Function 

(ii)  The soil behaves as a rigid plastic material  

(iii) The ultimate shear strength is given by 

𝑠 = 𝑐 + 𝜎𝑡𝑎𝑛∅---         Eq. (5.129) 

Where, s = Ultimate shear strength 

c = Cohesion 

𝜎= Normal stress 
∅= Angle of internal friction 

 

iv)  The dynamic load applied to the footing is initially peak triangular force pulse (Fig.5.28). 

v)The footing is assumed to be weightless and to impart uniform load to the soil surface 

Analysis: 
 

The applied load is assumed to be an initial-peak triangular force which decays to zero at time td 

as shown in Fig.5.28.  The peak load q is expressed in pressure units. Since the function is 

discontinuous at time td, two equations are necessary 

For 0 ≤ 𝑡 ≤ 𝑡𝑑  Loading function =𝑞𝐵 (1 −
𝑡

𝑡𝑑
)---------    Eq. (5.130) 

For 𝑡 ≥ 𝑡𝑑 Loading function = 0 

In Fig. 5.27, BD is an arc of a logarithmic spiral with its centre at O. It is defined by the Eq. 

(5.131). 

𝑟 = 𝑟0𝑒
𝜃𝑡𝑎𝑛∅--------         Eq. (5.131) 

Where 𝑟0 = distance OD see Fig. (5.27) 

∅= Angle of internal friction 

The static bearing capacity qu for such a failure surface is given by 

𝑞𝑢 = 𝑐𝑁𝑐 + 𝑞𝑁𝑞 +
1

2
𝛾𝐵𝑁𝛾--------       Eq. (5.134) 

where,   c = Cohesion 

q =𝛾𝐷𝑓 

𝛾= Unit weight of soil 
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𝐷𝑓 = Depth of footing 

𝑁𝑐 , 𝑁𝑞 , 𝑁𝛾 = Bearing capacity factors 

 

The bearing capacity factors depend on⁡∅  and K, K being 2 (Distance OA)/H, Fig. 5.27. The 

value of K locates the centre of the spiral which is the centre of rotation. Obviously the correct 

value of K is that which yields the minimum value of the bearing capacity. It is obtained by trial 

and error for each set of problem parameters. The values of 𝑁𝑐 , 𝑁𝑞 , 𝑁𝛾for various values of ∅ and 

K are given in Column 3, 4 and 5 of Table 5.2. 

Any acceleration of the soil mass ACDBA due to the downward movement of the footing will 

cause inertial forces which will resist such movement. The inertial forces are directly 

proportional to the acceleration of each individual soil mass and thereby dependent on 

displacements. The effective total inertial force is obtained by combining the inertial forces on 

each separate mass using energy considerations. 

The inertial force is given by 𝐼𝑓 = 𝑁𝐼𝛾𝐵
𝑑2∆

𝑑𝑡2
------------    Eq. (5.135) 

Where, ∆= Displacement at any time t 

𝑁𝐼=Coefficient of dynamic inertial shear resistance. 

The coefficient 𝑁𝐼 depends on ∅ and K, and its values are listed in column no. 6 of Table 5.2 

Displacement of the soil mass within the failure surface due to downward movement of the 

footing will increase the restoring moment about the point 0, and the increase in moment will be 

proportional to the displacement provided the rotation is not excessive. It is expressed as 

𝑅𝐹 = 𝑁𝑅𝐵𝛾∆---------         Eq. (5.136) 

The coefficient NR also depends on ∅⁡and K. Its values are listed in column no. 7 of Table 5.2. 

The differential equations are established by equating the four vertical forces to zero. There must 

be separate equations for before and after time td 

For 0 ≤ 𝑡 ≤ 𝑡𝑑 

𝑁𝐼𝛾𝐵
𝑑2∆

𝑑𝑡2
+ 𝑁𝑅𝛾𝐵∆ + 𝑞𝑢𝐵 − 𝑞𝐵 (1 −

𝑡

𝑡𝑑
) = 0-------     Eq. (5.137) 

Or 

For 𝑡 ≥ 𝑡𝑑 

𝑁𝐼𝛾𝐵
𝑑2∆

𝑑𝑡2
+ 𝑁𝑅𝛾𝐵∆ + 𝑞𝑢𝐵 = 0-----------      Eq. (5.138) 

Or, 
𝑑2∆

𝑑𝑡2
+

𝑁𝑅

𝑁𝐼𝐵
∆= −

𝑞𝑢

𝑁𝐼𝛾𝐵
 ------------------      Eq. (5.139) 

The solution of the differential equations will yield equations of footing displacement versus 

time. The forms of the particular solutions of Eq. 5.140 are found to be 

∆= 𝐶1 cos(𝐾
,𝑡) + 𝐶2 sin(𝐾

,𝑡) + (
𝑞−𝑞𝑢

𝑁𝑅𝛾
) − (

𝑞

𝑁𝑅𝛾𝑡𝑑
) 𝑡----------   Eq. (5.140)  

And ∆= 𝐶3 cos(𝐾
,𝑡) + 𝐶4 sin(𝐾

,𝑡) − (
𝑞𝑢

𝑁𝑅𝛾
)---------     Eq. (5.141) 

In which 𝐾′ = √
2𝑁𝑅

𝑁𝐼𝑅
 and 𝐶1, 𝐶2, 𝐶3𝑎𝑛𝑑⁡𝐶4 are coefficient of integration. The C1, C2 are evaluated 

by the initial conditions. The coefficients C3 and C4 are obtained by conditions of displacement 
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and velocity at td as defined by Eq. (5.140). After finding the solution and substitution of the 

coefficients yield non-dimensional Eqs. 5.140 & 141 as 

For 0 ≤ 𝑡 ≤ 𝑡𝑑 

(
𝑁𝑅𝛾

𝑞𝑢
) ∆= (

𝑞

𝑞𝑢
− 1) [1 − cos⁡(𝐾′𝑡)] +

𝑞

𝑞𝑢

𝑡𝑑𝐾
′
[sin(𝐾′𝑡) − 𝐾′𝑡]----------  Eq. (5.142) 

For 𝑡 ≥ 𝑡𝑑 

(
𝑁𝑅𝛾

𝑞𝑢
)∆= [(1 −

𝑞

𝑞𝑢
) +

𝑞

𝑞𝑢

𝑡𝑑𝐾
′
𝑠𝑖𝑛(𝐾′𝑡𝑑)] cos(𝐾

′𝑡𝑑) + [

𝑞

𝑞𝑢

𝑡𝑑𝐾
′
(1 − cos⁡(𝐾′𝑡𝑑))] sin(𝐾

′𝑡𝑑) − − −−−Eq. (5.143) 

The coefficients 𝑁𝛾 , 𝑁𝑐 , 𝑁𝑞, 𝑁𝐼𝑎𝑛𝑑⁡𝑁𝑅  are dependent only on values of ∅  and K. Using 

magnitudes of ∅ from 0° to 45° and of K for the region where the ultimate static shear resistance 

could be a minimum, these coefficients were evaluated. The values obtained are given, in Table 

5.2 for every fifth degree. The maximum displacement from Eq. 5.142 and 5.143 is the 

predicated permanent footing displacement, since downward motion ceases at the time of the 

maximum displacement. 
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Fig. 5.29: Non-dimensional maximum displacement 

Table 5.2: Bearing Capacity Factors 

Φ(dgree) K 𝑁𝛾 𝑁𝑐  𝑁𝑞 𝑁𝐼 𝑁𝑅 

√
𝑁𝑅
𝑁𝐼

 

0 -0.05 0.000 5.7277 1.00 0.0633 2.0125 5.6366 

0.00 0.000 5.7124 1.00 0.0631 1.9723 5.5887 

+0.05 0.000 5.7258 1.00 0.0633 1.9433 5.5394 

 

 

 

 

 

 

 

5 

-0.65 0.0454 79.6255 7,9664 0.03755 8.9076 4.8709 

-0.60 0.1445 29.8163 3.6986 0.2280 6.4362 5.3126 

-0.55 0.1481 18.9958 2.6619 0.1579 5.0332 5.6460 

-0.50 0.1553 14.3469 2.2552 0.1213 4.1699 5.8636 

-0.45 0.1655 11.8179 2.0339 0.1011 3.6088 5.9750 

-0.40 0.1786 10.2699 1.8985 0.0897 3.2299 6.0020 

-0.35 0.1945 9.2580 1.8100 0.0833 2.9674 5.9698 

-0.30 0.2131 8.5723 1.7500 0.0799 2.7828 5.9005 

-0.25 0.2344 8.1007 1.7087 0.0786 2.6523 5.8108 

-0.20 0.2585 7.7778 1.6805 0.0785 2.5604 5.7116 

-0.15 0.2855 7.5629 1.6617 0.0793 2.4969 5.6099 

-0.10 0.3154 7.4291 1.6500 0.0809 2.4547 5.5096 

-0.05 0.3483 7.3580 1.6437 0.0829 0.4288 5.4128 

0.00 0.3843 7.3366 1.6419 0.0853 2.4155 5.3205 

0.05 0.4233 7.3553 1.6435 0.0881 2.4122 5.2330 

 

 

 

 

 

 

 

10 

-0.60 0.5700 53.9491 10.5127 0.1120 5.7922 7.1922 

-0.55 0.5588 28.9945 6.1125 0.0935 4.8411 7.1948 

-0.50 0.5645 20.5266 4.6194 0.0833 4.2238 7.1228 

-0.45 0.5832 16.3539 3.8837 0.0779 3.8095 6.9932 

-0.40 0.6127 13.9337 3.4569 0.0757 3.5264 6.8293 

-0.35 0.6521 12.4031 3.1870 0.0755 3.3323 6.6445 

-0.30 0.7008 11.3881 3.0080 0.0767 3.2008 6.4587 

-0.25 0.7586 10.7004 2.8868 0.0790 3.1147 6.2781 

-0.20 0.8253 10.2345 2.8046 0.0821 3.0625 6.1071 

-0.15 0.9012 9.9267 2.7503 0.0858 3.0360 5.9474 

-0.10 0.9863 9.7361 2.7167 0.0901 3.0294 5.7994 

-0.05 1.0807 9.6352 2.6990 0.0948 3.0386 5.6676 

0.00 1.1848 9.6049 2.6936 0.0999 3.0604 5.5360 

+0.05 1.2986 9.6313 2.6983 0.1053 3.0923 3.4187 

 

 

 

15 

-0.55 1.5462 46.5473 13.4724 0.0707 5.2677 8.6324 

-0.50 1.5198 30.2759 9.1124 0.0696 4.7177 8.2310 

-0.45 1.5342 23.2038 7.2175 0.0707 4.3564 7.8481 

-0.40 1.5806 19.3483 6.1844 0.0734 4.1189 7.4903 

-0.35 1.6540 16.9964 5.5542 0.0773 3.9669 7.1622 

-0.30 1.7520 15.4722 5.1458 0.0823 3.8766 6.8645 

-0.25 1.8730 14.4550 4.8732 0.0881 3.8322 6.5961 

-0.20 2.0166 13.7730 4.6905 0.0947 3.8232 6.3542 
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-0.15 2.1825 13.3257 4.5706 0.1020 3.8418 6.1361 

Φ(dgree) K 𝑁𝛾 𝑁𝑐  𝑁𝑞 𝑁𝐼 𝑁𝑅 

√
𝑁𝑅
𝑁𝐼

 

15 -0.10 2.3710 13.0501 4.4968 0.1101 3.8825 5.9388 

-0.05 2.5823 12.9048 4.4579 0.1183 3.9413 5.7596 

0.00 2.8168 12.8613 4.4462 0.1282 4.0149 5.5961 

+0.05 3.0750 12.8991 4.4563 0.1383 4.1008 5.4463 

 

 

 

 

 

20 

-0.50 3.6745 46.2884 17.8477 0.0673 5.6658 9.1768 

-0.45 3.6419 33.8986 13.3381 0.0728 5.3067 8.5380 

-0.40 3.6943 27.6099 11.0492 0.0796 5.0886 7.9941 

-0.35 3.8151 23.9213 9.7067 0.0877 4.9684 7.5267 

-0.30 3.9952 21.5875 8.8572 0.0970 4.9199 7.1214 

-0.25 4.2298 20.0542 8.2992 0.1076 4.9258 6.7672 

-0.20 4.5161 19.0369 7.9289 0.1194 4.9764 6.4552 

-0.15 5.8533 18.3742 7.6877 0.1325 5.0582 6.1783 

-0.10 5.2413 17.9678 7.5398 0.1470 5.1704 5.9309 

-0.05 5.0864 17.7542 7.4620 0.1629 5.3068 5.7084 

0.00 6.1717 17.6903 7.4368 0.1802 5.4638 5.5072 

+0.05 6.7161 17.4757 7.4589 0.1989 5.6486 5.3243 

 

 

 

 

 

 

25 

-0.50 8.5665 73.8778 35.4499 0.0732 7.2346 9.9384 

-0.45 8.3599 51.2706 24.9079 0.0835 6.8363 9.0503 

-0.40 8.3728 40.7056 19.9814 0.0954 6.6214 8.3291 

-0.35 8.5541 34.7663 17.2119 0.1094 6.5339 7.7297 

-0.30 8.8760 31.1015 15.5029 0.1254 6.5404 7.2223 

-0.25 9.3230 28.7315 14.3977 0.1437 6.6199 6.7864 

-0.20 9.8871 27.1750 13.6720 0.1646 6.7584 6.4075 

-0.15 10.5646 26.1681 13.2024 0.1882 6.9462 6.0748 

-0.10 11.3542 25.5533 12.9157 0.2148 7.1761 5.7803 

-0.05 12.2569 25.2309 12.7654 0.2445 7.4429 5.5178 

0.00 13.2745 25.1345 12.7205 0.2775 7.7423 5.2825 

+0.05 14.4095 25.2180 12.7594 0.3139 8.0710 5.0704 

 

 

 

 

 

30 

-0.45 19.3095 80.8644 47.6872 0.1064 9.3123 9.3540 

-0.40 19.1315 62.4470 37.0539 0.1267 9.0899 8.4705 

-0.35 19.3718 52.5548 31.3426 0.1506 9.0494 7.7518 

-0.30 19.9400 46.6067 27.9084 0.1787 9.1446 7.1533 

-0.25 20.1887 42.8208 25.7226 0.2116 9.3473 6.6458 

-0.20 21.9566 40.3597 24.3017 0.2500 9.6392 6.2095 

-0.15 23.3512 38.7778 23.3884 0.2944 10.0081 5.8303 

-0.10 24.9984 37.8159 22.8330 0.3456 10.4452 5.4979 

-0.05 26.8993 37.3127 22.5425 0.4041 10.9441 5.2044 

0.00 29.0580 37.1624 22.4558 0.4706 11.4998 4.9436 

+0.05 31.4810 37.2926 22.5309 0.5457 12.1084 4.7107 
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35 -0.45 46.2942 134.3023 95.0397 0.1527 13.4981 9.4021 

Φ(dgree) K 𝑁𝛾 𝑁𝑐  𝑁𝑞 𝑁𝐼 𝑁𝑅 

√
𝑁𝑅
𝑁𝐼

 

 

 

 

 

 

35 

-0.40 45.4427 100.66099 71.4837 0.1887 13.2639 8.3844 

-0.35 45.6687 83.4477 59.4308 0.2323 13.3114 7.5703 

-0.30 46.7356 73.3676 52.3727 0.2849 13.5708 6.9017 

-0.25 48.5145 67.0529 47.9511 0.3481 14.0015 6.3419 

-0.20 50.9356 62.9887 45.1052 0.4237 14.5786 5.8661 

-0.15 53.9640 60.3926 43.2874 0.5133 15.2895 5.4569 

-0.10 57.8568 58.8199 42.1864 0.6191 16.1127 5.1018 

-0.05 61.8051 57.9989 41.6113 0.7428 17.0515 4.7911 

0.00 66.6196 57.7539 41.4398 0.8868 18.0970 4.5175 

+0.05 72.0773 57.9662 41.5884 1.0526 19.2451 4.2753 

 

 

 

 

 

40 

-0.40 115.7097 172.8231 146.0161 0.3229 20.8738 8.0404 

-0.35 115.5504 141.1002 119.3973 0.4107 21.1138 7.1701 

-0.30 117.6386 123.0124 104.2199 0.5195 21.7125 6.4650 

-0.25 121.5875 111.8576 94.8599 0.6536 22.6077 5.8817 

-0.20 127.1879 104.7472 88.8935 0.8175 23.7619 5.3914 

-0.15 134.3346 100.2323 85.1051 1.0168 25.1570 4.9741 

-0.10 142.9868 97.5069 82.8181 1.2572 26.7775 4.6152 

-0.05 153.1451 96.0866 81.6263 1.5450 28.6173 4.3038 

0.00 164.839 95.6630 81.2709 1.8870 30.6724 4.0317 

+0.05 178.1176 96.0303 81.5791 2.2904 32.9409 3.7924 

 

 

 

 

45 

-0.40 327.6781 322.2748 323.2752 0.6576 36.2961 7.4295 

-0.35 325.4943 259.1345 260.1349 0.8611 37.0113 6.5559 

-0.30 329.9752 224.0769 225.0772 1.1194 38.3965 5.8568 

-0.25 339.8627 202.7837 203.7840 1.4447 40.3468 5.2846 

-0.20 354.4804 189.3358 190.3361 1.8515 42.8070 4.8083 

-0.15 373.4971 180.8450 181.8452 2.3565 45.7496 4.4062 

-0.10 393.7473 175.7358 176.7361 2.9784 49.1634 4.0628 

-0.05 424.2605 173.0775 174.0778 3.7386 53.0475 3.7669 

0.00 456.1177 172.2851 173.2853 4.6607 57.4067 3.5096 

+0.05 492.4763 172.9729 173.9732 5.7709 62.2499 3.2843 
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5.11 Seismic Bearing Capacity and Settlement in Granular Soil 

 

The shallow foundations may fail during seismic events. Published studies relating to the 

bearing capacity of shallow foundations in such instances are rare. In 1993, however, 

Richards et al. developed a seismic bearing capacity theory to find seismic bearing capacity 

of granular soil. Figure 5.30 shows a failure surface in soil assumed for the subsequent 

analysis, under static conditions. Similarly, Figure 5.31 shows the assumed failure under 

earthquake conditions. Note that, in the two figures, 

𝛼𝐴,⁡𝛼𝐴𝐸 = inclination angles for active pressure conditions  

 And 

𝛼𝑃,⁡𝛼𝑃𝐸= inclination angles for passive pressure conditions 

 

 
Fig.5.30: Assumed failure surface in soil for static bearing capacity analysis 

 
Fig.5.31: Assumed failure surface in soil for seismic bearing capacity analysis 

According to this theory, the ultimate bearing capacities for continuous foundations in 

granular soil are 

𝑞𝑢 = 𝑞𝑁𝑞 +
1

2
𝛾𝐵𝑁𝛾, For static condition--------------------- Eq. (5.144) 

 

𝑞𝑢𝐸 = 𝑞𝑁𝑞𝐸 +
1

2
𝛾𝐵𝑁𝛾𝐸, For Earthquake conditions------------ Eq. (5.145) 

 Where, 𝑁𝑞, 𝑁𝛾, 𝑁𝑞𝐸, 𝑁𝛾𝐸 are bearing capacity factors 
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Again,  𝑁𝑞, 𝑁𝛾 = 𝑓(∅′)⁡ 

And 𝑁𝑞𝐸, 𝑁𝛾𝐸 = 𝑓(∅′, 𝑡𝑎𝑛𝜃) 

Where  𝑡𝑎𝑛𝜃 =
𝑘ℎ

1−𝑘𝑣
----------------      Eq. (5.146) 

𝑘ℎ= Horizontal coefficient of earthquake acceleration 

𝑘𝑣= Vertical coefficient of earthquake acceleration 

Using the failure surface shown in Figure 5.31, Richards, Elms and Budhu (1993) provided 

the values of bearing capacity factors, 𝑁𝑞,  and 𝑁𝛾,. They are given in Table 5.3 

Table 5.3: Bearing capacity factors 

 
 

The variations of 𝑁𝑞 and 𝑁𝛾 with ∅′ are shown in Figure 5.32. Figure 5.33 shows the variations 

of 
𝑁𝛾𝐸

𝑁𝛾
⁄ and 

𝑁𝑞𝐸
𝑁𝑞

⁄  with 𝑡𝑎𝑛𝜃 and the soil angle ∅′based on this analysis. 

 
Fig. 5.32: Variation of 𝑁𝑞 and 𝑁𝛾 based on failure surface assumed in Figure 5.30 
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Fig. 5.33: Variation of
𝑁𝛾𝐸

𝑁𝛾
⁄ and 

𝑁𝑞𝐸
𝑁𝑞

⁄  with 𝑡𝑎𝑛𝜃 

Under static conditions, bearing capacity failure can lead to a substantial sudden downward 

movement of the foundation. However, bearing capacity related settlement in an earthquake is 

important and it takes place when the ratio 𝑡𝑎𝑛𝜃 =
𝑘ℎ

(1 − 𝑘𝑣)
⁄ ⁡reaches the critical value. The 

critical value can be expressed as  [
𝑘ℎ

(1−𝑘𝑣)
] 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 becomes equal to 𝑘ℎ

∗  when 𝑘𝑣=0 

Table 5.4: Variation of 𝛼𝐴𝐸 with 𝑘ℎ
∗  and soil friction angle ∅′ 

 
Figure 5.34 shows the variation of 𝑘ℎ

∗  (for 𝑘𝑣 = 0 ) with the factor of safety (FS) applied to the 

ultimate static bearing capacity [Eq. 5.144], with ∅′ , and with 
𝐷𝑓

𝐵
⁄  (for ∅′ = 300 and 400 ). 
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Fig.5.34: Critical acceleration 𝑘ℎ

∗  for 𝑘𝑣=0 

 

The settlement of a strip foundation due to an earthquake using a sliding block approach can be 

estimated (Richards, Elms and Budhu, 1993) as 

𝑆𝐸𝑞(𝑚) = 0.174
𝑉2

𝐴𝑔
[
𝑘ℎ
∗

𝐴
]
−4

𝑡𝑎𝑛𝛼𝐴𝐸---------------------- Eq. (5.147) 

Where, V = peak velocity for the design earthquake (m/sec) 

A = acceleration coefficient for the design earthquake 

g = acceleration due to gravity (9.81 m/s2) 

The values of 𝑘ℎ
∗  and 𝛼𝐴𝐸 can be obtained from Figure 5.34 and Table 5.4, respectively. This 

approach can be used to design a footing based on limiting seismic settlements. 

 

Problem No.1 

A rectangular foundation has a length L of 2.5 m. It is supported by medium dense sand with a 

unit weight of 17 kN/m3. The sand has an angle of friction of 36º. The foundation may be 

subjected to a dynamic load of 735 kN increasing at a moderated rate. Using a factor of safety 

equal to 2, determine the width of the foundation. Use Df = 0.8 m. 

 

 

APPENDIX    (Foundation for Various Types Machines) 
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DESIGN OF RECIPROCATING MACHINE FOUNDATION 

Reciprocating Machine should be placed over suitable Vibration Absorber to reduce the 

magnitude of displacement due to dynamic unbalanced force produced due the Machine. 

Design for Vibration absorber: The following steps are required  

1 Make a trial design without absorber 

2 Depending on requirement of minimum foundation size, for the machine selection of 

block foundation size is made. 

3 Determine stiffness due to vertical vibration Kz=K1 

4 Determine the natural frequency of soil, considering total mass due to machine and 

foundation, 𝑤𝑛𝑙1=√
𝐾1

𝑚1+𝑚2
 

5 Find mass ratio n =
𝑚2

𝑚1
 

6 Determine frequency ratio a1=
𝑤𝑛𝑙1

𝑤
, w is the operating frequency 

7 Compute displacement magnitude without absorber as , Zmax 

Zmax=
𝐹0

(𝑚1+𝑚2)(𝑤𝑛𝑙1
2 −𝑤2)

 

8 Calculate efficiency of absorber η=
𝑍1

𝑍𝑚𝑎𝑥
, z1is the permissible displacement  

9 Again efficiency can be expressed as 

η=
𝑎2
2(1+𝑛)(𝑎1

2−1)

[1−(1+𝑛)(𝑎1
2+𝑎2

2−𝑎1
2𝑎2

2)]
  where a2 is the frequency ratio, 𝑎2 =

𝑤𝑛𝑙2

𝑤
 

wnl2 is the natural frequency of absorber. 

10 Find stiffness of absorber K2=𝑚2𝑤𝑛𝑙2
2  

11 Suitable absorber may be selected from K2 

12 Find Z2=
[(1+𝑛)𝑎1

2+𝑛𝑎2
2−1]𝐹0

𝑚2𝜔
2[1−(1+𝑛)(𝑎1

2+𝑎2
2−𝑎1

2𝑎2
2)]

 , Than check for maximum force of resistance  

13 Find magnitude of force resistance𝐹0 = 𝐾2𝑍2 

Q.1 Determine the stiffness of the absorber to be kept between a reciprocating machine and 

foundation to bring the vibration amplitude to less than 0.02 mm. The weight of the machine is 

18 kN. It produces an unbalanced force of 4 kN, when operated at speed of 600rpm. Shear 

modulus of foundation soil G=20MN/m2 and µ= 0.35. 

Sol: Mass of the block foundation of dimension 4x3m2 with 1.5 m height 

𝑚1 =
24×4×3×1.5

9.81
= 44⁡kg 
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Mass of machine 𝑚2 =
18

9.81
= 1.83⁡kg,  

Equivalent radius of circular footing 𝑟 = √
4×3

𝜋
=1.95 m 

Stiffness in vertical direction, 𝐾𝑧 =
4𝐺𝑟

1−µ
=240000 kN/m 

Natural frequency of vibration, 𝜔𝑛𝑙1 = √
240000

44+1.83
=72.36 r/sec 

Operating frequency of machine, 𝜔 =
2𝜋×600

60
= 62.83 r/sec 

Maximum amplitude of vertical vibration (Without absorber)  

𝑍𝑚𝑎𝑥 =
𝐹0

(𝑚1+𝑚2)(𝜔𝑛𝑙1
2 −𝜔2)

=0.068 mm 

Efficiency of absorber= 
𝑍1

𝑍𝑚𝑎𝑥
=
0.02

0.068
=0.333 

Frequency ratio, 𝑎1 =
𝜔𝑛𝑙1

𝑤
=1.15, Mass ratio, 𝜂 =

𝑚1

𝑚2
=0.0415 

Now efficiency can also be expressed as η=
𝑎2
2(1+𝑛)(𝑎1

2−1)

[1−(1+𝑛)(𝑎1
2+𝑎2

2−𝑎1
2𝑎2

2)]
   

Hence, 0.333=
𝑎2
2(1+0.0415)(1.152−1)

[1−(1+0.0415)(1.152+𝑎2
2−1.152𝑎2

2)]
   

So 𝑎2=1.31 

But 𝑎2 =
𝜔𝑛𝑙2

𝜔
, hence 𝜔𝑛𝑙2=81.97 r/s 

Z2=
[(1+𝑛)𝑎1

2+𝑛𝑎2
2−1]𝐹0

𝑚2𝜔
2[1−(1+𝑛)(𝑎1

2+𝑎2
2−𝑎1

2𝑎2
2)]

= 
[(1+0.0415)1.152+0.0415×1.312−1]×4

1.83×62.832[1−(1+0.0415)(1.152+1.312−1.152×1.312)]
= −58.47⁡mm 

Resisting force of absorber 𝐹0 = 𝐾2𝑍2=12298x0.05847=719 kN 

 

 

 

 

 

 

 

 

 

MACHINE FOUNDATION ON PILES 

Piles divided into two groups: End bearing and Friction Piles 

Longitudinal Vibration of Short Elastic Bar: 
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i) End Bearing Pile: Mass  of Pile is negligible 

Wave equation: 
𝜕2𝑢

𝜕𝑡2
=𝑣𝑐

2 𝜕2𝑢

𝜕𝑥2
--------      Eq.(1) 

Where u is the displacement function and vc is shear wave velocity 

Solution to above second order differential equation is expressed as 

u(x,t)=U(x)(A1sinωnt+A2cosωnt)---       Eq.(2) 

Where A1 and A2 are two constants, ωn is the natural frequency and U(x) is amplitude of 

displacement along the length of the bar and is independent of time “t” 

Eq. 1 can be rewritten by putting value from Eq.2 as 

𝜕2𝑈(𝑥)

𝜕𝑥2
+

𝜌

𝐸
𝜔𝑛
2𝑈(𝑥) = 0-----         Eq.(3) 

Now general solution to the above Eq.3 can be given as 

U(x) =𝐵1sin⁡(
𝜔𝑛𝑥

𝑣𝑐
) +𝐵2cos⁡(

𝜔𝑛𝑥

𝑣𝑐
)-----        Eq. (4) 

Using end conditions a) Fixed  

At x=0, U(x) =0 which gives B2=0 

At x=L, 
𝑑𝑈(𝑥)

𝑑𝑥
= 0, gives 

𝐵1

𝑣𝑐
𝜔𝑛𝑐𝑜𝑠

𝜔𝑛⁡𝐿

𝑣𝑆
=0,  

Hence, 𝑐𝑜𝑠
𝜔𝑛𝐿

𝑣𝑐
= 0, or 

𝜔𝑛𝐿

𝑣𝑐
=

(2𝑛−1)𝜋

2
 

Which gives, 𝜔𝑛 =
1

2
(2𝑛 − 1)𝜋

𝑣𝑐

𝐿
, for n=1 𝜔𝑛 =

𝜋

2

𝑣𝑐

𝐿
 

So natural frequency 𝑓𝑛 =
𝜔𝑛

2𝜋
=
1

4𝐿
√
𝐸𝑝

𝜌𝑝
---------------      Eq.(5) 

Where Ep and 𝜌P are Young’s modulus and density of pile material 

Now mass of pie is considered as “m” 

The general solution is again taken as U(x) =𝐵1sin⁡(
𝜔𝑛𝑥

𝑣𝑐
) +𝐵2cos⁡(

𝜔𝑛𝑥

𝑣𝑐
) 

From end condition, we get B2=0 which gives U(x) =𝐵1sin⁡(
𝜔𝑛𝑥

𝑣𝑐
)  

At x=L, the inertia force of mass m is acting on the soil column and this can be expressed as 

𝐹 = −𝑚
𝜕2𝑢

𝜕𝑡2
------------------         Eq.(6) 

Strain in the pile is expressed as 𝜖=
𝜕𝑢

𝜕𝑥
=

𝐹

𝐴𝐸
------------     Eq.(7) 

Where E and A are Young’s modulus and area of cross section of pile respectively.  
𝐹

𝐴𝐸
=

𝜕𝑢

𝜕𝑥
=

𝜕𝑈

𝜕𝑥
(𝐴1𝑠𝑖𝑛𝜔𝑛𝑡 + 𝐴2𝑐𝑜𝑠𝜔𝑛𝑡)--------      Eq.(8) 

Substituting for, 
𝜕𝑈

𝜕𝑥
 , above Expression becomes  

𝐵1𝜔𝑛

𝑣𝑐
cos (

𝜔𝑛𝑥

𝑣𝑐
) (𝐴1𝑠𝑖𝑛𝜔𝑛𝑡 + 𝐴2𝑐𝑜𝑠𝜔𝑛𝑡) =

𝐹

𝐴𝐸
-------     Eq.(9) 

Now, 𝐹 = −𝑚
𝜕2𝑢

𝜕𝑡2
= ⁡−𝑚[𝐵1sin⁡(

𝜔𝑛𝑥

𝑣𝑐
)]⁡

𝜕2

𝜕𝑡2
(𝐴1𝑠𝑖𝑛𝜔𝑛𝑡 + 𝐴2𝑐𝑜𝑠𝜔𝑛𝑡)------                Eq.(10) 

Or, 𝐹 = 𝑚𝜔𝑛
2𝐵1sin⁡(

𝜔𝑛𝑥

𝑣𝑐
)(𝐴1𝑠𝑖𝑛𝜔𝑛𝑡 + 𝐴2𝑐𝑜𝑠𝜔𝑛𝑡)-----------          Eq.(11) 

From Eq.(9) and (10), we get 
𝐴𝐸

𝑣𝑐
cos (

𝜔𝑛𝑥

𝑣𝑐
) = 𝑚𝜔𝑛sin⁡(

𝜔𝑛𝑥

𝑣𝑐
)------                  Eq.(12) 
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At x=L ,𝐴𝐸 = 𝑚𝜔𝑛𝑣𝑐tan⁡(
𝜔𝑛𝐿

𝑣𝑐
)----------              Eq.(13) 

Or, 𝐴𝜌𝑣𝑐
2 = 𝑚𝜔𝑛𝑣𝑐tan⁡(

𝜔𝑛𝐿

𝑣𝑐
)--------------             Eq.(14)  

as⁡𝑣𝑐 = √
𝐸

𝜌
 

Now consider a non-dimensional parameter,  
𝐴𝐿𝛾

𝑊
=

𝜔𝑛𝐿

𝑣𝑐
tan⁡(

𝜔𝑛𝐿

𝑣𝑐
)---------------             Eq. (15) 

which may be expressed as 𝛽 = 𝛼𝑡𝑎𝑛𝛼 

Where 𝛽 =
𝐴𝐿𝛾

𝑊
  and 𝛼 =

𝜔𝑛𝐿

𝑣𝑐
 

The above relation can be placed in tabular form as Table1 

T1: Coefficients for natural frequency of piles 

𝛽 0.1 0.3 0.5 0.7 1.0 2.0 4.0 10.0 

𝛼 0.32 0.53 0.66 0.75 0.86 1.08 1.27 1.43 

 

When pile mass is negligible as compared to mass of on pile cap, we get 
𝐴𝐿𝛾

𝑊
= (

𝜔𝑛𝐿

𝑣𝑐
)2 , and hence 𝜔𝑛 = √

𝐴𝐸𝑔

𝐿𝑊
-------------------        Eq.(16) 

ii) Friction Pile: 

Assumptions: 

1 Pile is vertical and circular in cross section, if not equivalent circular radius is taken 

2 The pile is floating the soil foundation, (Not restricted) 

3 The pile is perfectly connected to soil. 

4 The soil above the pile tip behaves as an infinitesimal thin independent linearly 

elastic layer. 

5 The dynamic stiffness and damping of pile material can be described interms of a 

complex stiffness matrix as proposed by Novak and EI-Sharnouby 1983. 

Stiffness 𝐾 = 𝐾1 + 𝑖𝐾2---------------------------     Eq. (17) 

K1 is real part of stiffness =Rek 

And K2 is imaginary part=Imk 

Let vertical stiffness Kz =Rek ---------------------     Eq.(18) 

And Damping Coefficient Cz=
𝐼𝑚𝑘

𝜔𝑛
----------------     Eq.(19) 

Now force acting on pile Q=KZ-------------------     Eq.(20) 

Or 𝑄 = (𝐾𝑧 + 𝑖𝜔𝑛𝐶𝑧)𝑍 or 𝑄 = (𝐾𝑧𝑍 + 𝑍̇𝐶𝑧) -     Eq.(21) 

Stiffness and Damping are rewritten as 

𝐾𝑧 = (
𝐴𝐸

𝑅
)𝑓𝑧1and𝐶𝑧 = (

𝐸𝐴

√
𝐺

𝜌

)fz2   --------     Eq.(22) 

Where fz1 and fz2 are two factors can be taken from Fig. 1 (a),(b), proposed by Novak et al. 
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Fig. 1:Stiffness and Damping Parameters of Vertical Response for: a) End Bearing Piles and b) 

Floating Piles (reprinted from Novak and El Sharnouby 1983, © ASCE) 

Stiffness and Damping of Pile Group 

𝐾𝑧(𝑔) =
∑𝐾𝑧

∑𝛼𝑟
and𝐶𝑧(𝑔) =

∑𝐶𝑧

∑𝛼𝑟
   ----------------------     Eq.(23) 

Where 𝛼𝑟= Interaction factor and is obtained from the table T:3.6 page 49 (Hand book of 

Machine Foundation by Srinivasulu &Vaidyanatham) 

S/D=Pile Spacing/Diameter of Pile 3.0 45 6.0 ∞ 

𝛼𝑟 0.35 0.58 0.63 1.0 

Stiffness and Damping Coefficient of Pile Cap: 

𝐾𝑧(𝑐𝑎𝑝) = 𝐺𝑠𝐷𝑓𝑆1---------------------------------------     Eq.(24) 

𝐶𝑧(𝑐𝑎𝑝) = 𝐷𝑓𝑟0𝑆2√𝐺𝑠𝜌𝑠--------------------------------     Eq.(25) 

Where r0 is the equivalent radius of pile cap and Df is the depth of pile cap from ground surface 

S1 and S2 are constants and may be taken as 2.7 and 6.7 respectively. 

Now total stiffness and Damping Coefficient can be obtained as 

𝐾𝑧(𝑇) = 𝐾𝑧(𝑔) + 𝐾𝑧(𝑐𝑎𝑝)--------------------------------    Eq.(26) 

𝐶𝑧(𝑇) = 𝐶𝑧(𝑔) + 𝐶𝑧(𝑐𝑎𝑝)--------------------------------    Eq.(27) 

Damping Ratio in Vertical Direction 

𝐷𝑧 =
𝐶𝑧(𝑇)

2√𝐾𝑧(𝑇)𝑚
 ---------------------------------------------    Eq.(28)  
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𝜔𝑛 = √
𝐾𝑧(𝑇)

𝑚
------------------------------------------------    Eq.(29) 

Amplitude of Displacement: For constant force of excitation 

𝐴𝑧 =
𝑄0

𝐾𝑧

1

𝐷𝑧√(1−𝐷𝑧⁡⁡
2 )

---------------------------------------     Eq.(30) 

Amplitude of Displacement: For rotating mass type of excitation 

𝐴𝑧 =
𝑚𝑒𝑒

𝑀

1

𝐷𝑧√(1−𝐷𝑧
2)

---------------------------------------     Eq.(31) 

Q.1 A group of four piles having dimension 0.3x0.3 m2 is supported a machine foundation as 

shown in Fig. Determine total stiffness and damping coefficient, given Ep=2.1x107 kN/m2, unit 

weight of soil18.9 kN/m2, Poisson’s ratio 0.5 and shear modulus Gs=28120 kN/m2
. 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Solution: Equivalent radius of pile cap r0=√
(1.5𝑋0.6)2

𝜋
= 1.18 m 

1.5m 

12m 

2.0 m 

1.5 m 

2.1 m 

B 

C D 

A 

GL 
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Equivalent radius of pile R=  √
(0.3𝑋0.3)2

𝜋
= 0.17 m 

Vertical stiffness of pile, 𝐾𝑧 = (
𝐴𝐸

𝑅
)𝑓𝑧1= 

2.1𝑥107×0.32

0.17
× 𝑓𝑧1, 𝑓𝑧1is found from Fig 1(b) as 0.035 

    = 389.1x103kN/m2 

Now
E

G
=

2.1×107

28120
= 746.8= say 750  

𝐿

𝑅
=

12

0.17
=70.58, From Fig. 1(b)𝑓𝑧2=0.06 

Hence Damping Coefficient is calculated as 𝐶𝑧 = (
𝐸𝐴

√
𝐺

𝜌

)fz2 =
2.1×107×0.32

√
28120×9.81

18.9

x0.06=938.7 kN.s/m 

Calculation of Interaction factor:  

   
𝑆

𝐷
=
1.5

0.34
=4.41 for pile A to B, A to D 

 

A A B C D 

1 0.54 0.48 0.54 

B 0.54 1.0 0.54 0.48 

C 0.48 0.54 1.0 0.54 

D 0.54 0.48 0.54 10 

∑αr 2.56 2.56 2.56 2.56 

 

If the sum of interaction factors is not same, than take average value of ∑𝛼𝑟 

Kzr(g)=
∑𝐾𝑧

∑𝛼𝑟
=
4×389100

2.56
=607968.75kN/m 

𝐶𝑍(𝑔) =
∑𝐶𝑧

∑𝛼𝑟
=1446.78 kNs/m 

Now Stiffness and Damping Coefficient for Pile Cap 

𝐾𝑧(𝑐𝑎𝑝) = 𝐺𝑠𝐷𝑓𝑆1 = 28120 × 1.5 × 2.7 = 113886⁡𝑘𝑁/𝑚 

And Damping Coefficient for Pile Cap 

𝐶𝑧(𝑐𝑎𝑝) = 𝐷𝑓𝑟0𝑆2√𝐺𝑠𝜌𝑠=2720 kNs/m 

Now total Stiffness and Damping Coefficient are calculated as 

𝐾𝑧(𝑇) = 𝐾𝑧(𝑔) + 𝐾𝑍(𝑐𝑎𝑝)=607968.75+113886=721854.75 kN/m 

𝐶𝑧(𝑇) = 𝐶𝑧(𝑔) + 𝐶𝑍(𝑐𝑎𝑝)=1446.78+2720=4166.78 kNs/m 

 

Problem 1 A machine is supported by four pre-stressed concrete piles driven into a bed rock. 

The length of each pile is 8o ft long and is 12x12 in2 in cross section. The weight of the machine 

and foundation is 300x103lbs, unit weight 150 lb/ft3. The Young’s modulus is 3.5x106lb/in2. 

Determine the natural frequency of pile foundation system. 

 

FRAMED FOUNDATION FOR MACHINE 



Lecture Notes on DSF 2021 
 

134 
 

In the case of a frame foundation, it is necessary to check the frequencies and amplitudes of 

vibration and also to design the members of frame from structural considerations. The methods 

for carrying out dynamic analysis may be divided into two categories: 

(a) Two-.dimensional analysis 

(b) Three-dimensional analysis 

The two-dimensional analysis (Also known as Simplified Method) is based on the following 

assumptions: 

Each transverse frame that consists of two columns and a beam perpendicular to the main shaft 

of the machine is considered separately. The stiffness of the equivalent spring is calculated as the 

combined stiffness of the beam and the column acting together and the mass is determined by the 

mass of total loads acting on the cross frame. 

Following Assumptions are made. 

i) Frame columns are fixed at their lower ends into the rigid base slabs. 

ii) The difference in vertical deformation of individual frame column is neglected 

iii) Torsional resistance of longitudinal beam is insignificant compare to the deformation 

resistance of transverse beam. Therefore, the effect of longitudinal beam on vertical 

vibration of transverse frame can be neglected. 

iv) The natural frequencies of individual cross frame are practically of same order. 

v) The effect of elasticity of soil is neglected. 

vi) The connection of transverse beam with column is also neglected. 

Determination of Vertical Frequency: 

For obtaining vertical frequency, each transverse frame that consists of two columns and a beam 

perpendicular to main shaft of the machine is considered separately as shown in Fig. 1 
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Fig. 1 a) Typical Transverse Frame  b) Idealised Model 

The loads acting on this frame are 

(I) Dead load of the machine and bearing, Wm 

(ii) Load transferred to the columns by longitudinal beams, W1 

(iii) Uniformly distributed load due to self weight of cross beam, q per unit length 

(Iv) Unbalanced vertical force due to machine operation, 𝐹𝑧sin⁡(𝜔𝑡) 

The mass-spring system used as model for the frame is shown in Fig.1 (b). The stiffness of 

equivalent spring (K) is computed as the combined stiffness of the beam and columns acting 

together. It is given by 

𝐾𝑧 =
𝑊

𝛿𝑠𝑡
------           Eq.1 

Where W = Total load on the frame=Wm+2WL+qL 

L= Effective span 

𝛿𝑠𝑡= Total vertical deflection at the vcentre of the beam due to bending action of beam and axial 

compression in column. 

So, 𝛿𝑠𝑡 = 𝛿1 + 𝛿2 + 𝛿3 + 𝛿4--------        Eq.2 

𝛿1=Vertical deflection of beam due to load Wm 

𝛿2= Vertical deflection of beam due to distributed load q 

𝛿3=Vertical deflection of beam due to shear 

𝛿4=Axial compression in column 

Now the magnitude of each deflection components can be obtained as 
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𝛿1 =
𝑊𝑚𝐿3

96𝐸𝐼𝑏

2𝐾+1

𝐾+2
, 

𝛿2 =
𝑞𝐿4

384𝐸𝐼𝑏

5𝐾+2

𝐾+2
     

𝛿3 =
3

5𝐸𝐴𝑏
(𝑊𝑚 +

𝑞𝐿

2
) 

𝛿4 =
ℎ

𝐸𝐴𝑐
(𝑊𝐿 +

𝑊𝑚𝐿

2
) 

Where 

𝐴𝑏=Cross sectional area of beam, 𝐴𝑐= Cross sectional area of column 

𝐼𝑐=Moment of inertia of beam about the axis of bending 

E= Young’s modulus of concrete, K=Relative stiffness factor=
𝐼𝑏

𝐼𝑐
×

ℎ

𝐿
 

L= Effective span of frame, h= Effective height of frame 

The values of L and h are taken as 

𝐿 = 𝑙0 − 2𝛼𝑏 , ℎ = ℎ0 − 2𝛼𝑎  

l0 = Centre to centre distance between columns (Fig. 1a) 

h0 = Height of the column from the top of the base slab to the centre of the frame beam (Fig. 1a) 

a = One-half of the depth of the beam for a frame without haunches (Fig. 1a) or the distance as 

shown in Fig. 2 for a frame with haunches 

b = One-half of the column width for a frame without haunches (Fig. 1a) or the distance as 

shown in Fig. 2 for a frame with haunches. 

Knowing the values of  ℎ0, 𝑙0 and b, α  can be obtained from Fig. 3. 

 

Fig. 2: values of a and b for a frame with haunches.   Fig.3: α versus 
𝑏

𝑙0
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The natural frequency of a transverse frame in vertical vibrations is given by 

𝜔𝑛𝑧 = √
𝐾𝑧𝑔

𝑊
-------          Eq.3 

Average vertical natural frequency of the T. G. Foundation is taken as: 

𝜔𝑛𝑧𝑎 =
𝜔𝑛𝑧1+𝜔𝑛𝑧2+⁡−−+𝜔𝑛𝑧𝑛

𝑛
-------        Eq.4 

𝜔𝑛𝑧1 , 𝜔𝑛𝑧2,⁡etc =Vertical frequencies of individual transverse frames 

Vertical Vibration Amplitude: 

𝐴𝑍 =
𝑃𝑍

∑𝐾𝑍√(1−
𝜔2

𝜔𝑛𝑧𝑎
2 )2+(2𝐷

𝜔

𝜔𝑛𝑧𝑎
)2

------------       Eq.5 

𝐴𝑍=Average vertical amplitude of vibration og foundation 

𝑃𝑍=Total vertical imbalance force 

∑𝐾𝑍= Sum of the stiffness of the individual frames 

𝜔𝑛𝑧𝑎= Average value of natural frequency  

D= Damping ratio 

For under-tuned foundation, i.e. 𝜔 < 𝜔𝑛𝑧 or 𝜔𝑛 = 𝜔𝑛𝑧𝑎  

The maximum amplitude of vibration can be expressed as 

𝐴𝑍(𝑚𝑎𝑥) =
𝑃𝑍

∑𝐾𝑍
×

1

2𝐷
--------------        Eq.6 

Horizontal Vibration Analysis: 

The following assumptions are made during analysis of horizontal vibration of frame foundation 

i) Columns are fixed into the rigid base slab at lower ends. 

ii) The deck slab is rigid in its own plane. 

iii) The resistance offered by the column in axial compression is large as compare to their 

resistance in bending. 

iv) Torsional vibration of deck slab is neglected. 

v) Elastic resistance of the soil at the base can be neglected. 

The spring stiffness is provided by the columns due to their bending action and for any 

transverse frame is given by 

𝐾𝑥𝑖 =
12𝐸𝐼𝑐

ℎ3
(
6𝐾+1

3𝐾+2
)----------        Eq.7 

𝐾𝑥𝑖=Lateral stiffness of an individual transverse frame. 

The natural frequency of frame foundation is given by 
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𝜔𝑛𝑥𝑎 = √
∑(𝐾𝑥)𝑔

𝑊𝑇
 ---------------        Eq.8 

Where WT is the total weight of deck slab and machine 

The average horizontal amplitude of vibration of the foundation may be expressed as 

𝐴𝑥 =
𝑃𝑥

∑𝐾𝑛𝑥√(1−
𝜔2

𝜔𝑛𝑥
2 )2+(2𝐷

𝜔

𝜔𝑛𝑥
)2

--------        Eq.9 

For under-tuned foundation, i.e. 𝜔 < 𝜔𝑛𝑧 or 𝜔𝑛 = 𝜔𝑛𝑧𝑎  

The maximum amplitude of vibration can be expressed as 

𝐴𝑥,𝑚𝑎𝑥 =
𝑃𝑥

∑𝐾𝑥
×

1

2𝐷
--------         Eq.10 

Two Degree of Freedom (Amplitude Method) Analysis: 

 

 

Fig. 4(a) Section nof cross frame    (b) Mathematical model 

Vertical Vibration Analysis: 

For the vertical frequency a two-degree-spring-mass system shown in Fig. 4(b) is adopted. Mass 

m1 lumped over the columns is given as 

𝑚1 =
𝑊1+𝑊2+0.33𝑊3+0.25𝑊4

𝑔
---------        Eq.11 

Mass m2 acting at the centre of the cross beam is given as 

𝑚1 =
𝑊2+0.45𝑊4

𝑔
---          Eq.12 

𝑊1=Dead load of the machine and bearing 

𝑊2= Load  transferred to column by lognitudinal beams. 

𝑊3=Weight of two columns contituting the transverse frame 
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𝑊4=Weight of the tranverse beam 

The stiffness K1 of both the column of a transverse frame is given by 

𝐾1 =
2𝐸𝐴𝑐

ℎ
---------------         Eq.13 

The stiffness K2 of  the frame is given as 

𝐾2 =
1

∆𝑧
----------          Eq.14 

∆𝑧 =
𝑙(1+2𝐾)

96𝐸𝐼𝑏(2+𝐾)
+

3𝑙

8𝐺𝐴𝑏
-------         Eq.15 

G = Shear modulus of beam material 

E = Young's modulus of   columns material  

Ac = Cross-sectional area of a column 

h = Effective height of the column 

l= Effective span of the beam 

Ab= Cross-sectional area of the beam 

Ib= Moment of inertia of the beam 

The equations of motion for m1 as free vibration will be expressed as  

𝑚1𝑍1̈ + 𝐾1𝑍1 +𝐾2(𝑍1 − 𝑍2) = 0------       Eq.16 

Similarly equation of motion for m2 is given as 

𝑚2𝑍2̈ + 𝐾2(𝑍2 − 𝑍1) = 0------        Eq.17 

The solution of above equations are given as 

𝑍1 = 𝐴1𝑠𝑖𝑛𝜔𝑛𝑡--------          Eq.18 

𝑍2 = 𝐴2𝑠𝑖𝑛𝜔𝑛𝑡--------          Eq.19 

Now substituting these Eqs into Eq. and on simplification we get 

𝜔𝑛
4 − (1 + 𝜂)(𝜔𝑛𝑙1

2 + 𝜔𝑛𝑙2
2 ) + (1 + 𝜂)𝜔𝑛𝑙1

2 𝜔𝑛𝑙2
2 = 0-----     Eq.20 

𝜔𝑛𝑙1 = √
𝐾1

𝑚1+𝑚2
--------------         Eq.21 

𝜔𝑛𝑙2 = √
𝐾2

𝑚2
------------          Eq.22 

𝜂 =
𝑚1

𝑚2
---------           Eq.23 

Now the two natural frequencies of the system for forced vibration condition can be obtained by 

considering the equations motion as 

𝑚1𝑍1̈ + 𝐾1𝑍1 +𝐾2(𝑍1 − 𝑍2) = 0--------       Eq.24 
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𝑚2𝑍2̈ + 𝐾2(𝑍2 − 𝑍1) = 𝐹𝑧𝑠𝑖𝑛𝜔𝑡-------       Eq.25 

By solving these equations the amplitude of vertical vibration can be obtained as 

𝐴𝑍1 =
𝐹𝑧𝜔𝑛𝑙2

2

𝑚1⌊𝜔
4−(1+𝜂)(𝜔𝑛𝑙1

2 +𝜔𝑛𝑙2
2 )𝜔2+(1+𝜂)𝜔𝑛𝑙1

2 𝜔𝑛𝑙2
2 ⌋

-------     Eq.26 

𝐴𝑍2 =
𝐹𝑧⌊(1+𝜂)𝜔𝑛𝑙

2 +𝜂𝜔𝑛𝑙2
2 −𝜔2⌋

𝑚2⌊𝜔
4−(1+𝜂)(𝜔𝑛𝑙1

2 +𝜔𝑛𝑙2
2 )𝜔2+(1+𝜂)𝜔𝑛𝑙1

2 𝜔𝑛𝑙2
2 ⌋

-------     Eq.27 

 

Problem No. 1 

Plan of deck slab with loading position is shown. A reinforced concrete frame with vertical loads 

at bvarious points are also shown. The details of these loads are  

1 and 2 = 5t each, 3,4,5 and 6 = 2t each 

Ec = 3x106 t/m2 and unit weight of concrete = 2.24t/m3. 

Calculate the natural frequency of horizontal vibration in the longitudinal direction by treating 

the frame vas single degree freedom system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (a)Deck slab with loading position 
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Fig. (b) longitudinal Section 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig (c) Transverse Section 
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PRACTICE PROBLEMS 

Q.1 An unknown weight W is attached to the end of an unknown spring k and natural 

frequency of the system was found to be 90 cpm. If 1 kg weight is added to W, the natural 

frequency reduced to 75 cpm. Determine the unknown weight W and spring constant k 

Q.2 A spring and dashpot are attached to a body weighing 140 N. The spring constant is 3.0 

kN/m. The dashpot has a resistance of 0.75 N at a velocity of 0.06 m/s. Determine the following 

for free vibration:whether the system is over damped, under damped or critically damped. 

Q.3 A counter rotating eccentric mass exciter is used to produce forced oscillation of a spring 

supported mass. By varying the speed of rotation, resonant amplitude of 5 mm was recorded. 

When the speed of rotation was increased considerably beyond the resonant frequency, the 

amplitude appeared to approach a constant value of 0.6 mm. Determine the damping factor of the 

system. 

Q.4 An SDF system is excited by a sinusoidal force. At resonance the amplitude of 

displacement was measured to be 2 mm. At an exciting frequency of one-tenth of the natural 

frequency of the system, the displacement amplitude was measured to be 0.2 mm. Estimate the 

damping ratio of the system. 

Q.5 A body weighing 600 N is suspended from a spring which deflects 12 mm under the load. 

It is subjected to a damping effect adjusted to a value 0.2 times that required for critical damping. 

Find the natural frequency of the un-damped and damped vibrations, and in the latter case, 

determine the ratio of successive amplitudes. 

Q.6 In a cyclic plate load test on a plate of 0.60 m × 0.60 m size settles 0.65 mm under a 

pressure of 20 kN/m2.  On unloading observed plate settlement was 0.60 mm. Determine the 

value of coefficient of elastic uniform compression of the soil. 

Q.7 A mass attached to a spring of 5 N/mm has a viscous damping device. When the mass 

was displaced and released, the period of vibration was found to be 2 s and ratio of the 

consecutive amplitudes was 10/3. Determine the damping factor and natural frequency of the 

system. Determine also the amplitude of motion when a force of 3 sin 4t N acts on the system. 

Q.8 A machine of weight 17.5 kN and operating frequency  400 rpm has to be installed on 

ground which has properties G= 40 MN/m2 , 𝛾𝑠=20 kN/m3 and μ=0.3. The machine contains a 

unbalanced rotating parts which produce an eccentric moment of 18 Nm in vertical direction. 

The permissible amplitude of vibration for the system is 0.2 mm and the equivalent diameter of 

the foundation required to install the machine is 1.6 m. Design the foundation. 

Q.9 Determine the stiffness of the absorber to be kept between a reciprocating machine and 

foundation to bring the vibration amplitude to less than 0.02 mm. The weight of the machine is 
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25 kN. It produces an unbalanced force of 4 Kn in the vertical direction, when operated at speed 

of 750 rpm. Shear modulus of foundation soil G=2.5x104kN/m2 and Poisson’s ratio 0.3. 

Q.10 A foundation is subjected to a constant force type vibration. Given that the total weight of 

machine and foundation block is 1500 N. Unit of foundation soil γ= 15 kN/m3, Shear modulus 

and poison’s ratio are 15 MN/m2 and 0.4 respectively. The amplitude of vibrating force F0 = 

1500N.Operating frequency of machine is 80 cpm. The size of foundation block is 10m long and 

3 m wide. Determine    

i) The resonance frequency and check for type of mode of vibration 

ii) Amplitude of vibration at resonance. 

 

Q.11 A machine is supported by four pre-stressed concrete piles driven into a bed rock. The 

length of each pile is 80 ft and they are 12x12in2 in cross section. The weight of the machine and 

foundation is 300x103 lbs, Unit of concrete is 150 lb/ft3. Young’s modulus 3.5x106 lb/ft3. 

Determine the natural frequency of pile foundation system. 

Q.12 Following are the field standard penetration test number (N) in a deposit of sand. Ground 

water table is encountered at a depth of 3m below the ground surface. Soil properties of sand are, 

dry unit weight 18.5kN/m3 and saturated unit weight 20.6 kN/m3. Determine for an earth quake 

magnitude of 7.5, whether liquefaction will occur? Assume ground acceleration as amax= 0.15g. 

Depth(m) 1.5 3.0 4.5 6.0 7.5 9.0 10.5 

N  6 8 10 14 16 20 20 

 

Q.13 A horizontal piston type compressor is placed on a block type foundation as shown In 

Fig.1 

The operating frequency is 600 cpm. The amplitude of the horizontal unbalanced force of 

compression is 30kN and it produces a rocking motion of the foundation about point O. The 

mass moment of inertia of the compressor assembly about the axis BOB’ is 16x105kg.m2. 

Determine 

i) The resonance frequency  

ii) The amplitude of rocking vibration at resonance. 

 

Q.14 A concrete bock foundation of a machine has the following dimension, L=4m, B=3m and 

height H=1.5 m. The foundation is subjected to a sinusoidal horizontal force from the machine 

having amplitude of 10 kN at a height of 2.0 m from the base of the foundation as shown in 

Fig.2.  

 

The soil supporting the foundation is sandy clay with G=30,000 kN/m2, μ=0.25and unit weight 

γ=17 kN/m3. Determine  

i) The resonance frequency for sliding and rocking mode of vibration of the 

foundation (Independent mode analysis) 
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ii) Total horizontal displacement at the top of the foundation block. 

 
Fig.1 

  

            

      

 

 

 

 

 

 

 

 

 

   Fig. 2 

 

Q.15 A machine is supported by four pre-stressed concrete piles driven into a bed rock. The 

length of each pile is 8o ft long and is 12x12 in2 in cross section. The weight of the machine and 

foundation is 300x103lbs, unit weight 150 lb/ft3. The Young’s modulus is 3.5x106lb/in2. 

Determine the natural frequency of pile foundation system. 

1.5 m 

3.0 m 

2.0 m 

10 kN 

+ 

3.0 m 

1.5 m 4.0m 

Dimension of Block Foundation 
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MULTIPLE CHOICE QUESTIONS  

 
Q.1 A spring and dashpot are attached to a body weighing 200 N. The spring constant is 2.0 kN/m. 

The dashpot has a resistance of 0.65 N at a velocity of 0.05 m/s. If the system is set to a motion, the 
system is: 

 (a) Over damped  (b) Under damped   (c) Critically damped  (d) None of above 

Q.2 A counter rotating eccentric mass exciter is used to produce forced oscillation of a spring 

supported mass. By varying the speed of rotation, resonant amplitude of 6 mm was recorded. When the 
speed of rotation was increased considerably beyond the resonant frequency, the amplitude appeared to 
approach a constant value of 0.6 mm. The damping factor (in %) of the system is: 

 (a) 2    (b) 8     (c) 9    (d) 5 

Q.3 An SDF system is excited by a sinusoidal force. At resonance the amplitude of displacement was 
measured to be 4 mm. At an exciting frequency of one-tenth of the natural frequency of the system, the 
displacement amplitude was measured to be 0.3 mm. The damping factor of the system (in %) is: 

 (a) 3.75   (b) 3.05    (c) 1.25    (d) 5.81  

Q.4 A body weighing 600 N is suspended from a spring which deflects 10 mm under the load. It is 

subjected to a damping effect adjusted to a value 0.4 times that required for critical damping. The un-
damped natural frequency of the vibrations (in radian per second) is: 

 (a) 36.33   (b) 28.86    (c) 31.32   (d) 41.81 

Q.5 The damped natural frequency of the vibrations (in radian per second) of the system in Q 4 is: 

 (a) 33.33   (b) 35.16    (c) 28.70   (d) 20.11 

Q.6 The ratio of successive peak amplitudes of the vibrations for the system of Q 4 is: 

 (a) 7.33   (b) 12.34    (c) 18.25   (d) 16.58 

Q.7 A mass attached to a spring of 9 N/mm has a viscous damping device. When the mass was 

displaced and released, ratio of the consecutive amplitudes was 11/6. The damping factor of the system 
(in %) is: 

 (a) 7.20   (b) 5.67    (c) 3.93     (d) 9.64 

Q.8 As per Indian standard code IS 2974, IV, the permissible amplitude for Rotating machine speed 
>1500 rpm is 

a) 0.4mm  b) 0.2mm   c) 0.6mm   d) 0.8 mm 

Q.9 If ω and ωn are operating and natural frequency of system respectively, which one is correct for 
the design condition of dynamically loaded foundation 

a)0.5𝑤 ≤ 𝑤𝑛≤1.5w b) 0.5w≥wn≥1.5w c)1.5w≥wn≤0.25w  d) None of above 
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Q.10 An unknown weight W is attached to the end of an unknown spring k and natural frequency of 

the system was found to be 92cpm. If 1 kg weight is added to W, the natural frequency reduced to 80 
cpm. Find the unknown weight 

a)5.97kg  b)4.07 kg  c) 3.11 kg   d)3.97 kg 

Q.11 The value of equivalent radius of circular footing for rocking mode of vibration of a rectangular 
foundation of size 4mx6m is 

 (a) 2.8 m   (b) 3.1m  (c) 3.5m   (d) None of above 

Q.12 Damping factor for sliding mode of vibration is given as 

 (a) 
0.245

𝐵𝑥
   (b) 

0.425

𝐵𝑥
   (c)

0.2875

𝐵𝑥
   (d) 

0.215

𝐵𝑥
 

Q.13 Spring constant for torsional mode of excitation is expressed as 

 (a) 
4𝐺𝑟0

1−𝜇
    (b) 

32(1−𝜇)𝐺𝑟0

7−8𝜇
  (c)

16

3
𝐺𝑟0

3  (d) None of above 

Q.14 Modified mass ratio as per Lysmer Analysis for a block type foundation of size 4x6 m2 subjected 

to vertical mode of vibration due to total weight of 150 kg resting on foundation soil having unit weight 
and poison’s ratio as 17.2 kN/m3 and 0.25 respectively is 

 (a) 0.764   (b) 0.205   (c) 1.204   (d) 0.415 

Q.15 The magnification factor for mode of vibration in Q 4 is: 

 (a) 1.208   (b) 1.176    (c) 0.987   (d) 2.316 

Q.16 According to the Richart, the maximum operating frequency up to which no noticeable amplitude 
of vibration can be identified by person 

 (a) 500 rpm   (b) 750 rpm   (c) 1000 rpm   (d) 2000 rpm 

Q.17  According the IS 5249, the relation between Coefficient of uniform elastic compression for 

various mode of excitation can be given as 

(a) CU=1.73 Cτ, Cφ=2CU     (b)CU=2Cτ, Cφ=1.75CU    (c)CU=2.25Cτ, Cφ=2.2CU (d)None of above 

Q.18 The value of coefficient of elastic uniform compression Cu of soil obtained from block vibration 
test of contact area of 10 m2 is 12 kN/m2. The of Cu for a base area of foundation of 12 m2 is  

(a)15 kN/m2   (b) 10.65 kN/m2      (c) 12 kN/m2    (d) None of above 

Q.19 Coefficients for natural frequency of end bearing pile of length 12m resting on soil having shear 
velocity of 350 m/s is 0.43. The natural frequency of vibration is  

(a) 14.56 rpm  (b) 18.98 rpm  (c) 12.54 rpm  (d) None of above 

Q.20 The efficiency of absorber η used in foundation for reciprocating engine when maximum 
displacement is 0.034 mm and the permissible displacement of 0.02 mm is  

a) 65.2%  (b) 58.82%   (c) 76.3%   (d) None of above 


