
Computer Organization and Architecture

Dr. Pradip Kumar Sahu

Department of Information Technology

Lecture of Module 1

Introduction

Overview

 Computer Architecture

 Commuter Organization

 Structure and Function

 Functional units

 Basic Operational Concept

 Registers

 Bus Interconnection

 Bus Structure

 Harvard Architecture

 Von Neumann Architecture

 IAS Architecture

What is a Computer?

A computer is an Electronic device that can be programmed to process
information, date etc. to yield meaningful results.

Computer Architecture

Computer Organization

•The operational
units and their
interconnections
that realize the
architectural
specifications

•Hardware details
transparent to the
programmer, control
signals, interfaces
between the
computer and
peripherals, memory
technology used

•Instruction set,
number of bits used
to represent various
data types, I/O
mechanisms,
techniques for
addressing memory

•Attributes of a
system visible to
the programmer

•Have a direct
impact on the
logical execution
of a program Computer

Architecture

Architectural
attributes
include:

Computer
Organization

Organizational
attributes
include:

•The frequency of use of
the multiply instruction

•The relative speed of the
two approaches

•The cost and size of the
special multiply unit

•Whether to have a special
multiply circuit? Or

•To have a method that
makes repeated use of
the add unit?

• Whether a
computer
system can
execute
multiply
instructions?

Architectural
Issue

Organization
al Issue

Organizational
decision

depends on:

Architectural
Issue

Structure and Function

 Structure

 The way in which
components relate to
each other

 Function

 The operation of
individual components
as part of the structure

Input
Device

 Hierarchical system

 Set of interrelated subsystems

 Hierarchical nature of complex

systems is essential to both their design

and their description

 Designer need only deal with a

particular level of the system at a time

 Concerned with structure and

function at each level

 Structure

 The way in which

components relate to each

other

 Function

 The operation of individual

components as part of the

structure

Function

 There are four basic functions that a computer can perform:

 Data processing

 Data may take a wide variety of forms and the range of processing requirements is broad

 Data storage

 Short-term

 Long-term

 Data movement

 Input-output (I/O) - when data are received from or delivered to a device (peripheral) that is
directly connected to the computer

 Data communications – when data are moved over longer distances, to or from a remote device

 Control

 A control unit manages the computer’s resources and cares the performance of its functional
parts in response to instructions

Structure

Figure 1.1 A Top-Down View of a Computer

Main

memory
I/O

CPU

COMPUTER

System

Bus

ALURegisters

Control

Unit

CPU

Internal

Bus

Control Unit

Registers and

Decoders

CONTROL

UNIT

Sequencing

Logic

Control

Memory

There are four main

structural functional

units of the computer:

 CPU – controls the operation of the

computer and performs its data

processing functions

Main Memory – stores data

 I/O – moves data between the computer

and its external environment

 System Interconnection – some

mechanism that provides for

communication among CPU, main

memory, and I/O

CPU

Major structural

components:

 Control Unit

 Controls the operation of the CPU and hence the

computer

 Arithmetic and Logic Unit (ALU)

 Performs the computer’s data processing function

 Registers

 Provide storage internal to the CPU

 CPU Interconnection

 Some mechanism that provides for communication

among the control unit, ALU, and registers

Basic Operational Concept

Main Memory

MAR
MBR

PC

IR

Control

Unit

ALU

Registers

R0

R1

.

.

.

Rn-1
IP

Registers

•Contains a word to be stored in memory or sent to
the I/O unit

•Or is used to receive a word from memory or from
the I/O unit

Memory buffer
register (MBR)

• Specifies the address in memory of the word
to be written from or read into the MBR

Memory address
register (MAR)

• Contains the current opcode of the
instruction being executed

Instruction register
(IR)

• Holds the address of the current instruction
on which processing is going on

Instruction Pointer
(IP)

• Contains the address of the next instruction
to be fetched from memory

Program counter
(PC)

• Arrays of registers present in the processor
General Purpose
Registers (GPR)

Other Registers

 Stack Pointer (SP): It is a memory pointer. It points to a memory location called

STACK. The beginning of the Stack is defined by loading the starting address to

the Stack pointer.

 Base Register: It stores the base address of the memory. Any address of any data

is calculated logically after finding the address which is in the base register

 Temporary Register (TR): Holds temporary data during processing.

 Flag Register(FR): Shows the status of the system during processing. It is

affected by ALU operations. It consists of different Flag bits.

OF DF IF TF SF ZF AC PF CF

Flag Register

 CF: If there is a carry then flag bit is set, otherwise reset.

 PF: If even numbers 1’s in the result then flag is set, otherwise reset.

 AC: If carry is generated from D3 during operation and passes to D4 then set, otherwise reset.

 ZF: If the result is zero then flag is set, otherwise reset.

 SF: If D7 is 1 then flag is set, otherwise reset (Signed number).

 TF: Trap is a non-maskable interrupt. When non-maskable interrupt is generated then flag is set.

 IF: If any interrupt is generated then flag is set.

 DF: When memory is accessed from lower location to higher location the flag is set. When
memory is accessed from higher location to lower location the flag is reset.

 OF: When any overflow takes place during arithmetic or logical operations in Register, Stack,
Queue, Array etc. then flag is set showing the overflow condition of the current operation.

Bus Interconnection

 If a computer is to achieve a reasonable speed of operation, it must be organized so
that all units can handle one full word of data at a given time.

 When a word of data is transferred between units, all its bits are transmitted in
parallel.

 This requires a considerable number of wires (lines) to establish the necessary
connections.

 BUS: A collection of wires that connects several devices to carry the information to
or from different units of the system is called as BUS.

Three types Bus

▪ Data Bus

▪ Address Bus

▪ Control Bus

The interconnection structure must support

the following types of transfers:

Memory
to

processor

Processor
reads an

instruction or
a unit of data
from memory

Processor
to

memory

Processor
writes a unit
of data to
memory

I/O to
processor

Processor
reads data
from an I/O

device via an
I/O module

Processor
to I/O

Processor
sends data to

the I/O
device

I/O to or
from

memory

An I/O
module is
allowed to
exchange

data directly
with memory
without going
through the
processor

using direct
memory
access

A communication
pathway connecting
two or more devices

• Key characteristic is
that it is a shared
transmission medium

Signals transmitted by any one
device are available for reception by
all other devices attached to the bus

• If two devices transmit during the
same time period their signals will
overlap and become garbled

Typically consists of
multiple communication
lines

• Each line is capable of
transmitting signals
representing binary 1
and binary 0

Computer systems
contain a number of
different buses that
provide pathways
between components at
various levels of the
computer system
hierarchy

System bus

• A bus that connects
major computer
components
(processor, memory,
I/O)

The most common
computer
interconnection
structures are based on
the use of one or more
system buses

Bus

Interconnection

Data Bus

 Data lines that provide a path for moving data among system modules

 Number of wires depends on type of data transfer and word length

 May consist of 32, 64, 128, or more separate lines for parallel communication

 One line is required for serial communication

 The number of lines is referred to as the width of the data bus

 The number of lines determines how many bits can be transferred at a time (word

length)

 The width of the data bus is a key factor in

determining overall system performance

 Direction is Bidirectional

Address Bus

 Used to designate the source or destination of the data

 If the processor wishes to read or write a word of data

from or to memory it puts the address of the desired

word on the address lines

 Width determines the maximum possible memory capacity

of the system

 Also used to address I/O ports

 Used to select a I/O port

 Direction is unidirectional

Control Bus

 All the functions of the system must be synchronized and controlled

 This is the function of control unit which provides control signals through buses

 Used to control the access and the use of the data and address lines

 Because the data and address lines are shared by all components there must be a means
of controlling their use

 Control signals transmit both command and timing information among system modules

 Timing signals indicate the validity of data and address information

 Command signals specify operations to be performed

 Each line of the bus indicates a particular control signal

 A particular control line may be unidirectional or bidirectional but collectively as a bus
no concept of direction

Bus Structure

 According to the connection mechanism of different functional units the Bus structures are of two types

Single Bus structure

Multi-Bus structure

Single Bus structure:

 All units are connected to single I/O bus

 At any given time two units can actively use the bus

 Bus control is used to arbitrate multiple requests for use of bus

 Flexibility for attaching peripheral devices

 Low hardware complexity

 Low cost

 But, slower data transfer

Single Bus structure

Multi Bus structure:

 It is a simplest Multi bus (two bus) computer

 The processor interacts with memory through memory bus

 Input and output functions are handled over an I/O bus

 Data passes to memory for processing through the processor

 I/O transfers are usually under direct control of the processor

 Processor initiates the transfer and monitors their progress until completion

 In this architecture the processor sit ideally after initiating the I/O
operations till completion

 Wastage of CPU time which degrades the performance

 So, another multi bus architecture has been developed to enhance the
performance of the system

 It is another Multi bus (two bus) architecture

 Here, the position of memory and processor interchanged

 I/O transfers are performed directly to or from memory

 But, memory can not control the I/O transfer

 So, a control circuitry as part of the I/O equipment is necessary

 That control circuitry is a special purpose processor called as Peripheral Processor or
Secondary Processor or I/O Channel which controls the I/O transfer

 The main processor initiates I/O transfer by passing required information to the I/O channel

 The I/O channel then takes over and controls the actual transfer of data

 During I/O operations now the main processor is free and it can perform other CPU
operations

 So, the performance enhanced

Design of practical Computer

Two proposed architectural design

Harvard Architecture

Von Neumann Architecture

Harvard Architecture

 Separate data and instruction memories

Control

ALU

Instruction

memory

Data

memory

I/O devices

CPU

PC
Data memory

Instruction memory

address

data

address

data

Von Neumann Architecture

 Contemporary computer designs are based on concepts developed by John Von

Neumann at the Institute for Advanced Studies, Princeton

 Referred to as the Von Neumann Architecture and is based on three key concepts:

 Stored Program Architecture: Data and instructions are stored in a single read-

write memory

 The contents of this memory are addressable by location, without regard to the

type of data contained there

 Execution occurs in a sequential fashion (unless explicitly modified) from one

instruction to the next

 Example is IAS Computer developed by John Von Neumann and group at the

Institute for Advanced Studies, Princeton

Control

ALU

Memory I/O devices

Memory
CPU

PC

Address

Data

IRADD r5,r1,r3200

200

ADD r5,r1,r3

IAS Computer

 IAS computer

 Fundamental design approach was the stored program concept

Attributed to the mathematician John von Neumann

First publication of the idea was in 1945

 Design began at the Institute for Advanced Studies, Princeton

 Completed in 1952

 Prototype of all subsequent general-purpose computers

IAS Instruction format

Registers

• Contains a word to be stored in memory or sent to the I/O
unit

• Or is used to receive a word from memory or from the I/O unit

Memory buffer register
(MBR)

• Specifies the address in memory of the word to be written
from or read into the MBR

Memory address
register (MAR)

• Contains the 8-bit opcode instruction being executedInstruction register (IR)

• Employed to temporarily hold temporarily the right-hand
instruction from a word in memory

Instruction buffer
register (IBR)

• Contains the address of the next instruction pair to be
fetched from memoryProgram counter (PC)

• Hold operands and results of ALU operations. The most
significant 40 bits are stored in the AC and the least
significant in the MQ

Accumulator (AC) and
multiplier quotient (MQ)

IAS Instruction Set

Instruction Type Opcode
Symbolic

Representation Description

Data transfer

00001010 LOAD MQ Transfer contents of register MQ to the
accumulator AC

00001001 LOAD MQ,M(X) Transfer contents of memory location X to

MQ

00100001 STOR M(X) Transfer contents of accumulator to memory

location X

00000001 LOAD M(X) Transfer M(X) to the accumulator

00000010 LOAD –M(X) Transfer –M(X) to the accumulator

00000011 LOAD |M(X)| Transfer absolute value of M(X) to the

accumulator

00000100 LOAD –|M(X)| Transfer –|M(X)| to the accumulator

Unconditional

branch

00001101 JUMP M(X,0:19) Take next instruction from left half of M(X)

00001110 JUMP M(X,20:39) Take next instruction from right half of M(X)

Conditional branch

00001111 JUMP+ M(X,0:19) If number in the accumulator is nonnegative,

take next instruction from left half of M(X)

0
0

0

1

0
0

0

0

JU
MP

+

M(X

,20:
39)

If number in the
accumulator is nonnegative,

take next instruction from

right half of M(X)

Arithmetic

00000101 ADD M(X) Add M(X) to AC; put the result in AC

00000111 ADD |M(X)| Add |M(X)| to AC; put the result in AC

00000110 SUB M(X) Subtract M(X) from AC; put the result in AC

00001000 SUB |M(X)| Subtract |M(X)| from AC; put the remainder

in AC

00001011 MUL M(X) Multiply M(X) by MQ; put most significant
bits of result in AC, put least significant bits

in MQ

00001100 DIV M(X) Divide AC by M(X); put the quotient in MQ
and the remainder in AC

00010100 LSH Multiply accumulator by 2; i.e., shift left one

bit position

00010101 RSH Divide accumulator by 2; i.e., shift right one

position

Address modify

00010010 STOR M(X,8:19) Replace left address field at M(X) by 12
rightmost bits of AC

00010011 STOR M(X,28:39) Replace right address field at M(X) by 12

rightmost bits of AC

Motherboard with Two Intel Quad-Core Xeon Processors

Computer Arithmetic

Overview

 Arithmetic Operations

 Binary Arithmetic

 Signed Binary Numbers

 Decimal Arithmetic operation

 Floating point representation

 Floating point Arithmetic

 General Multiplication

 Booth Multiplication

 Array Multiplier

 Division

Arithmetic & Logic Unit (ALU)

 Part of the computer that actually performs arithmetic and logical operations on data

 All of the other elements of the computer system are there mainly to bring data into the ALU

for it to process and then to take the results back out

 Based on the use of simple digital logic devices that can store binary digits and perform

simple Boolean logic operations

Arithmetic Operations

Addition

 Follow same rules as in decimal addition, with
the difference that when sum is 2 indicates a
carry (not a 10)

 Learn new carry rules

 0+0 = sum 0 carry 0

 0+1 = 1+0 = sum 1carry 0

 1+1 = sum 0 carry1

 1+1+1 = sum 1carry1

Carry 1 1 1 1 1 0

Augend 0 0 1 0 0 1

Addend 0 1 1 1 1 1

Result 1 0 1 0 0 0

1 1 1

0 1 0 1

+ 1 0 1 1

1 0 0 0 0

Carry Values

Subtraction
 Learn new borrow rules

 0-0 = 1-1 = 0 borrow 0

 1-0 = 1 borrow 0

 0-1 = 1 borrow 1

The rules of the decimal base applies to binary

as well. To be able to calculate 0-1, we have to

“borrow one” from the next left digit.

1 2

0 2 0 2

1 0 1 0

- 0 1 1 1

0 0 1 1

Binary Subtraction

 1’s Complement Method

 2’s Complement Method

1’s Complement Method

Example: 1010100 – 1000100

1’s complement of 1000100 is 0111011

1 0 1 0 1 0 0

+ 0 1 1 1 0 1 1

1 0 0 0 1 1 1 1

+1

0 0 1 0 0 0 0If Carry, result is positive.

Add carry to the partial result

Example: 1000100 – 1010100

1’s complement of 1010100 is 0101011

1 0 0 0 1 0 0

+ 0 1 0 1 0 1 1

1 1 0 1 1 1 1

= – 0 0 1 0 0 0 0

If no Carry, result is negative.

Magnitude is 1’s complement of the result

Binary Subtraction

 1’s Complement Method

 2’s Complement Method

2’s Complement Method

If Carry, result is positive.

Discard the carry

If no Carry, result is negative.

Magnitude is 2’s complement of the result

Example: 1010100 – 1000100

2’s complement of 1000100 is 0111100

Example: 1000100 – 1010100

2’s complement of 1010100 is 0101100

1 0 1 0 1 0 0

+ 0 1 1 1 1 0 0

1 0 0 1 0 0 0 0

0 0 1 0 0 0 0

1 0 0 0 1 0 0

+ 0 1 0 1 1 0 0

1 1 1 0 0 0 0

= – 0 0 1 0 0 0 0

Signed Binary Numbers

 When a signed binary number is positive

• The MSB is ‘0’ which is the sign bit and rest bits represents the magnitude

 When a signed binary number is negative

• The MSB is ‘1’ which is the sign bit and rest of the bits may be represented

by three different ways

❖ Signed magnitude representation

❖ Signed 1’s complement representation

❖ Signed 2’s complement representation

Signed Binary Numbers

- 9 + 9

Signed magnitude representation 1 1001 0 1001

Signed 1’s complement representation 1 0110 0 1001

Signed 2’s complement representation 1 0111 0 1001

- 0 + 0

Signed magnitude representation 1 0000 0 0000

Signed 1’s complement representation 1 1111 0 0000

Signed 2’s complement representation -None- 0 0000

Range of Binary Number

Binary Number of n bits

 General binary number: ()

 Signed magnitude binary number: – () to + ()

 Signed 1’s complement binary number: – () to + ()

 Signed 2’s complement binary number: – () to + ()

Signed Binary Number Arithmetic

 Add or Subtract two signed binary number including its sign bit either signed 1’s

complement method or signed 2’s complement method

 The 1’s complement and 2’s complement rules of general binary number is applicable

to this

• It is important to decide how many bits we will use to represent the number

• Example: Representing +5 and -5 on 8 bits:

– +5: 00000101

– -5: 10000101

• So, the very first step we have to decide on the number of bits to represent number

Decimal Subtraction

 9’s Complement Method

 10’s Complement Method

9’s Complement Method
Example: 72532 – 3250

9’s complement of 03250 is

9 9 9 9 9 – 0 3 2 5 0 = 9 6 7 4 9

7 2 5 3 2

+ 9 6 7 4 9

1 6 9 2 8 1

+1

6 9 2 8 2If Carry, result is positive.

Add carry to the partial result

Example: 3250 – 72532

9’s complement of 72532 is

9 9 9 9 9 – 7 2 5 3 2 = 2 7 4 6 7

0 3 2 5 0

+ 2 7 4 6 7

3 0 7 1 7

= – 6 9 2 8 2

If no Carry, result is negative.

Magnitude is 9’s complement of the result

Decimal Subtraction

 9’s Complement Method

 10’s Complement Method

10’s Complement Method
Example: 72532 – 3250

10’s complement of 03250 is

1 0 0 0 0 0 – 0 3 2 5 0 = 9 6 7 5 0

7 2 5 3 2

+ 9 6 7 5 0

1 6 9 2 8 2

Result is 6 9 2 8 2

If Carry, result is positive.

Discard the carry

Example: 3250 – 72532

10’s complement of 72532 is

1 0 0 0 0 0 – 7 2 5 3 2 = 2 7 4 6 8

0 3 2 5 0

+ 2 7 4 6 8

3 0 7 1 8

= – 6 9 2 8 2

If no Carry, result is negative.

Magnitude is 10’s complement of the result

BCD Addition Rules

Comparing Binary and BCD Sums

 In the previous table Decimal sum from 0 to 9, the Binary sum same as BCD sum. So, no

conversion is needed.

 Apply correction if the Decimal sum is between 10-19.

❖ The correction is needed (Decimal sum 16-19)when the binary sum has an output carry

K = 1

❖ The correction is needed (Decimal sum 10-15)when Z8 = 1 and either Z4 = 1 or Z2 = 1.

 So, the condition for a correction and an output carry can be expressed by the Boolean

function:

C = K + Z8Z4 + Z8Z2

 When C = 1, it is necessary to add 0110 to the binary sum to get BCD sum and provide an

output carry for the next stage.

BCD Adder

Cascading of BCD Adders

BCD Subtraction Rules

Let two BCD numbers are A and B.

B to be subtracted from A.

RULES:

• Add 9’s Complement of B to A

• If result > 9, Correct by adding 0110

• If carry is generated at most significant position

then the result is positive and the End around carry

must be added

• If carry is not generated at most significant position

then the result is negative and the result is 9’s

complement of original result

Example

9’s Complement Circuit

• 9’complement of 2 is 7

• Binary equivalent of 2 is 0010

• 1’s complement of 0010 is 1101

• Then, 1101

+ 1010

= 0111 which is Binary equivalent of 7

• If carry discard it.

• 9’complement of 3 is 6

• Binary equivalent of 3 is 0011

• 1’s complement of 0011 is 1100

• Then, 1100

+ 1010

= 0110 which is Binary equivalent of 6

• If carry discard it.

BCD Subtractor Circuit

RULES:
• Add 9’s Complement of B to A

• If result > 9, Correct by adding 0110

• If carry is generated at most significant position

then the result is positive and the End around

carry must be added

• If carry is not generated at most significant

position then the result is negative and the result

is 9’s complement of original result

Floating Point Number

 Floating point number can be represented as

m × r e

 m is mantissa, e is exponent and r is radix

 Let the decimal number is 6132.789, which can be represented as

0.6132789 × 104

 Let the binary number is 1001.110, which can be represented as

0.1001110 × 24 or can be represented as 1.001110 × 23

Floating Point Arithmetic

 Addition/Subtraction

• Align the radix point first to make the exponent equal before addition or
subtraction

• Add or Subtract mantissa

• Normalize the result by adjusting the exponent

• (A × E n) ± (B × E n) = (A ± B) E n

 Multiplication

• (A × E m) × (B × E n) = (A × B) E m + n

 Division

• (A × E m) ÷ (B × E n) = (A ÷ B) E m - n

Addition (Decimal FP)

• Consider a 4-digit decimal example

– 9.999 × 101 + 1.610 × 10–1

• 1. Align decimal points

– Adjust exponent

– 9.999 × 101 + 0.016 × 101

• 2. Add mantissa

– 9.999 × 101 + 0.016 × 101 = 10.015 × 101

• 3. Normalize result & check for over/underflow

– 1.0015 × 102

• 4. Round and renormalize if necessary

– 1.002 × 102

Addition (Binary FP)

• Now consider a 4-digit binary example

– 1.0002 × 2–1 + – 1.1102 × 2–2 (0.5 + – 0.4375)

• 1. Align binary points

– Adjust exponent

– 1.0002 × 2–1 + – 0.1112 × 2–1

• 2. Add mantissa

– 1.0002 × 2–1 + – 0.1112 × 2–1 = 0.0012 × 2–1

• 3. Normalize result & check for over/underflow

– 1.0002 × 2–4

• 4. Round and renormalize if necessary

– 1.0002 × 2–4 (no change) = 0.0625

Multiplication (Decimal FP)

• Consider a 4-digit decimal example

– 1.110 × 1010 × 9.200 × 10–5

• 1. Add exponents

– For biased exponents, subtract bias from sum

– New exponent = 10 + –5 = 5

• 2. Multiply mantissa

– 1.110 × 9.200 = 10.212 10.212 × 105

• 3. Normalize result & check for over/underflow

– 1.0212 × 106

• 4. Round and renormalize if necessary

– 1.021 × 106

• 5. Determine sign of result from signs of operands

– +1.021 × 106

Multiplication (Binary FP)

• Now consider a 4-digit binary example

– 1.0002 × 2–1 × –1.1102 × 2–2 (0.5 × –0.4375)

• 1. Add exponents

– Unbiased: –1 + –2 = –3

– Biased: (–1 + –2 + 127) = –3 + 127

• 2. Multiply mantissa

– 1.0002 × 1.1102 = 1.1102 1.1102 × 2–3

• 3. Normalize result & check for over/underflow

– 1.1102 × 2–3

• 4. Round and renormalize if necessary

– 1.1102 × 2–3 (no change)

• 5. Determine sign: + ve × – ve = –ve

– –1.1102 × 2–3 = –0.21875

Floating Point Standard

• The IEEE Standard for Floating-Point (IEEE 754) is a technical

standard for floating-point representation which was defined in 1985

by the Institute of Electrical and Electronics Engineers (IEEE).

• Developed in response to divergence of representations

– Portability issues for scientific code

• Now almost universally adopted

• Two representations

– Single precision (32-bit)

– Double precision (64-bit)

64

11 52

Double

• Normalize significand: 1.0 ≤ |significand| < 2.0

– Always has a leading pre-binary-point 1 bit, so no need to

represent it explicitly (hidden bit)

– Significand is Fraction with the “1.” restored

• Exponent: excess representation: actual exponent + Bias

– Ensures exponent is unsigned

– Single precision: Bias = 127

– Double precision: Bias = 1023

 In the CPU, a 32-bit floating point number is represented using IEEE single

precision standard format as follows:

 S | EXPONENT | MANTISSA

 where S is one bit, the EXPONENT is 8 bits, and the MANTISSA is 23

bits.

• The mantissa represents the leading significant bits in the number.

• The exponent is used to adjust the position of the binary point (like

"decimal" point)

 The mantissa is said to be normalized when it is expressed as a value

between 1 and 2. i.e., the mantissa would be in the form 1.xxxx.

 The leading integer of the binary representation is not stored. Since it is

always a 1, it can be easily restored

 The "S" bit is used as a sign bit and indicates whether the value represented

is positive or negative

 0 for positive, 1 for negative

 If a number is smaller than 1, normalizing the mantissa will produce a

negative exponent

 But 127 is added to all exponents in the floating point representation,

allowing all exponents to be represented by a positive number

Single Precision

 Example 1. Represent the decimal value 2.5 in 32-bit floating point format.

2.5 = 10.1b

 In normalized form, this is: 1.01 × 21

 The mantissa: M = 01000000000000000000000

(23 bits without the leading 1)

 The exponent: E = 1 + 127 = 128 = 10000000b

 The sign: S = 0 (the value stored is positive)

 So, 2.5 = 0 10000000 01000000000000000000000

Sign Exponent Mantissa

 Example 2: Represent the number - 0.00010011b in floating point form.

 0.00010011b = 1.0011 × 2-4 in normalized form

 Mantissa: M = 00110000000000000000000

 Exponent: E = - 4 + 127 = 123 = 01111011b

 S = 1 (as the number is negative)

 Result: 1 01111011 00110000000000000000000

Sign Exponent Mantissa

Double Precision

 Example 3. Represent the decimal value 85.125 in double precision floating point
format.

 85.125 = 1010101.001

 In normalized form this will be 1. 010101001 x 26

 sign bit is 0 as positive

 For double precision biased exponent = 1023 + 6 =1029 = 10000000101

 Normalized mantissa = 010101001

 we will add 0's to complete the 52 bits

 The IEEE 754 Double precision is:

0 10000000101 010101001000

Sign Exponent Mantissa

Multiplication

Hardware Diagram

Hardware Diagram

Ms

As Qs

The sign of the product is

determined from the signs of the

Multiplicand and Multiplier.

• If they are alike, Sign of the

product is Positive.

• If they are unlike, Sign of the

product is Negative

• So, As will be equal to Ms Ex-

OR with Qs

General Multiplication

 Booth's multiplication algorithm is a multiplication algorithm that multiplies two

signed binary numbers in 2’s complement notation.

 The algorithm was invented by Andrew Donald Booth in 1950.

 It is used to speed up the performance of the multiplication process. It is very efficient too.

 If string of 0's or string of 1’s are there in the multiplier that requires no operation only shift.

 Consider a general multiplier consisting of a block of 1s surrounded by 0s. For example,

00111110. The product is given by:

M × 00111110 = M × (25 + 24 + 23 + 22 + 21) = M × 62 where, M is the multiplicand

 The number of operations can be reduced to two by rewriting the same as

M × 00111110 = M × (26 – 21) = M × 62

 This one is Booth Multiplication.

Booth Multiplication

Example

 Let the multiplication is M × +14

In signed 2’s complement representation +14 = 0 000 1110

Which is M × 0 000 1110 = M × (24 – 21) = M × (16 – 2) = M × +14

 Let the multiplication is M × -14

In signed 2’s complement representation -14 = 1 111 0010

Which is M × 1 111 0010 = M × (- 24 + 22 – 21) = M × (-16 + 4 – 2) = M × - 14

Algorithm

 As in all multiplication schemes, Booth algorithm also requires examination of the

multiplier bits from LSB to MSB and shifting of the partial product.

 Prior to the shifting, the multiplicand may be added to the partial product, subtracted from

the partial product, or left unchanged according to following rules:

▪ The multiplicand is subtracted from the partial product upon encountering the first least

significant 1 in a string of 1’s in the multiplier

▪ The multiplicand is added to the partial product upon encountering the first 0 (provided

that there is a previous ‘1’) in a string of 0’s in the multiplier.

▪ The partial product does not change when the multiplier bit is identical to the previous

multiplier bit, that is strig of 0s or string of 1s.

Arithmetic Shift Right

 In Booth Multiplication Algorithm Shift Right is

Arithmetic shift right

Example:

 Let the number is 1001

 Shift right is 0100

 But, Arithmetic shift right is 1100

 Let the number is 0101

 Arithmetic shift right of this number is 0010

Hardware Diagram

Q0 Q0-1

Booth Multiplication Algorithm

Multiplier Design

a1 a0

× b1 b0

a1b0 a0b0

a1b1 a0b1

Array Multiplier

b3 b2 b1 b0

× a2 a1 a0
a0b3 a0b2 a0b1 a0b0

a1b3 a1b2 a1b1 a1b0

a2b3 a2b2 a2b1 a2b0
c6 c5 c4 c3 c2 c1 c0

J = Multiplicand

K = Multiplier

AND gate required = JK nos.

(K-1) nos. of J-bit Adder required

Array Multiplier

m3 m2 m1 m0

× q2 q1 q0
m3q0 m2q0 m1q0 m0q0

m3q1 m2q1 m1q1 m0q1

m3q2 m2q2 m1q2 m0q2
P6 P5 P4 P3 P2 P1 P0

Lecture of Module 2

Instruction Set Architecture

Overview

 Introduction

 Instruction Format

 Different types of Instruction format

 Addressing Modes

 Types of Instruction

 Instruction Cycle

Introduction

 A program is a set of instructions that specify the operations, operands and sequence of operations by

which processing has to occur.

 A computer instruction is a binary code that specifies a sequence of micro-operations.

 Instruction code together with data stored in the computer.

 The collection of different instructions that the processor can execute is referred to as the processor’s

instruction set.

 Every processor has its own specific Instruction Set.

 Each instruction must contain the information required by the processor for execution.

 The ability to store and execute instruction, the stored program concept is most important property of

general purpose computer.

 The instruction code is a group of bits that instruct the computer to perform specific operation.

Elements of Instruction

Operation code (opcode)

•Specifies the operation to
be performed. The
operation is specified by a
binary code, known as the
operation code, or
opcode

Source operand reference

•The operation may involve
one or more source
operands, that is, operands
that are inputs for the
operation

Result operand

•The operation may
produce a result

Next instruction reference

•This tells the processor
where to fetch the next
instruction after the
execution of this instruction
is complete

General Instruction Format

 General instruction format consists of two fields

• Opcode

• Operand

 The number of bits in opcode or operational code depends on the number of operations available in
the Instruction set.

 When the Opcode decoded in the Control unit, it issues Control signals to read the operand and
initiates micro-operation to perform complete operation of that instruction.

 The Operand/Address part may be the data or address of data or Register or I/O device etc.

 This also specifies where the result to be stored.

 The number of bits in operand field depends on the number of registers in that processor or address
bits required to locate memory location.

Opcode Operand/Address

Example

 Let the instruction code having 16 bits

 12 bits for Operand/Address, 3 bits for

Opcode and 1 bit for mode (I) bit

 If I = 0 Direct addressing memory

reference instruction

 If I = 1 Indirect addressing memory

reference instruction

 Opcode 111 are for Register or I/O

reference instruction

 If I = 0, it is Register reference

instruction

 If I = 1, it is I/O reference instruction

15 14 12 11 0

I Opcode Address

Memory-Reference Instructions (OP-code = 000 ~ 110)

Register-Reference Instructions (OP-code = 111, I = 0)

Input-Output Instructions (OP-code =111, I = 1)

15 12 11 0

Register operation0 1 1 1

15 12 11 0

I/O operation1 1 1 1

15 14 12 11 0

I Opcode Address

 Opcodes are represented by abbreviations called mnemonics

 Examples:

 ADD Add

 SUB Subtract

 MUL Multiply

 DIV Divide

 LOAD Load data from memory

 STOR Store data to memory

 Operands are also represented symbolically

 Each symbolic opcode has a fixed binary representation

 The programmer specifies the location of each symbolic operand

Symbol Description

AND AND memory word to AC
ADD Add memory word to AC
LDA Load AC from memory
STA Store content of AC into memory
BUN Branch unconditionally
BSA Branch and save return address
ISZ Increment and skip if zero

CLA Clear AC
CLE Clear E
CMA Complement AC
CME Complement E
CIR Circulate right AC and E
CIL Circulate left AC and E
INC Increment AC
SPA Skip next instr. if AC is positive
SNA Skip next instr. if AC is negative
SZA Skip next instr. if AC is zero
SZE Skip next instr. if E is zero
HLT Halt computer

INP Input character to AC
OUT Output character from AC
SKI Skip on input flag
SKO Skip on output flag
ION Interrupt on
IOF Interrupt off

 A computer will usually have a variety of Instruction Code format.

 It is the function of Control unit within the CPU to interpret each instruction code and provide
necessary control functions needed to process the instruction.

 The bits of instructions are divided into groups called fields.

 The most common fields found in instruction format are:

• An Operation code field (Opcode)

• Operand or Address fields

• A mode field that specifies the way the operand or effective address of the operand is determined

• Other special fields are sometimes employed under certain circumstances

 Computers may have instructions of several lengths containing varying number of address fields.

 The number of address field in the instruction format of a computer depends on the internal
organization of its registers.

Instruction Format

 Most of the computers fall into one of three types of CPU organization.

• Single Accumulator organization

• General Register organization

• STACK organization

Single Accumulator organization

ADD X AC AC + M[X]

General Register organization

ADD R1, R2, R3 R1 R2 + R3

ADD R1, R2 R1 R1 + R2

ADD R1, X R1 R1 + M[X]

STACK organization
PUSH A

PUSH B

ADD

Different types of Instruction format

 Some computers may follow one or more than one or all mentioned features in their structure.

 There are various types of Instruction format according to the number of Address fields.

• Three-address instruction

• Two-address instruction

• One-address instruction

• Zero-address instruction

Example:

Let the expression is X = (A + B) × (C + D)

Three-address instruction

ADD R1, A, B R1 M[A] + M[B]

ADD R2, C, D R2 M[C] + M[D]

MUL X, R1, R2 M[X] R1 × R2

Expression is X = (A + B) × (C + D)

Two-address instruction

MOV R1, A R1 M[A]

ADD R1, B R1 R1 + M[B]

MOV R2, C R2 M[C]

ADD R2, D R2 R2 + M[D]

MUL R1, R2 R1 R1 × R2

MOV X, R1 M[X] R1

One-address instruction

LOAD A AC M[A]

ADD B AC AC + M[B]

STOR T M[T] AC

LOAD C AC M[C]

ADD D AC AC + M[D]

MUL T AC AC × M[T]

STOR X M[X] AC

Expression is X = (A + B) × (C + D)

Zero-address instruction
PUSH A Top A
PUSH B Top B
ADD Top (A + B)
PUSH C Top C
PUSH D Top D
ADD Top (C + D)
MUL Top (A + B) × (C + D)
POP X M[X] Top

Addressing Modes

Immediate

Direct

Indirect

Register

Register indirect

Displacement

STACK

Auto Increment / Auto Decrement

Implied/Implicit • In an instruction format the way the

operands are chosen during

program execution is dependent on

the Addressing mode of the

instruction.

• Before any operand is referenced,

the addressing mode specifies the

operand or address of the operand.

• Various types of Addressing modes

are there as stated.

• A particular Instruction Set

Architecture may follow some or all

of these addressing modes to find

the effective address of the operand.

Implied/Implicit Addressing mode

 No address field required.

 The operand is specified within the instruction implicitly.

 All the instructions that uses accumulator implicitly within the instruction called implied

addressing mode.

 CLA – Clear the content of Accumulator

 CMA – Complement the content of the Accumulator

 No memory reference other than the instruction fetch.

Instruction format

Immediate Addressing Mode

 Simplest form of addressing.

 Operand = A

 The required operand is present in the instruction.

 This mode can be used to define and use constants or set initial values of variables.

 No memory reference other than the instruction fetch is required to obtain the

operand, thus saving one memory or cache cycle in the instruction cycle.

 Size of the data restricted to the size of the Operand/Address field. It may be less

than the word length, which is a drawback.

Direct Addressing Mode

 In the instruction format the address field contains the

effective address of the operand.

 Effective address (EA) = address field A

 It was common in earlier generations of computers.

 Except instruction fetching, it requires only one memory

reference for data reading.

 No special calculation necessary for effective address.

 Limitation is that it provides only a limited address space.

Indirect Addressing Mode

 In the instruction format the Operand/Address field
contains an address where the address of the data is
present.

 Effective address (EA) = [A]

 Reference to the address of a word in memory which
contains a full-length address of the operand.

 For a word length of N an address space of 2N is now
available, which resolves the limitation of Direct
addressing.

 Instruction execution requires two memory references
to fetch the operand. One to get its address and a
second to get its value.

Register Addressing Mode

 In the instruction format the Operand/Address field

specifies a register rather than a memory address

which contains the required operand.

 EA = R

 Only a small Operand/Address field is needed in the

instruction to specify a particular register.

 No memory references rather register reference to

find the required data.

 The address space is very limited

Register Indirect Addressing Mode

 In the instruction format the Operand/Address field specifies a register
which contains the address of an operand in the memory location.

 Analogous to indirect addressing

 difference is whether the address field refers to a memory location
or a register.

 Uses one less memory reference than indirect addressing.

 Instruction format may be smaller than indirect addressing.

 EA = [R]

 Address space limitation of the address field is overcome by having
that field refer to a word-length location containing an address.

 Before using a Register Indirect mode instruction, the programmer
must ensure that the memory address of the operand is placed in the
processor register with a previous instruction.

Displacement Addressing Mode

 Very powerful addressing mode

 Combines the capabilities of register indirect addressing and direct
addressing

 EA = [R] + A

 The instruction may have two address fields

 The value contained in one address field (value = A) is used directly

 The other address field refers to a register whose contents are added to
A to produce the effective address

 Most common uses are:

 Relative addressing

 Base-register addressing

 Indexed addressing

Relative Addressing Mode

 The referenced register is the Program Counter (PC).

 The next instruction address (PC) is added to the address

field A to produce the effective address (EA).

 Typically the address field is treated as a twos complement

number for this operation.

 The effective address is a displacement relative to the

address of the instruction.

 Exploits the concept of locality.

 Saves address bits in the instruction if most memory

references are relatively near to the instruction being

executed.

 Also called Limit Addressing Mode.

Base-register Addressing Mode

 In this type of addressing mode the content of the Base register

is added to the address part, that is, A of the instruction to

obtain effective address.

 The Base register contains a main memory address and the

address field contains a displacement from that address.

 Exploits the locality of memory references.

 Convenient means of implementing segmentation.

 In some implementations a single segment base register is

employed.

 In others the programmer may choose a register to hold the base

address of a segment and the instruction must reference it.

Indexed Addressing Mode

 Index Register is a special CPU register contains an Index value.

 The address field (A) references a main memory address and the

index register contains a positive displacement from that address.

 The method of calculating the EA is the same as for base-register

addressing.

 An important use is to provide an efficient mechanism for

performing iterative operations.

 Autoindexing

 Automatically increment or decrement the index register

after each reference to it

 EA = A + (XR)

 (XR) (XR) + 1

STACK Addressing Mode

 A stack is a linear array of locations.

 Items are appended to the top of the stack so that the block is partially filled.

 Associated with the Stack Pointer (SP) whose value is the address of the top of the stack.

 The stack pointer is a register

 Thus references to stack locations in memory are in fact register indirect addresses

 This is also a form of implied addressing mode.

 In this mode, operand is at the top of the stack.

 For example: ADD, this instruction will POP top two operands from the stack, add them,
and will then PUSH the result to the top of the stack.

Auto increment/Auto decrement Addressing

 It is similar to Register or Register Indirect Addressing mode.

 If it Register addressing mode then the content of the specified register is

incremented or decremented by 1.

 If it Register Indirect addressing mode then the address of the operand is

incremented or decremented by 1.

 To access consecutive location the address value is stored in the register and

then incremented or decremented

Example:

 An instruction is stored at location 200 with address field at location 201.

The address field has the value 500. A processor register R1 contains 400.

Evaluate the effective address for different addressing modes if XR value

is 100.

• Direct Addressing Mode: EA = 500, AC = 800

• Indirect Addressing Mode: EA = 800, AC = 300

• Immediate Addressing Mode: EA = 201, AC = 500

• Register Addressing Mode: EA = No, AC = 400

• Register Indirect Addressing Mode: EA = [R1] = 400, AC = 700

• Relative Addressing Mode: EA = [PC]+500 = 702, AC = 325

• Indexed Addressing Mode: EA = [XR] + 500 = 600, AC = 540

• Auto increment (Register addressing): EA = No, AC = 401

• Auto increment (Register indirect addressing): EA = 401, AC = 650

Ins

500

700

650

800

540

325

300

200

201 R1

400

500

800

702

400

100

XR

600

401

Types of Instruction

 A computer provides an extensive set of instructions to give the user flexibility to carry out various

computational tasks.

 The instruction set for different processors differ from each other mostly in the way the operands are

determined and mode field.

 The actual operations available in the instruction set are not very different from one computer to another.

 The binary code of the Opcode may differs from processor to processor, even for the same operation.

 Most computer instructions can be classified into following categories.

• Data transfer instructions

• Data manipulation instructions

▪ Arithmetic instructions

▪ Logical and bit manipulation instructions

▪ Shift instructions

• Program control instructions

Data Transfer Instructions

 Data transfer instructions move data from one place to another without changing the
data content.

 Most common transfers are between memory and processor registers, between
processor registers and I/O, and between processor registers themselves.

 LOAD, STOR, MOV, XCHG, IN, OUT, PUSH, POP etc.

Data manipulation instructions

 Data manipulation instructions perform operations on data and provide the
computational capabilities for the computer.

▪ Arithmetic instructions

▪ Logical and bit manipulation instructions

▪ Shift instructions

Arithmetic Instructions

 Basic arithmetic operations are addition, subtraction, multiplication and division.

 Most computers provide instructions for all four operations.

 Some small computers have only addition and possibly subtraction instructions.

 The multiplication and division must then be performed by help of addition and other

instructions.

 ADD, SUB, MUL, DIV, INC, DEC, ADDC, SUBB etc.

Logical and Bit manipulation Instructions

 AND, OR, XOR, CLR, COM, CLRC, SETC, COMC etc.

Shift Instructions

 Instructions to shift the content of a register or accumulator are quite

useful.

 Shift operations may specify either logical shifts or arithmetic shifts

or rotate type operations.

 In either case the shift may be to the left or to the right.

 SHR, SHL, ASHR, ASHL, RAR, RAL, RRC, RLC etc.

Program Control instructions

 Instructions are always stored in successive memory locations.

 Instructions are fetched from memory and executed.

 Just after fetching of an instruction, the Program counter is incremented for the next

instruction in sequence.

 On the other hand, a program control type of instruction, when executed may

change the address value in the Program counter and cause the flow of control to be

altered.

 The change in value of the Program counter due to program control instruction

cause a break in sequence of instruction execution.

 BR, JUMP, JC, JNC, JZ, JNZ, JP, JN, SKP, CALL, RET etc.

 An instruction is a command given to the computer to perform specific operation on given data.

 To perform a particular task a sequence of instructions are written, called a program.

 Generally instruction and data are stored in the memory.

 The necessary steps that a CPU carries out to fetch an instruction and required data and then to
process it constitute an Instruction Cycle.

 Each Instruction cycle is subdivided into a sequence of sub cycles or phases.

 In Basic Computer, an instruction passes through following sub cycles:

1. Fetch an instruction from memory

2. Decode the instruction

3. Read the required Operand

4. Entertain the Interrupt if it is generated

5. Execute the instruction

Note: Every different processor has its own (different) instruction cycle

Instruction Cycle

Instruction Cycle

Includes the
following stages:

Fetch

Read the next
instruction from

memory into
the processor

Execute

Interpret the
opcode and
perform the
indicated
operation

Interrupt if
generated

If interrupts are enabled
and an interrupt has
occurred, save the

current process state
and service the

interrupt

Instruction Cycle Flow Diagram

= 0 (direct)

Start
SC 0

MAR PC T0

PC MBR M[MAR], PC + 1 T1

I MAR IR(0-11), IR(15)

Decode Opcode in IR(12-14),

T2

Ins?
(Memory reference)(Register or I/O reference)

II

Execute
register-reference

instruction

SC 0

Execute
input-output
instruction

SC 0

M[MAR]MBR Nothing

= 0 (register)(I/O) = 1 (indirect) = 1

T4 T4 T4 T4

Execute
memory-reference

instruction

SC 0

T5

IR MBR

T3

T0: MAR PC

T1: MBR M[MAR], PC PC+1

T2: IR MBR

T3: Decode

T4, T5: Execute

Instruction Cycle State Diagram

Internal CPU

Operations

CPU Access to

Memory or I/O

Instruction Cycle State Diagram with Interrupt

CPU Organization

Overview

 Introduction

 Single Bus organization (Data Path) inside Processor

 Register Transfers

 Control Sequences

 Fetching a Word from Memory

 Storing a Word in Memory

 Control Sequences for Execution of a Complete Instruction

 Multi Bus organization (Data Path) inside Processor

 Organization of Basic Control Unit

 Hardwired Control Unit

 Microprogrammed Control Unit

 Stack Organization

 Revers Polish Notation (RPN)

 Evaluation of Arithmetic Expression using RPN

 Subroutine

Introduction

 Processor fetches one instruction at a time and perform the required operation.

 Instructions are fetched from successive memory locations until a Branch, Call or a Jump

instruction is encountered.

 Processor keeps track of the address of the memory location containing the next instruction

to be fetched using Program Counter (PC).

 After fetching from memory instruction is stored in Instruction Register (IR) for decoding.

1. Fetch the contents of the memory location pointed to by the PC.

2. Assuming that the memory is byte addressable, and each instruction comprises 4 bytes,

increment the contents of the PC by 4. PC ← [PC] + 4

3. Carry out the operations specified by the instruction.

Steps 1 and 2 constitute the fetch phase, and step 3 constitutes the execution phase.

Single Bus organization (Data Path) inside Processor

 Generally there are two sub units within the

processor, that is, Control Unit and Datapath.

 Physically there is hardly any difference

between the Control unit and Datapath.

 The hardware of both subunits are tightly

coupled in a single physical unit.

 The Datapath includes the internal path for

movement of data within the Processor

between ALU and registers and other hardware

like temporary storage, lathes, multiplexers,

demultiplexers, decoders, counters, delay

logics etc.

 Other buses are external buses that connects

memory and I/O devices.

 The ALU and all the registers are interconnected via a single common bus. This bus is internal to the

processor and should not be confused with the external bus that connects the processor to the memory and

I/O devices.

 The data and address lines of the external memory bus are connected to the internal processor bus via the

memory data register (MDR), and the memory address register (MAR), respectively.

 The input of the MAR is connected to the internal bus, and its output is connected to the external bus.

 The number and use of the processor registers R0 through R(n-1) vary from one processor to another.

 Three registers, Y, Z, and TEMP are transparent to the programmer. They are used by the processor for

temporary storage during execution of some instructions.

 The multiplexer MUX selects either the output of register Y or a constant value 4 to be provided as input

of A of the ALU. The constant 4 is used to increment the content of the program counter (PC).

 The instruction decoder and the control logic unit is responsible for implementing the actions specified by

the instruction loaded in the IR register.

Register Transfers

 Instruction execution involves a sequence of steps in which data

are transferred from one register to another.

 For each register, two control signals are used to place the

content of that register on the bus or from the bus to the register.

 The input and output of register Ri are connected to the bus via

switches controlled by the signal Riin and Riout respectively.

 When Riin = 1, the data on the bus are loaded into Ri.

 When Riout = 1, the contents of register Ri are placed on the

bus.

 While Riout = 0, the bus can be used for transferring data from

other registers.

 All the operations and data transfers within the processor take

place within time periods defined by the processor clock.

X

X

Ri in

Ri out

Ri

 The ALU is a combinational circuit

that has no internal storage.

 ALU gets the two operands from MUX

and bus. The result is temporarily

stored in register Z.

 A sequence of operations to add the

contents of register R1 to R2 and store

the result in R3 is shown below.

1. R1out, Yin

2. R2out, SelectY, Add, Zin

3. Zout, R3in

Control Sequences

Fetching a Word from Memory

 To fetch a word from the memory, the

processor has to specify the address of

the memory location

 Address into MAR; issue Read

operation; data into MDR.

 It has four control signals.

 MDRin and MDRout control the

connection to the internal bus.

 MDRinE and MDRoutE control the

connection to the external bus.

 During memory Read and Write operations, the timing of internal processor operations
must be coordinated with the response of the addressed device on the memory bus.

 The processor completes one internal data transfer in one clock cycle.

 The speed of the operation of I/O devices are slower than the processor speed and also
different device speed is different from each other.

 To accommodate this, the processor waits until it receives an indication that the

requested operation has been completed.

 A control signal called Memory-Function-Complete (MFC) is used for this purpose.

 During Read or Write operation to or from memory, the other operations Wait for MFC

signal.

 WMFC is a control signal that causes processor control circuitry to wait for arrival of

MFC signal.

Example: Consider an instruction MOV R2, [R1]

 The actions needed for memory read are:

1. MAR ← [R1]

2. Start a Read operation on the memory bus

3. Wait for the MFC response from the memory

4. Load MDR from the memory bus

5. R2 ← MDR

 Control Sequences are:

1. R1out, MARin, Read

2. MDRinE, WMFC

3. MDRout, R2in

Storing a Word in Memory

Example: Consider an instruction Move [R1], R2

 The actions needed for memory write are:

1. MAR ← [R1]

2. MDR ← R2

3. Start a write operation on the memory bus

4. Wait for the MFC response from the memory

5. Store memory bus from MDR

 Control Sequences are:

1. R1out, MARin

2. R2out, MDRin, Write

3. MDRout E, WMFC

Execution of a Complete Instruction

Example: Consider an instruction ADD R1, [R3]

 The actions needed for execution of complete

instruction are:

1. Fetch the instruction

2. Read the operand (the contents of the memory

location pointed to by R3)

3. Perform the addition

4. Load the result into R1

Example: Consider an instruction ADD R1, [R3]

 Control Sequences are:

1. PC out, MAR in, Read, Select4, Add, Z in

2. Z out, PC in, WMFC

3. MDRin E, MDR out, IR in

4. R3 out, MAR in, Read

5. R1 out, Y in, WMFC

6. MDRin E, MDR out, SelectY, Add, Z in

7. Z out, R1 in, End

 Sequence 1, 2 and 3 for Opcode fetching and PC increment for
next instruction.

 Sequence 4 for locating memory location to read operand.

 Sequence 5 for reading operand from register.

 Sequence 6 for operand reading from memory to ALU and
arithmetic operation.

 With a single bus organization, the resulting

control sequences are quite long because only

one data item can be transferred over the bus in

a single clock cycle.

 To reduce the number steps needed, most

commercial processors provide multiple internal

paths that enable several transfers to take place

in parallel.

 All general-purpose registers are combined into

a single block called the register file.

 The register file is said to have three ports.

There are two outputs, allowing the contents of

two different registers to be accessed

simultaneously and have their contents placed

on buses A and B.

Multi Bus organization

(Data Path)inside Processor

 The third port allows the data on the bus C
to be loaded into a third register during the
same clock cycle.

 Buses A and B are used to transfer the
source operands to the A and B inputs of
the ALU.

 The result is transferred to the destination
over bus C.

 If needed, the ALU may simply pass one
of its two input operands unmodified to
bus C.

 The ALU control signals for such an
operation may be called as R = A or R = B.

 The three-bus arrangement obviates the need
for the registers Y and Z (available in the
single-bus organization).

 Another feature is the introduction of the
Incrementor unit, which is used to increment
the PC by 4.

 Using the Incrementor eliminates the need to
add 4 to the PC using the main ALU.

 The source for the constant 4 at the ALU
input multiplexer is still useful. It can be
used to increment other addresses, such as
the memory addresses in LoadMultiple and
StoreMultiple instruction.

 Add R6, R5, R4

Step Action

1 PCout, R=B, MARin, Read, IncPC

2 WMFC

3 MDRinE, MDRoutB, R=B, IRin

4 R4outA, R5outB, SelectA, Add, R6in, End

Control sequence for the instruction for the three-bus organization

Control Unit

 All the operations in a computer system must be

coordinated in some synchronized way, which is the task of

control unit.

 This unit effectively the nerve center of the system.

 In concept it is reasonable to think of a control unit as a well

defined physically separate unit that interacts with other

parts of the system but, in practice much of the control

circuitry is physically distributed throughout the machine.

Organization of basic Control Unit

 The organization of basic control unit

of a system consists of four blocks.

• Instruction Decoding block

• Timing Signal Generating block

• Computer Cycle Control block

• Control Logic

Instruction Decoding block

 It consists of an Instruction register

and Instruction decoder.

 It decodes the instruction and

provides necessary information to the

Control Logic.

Instruction Register

Instruction Decoder

Decoder Decoder

Start/

Stop FF
Sequence

Counter
F-FF R-FF

Control

Logic

Other

Conditions

Control Function

Instruction

Decoding block

Timing Signal Generating block Computer Cycle Control block

Timing Signal Generating block

 It is essentially consists of a Sequence Counter and a Start/Stop flip flop.

 Start/Stop flip flop is used to enable the decoder.

 The Decoder provides necessary timing signals to the Control Logic.

Computer Cycle Control block

 This block consists of two flip flops F and R and a Decoder.

 The computer cycle is determined by this circuit depending on the following Truth Table.

F R Cycle

0 0 Fetch Cycle

0 1 Operand Cycle

1 0 Execute Cycle

1 1 Interrupt Cycle

Control Logic

 It is a complex circuit which receives inputs from Instruction decoding block, Timing signal
generating block and Computer cycle control block.

 It also takes some control conditions from outside and generates appropriate Control Function
or Control word (CW).

 After decoding the instructions the Control unit must have some means of generating control
signals needed to complete the operations.

 The computers are designed by implementing a wide variety of technologies to perform this.

 Most of these technologies, however, fall into two categories.

• Hardwired Control

• Microprogrammed Control

Hardwired Control Unit

 Each step in sequence is completed in one clock
period.

 A counter may be used to keep track of the control
steps.

 Each state, or count, of this counter corresponds to
one control step.

 The required control signals are determined by the
following information.

▪ Contents of the instruction register and decoder

▪ Contents of the condition code flags

▪ External input signals, such as MFC and interrupt
requests

▪ Signals from Step decoder

 The step decoder provides a separate signal line for each step, or time slot, in the control sequence.

 Similarly, the output of the instruction decoder consists of a separate line for each machine
instruction.

 For any instruction loaded in the IR, one of the output lines INS1 through INSm is set to 1, and all
other lines are set to 0.

 The input signals to the encoder block are combined to generate the individual control signals like
Yin, PCout, Add, End, and so on.

 The control hardware can be viewed as a state machine that changes from one state to another in
every clock cycle, depending on the contents of the instruction register, the condition codes, and the
external inputs.

 The outputs of the state machine are the control signals from which all or some of the lines are
activated.

 The sequence of operations carried out by this machine is determined by the wiring of the logic
elements, hence the name “hardwired”.

Advantages

 A hardwired control unit works fast.

 The combinational circuits generate the control signal based on the input signals
status. The delay between the output generation to the input availability depends on
the number of gates in the path and propagation delay of each gate in the path.

Disadvantages

 If the CPU has a large number of control points, the control unit design becomes
very complex.

 The design does not give any flexibility.

 If any modification instruction set is required, it is extremely difficult to make the
correction.

Microprogrammed Control Unit

 Microprogramming is a method of Control unit

design in which the control signal selection and

sequencing information is stored in ROM or

RAM, called Control Memory (CM).

 The control signal to be activated at any time are

specified by a microinstruction which is fetched

from the Control memory.

 Each microinstruction also provides necessary

information for microoperation sequencing.

 A set of microinstructions forms Microprogram.

 Microprogram can be changed relatively easily by

changing the contents of Control Memory (CM).

 So, Microprogrammed control unit is more

flexible than the Hardwired control unit.

Control
Memory

Clock

generator

Starting
and

branch address Condition
codes

inputs
External

CW

IR

mPC

 The instruction is loaded to the Instruction Register (IR).

 The address field of the microinstruction contains the next address and that to be used when branching

condition is satisfied.

 The Microprogram Counter (µPC) provides the next microinstruction address when no branching is

needed.

 The starting address or branch address is generated by taking condition code, external inputs and CW

into consideration.

 By decoding the microinstruction appropriate control signals, that is, Control Word (CW) is generated.

 Generally the control memory is ROM, it can not be modified.

 For flexibility now writeable control memory (WCM) is used.

 So, a processor with writeable control memory (WCM) in the control unit is said to be dynamically

micro-programmable because the control memory content can be altered.

Advantages

 Less design complexity

 Flexible due to WCM

 A given CPU instruction set can be easily modified by

changing the microprogram.

Disadvantages

 A microprogram control unit works slow than

Hardwired control unit.

Microprogram

❑ Program stored in control memory that generates all the control signals required to execute the instruction

set correctly

❑ Consists of microinstructions

Microinstruction

❑ Contains a control word and a sequencing word

Control Word - All the control information required for one clock cycle

Sequencing Word - Information needed to decide the next microinstruction address

Control Memory (Control Storage: CS)

Storage in the microprogrammed control unit to store the microprogram

Writeable Control Memory (Writeable Control Storage: WCS)

❑ CS whose contents can be modified

Allows the microprogram can be changed

Instruction set can be changed or modified

Dynamic Microprogramming

❑ Computer system whose control unit is implemented with a microprogram in WCS

❑ Microprogram can be changed by a systems programmer or a user

STACK

 Stack is a contiguous memory location or collection of finite number of registers defined by the

user that stores information.

 If it is contiguous memory locations, called memory stack.

 If it is collection of finite number of registers, called register stack.

 The stack is a reserved area of the memory where we can store temporary information.

 The item stored last into the stack will be retrieved first. So, the operation is called LIFO.

 The register that hold the address for the stack, that is, top of the stack is called Stack pointer (SP).

 The two operations of a stack are the insertion and deletion of item.

 The operation of insertion is called PUSH.

 The operation of deletion is called POP.

 These operations are simulated by incrementing or decrementing the Stack Pointer register.

 A stack may be Full stack or Empty stack.

 It may be Descending stack or Ascending stack.

D

C

B

A

SP

1

2

3

4

5

6

7

8

C

B

A

SP

1

2

3

4

5

6

7

8

A

B

C

DSP

1

2

3

4

5

6

7

8

D

C

B

A

SP

1

2

3

4

5

6

7

8

Full Stack Empty Stack Descending Stack Ascending Stack

SP ← SP-1

PUSH
PUSH

SP ← SP-1

SP ← SP -1

PUSH

SP ← SP +1

PUSH

D

C

B

A

SP

1

2

3

4

5

6

7

8

C

B

A

SP

1

2

3

4

5

6

7

8

A

B

C

SP

1

2

3

4

5

6

7

8

A

B

C

D

ESP

1

2

3

4

5

6

7

8

Full Descending Stack Empty Descending Stack Full Ascending Stack Empty Ascending Stack

SP ← SP-1

PUSH

PUSH

SP ← SP-1
SP ← SP +1

PUSH

PUSH

SP ← SP +1

Polish Notation

 The way to write arithmetic expression is known as notation.

 An arithmetic expression can be written in three different but equivalent notations, that is, without changing the
essence or output of an expression.

 These notations are −

• Infix Notation

• Prefix (Polish) Notation

• Postfix (Reverse-Polish) Notation

 Infix, Prefix and Postfix notations are three different but equivalent notations of writing algebraic expressions.

 While writing an arithmetic expression using infix notation, the operator is placed between the operands.

 For example, A+B; here, plus operator is placed between the two operands A and B.

 Although it is easy to write expressions using infix notation, computers find it difficult to parse as they need a lot
of information to evaluate the expression.

 Information is needed about operator precedence, associativity rules, and brackets which overrides these rules.

 So, computers work more efficiently with expressions written using prefix or postfix notations.

Reverse Polish Notation

 Postfix notation was given by Jan Łukasiewicz who was a Polish logician, mathematician, and

philosopher.

 His aim was to develop a parenthesis-free prefix notation (also known as Polish notation) and a postfix

notation which is known as Reverse Polish Notation or RPN.

 In postfix notation, the operator is placed after the operands. For example, if an expression is written as

A+B in infix notation, the same expression can be written as AB+ in postfix notation.

 The order of evaluation of a postfix expression is always from left to right.

 The expression (A + B) * C is written as: AB+C* in the postfix notation.

 A postfix operation does not even follow the rules of operator precedence.

 No parenthesis required.

 The operator which occurs first in the expression is operated first on the operands.

 For example, given a postfix notation AB+C*. While evaluation, addition will be performed prior to

multiplication.

 Now we need to calculate the value of the arithmetic operations by using stack.

 The procedure for getting the result is:

1. Convert the expression in Reverse Polish notation (post-fix notation).

2. Push the operands into the stack in the order they appear.

3. When any operator encounter then pop two topmost operands for executing the

operation.

4. After execution push the result into the stack.

5. After the complete execution of expression the final result remains on the top of the

stack.

Example

 Infix notation: (2+4) * (4+6)

 Post-fix notation: 2 4 + 4 6 + *

 Result: 60

 The stack operations for this expression evaluation is shown below:

Evaluation of Arithmetic Expression

Subroutine

 In programming, a subroutine is a sequence of instructions that performs a specific task,

packaged as a unit.

 This unit can then be used in programs wherever that particular task should be performed.

 Subroutines may be defined within programs, or separately in libraries that can be used

by many programs.

 In different programming languages, a subroutine may be called

a routine, subprogram, function, method, or procedure.

 So, a subroutine is a group of instructions that will be used repeatedly in different

locations of the program.

 Rather than repeat the same instructions several times, they can be grouped into a

subroutine that is called from the different locations.

100

101

205

206

Nested Subroutine

 A nested subroutine is a subroutine that is called from other subroutine.

 Stack operations can be very useful at subroutine entry and exit to avoid losing register
contents if other subroutines are called.

 At the start of a subroutine, content of PC required to be stored on the stack, and at exit
they can be popped off again.

Example

54

90

54

506

90

54

723

506

90

54

Lecture of Module 3

Memory Organization

Overview

 Introduction

 Characteristics of Memory System

 Memory Hierarchy

 Memory Classification

 Semiconductor Memories

 Memory Cell Organization and Operation

 Magnetic Disk

 Magnetic Tape

Introduction

 One of the major advantages of computer is its storage capacity where huge amount of

information can be stored.

 But how this information is represented and stored?

 Now we are going to learn about the various data storage devices.

 A memory is just like a human brain.

 It is used to store data and instructions.

 Computer memory is the storage space in the computer, where the data and instructions are

stored.

 Each location of the memory has a unique address, which varies from zero to memory size

minus one.

 For example, if the computer has 64k words, then this memory unit has 64 * 1024 = 65536

memory locations. The address of these locations varies from 0 to 65535.

Up to 2 kaddressable
MDR

MAR

k-bit
address bus

n-bit
data bus

Control lines
(, MFC, etc.)

Processor Memory

locations

Word length = n bits

WR /

Characteristics of Memory System

 Location

 Refers to whether memory is internal and external to the computer

 Internal memory is often equated with main memory

 Processor requires its own local memory, in the form of registers

 Cache is another form of internal memory

 External memory (Secondary Memory) consists of peripheral storage devices that are

accessible to the processor via I/O controllers

 Capacity

 Memory is typically expressed in terms of bytes

 Transfer unit

 Byte Addressable, Word Addressable (Main Memory)

 Block (Secondary Memory)

Sequential
access

Memory is
organized into
units of data

called records

Access must be
made in a

specific linear
sequence

Access time is
variable

Direct
access

Individual blocks or
records have a unique

address based on
physical location

Access is accomplished
by direct access to
reach a particular

place, then sequential

Access time is
variable

Random
access

Each addressable location in
memory has a unique,

address

The time to access a given
location is independent of

the sequence of prior
accesses and is constant

Any location can be
selected at random and
directly addressed and

accessed

Main memory and some
cache systems are

random access

Associative
Access

A word is retrieved based on a
portion of its contents rather

than its address

Each location has its own
addressing mechanism and

retrieval time is constant
independent of location or

prior access patterns

Cache memories may
employ associative

access

Magnetic Tape Magnetic Disk

Access Methods

Performance

Most important characteristics of memory

Three performance parameters are used:

Access time

For random-access memory it is the
time it takes to perform a read or
write operation

• For non-random-access memory it
is the time it takes to position the
read-write mechanism at the
desired location and read/write

• Time between initiation of a
memory operation and completion

Memory cycle time

• Access time plus any additional
time required before second
access can commence

• Time between initiation of two
successive memory operations

• Slightly more than the Access
time

Transfer rate

• The rate at which data can
be transferred into or out of
a memory unit

• For random-access
memory it is equal to
1/(cycle time)

Physical Characteristics

 Volatile memory

 Information decays naturally or is lost when electrical power is switched off

 RAM

 Nonvolatile memory

 Once recorded, information remains without deterioration until deliberately changed

 No electrical power is needed to retain information

 Magnetic-surface memories, ROM

Semiconductor memory may be either volatile or nonvolatile

 Erasable memory

Can be altered or erased by the programmer

 Nonerasable memory

 Cannot be altered, except by destroying the storage unit

 Semiconductor memory of this type is known as read-only memory (ROM)

Memory Hierarchy

 Design constraints on a computer’s memory can be

summed up by three questions:

 How much, how fast, how expensive

 There is a trade-off among capacity, access time, and

cost

 Faster access time, greater cost per bit

 Greater capacity, smaller cost per bit

 Greater capacity, slower access time

 The way out of the memory dilemma is not to rely on a

single memory component or technology, but to employ

a memory hierarchy

 The memory hierarchy separates computer storage into

a hierarchy based on access time, capacity and cost.

Memory Classification

Memory

Primary Memory Secondary Memory

Magnetic MemorySemiconductor Memory

Read Only MemoryRead/Write Memory

MOS RAMBipolar RAM

Static RAM Dynamic RAMStatic RAM

Direct Access

Memory

Sequential

Access Memory

Magnetic TapeMagnetic DiskMagnetic Drum

Floppy Disk Hard DiskBubble MemoryCore Memory

Semiconductor Memory

 Semiconductor memory is a semiconductor device used for digital data storage in the

computer.

 It typically refers to Bipolar or MOS memory, where data is stored within memory cell on

a silicon integrated circuit (IC) memory chip.

 There are different types of memory using different semiconductor technologies.

 The two main types of semiconductor memories are Random Access Memory (RAM) and

Read Only Memory (ROM).

 Most types of semiconductor memory have the property of random access, which means that it

takes the same amount of time to access any memory location.

 So, data can be efficiently accessed in any random order.

 Semiconductor memory also has much faster access time than other types of data storage.

 It is used for main memory for the computer (primary storage), to hold data of the computer.

Random Access Memory (RAM)

 RAM (Random Access Memory) is the internal memory of the CPU for storing

data, program, and results.

 It is a read/write memory which stores data until the machine is working.

 As soon as the machine is switched off, data is erased.

 RAM is volatile, that is, data stored in it is lost when we switch off the computer or

if there is a power failure.

 Hence, a backup Uninterruptible Power Supply (UPS) is often used with

computers.

 RAM is small, both in terms of its physical size and in the amount of data it can

hold.

 Access time in RAM is independent of the address, that is, each storage location

inside the memory is as easy to reach as other locations and takes the same amount

of time.

Structure of RAM

 According to semiconductor technology, there are two types of RAM.

▪ Bipolar RAM - always Static RAM

▪ MOS RAM – may be Static RAM or Dynamic RAM

 The word Static indicates that the memory retains its contents as long as power is being

supplied. However, data is lost when the power gets down due to volatile nature.

 SRAM chips use a matrix of transistors and no capacitors.

 Transistors do not require power to prevent leakage, so SRAM need not be refreshed on a

regular basis.

 There is extra space in the matrix, hence SRAM uses more chips than DRAM for the same

amount of storage space, making the manufacturing costs higher.

 SRAM is thus used as cache memory and has very fast access.

Static RAM (Bipolar)

 Bipolar RAM always Static RAM

 Q1 is on Q2 is off – logic 1 is stored

 Q2 is on Q1 is off – logic 0 is stored

 Very high speed of operation

 But – High power dissipation

Low bit density

Complex manufacturing process

 Used as CACHE memory cell

Q2Q1

D2D1

Static RAM (MOS)

 This is a random access memory that uses an array of
six transistors and is made up of CMOS technology.

 Its structure consisting of two cross-coupled inverters
which hold the data.

 T1, T4 – Off, T2, T3 – On, So C1 is high and C2 is
low, stores logic 1

 T1, T4 – On, T2, T3 – Off, So C1 is low and C2 is
high, stores logic 0

 All states remain stable until the power voltage is
applied with the Direct Current (DC)

 Higher bit density than Bipolar static RAM

 Lower power dissipation than Bipolar static RAM

 Slower speed of operation than Bipolar static RAM

Dynamic RAM (DRAM)

 DRAM consists of one transistor and a capacitor.

 The capacitor stores one bit of data in the form of charge.

 Presence or absence of charge in a capacitor is interpreted as a

binary 1 or 0.

 It requires refreshing of each memory cell to retain the data as

capacitor discharges through time. So, dynamic in nature.

 For storing, Word line is selected, T is On by applying voltage to the

Bit line then the capacitor starts charging.

 For reading, Word line is selected, the charged capacitor will

discharge through Bit line and the sense amplifier compares the

voltage in capacitor with threshold voltage.

 If the voltage more than threshold voltage then logic 1 otherwise

logic 0.

 Requires periodic charge refreshing to maintain data storage.

 Low cost than SRAM

 Higher bit density than SRAM

 So, High storage capacity than SRAM

 Simple manufacturing process

 Consumes less power than SRAM

 Slower speed of operation than SRAM

 Needs to refresh periodically

Some DRAM chip incorporate refreshing facility and address control circuitry within the

memory chip to make it behave similar to Static RAM. So, the dynamic nature of the chip is

not visible to the user. This type of DRAM called as Pseudo-Static RAM (PSRAM).

Types of DRAM

ADRAM – Asynchronous DRAM

EDRAM – Enhanced DRAM

CDRAM – Cache DRAM

RDRAM – Rhombus DRAM

SDRAM – Synchronous DRAM

DDR SDRAM – Double Data Rate SDRAM

Comparison

Read Only Memory (ROM)

 ROM stands for Read Only Memory.

 The memory from which we can only read but cannot write on it.

 This type of memory is non-volatile.

 The information is stored permanently in such memories during manufacture.

 Contains a permanent pattern of data that cannot be changed or added.

 No power source is required to maintain the bit values in memory.

 Data or program is permanently in main memory and never needs to be loaded
from a secondary storage device.

 Data is actually wired into the chip as part of the fabrication process.

 A ROM stores such instructions that are required to start a computer.

 This operation is referred to as Bootstrap.

Types of ROM

 Mask ROM

 PROM

 EPROM

 EEPROM

 Flash ROM

Mask ROM – In this type of ROM, the specification of the ROM (its contents and their

location), is taken by the manufacturer from the customer in tabular form in a specified format

and then makes corresponding masks for the paths to produce the desired output . This is costly,

as the vendor charges special fee from the customer for making a particular ROM

(recommended, only if large quantity of the same ROM is required).

Uses – They are used in network operating systems, server operating systems, storing of fonts

for laser printers, sound data in electronic musical instruments.

PROM – It stands for Programmable Read-Only Memory . It is first prepared as blank memory, and then it is programmed

to store the information . The difference between PROM and Mask ROM is that PROM is manufactured as blank memory

and programmed after manufacturing, whereas a Mask ROM is programmed during the manufacturing process.

To program the PROM, a PROM programmer or PROM burner is used . The process of programming the PROM is called

as burning the PROM . Also, the data stored in it cannot be modified, so it is called as one – time programmable device.

Uses – They have several different applications, including cell phones, video game consoles, medical devices, and other

electronics.

EPROM – It stands for Erasable Programmable Read-Only Memory . It overcomes the disadvantage of PROM that once

programmed, the fixed pattern is permanent and cannot be altered . If a bit pattern has been established, the PROM

becomes unusable, if the bit pattern has to be changed .This problem has been overcome by the EPROM, as when the

EPROM is placed under a special ultraviolet light for a length of time, the shortwave radiation makes the EPROM return

to its initial state, which then can be programmed accordingly . Again for erasing the content, PROM programmer or

PROM burner is used.

Uses – Before the advent of EEPROMs, some micro-controllers, like some versions of Intel 8048, the Freescale 68HC11

used EPROM to store their program .

EEPROM – It stands for Electrically Erasable Programmable Read-Only Memory . It is

similar to EPROM, except that in this, the EEPROM is returned to its initial state by

application of an electrical signal, in place of ultraviolet light . Thus, it provides the ease of

erasing, as this can be done, even if the memory is positioned in the computer. It erases or

writes one byte of data at a time .

Uses – It is used for storing the computer system BIOS.

Flash ROM – It is an enhanced version of EEPROM .The difference between EEPROM and

Flash ROM is that in EEPROM, only 1 byte of data can be deleted or written at a particular

time, whereas, in flash memory, blocks of data (usually 512 bytes) can be deleted or written at

a particular time . So, Flash ROM is much faster than EEPROM .

Uses – Many modern PCs have their BIOS stored on a flash memory chip, called as flash

BIOS and they are also used in modems as well.

 Advantages of ROM

• It is non-volatile, meaning data which was set by the

manufacture will function as expected.

• Due to being static, they don’t need a refreshing time.

• In comparison to RAM, the circuitry is simpler.

• Data can be stored permanently.

 Disadvantages of ROM:

• ROM is a read only memory unit, so it can’t be modified.

• If any changes are required, it’s not possible.

Comparison

RAM ROM

Random Access Memory Read Only Memory

Volatile memory Non volatile memory

If the system is turned off, the information will be

deleted

If the system is turned off, the information it carries

will still be on the memory, meaning that the system

can retrieve it again when the system is switched on

Requires power to store data Doesn’t require power to store data

RAM is a temporary storage unit to store files ROM is used to store BIOS which don’t change

Chips often range from 1 to 256 GB Chips often range from 4 to 8 MB

Temporary memory Permanent memory

Complex Circuit Simpler Circuit

Error Detection and Correction

 Two types of error may be encountered in semiconductor memory.

 Hard Failure

 Permanent physical defect so that memory cell or cells affected cannot reliably
store data but become stuck at 0 or 1 or switch erratically between 0 and 1.

 Can be caused by:

 Harsh environmental effect

 Manufacturing defects

 Wear and tear etc.

 Soft Error

 It is a random, non-destructive event that alters the contents of one or more
memory cells without damaging the memory.

 Can be caused by:

 Power supply problems

 Alpha particles results from radioactive decay

So, error detection and correction is required.

Magnetic Disk

 Magnetic Disk is type of secondary memory which is a flat disc

covered with magnetic coating to hold information.

 A disk is a circular plate constructed of nonmagnetic material, called

the substrate, coated with a magnetizable material.

 Traditionally the substrate has been an aluminium or aluminium

alloy material.

 Recently glass substrates have been introduced for improvement in

the uniformity of the magnetic film surface to increase disk

reliability.

 It is used to store various programs and files.

 The polarized information in one direction is represented by 1, and

other direction is indicated by 0.

 There are two types of Magnetic Disk memory

Floppy Disk and Hard Disk

Floppy Disk

Hard Sectoring

 The number of Sectors on each Track
is physically fixed while
manufacturing.

 The beginning of each sector is
identified by a sector hole punched
on the disk.

 Sector is fixed, no flexibility.

Soft Sectoring

 Number Sectors per Track chosen by
software.

 Information about sector is written on
each sector.

 Flexible

Hard Disk

 Magnetic disk are less expensive than RAM and can store large amounts of data.

 Data access rate is slower than main memory.

 Data can be modified or can be deleted easily in the magnetic disk memory.

Advantages:

These are economical memory.

The easy and direct access of data possible.

It can store large amounts of data.

It has better data transfer rate than magnetic tapes.

It has less prone to corruption of data as compared to tapes.

Disadvantages:

More expensive than magnetic tape memories.

It need clean and dust free environment to store.

These are not suitable for sequential access.

Disk Performance Parameters

 When the disk drive is operating the disk rotate at constant speed.

 To read or write the head must be positioned at the desired track and at the beginning
of the desired sector on the track.

 Track selection involves moving the head in a movable-head system or
electronically selecting one head on a fixed-head system.

 Once the track is selected, the disk controller waits until the appropriate sector
rotates to line up with the head.

 Seek time

 On a movable–head system, the time it takes to position the head at the proper
track.

 For fixed head system, it is zero.

 Average Seek time is N/3, where N = Number of Track or Cylinder.

 Rotational delay (latency)

 After finding the Track, the time it takes to reach the head at the beginning of the required
sector.

 Average Latency time is half of the rotation time.

 Access time

 The sum of the seek time and the rotational delay (latency).

 The time it takes to get into position to read or write.

 So, Access time = Seek time + Latency time

 Transfer time

 Once the head is in position, the read or write operation is then performed as the sector is
under the head.

 Time required to move the data from secondary storage device to the processor memory.

Read/Write Mechanism

 The magnetic surface is placed just below the yoke coil.

 The magnetic surface is mounted on a rotatory device

and rotates at a uniform speed.

 Digital Information can be stored on Magnetic film by

applying current pulses of suitable polarity to the

magnetizing coils.

 This causes the magnetization of the film in the area

immediately underneath the head by inducing magnetic

field just below the yoke.

 According to the generated flux polarization the bit

pattern is stored over the surface.

 The same method is used for reading the information.

 For reading, when head reaches at the required place over the magnetic surface
from where an information to be retrieved, it senses the polarity of the
magnetic field present at that particular spot and sends appropriate signal
through the coil.

 This particular technique for reading/writing is known as Manchester
Encoding.

Problem:

A disk system has 16 data recording surfaces with 1024 tracks per surface.

There are 16 sectors per track, each containing 1024 bytes. The diameter of

inner cylinder is 6 inches and outer cylinder is 10 inches. Find out

▪ Capacity of disk

▪ Transfer rate if rotational speed is 3000 rpm

▪ Latency time and average latency time

▪ Track density

▪ Maximum bit density (linear and areal)

Magnetic Tape

 Tape systems use the same reading and recording techniques as
disk systems.

 The tape is made of a thin magnetizable coating on a long
narrow strip of plastic film.

 Coating may consist of particles of pure metal in special
binders or vapor-plated metal films.

 Data on the tape are structured as a number of parallel tracks
running lengthwise.

 Reading and writing is serial and data are laid out as a
sequence of bits along each track.

 Data are read and written in contiguous blocks called physical
records.

 Blocks on the tape are separated by gaps

referred to as inter-record gaps.

 Magnetic tape is usually recorded on only one

side.

 The opposite side is a substrate to give the

tape strength and flexibility.

 Data read/write speed is slower because of

sequential access.

 The width of the ribbon varies from 4mm to 1

Inch and it has storage capacity 100 MB to

200 GB.

 Advantages:

1. These are inexpensive, that is, low cost memories.

2. It provides backup or archival storage.

3. It can be used for larger files.

4. It can be used for copying from disk files.

5. It is a reusable memory.

 Disadvantages:

1. Sequential access is the disadvantage, means it does not allow access randomly or directly.

2. Data access rate is slower.

3. It requires caring to store, that is, vulnerable humidity, dust free, and suitable environment.

4. It stored data cannot be easily updated or modified, that is, difficult to make updates on data.

Overview

 Introduction

 CACHE memory

 Memory Management

 Virtual Memory

 Associative Memory

 Memory Interleaving

Introduction

 All computer manufacturer want their systems to run as fast as possible.

 Number of advanced techniques currently being investigated to improve system

performance.

 To make computer faster, high performance memory techniques should be

implemented.

 The performance of the memory generally improved due to following techniques.

❑ Cache Memory

❑ Virtual Memory

❑ Associative Memory

❑ Memory Interleaving

Cache Memory

 Processor is much faster than the main memory.

▪ As a result, the processor has to spend much of its time waiting while instructions and

data are being fetched from the main memory.

▪ Major obstacle towards achieving good performance.

 Speed of the main memory cannot be increased beyond a certain point.

 Cache memory is an architectural arrangement which makes the main memory appear faster

to the processor than it really is.

 A special very high speed memory called Cache which is used to increase the speed of

processing by making a current program and data available to the CPU at a rapid rate.

 Generally it is employed in computer system to compensate the speed difference between

the main memory access time and high speed processor logic.

 So, the Cache is located between Main memory and the Processor.

 Cache memory access time is close to the processor logic cycle time.

 It is also used to store segments of program currently being needed and temporary data frequently

needed in the present calculation.

 Sometimes it is found in a computer program a particular part is executed repeatedly, while other

parts are less frequently.

 These instructions may be the ones in a loop, nested loop or few procedures/functions calling each

other repeatedly.

 This is called “locality of reference”.

Cache Main
memoryProcessor

 There are two types of Locality of reference.

 Temporal locality of reference:

▪ A memory location that is referenced is likely to be accessed again in the near future.

▪ Data/instruction brought into cache expecting it to be used again.

 Spatial locality of reference:

▪ Memory locations near the last access are likely to be accessed in the near future.

▪ Instructions/data with addresses close to a recently instruction/data are likely to be executed

soon.

 If the active segment of the program can be placed in a fast memory, then the total execution time

can be significantly reduced.

 The fundamental idea of Cache organization is that by keeping the most frequently accessed

instructions and data in the fast Cache memory.

Levels of Cache

 The basic technique that works very
effectively is to introduce separate
Cache for Instruction and Data.

 This is called as Split Cache which is
Level 1 Cache.

 Today many memory systems are more
complicated and additional Cache
called Level 2 Cache, may reside
between instruction and data cache and
main memory.

 In fact there may one more level of
cache, that is, Level 3 cache in more
sophisticated systems.

 Level 2 and Level 3 are unified Cache.

Microprocessor

L1-DL1-I

Unified L2 Cache
Unified L3 Cache Main

Memory

(DRAM)

Keyboard

Controller

Graphics

Controller
Disk

Controller

CPU Package

Board level Cache

(SRAM)

 The processor within itself contains a small instruction and data cache,

typically 16KB to 64KB.

 There is Level 2 cache, which is not within the processor, but may be included

in the CPU package.

 This Cache is generally unified containing both instruction and data, typically

512KB to 1MB.

 The Level 3 Cache is on the Processor Board and consists of few megabytes

of SRAM, which is much faster than Main DRAM Memory.

 Caches are inclusive, with the full contents of the Level 1 Cache being in the

Level 2 and the full contents of the Level 2 Cache being in the Level 3 Cache.

Operations

 When the CPU needs to access memory, the Cache is examined.

 If the word is found in the Cache, it reads from the Cache memory.

 If the word is not found in the Cache, the main memory is accessed to

read the required word.

 A block of words containing the one just accessed is then transferred

from the main memory to Cache memory.

 In this manner some data are transferred to the Cache from the main

memory so that future references to memory find the required words in

the fast Cache memory.

Cache Hit

 Existence of a Cache is transparent to the processor.

 The processor issues Read and Write requests in the same manner.

 If the data is in the cache, it is called a Read or Write hit.

 Read hit:

▪ The data is obtained from the cache.

 Write hit:

▪ Cache has a replica of the contents of the main memory.

▪ Contents of the cache and the main memory may be updated simultaneously. This is the write-
through protocol.

▪ Update the contents of the cache, and mark it as updated by setting a bit known as the dirty bit
or modified bit. The contents of the main memory are updated when this block is replaced.

▪ This is write-back or copy-back protocol.

Cache Miss

 If the data is not present in the cache, then a Read miss or Write miss occurs.

 If Read miss:

▪ Block of words containing this requested word is transferred from the memory.

▪ After the block is transferred, the desired word is forwarded to the processor.

▪ The desired word may also be forwarded to the processor as soon as it is transferred without
waiting for the entire block to be transferred. This is called load-through or early-restart.

 Write-miss:

▪ Write-through protocol is used, then the contents of the main memory are updated directly.

▪ If write-back protocol is used, the block containing the addressed word is first brought into the
cache. The desired word is overwritten with new information.

 The performance of Cache is measured in terms of a quantity called Hit Ratio.

 Hit Ratio = Hit / Hit + Miss (CPU references to memory)

Write Policy

 An important aspect of cache organization is concerned

with memory write requests.

 When the CPU find a word in Cache during a read

operation, the main memory is not involved in the transfer.

 If the operation is a write, there are two ways the system

can proceed for writing.

❑ Write through

❑ Write back

Write through

 Update the main memory with every main memory write operation with the Cache

memory being updated in parallel if it contains the word at specified address.

 The main memory always contains same data as Cache.

 The data reside in main memory is valid at all time.

CPU

Cache

Main

Memory

CPU

Cache

Main

Memory
HIT Miss

Write back

 Problem of write through is repeated write

operation.

 Write back minimizes memory write.

 Updates are made only in the Cache.

 When an update occurs, an Update/Dirty bit

associated with the slot is set.

 When that block is replaced, it is written back to

main memory if and only if the Update/Dirty bit

associated with the slot is set.

 The problem with write back is that the portions of

main memory data not valid data.

HIT

Miss

CPU

Cache

Main Memory

CPU

Cache

Main Memory

Cache Mapping

 Processor issues a Read request, a block of words is transferred from the main
memory to the cache, one word at a time.

 Subsequent references to the data in this block of words are found in the cache.

 At any given time, only some blocks in the main memory are held in the cache.

 Which blocks in the main memory are in the cache is determined by a Mapping
Function.

 Mapping functions determine how memory blocks are placed in the cache.

 Three mapping functions:

▪ Direct mapping

▪ Associative mapping

▪ Set-associative mapping.

Direct Mapping

 A simple processor example:

▪ Main memory has 64K words.

▪ Main memory is addressable by a 16-bit address.

▪ Size of cache is 2048 (2K) words.

▪ Cache is addressable by a 11-bit address.

 Now Index will be LS11-bits and Tag will be MS 5-bits.

▪ Number of bits in Index field is equal to the number of
bits required for accessing Cache.

▪ Cache consisting of blocks of 16 words each.

▪ Total number of Blocks will be 128.

 Now Index bit will be divided as Block bits and Word bits.

 Block will be 7-bits and Word will be 4-bits.

 Main memory has 4K blocks of 16 words each.

Main
memory Block 0

Block 1

Block 127

Block 128

Block 129

Block 255

Block 256

Block 257

Block 4095

7 4

Main memory address

Tag Block Word

5

tag

tag

tag

Cache

Block 0

Block 1

Block 127

 Each word in the Cache consists of data word and its Tag bits

stored alongside the data bits.

 When the CPU generates a memory request, the Index field is used

for the address to access the Cache.

 The Tag field generated during addressing is compared with the

Tag bits in word read from the Cache.

 If two Tags match, then there is a Hit.

 If no match, there is a Miss and the required word read from the

memory and then the word is stored in Cache with the new Tag.

•Block j of the main memory maps to j modulo 128 of the cache.

0 maps to 0, 129 maps to 1

•More than one memory block is mapped onto the same position in
the cache.

•May lead to contention for cache blocks even if the cache is not full.

•Resolve the contention by allowing new block to replace the old
block, leading to a trivial replacement algorithm.

•Memory address is divided into three fields:

- Low order 4 bits determine one of the 16 words in a block.

- When a new block is brought into the cache, the next 7 bits
determine which cache block this new block is placed in.

- High order 5 bits determine which of the possible 32 blocks is
currently present in the cache. These are tag bits.

•Simple to implement but not very flexible.

Main
memory Block 0

Block 1

Block 127

Block 128

Block 129

Block 255

Block 256

Block 257

Block 4095

7 4

Main memory address

Tag Block Word

5

tag

tag

tag

Cache

Block 0

Block 1

Block 127

Associative Mapping

 This is fastest and flexible.

 Uses Associative Memory.

 Main memory block can be placed into any cache position.

 Memory address is divided into two fields.

 Lower 4-bits identify the word within a Block.

 Higher 12-bit is the Tag bit identify a memory block when
it is resident in the Cache.

 So, in Associative Cache each word in the Cache consists
of data word and its Tag bits stored alongside the data bits.

 This is very expensive.

 Flexible and uses Cache space efficiently.

 Replacement algorithm is used to replace an existing block
in the Cache when the Cache is full.

Main
memory Block 0

Block 1

Block 127

Block 128

Block 129

Block 255

Block 256

Block 257

Block 4095

4

Main memory address

Tag Word

12

tag

tag

tag

Cache

Block 0

Block 1

Block 127

Set-Associative Mapping

 The problem of Direct Mapping is that two words with
same Index but different Tag values can not reside in the
Cache memory at a time.

 Set associative addresses the problem of possible
thrashing in the direct mapping method.

 In Set-Associative two or more words of memory under
the same Index address can reside.

 It is a combination of Direct and associative mapping.

 Blocks of Cache are grouped into Set.

 Hence, the contention problem of Direct mapping is
somehow solved by having few choices for block
placement.

 Number of blocks per set is a design parameter.
- One extreme is to have all the blocks in one set,

requiring no set bits (fully associative mapping).
- Other extreme is to have one block per set,

is the same as direct mapping.

Set 0

Set

Set 63

Set 1

Replacement Policy

 When the cache is full, and a block of words needs to be
transferred from the main memory, some block of words in the
cache must be replaced.

 This is determined by a Replacement Algorithm.

 Cache performance is greatly affected by properly choosing data
that is unlikely to be referenced again.

 The most common replacement algorithms are:

❑ Random replacement

❑ First-in-first-out (FIFO)

❑ Least Recently Used (LRU)

❑ Least Frequently Used (LFU)

 With a Random replacement policy any block can be replaced

randomly.

 In case of FIFO, replace the block in the set which has been in the

cache for longest time. It is easily implemented as a round-robin

or circular buffer technique.

 In case of LRU, replace the block in the set which has been in the

Cache for longest period with no references.

 In case of LFU, replace the block from the Cache which has

fewest references.

Memory Management

 In a uni-processor system, main memory is divided in to two parts.

❑ One part for OS (Resident Monitor)

❑ Other part for the program currently being executed (User part)

 In multiprogramming the user part of the memory is subdivided to

accommodate multiple processes.

 The subdivision is carried out dynamically.

 The memory needs to be allocated efficiently to pack as many

processes in to the memory as possible.

 This is known as Memory Management.

 Generally there are two types partitioning available for memory.

 One is Fixed Partitioning and another one is Variable

Partitioning.

 Fixed partitioning is of two types.

 One is Equal size partitioning and another one is Unequal size

partitioning.

 The process brought into the memory and placed into the

smallest available partition.

 In most of the cases process may not require exactly as much

memory as provided by the partition.

 So, there will be wastage of memory space.

OS

5M

5M

5M

5M

5M

OS

2M

5M

7M

6M

9M

Equal size partitioning

Unequal size partitioning

 A more efficient approach is Variable Partitioning.

 When the process is brought into memory, it is allocated exactly as

much memory as it requires and no more.

 This method starts out well, but eventually it leads to a situation in

which there are lot of small holes in memory.

 At time goes the memory became more and more fragmented.

 Unused space in a partition is called as Internal Fragmentation.

 Unused of a partition is called External Fragmentation.

 So, the memory utilization will be declined.

 The technique to overcome this is Compaction.

 From time to time the OS shifts the processes in the memory and places all the free
memory space together in one block.

 This is called Compaction.

 This is a time consuming procedure and wastage of processor time.

 If compaction is adopted, the process may be shifted in main memory.

 The instruction and branch address of the instruction also shifted.

 This can be solved by Logical Addressing.

 Logical address is expressed as a location relative to the beginning of the program.

 Instructions in the program contains only logical address.

 Physical address is the actual location in the memory.

 When the processor executes a process, it automatically converts

from logical to physical address by adding the current starting

location of the process which is called its Base Address to each

logical address.

 Both fixed and variable partitioning are not efficient.

 So, Paging.

 The memory is partitioned in to relatively small fixed size chunks,

known as Frame.

 The processes are also divided to small fixed size chunks of same size

of frames.

 The chunk of processes is called as Page.

 The pages are swapped in and swapped out to or from the frames

of the memory.

 Usually this enhances the performance of the system.

 This leads to the concept of Virtual Memory.

 Each page of the process brought in to the memory, when it is

needed, that is on demand, called Demand Paging.

 During the processing if a page reference is required, but that is

not in main memory then Page fault occurs.

 Then the OS brings the required page to main memory.

 Paging is invisible to the programmer.

 There is another way in which addressable memory can be

subdivided, known as Segmentation.

 It is visible to the programmer and provides a convenience for

organizing the programs and data.

 It allows the programmer to view memory as consisting of

multiple address space or segments.

Virtual Memory

 Program and data are stored in auxiliary memory.

 Portions of the program or data that are brought in to the main memory

as they are needed by the CPU.

 Virtual memory is a technique that allows execution of processes that

may not be completely in the main memory.

 Virtual memory concept is used to give programmer the illusion that

they have very large memory, even though the computer actually has a

relatively small main memory.

 Each address is referenced by the CPU goes through an address

mapping from the virtual address to a physical address in main memory.

 An address used by the programmer called Virtual address or

Logical address.

 Set of virtual addresses called as Address space.

 An address in main memory is called as location or Physical address.

 Set of physical addresses called as Memory space.

 The physical memory is divided in to equal size called as Frame or

Block.

 Let a computer address space is 8K and memory space is 4K.

 Let split the address space in to 8 pages and each page size is 1K.

 The virtual address will be 13 bits.

 These 13 bits are for specifying the pages and the lines within the page.

 So, for 8 pages 3 bit are required and rest 10 bits LSB for the line number of each page.

 The memory space is divided in to the size of pages as 1K so, 4 frames or blocks.

 The actual address is 12 bits.

 For 4 frames, 2 bits are required and rest 10 bits LSB for the line number of each frame.

 So, the line address in address space and memory space is same.

 Only the translation is required from page to frame, that is, from 3 bits to 2 bits.

Page Replacement Algorithms

 If a page is required for processing and that is not in main memory and

the main memory is full, in that case page replacement is required.

 Various page replacement algorithms are:

❑ First-in-first-out (FIFO)

❑ Least Recently Used (LRU)

❑ Optimal Algorithm

 In case of LRU, replace the page that has not been used for longest

period of time.

 In case of optimal algorithm, replace the page that will not be used for

the longest period of time.

Associative Memory

 The time required to find an item stored in memory can be

reduced considerably if stored data can be identified for access by

the content of data itself rather by an address.

 The Associative Memory (AM) called as Content Addressable

Memory (CAM) which addresses as content not address.

 When a word is written in an associative memory no address is

needed.

 The memory is also capable of finding unused location to store

that word.

 When a word to be read from an associative memory the

content of word or part of the word is specified.

 The memory locates all words which match the specified

content and mark them for reading.

 Then at a time all marked content can be read.

 So, associative memory known as Content addressable

memory or Parallel search memory or Multiaccess

memory.

Hardware Organization

Associative

Memory

m words

n bits per word

Argument Register (A)

Key Register (K)

(M)

Write

Read

Input

 Each word in the memory is compared in

parallel with the contents of the Argument

register.

 The Key register or Masking register

provides a mask for choosing a particular

field or key in the argument word.

 The entire argument is compared with each

memory word if the Key register contains

all 1’s.

 Otherwise only those bits in the argument

that have 1’s in their corresponding position

of the Key register are compared.

 Thus, masking register provides a mask

for identifying whole or piece of

information which specifies how the

reference to the memory is made.

 The words that matches the bits of the

Argument register taking in to

consideration of 1’s in Key register set the

corresponding bit in the Match register.

 After the matching process, those bits in

the Match register that have been set

indicates that their corresponding word

have been matched.

 Reading is accomplished by accessing

to the memory for those words

corresponding bits in the Match

register have been set.

Match Example:

A = 101111100

K = 111000000

Word 1 = 100111100

Word 2 = 101000001

 Which word will match?

Internal Organization of each Cell

Aj will be compared with Fij for matching when Kj = 1

Match Logic

 Comparison logic for two numbers required to find matching.

 Neglecting Key or Mask bits, word i is equal to the argument A if

Aj = Fij for j = 1, 2, 3, … , n

 Two bits are equal if both are either 1 or 0.

 The equality of two bits can be expressed logically by the Boolean function

xj = Aj Fij + A’j F’ij xj = 1 if both are equal else 0

 For word i to be equal to the argument A must all xj variables equal to 1.

 This is the condition for setting the corresponding match bit Mi to 1.

 So, the Boolean function will be Mi = x1 x2 x3 . . . xn . This is a AND

operation.

 Now the key bit Kj is included in the comparison logic.

 When Kj = 1 Aj and Fij needs comparison

Kj = 0 Aj and Fij need not compared

xj + K’j = ቊ
xj, 𝑖𝑓Kj = 1

1, if Kj = 0

 Thus, now the xj term can be rewritten as (xj + K’j).

 Now the match logic Mi for word i will be

Mi = (x1 + K’1) (x2 + K’2) . . . (xn + K’n)

 If Kj = 1 the terms will be compared and will be either 0 or 1.

 When all terms will be 1 then only match will occur and Mi will be 1.

 If Kj = 0 all terms in the expression will be 1 but this condition can be

avoided as all bits of Key word can not be 0.

 So, now Mi = ς𝒋=𝟏
𝒏 Aj Fij + A’j F’ij +K’j

 This is the expression for one word, that is word i.

 m numbers of such function needed to compare m numbers of words

as i = 1, 2, 3, . . ., m.

Diagram of Match Logic

Memory Interleaving

 There may be simultaneous access to memory from two or

more sources due to parallel processing.

 The memory can be partitioned into a number of modules

connected to a common memory address and data bus.

 Each module has its own address buffer register (ABR) and

data buffer register (DBR).

 Due to its personal Address register and Data register for each

module the average rate of transmission of data is increased.

 Consecutive words are

placed in a module.

 High-order k bits of a

memory address determine

the module.

 Low-order m bits of a

memory address determine

the word within a module.

 When a block of words is

transferred from main

memory to cache, only one

module is busy at a time.

 One module kept busy by

CPU at a time.

m bits

Address in module MM address

i

k bits

Module Module Module

Module

DBRABR DBRABR ABR DBR

0 n 1-

• Arrange addressing so that successive

words in the address space are placed in

consecutive modules.

• When requests for memory access

involve consecutive addresses, the

access will be to consecutive modules.

• While transferring a block of data,

several memory modules can be kept

busy at the same time.

• Since parallel access to these modules is

possible, the average rate of fetching

words from the Main Memory can be

increased.

• Higher utilization of memory system.

i

k bits

0

ModuleModuleModule

Module MM address

DBRABRABR DBRABR DBR

Address in module

2
k

1-

m bits

Lecture of Module 4

Input/Output Organization

Overview

 Peripheral Devices

 Accessing I/O Devices

 Input/Output Interface

 Types of Data Transfer

❑ Asynchronous Parallel Data Transfer

❑ Asynchronous Serial Data Transfer

 Asynchronous Communication Interface

 Interrupt

 Modes of Data Transfer

❑ Programmed I/O

❑ Interrupt driven I/O

▪ Priority Interrupt

❑ Direct Memory Access (DMA)

 I/O Channel and Processor

Peripheral Devices

 Input/Output devices that are connected to a system are called Peripheral devices.

 These devices are designed to read information into or out of the memory or CPU upon

command from the CPU and are considered to be the part of computer system.

 For example: Keyboards, display units, printers etc. are common peripheral devices.

There are three types of peripherals:

1. Input peripherals: Allows user input from the outside world to the computer. Example:

Keyboard, Mouse etc.

2. Output peripherals: Allows information output from the computer to the outside world. Example:

Printer, Monitor etc.

3. Input-Output peripherals: Allows both input (from outside world to computer), as well as, output

(from computer to the outside world). Example: External memory devices.

Accessing I/O Devices

 Generally more numbers of devices are connected to a computer.

 So, some means have to be provided by which a particular device can
be selected to participate in a given I/O operation.

 This can be accomplished through the use of an I/O bus arrangement.

 I/O bus is the bus to which all I/O devices are connected used for
address, data and control signals.

 Each device is assigned an identifying code or address so that the
CPU can select a particular device by placing its address in the
address line.

 Only the device that recognizes its address responds to the CPU.

 This is called as I/O mapped I/O.

 An alternative arrangement for identifying I/O devices

are by assigning them by an unique address within the

memory address space of the computer.

 It become possible to access I/O device in the same way

as any other memory location accessing.

 This is known as Memory mapped I/O.

 Any machine instruction

and addressing mode that

can be used to deal with

operands can also refer to

an I/O device.

 The use of memory mapped

I/O offers some flexibility

in handling I/O operation.

 All the devices are

connected to the I/O bus

through a hardware device

or circuit is called as I/O

Interface.

I/O Interface

 Input/Output Interface provides a method for transferring

instruction between internal storage device and external

I/O device.

 Peripherals connected to a computer need special

communication link for interfacing them with the CPU.

 The purpose of communication link is to resolve the

differences that exists between the CPU and peripherals

and among peripherals.

The major differences are as follows:

1. Peripheral devices are electromagnetic or electro-mechanical. The CPU is purely

electronic device. The nature of operation of peripheral device is different from the

operation of CPU. Therefore a conversion of signal values may be required.

2. The data transfer rate of peripherals are usually slower than CPU. So,

synchronization mechanism may be needed.

3. The data code and formats in peripherals differ from the word format in the CPU

and memory. So, conversion mechanism may be needed.

4. The operating modes of peripherals are different from each other and each must be

controlled so as not to disturb the operation of other peripherals connected to CPU.

 To resolve these differences there is a need
of special hardware component between
CPU and peripheral devices to supervise and
synchronize all input and output transfers.

 This component is called as Interface unit or
I/O module.

 The data register is used to hold data to be
transferred.

 Status register is required to store the status,
that is, status or condition of the device for
operation.

 Control circuit is for receiving and sending
control signals to or from control unit.

Interface Module

Types of Data Transfer

Types of Data Transfer

Parallel Data Transfer Serial Data Transfer

Synchronous Data TransferAsynchronous Data Transfer

HandshakingStrobe Controlled

Destination InitiatedSource Initiated

Asynchronous Data Transfer

Source Initiated

Parallel Serial

1. Each bit has its own path & total

message is transmitted at the same

time.

1. Each bit in the message is transmitted

in sequence one at a time.

2. To transmit n-bit, n-separate wires

are used.

2. n-bit is transmitted through one wire.

3. Expensive due to multiple numbers of

wires are used to transmit.

3. Inexpensive as compare to parallel

because single wire is used to transmit.

4. Speed is faster as data is transmitted

through multiple wires.

4. Speed is slow as data is transmitted

through single wire.

5. Quite difficult to upgrade the system. 5. Easy to upgrade the system.

6. Suitable for Short distance.

6. Suitable for Long distance.

7. EX- CPU & Memory.(Bus) 7. EX- CPU & I/O.

Synchronous Data Transfer

 Both sender and receiver share a common clock.

 For long distance transmission each unit is driven by separate clock of same
frequency.

 The transmitter transmits block of character along with synchronization information.

 The receiver decodes and find the synchronization information and keep its clock in
step with each other.

 The transmitter sends data, and the receiver counts the number of bits in the received
data.

 Furthermore, there are no gaps between data, that is, continuous transmission till
end.

 In this method, the timing signals must be accurate to transfer data efficiently.

 Moreover, this method is faster than asynchronous data transferring.

Asynchronous Parallel Data Transfer

 Asynchronous parallel data transfer between two independent units require control
signals for synchronization during the data transfer.

1. One way is by means of strobe pulse which is supplied by one of the units to other
unit when transfer has to occur. This method is known as “Strobe Control”.

2. Another method commonly used is to accompany each data item being transferred
with a control signal that indicates the presence of data in the bus. The unit
receiving the data item responds with another signal to acknowledge receipt of the
data. This method of data transfer between two independent units is said to be
“Handshaking”.

 Here we consider the transmitting unit as Source and receiving unit as Destination.

 The sequence of control during an asynchronous transfer depends on whether the
transfer is initiated by the source or by the destination.

 So, it can be further divided as source initiated and destination initiated.

Source Initiated Strobe controlled

 The source unit first places the data on the data bus.

 After a brief delay to ensure that the data settle to

a steady value, the source activates a strobe pulse.

 The information on data bus and strobe control signal

remains in the active state for a sufficient period of

time to allow the destination unit to receive the data.

 The source removes the data from the data bus after

it disables its strobe pulse.

 The strobe signal disabled indicates that the data bus

does not contain valid data.

 New valid data will be available only after the strobe

is enabled again.

 The destination unit initiates the data transfer.

 The destination unit first activates the strobe

pulse, informing the source is ready to receive

data or informing the source to provide the

data.

 Then the source unit may place the data on the

data bus.

 The data must be valid and remain in the bus

long enough for the destination unit to accept it.

 The destination unit then disables the strobe.

And source removes the data from data bus

after a time interval.

Destination Initiated Strobe controlled

 In computer, in strobe initiated by source - the strobe may be a

memory-write control signal from the CPU to a memory unit. The

source, CPU, places the word on the data bus and informs the memory

unit, which is the destination, that this is a write operation.

 In the strobe initiated by destination - the strobe may be a memory-

read control from the CPU to a memory unit. Now the destination is

the CPU, initiates the read operation to inform the memory, which is a

source unit, to place selected word into the data bus.

 The transfer of data between the CPU and an interface unit is similar

to the strobe transfer.

Disadvantage

 In source unit that initiates the transfer has no way of knowing

whether the destination has actually received the data that was

placed on the bus.

 In a destination unit that initiates the transfer has no way of

knowing whether the source unit has actually placed data on the

bus.

 The Handshaking method solves this.

Handshaking

 The handshaking method is a two wire controlling method of data transfer.

 Handshaking method introduce a second control signal line that provides a reply to

the unit that initiates the transfer.

 In it, one control line is in the same direction as the data flow in the bus from the

source to destination to indicate the presence of valid data on the data bus.

 The other control line is in the other direction from destination to the source.

 It is used by the destination unit to inform the source whether the data accepted or not.

Data accepted/Ready for data

 Two handshaking lines are "data valid", which is
generated by the source unit, and "data accepted",
generated by the destination unit.

 The source initiates a transfer by placing data on the
bus.

 Then enable the data valid signal.

 The data accepted signal is then activated by
destination unit after it accepts the data from the bus.

 The source unit then disables its data valid signal
which invalidates the data on the bus.

 After this, the destination unit disables its data
accepted signal and the system goes into initial state.

 The source unit does not send the next data item
until the destination unit shows its readiness to
accept new data by disabling the data accepted
signal.

Source Initiated Handshaking

 Two handshaking lines are "data valid", generated
by the source unit, and "ready for data" generated
by destination unit.

 Data transfer is initiated by destination, so source
unit does not place data on data bus until it receives
ready for data signal from destination unit.

 Enable ready for data.

 Source Places the data on data bus.

 Then enable the data valid signal.

 Destination accepts the data from the data bus.

 Then the destination disable the ready for data
signal after data acceptance.

 Now the source disable the data valid signal which
invalidate the data on data bus and the system goes
into initial state.

Destination Initiated Handshaking

 Data transfer between an interface and an I/O device is

commonly controlled by a set of handshaking lines.

 The handshaking scheme provides a high degree of flexibility

because the successful completion of a data transfer relies on

active participation of both units.

 If a unit is faulty or the data transfer can not be performed

during specified time the time out error is generated.

Asynchronous Serial Data Transfer

 The transmitter and receiver generates their clock frequencies independently, but they

are more or less identical.

 Generally adopted for low speed transmission.

 Data transmitted character by character.

 The time interval between two character is not fixed.

 The technique adopted for asynchronous serial data transmission is called FRAMING.

 In this technique each character carries the information of START Bit and STOP Bit.

 If there is no transmission in the line then the line is maintained in high voltage level –

MARK.

 START Bit always is voltage level of Zero (0) – SPACE.

 After Start bit the data bits are transmitted followed by PARITY Bit and STOP Bit.

 The Parity bit may or may not present. If present always it is in either Low state (0) or High state (1)
depending on Parity generator.

 The Stop bit may be one bit or more bits. Always they are in High state (1).

 So, during transmission the data bits are framed with Start bit and Stop bits, called Framing.

Synchronous Data Transfer Asynchronous Data Transfer

1. Two units share a common clock. 1. Two units are independent and each

unit will have their own private clock.

2. Data transfer between sender and

receiver are synchronized by the same

clock pulse.

2. Data transfer between sender and

receiver is not synchronized by the

same clock pulse.

3. Used between the devices that

matches in speed.

3. Used between the devices that does not

match in speed.

4. The time interval of transmission is

constant (due to common clock)

4. The time interval of transmission is

random (due to random common

clock)

5. Bits are transmitted continuously to

keep clock synchronized in both units.

5. Bits are sent only when it is available

and the line remains idle when there is

information is transmitted.

6. Fast. 6. Slow.

7. Costly. 7. Economical.

Communication Interface

 Serial transfer may be synchronous or asynchronous.

 The IC 8251A is a programmable chip designed for

synchronous and asynchronous serial data

communication.

 It is 25 pin DIP.

 It includes five blocks.

▪ Data bus buffer

▪ Read/Write control logic

▪ Modem control

▪ Transmitter

▪ Receiver

 It is also called as Universal Synchronous

Asynchronous Receiver and Transmitter (USART).

Interrupt

 A computer must have some means to coordinate its activities with the external devices connected

to it.

 When accepting characters from a keyboard, the computer needs to know when a new character has

been typed.

 Similarly, during the output operation, it should send a character to a printer if the printer is ready to

accept it.

 The current status of each I/O device connected to a computer is indicated by one or more bits of

information.

 A program may run within the CPU to poll the device by testing the status bits before using an I/O

instruction to transfer data.

 During this polling period the CPU does not perform any useful computation.

 So, an alternative arrangement is required that when the I/O device will ready, it will alert the CPU.

 This can be possible by sending a signal called Interrupt.

 An interrupt is a signal emitted by

hardware or software that requests

the processor to suspend its current

execution and service the occurred

interrupt.

 To service the interrupt the

processor executes the

corresponding interrupt service

routine (ISR).

 After the execution of the interrupt

service routine, the processor

resumes the execution of the

suspended program.

Types of Interrupt

 There are two types of interrupt.

❑ Hardware Interrupt

❑ Software Interrupt

 Hardware Interrupt: If the signal for the processor is from external or

internal device or hardware is called hardware interrupt.

 Example: From keyboard we will press the key to do some action, this

pressing of key in keyboard will generate a signal which is given to the

processor to do action, such interrupt is hardware interrupt.

 Hardware interrupt may be generated from external device/hardware or

internal device/hardware.

 So, it may be External interrupt or Internal interrupt.

 External Interrupt: It comes from I/O devices, timing device, power failure or

from any other external hardware.

 Example: I/O device request for transfer of data.

I/O device finished transfer of data.

Elapse of time of an event – Time out

Power failure etc.

 Internal Interrupt: Arises illegal or erroneous use of an instruction or data and any

overflow/underflow condition.

 Example: Register overflow/underflow.

Stack/Queue overflow/underflow.

Attempt to divide by zero.

Invalid operation code etc.

 Internal interrupt is initiated by some exceptional

condition caused by the program itself rather than by

an external event.

 Internal interrupt is synchronous with the program

while external interrupt is asynchronous.

 If a program is rerun, the internal interrupt will occur

in the same place each time. The external interrupt

depends on external conditions that are independent of

the program being executed at that time.

 The hardware interrupts may be maskable or non-maskable.

 Maskable Interrupt: The hardware interrupt that can be ignored or
delayed for some time if the processor is executing a program with
higher priority are termed as maskable interrupts.

 This type of interrupt is entertained by the CPU just after completion
of current execution.

 Non-Maskable Interrupt: The hardware interrupts that can neither
be ignored nor delayed and must immediately be serviced by the
processor are termed as non-maskable interrupts.

 When a non-maskable interrupt arises, the CPU suddenly stops the
current execution and jumps to entertain the interrupt.

 Software Interrupts: A software interrupt is initiated by executing an instruction.

 This type of interrupt can be used by the programmer to initiate an interrupt procedure at

any desired point in the program.

 Software interrupt is a special CALL instruction that behaves like an interrupt rather than a

subroutine call.

 When an interrupt is initiated the Interrupt Service Routine (ISR) is executed.

 The way the processor chooses the branch address of the service routine, the interrupt may

be Non vectored interrupt or Vectored interrupt.

 Non vectored: In this case the branch address is assigned to a fixed location in the memory

where corresponding ISR is stored.

 Vectored: The source of the interrupt that supplies the branch information to the computer.

 This information is called the interrupt vector.

Modes of Data Transfer

 The data transfer between CPU and I/O devices may be handled

in a variety of modes.

 Some modes use the CPU as an intermediate path, others may

transfer data directly to and from the memory unit.

 Data transfer to and from peripherals may be handled in one of

the three possible modes.

❑ Programmed I/O

❑ Interrupt initiated I/O

❑ Direct Memory Access (DMA)

Programmed I/O

 Programmed I/O operations are results of I/O operations written in computer program.

 Each data item transfer is initiated by an instruction in the program.

 Example: In this case, the I/O device does not have direct access to the memory unit. A

transfer from I/O device to memory requires the execution of several instructions by the

CPU, including an input instruction to transfer the data from device to the CPU and store

instruction to transfer the data from CPU to memory.

 Transferring data under program control requires constant monitoring of the peripheral by

the CPU.

 The CPU stays in the program loop (polling) until the I/O unit indicates that it is ready for

data transfer.

 This is a time consuming process since it needlessly keeps the CPU busy.

 This situation can be avoided by using an interrupt facility.

X = A + B

PUSH A

PUSH B

ADD

STORE X

Interrupt Initiated I/O

 In programmed I/O, the CPU remain busy unnecessarily.

 This situation can very well be avoided by using an interrupt driven method

for data transfer.

 When the interface determines that the device is ready for data transfer, it

generates an interrupt request signal to the CPU.

 In the meantime the CPU can proceed for any other program execution.

 Upon detection of an external interrupt signal the CPU momentarily stops the

execution of current task, the control branches to a service routine to process

the required I/O transfer, and then return to the task it was originally

performing.

 But what if multiple devices generate interrupts simultaneously.

 In that case, there must have a way to decide which interrupt is to be serviced first.

 In other words, the priority must be assigned to all the devices for systemic

interrupt servicing.

 The concept of defining the priority among devices so as to know which one is to

be serviced first in case of simultaneous requests is called priority interrupt

system.

 Generally devices with high speed of data transfer, such as, magnetic disks are

assigned high priority than slow devices, such as, Keyboard.

 When multiple devices interrupt the system at the same time, the service given to

the device with highest priority.

 This could be done with either software or hardware methods.

Priority Interrupt

Software Priority Method

 In this method a Polling procedure is used to identify the highest priority device by software

means.

 There is one common branch address for all interrupt to execute the ISR.

 The program that takes care of interrupts begins the execution of the ISR and Polls the

interrupt sources in sequence.

 The order in which they are tested determines the priority of the interrupt and its

corresponding device.

 If the highest priority device interrupt signal is on, then the service is given to that device.

 Otherwise, the next lower priority source is tested and so on.

 The major disadvantage of this method is that it is quite slow.

 To overcome this, we can use hardware priority interrupt.

 A hardware priority interrupt unit functions as an overall manager

in an interrupt system environment.

 To speed up the operation, each interrupt source has its own

interrupt vector to access its own ISR directly.

 So, no polling is required as all the decisions are established by the

hardware priority interrupt unit.

 The hardware priority function can be established by either a serial

or a parallel connection of interrupt lines.

 The serial connection of hardware priority interrupt method is

known as Daisy-Chaining Method.

Hardware Priority Method

Daisy-Chaining Priority interrupt Method

PI PO Operation

0 0 Acknowledge has been blocked

1 0 Particular VAD selected (Pending interrupt)

1 1 Transmit Acknowledge to next device

 The daisy-chaining method involves connecting all the devices that can request an

interrupt in a serial manner.

 This configuration is governed by the priority of the devices.

 The device with the highest priority is placed first position (nearer to CPU) followed

by lower priority device and so on up to the lowest priority device.

 There is an interrupt request line which is common to all the devices and goes into the

CPU.

 If any of the device raises an interrupt, it places the LOW (0) state in the interrupt

request line.

 When no interrupts are pending, the line is in HIGH (1) state.

 The CPU responds to an interrupt request by enabling the interrupt acknowledge line.

 This signal is received at the PI (Priority in) input of device 1.

 If the device has not requested the interrupt or no pending request, it passes

this signal to the next lower priority device through its PO (priority out)

output as (PI = 1 & PO = 1).

 However, if the device had requested the interrupt, (PI =1 & PO = 0).

• The device consumes the acknowledge signal and block its further use by

placing 0 at its PO (priority out) output.

• The device then places its interrupt vector address (VAD) into the

processor bus.

• The device puts its interrupt request signal in HIGH (1) state to indicate

its interrupt has been taken care of.

NOTE: VAD is the address of the service routine which services that device.

 If a device gets 0 at its PI input, it generates 0 at the PO output to

tell other devices that acknowledge signal has been blocked, that is,

(PI = 0 & PO = 0).

 Therefore, by daisy chain arrangement we have ensured that the

highest priority interrupt gets serviced first and have established a

hierarchy.

 HW: Parallel connection of hardware priority interrupt

Direct Memory Access (DMA)

 The programmed I/O (CPU has to check for I/O device) and Interrupt-driven I/O (CPU
doesn’t has to check for I/O device, I/O device generate the interrupt signal) require the
active intervention of the processor to transfer data between memory and the I/O module,
and data transfer must traverse through the processor.

 DMA is a process of communication for data transfer between memory and input/output
device, controlled by an external circuit called DMA controller, without involvement of
CPU.

 DMA is a way to improve processor activity and I/O transfer rate by taking-over the job
of transferring data from processor and letting the processor to do other tasks.

 The DMA controller takes over the buses to manage the transfer directly between the I/O
devices and the memory unit.

 DMA controller is a hardware unit that allows I/O devices to access memory directly
without the participation of the processor.

DMA Controller

 Whenever an I/O device wants to transfer

the data to or from memory, it sends the

DMA request (DRQ) to the DMA

controller.

 DMA controller accepts this DRQ and asks

the CPU to hold for a few clock cycles by

sending it to the CPU Bus Request (BR) or

Hold request (HLD) signal.

 Bus Request (BR) or Hold request (HLD):

It is used by the DMA controller to request

the CPU to relinquish the control of the

buses.

IC 8257/8237

 After receiving Bus Request signal from DMA controller, the CPU acknowledges it

by granting Bus Grant (BG) or Hold acknowledgement (HLDA) to the DMA

Controller.

 Bus Grant (BG) or Hold acknowledgement (HLDA): It is activated by the CPU to

inform the DMA controller that the DMA controller can take control of the buses.

 After receiving the Hold acknowledgement (HLDA), DMA controller acknowledges

I/O device (DACK) that the data transfer can be performed to or from memory and

DMA controller takes the charge of the system bus.

 When the data transfer is completed, the DMA controller raise an Interrupt to the

processor that the task of data transfer is finished and the processor can take control

over the buses again and it will start processing where it has left.

 The DMA controller has an address register, a

word/data count register, data register and a

control logic unit.

 Whenever a processor is requested to read or

write a block of data, it instructs the DMA

controller by sending the following information.

 The first information is whether the data has to

be read from memory or the data has to write to

the memory.

 It passes this information via read or write

control line that is between the processor and

DMA controller Control logic unit.

DMA block diagram

 The processor also provides the starting address of the data block in the memory,

from where it has to be read or where the data block has to be written in memory.

 DMA controller stores this in its address register. It is also called the starting

address register.

 The processor also sends the word count, that is, how many words are to be read

or written.

 The DMA controller stores this information in the data count or word count

register. The register count is decremented by one after each word transfer and

internally it is tested for zero.

 The most important is the address of I/O device that wants to read or write data.

This information is stored in the data register.

 The CPU will not directly provide the BG to DMA

Controller. First the registers in the DMA controller are

selected by the CPU through the address bus by enabling

the DS (DMA Select) and RS (Register Select) inputs.

 Then it will provide the basic information of address

register, a word count register and a control register.

 When the BG (Bus Grant) input is 0, the CPU can

communicate with the Data Bus to read from or write to

the DMA registers.

 When BG =1, the CPU relinquish the buses and the

DMA controller can communicate directly with the

memory by specifying an address in the address bus and

activating the RD or WR control.

DMA Data Transfer

1. Burst Mode:

➢ Here, once the DMA controller gains the charge of the system bus,

an entire block of data is transferred in one contiguous sequence.

➢ Then it releases the system bus to the CPU only after completion

of data transfer.

➢ Till then the CPU has to wait for the system buses. CPU remains

inactive relatively long period of time.

➢ It can perform any work without the requirement of system bus.

➢ Basically used to transfer large volume of data.

➢ It is also called as Block transfer mode.

2. Cycle Stealing Mode:

➢ In this mode, the data transfer is byte by byte or word by word.

➢ The DMA controller forces the CPU to stop its operation and relinquish the

control over the bus for a short period to DMA controller.

➢ After the transfer of every byte, the DMA controller releases the bus and then

again requests for the bus.

➢ This will continue to complete the data transfer of entire block.

➢ In this way, the DMA controller steals the clock cycle for transferring every byte.

➢ Basically used to transfer very small volume of data.

➢ More time required to transfer total block of data.

➢ But, CPU utilization is more than the Burst mode.

3. Transparent Mode

➢ DMA controller takes charge of system bus for data transfer only when CPU performing operations
without using system bus.

➢ CPU executes the program and DMA controller takes charge of data transfer.

➢ When the CPU requires the system bus the DMA controller releases the control over buses.

➢ Complex hardware.

Advantages - allows a peripheral device to read from/write to memory without going

through the CPU

- allows for faster processing since the processor can be working on

something else while the peripheral can be busy with memory

Disadvantages - requires a DMA controller to carry out the operation, which increases

the cost of the system

- cache coherence problems

I/O Channel and Processor (IOP)

 Instead of having each interface
communicate with the main processor, a
computer may incorporate one or more
external processor and assign them to
communicate directly with all I/O devices.

 This secondary processor is called as I/O
channel or I/O processor (IOP).

 The communication between the IOP and
the devices is similar to the program
control method of transfer.

 And the communication of IOP with the
memory is similar to the direct memory
access method.

 In a large computer, each processor is independent of other processors, and
any processor can initiate operations.

 The IOP operates independent from CPU and transfer data between
peripherals and memory.

 The IOP is similar to a CPU except that it is designed to handle the I/O
communication.

 The CPU can act as master and the IOP act as slave processor.

 The CPU assigns the task of initiating operations but it is the IOP, who
executes.

 CPU instructions provide operations to start an I/O transfer.

 The IOP asks for CPU through interrupt.

Lecture of Module 5

Parallel Processing

Overview

 Introduction

 Flynn’s Classification

 Pipeline Architecture

 Pipeline Hazard

 RISC Architecture

 CISC Architecture

Introduction

 Computation is execution of instructions that operates on data.

 Computer architecture can be classified based on the number of

instructions that can be executed and how they operate on data.

Computer

Instructions Data

An Overview of Parallel Processing

 What is parallel processing?

▪ Parallel processing is a method to improve computer system
performance by executing two or more instructions
simultaneously.

 The goals of parallel processing.

▪ One goal is to reduce the “wall-clock” time or the amount of
real time that you need to wait for a problem to be solved.

▪ Another goal is to solve bigger problems that might not fit in
the limited memory of a single CPU.

Flynn’s Classification

 In general, digital computer can be classified in to four categories according
to the multiplicity of instruction and data stream.

 The classification was proposed by Michael J. Flynn in 1966.

 It is the most commonly accepted taxonomy of computer organization.

 In this classification, computers are classified by whether it processes a
single instruction at a time or multiple instructions simultaneously, and
whether it operates on one or multiple data sets.

 Flynn proposed the following categories of computer systems.

❖ Single Instruction Single Data (SISD)

❖ Single Instruction Multiple Data (SIMD)

❖ Multiple Instructions Single Data (MISD)

❖ Multiple Instructions Multiple Data (MIMD)

Computer Architectures

SISD SIMD MIMDMISD

SISD

 SISD machines executes a single instruction on individual data values using a
single processor.

 Traditional sequential architecture.

 Based on traditional Von Neumann uniprocessor architecture, instructions are
executed sequentially or serially, one step after the next.

 Until most recently, most computers are of SISD type.

 Parallelism can be achieved by Pipelining.

SIMD

 An SIMD machine executes a single instruction on multiple data values simultaneously

using many processors.

 Since there is only one instruction, each processor does not have to fetch and decode each

instruction. Instead, a single control unit does the fetch and decoding for all processors.

 SIMD architectures include array processors (ILLIAC-IV).

 Shared memory system may contain multiple memory modules.

MISD

 Multiple operations on same data.

 The result from one processing unit is input to next processing unit.

 It is not clear till now whether such machine exists or not.

 Some people regards Pipeline architecture, Systolic array machine as MISD.

MIMD

 Multiple independent CPUs are there.

 It may execute multiple instructions simultaneously, contrary to SIMD machines.

 Multiple instruction streams operating on multiple data streams.

 Each processor must include its own control unit that will assign to the processor
parts of a task or a separate task.

 It may look like multiple SISD (MSISD).

 MIMD machines are usually referred to as Multiprocessor or Multicomputer.

 It may have shared memory architecture or distributed memory architecture.

 It may be tightly coupled or loosely coupled.

 Example: CRAY X-MP, IBM SP/2, CRAY T3E.

In
terco

n
n
ectio

n
 N

etw
o
rk

S
h

ared
 M

em
o

ry

Multiprocessor Architecture

Shared Memory Architecture

Tightly Coupled

Multicomputer Architecture

Distributed Memory Architecture

Loosely Coupled

Interconnection Topology

▪ A system may also be classified by its topology.

▪ A topology is the pattern of connections between processors.

▪ The cost-performance tradeoff determines which topologies

to use for a multiprocessor system.

Whether parallelism can be achieved in uni-processor system?

Yes

Various techniques are there-

Pipelining is one of them

Pipeline

What is Pipeline?

 To complete operation of an instruction some sub-operations are to be performed.

 Generally sub-operations are-

o Instruction fetch

o Instruction decode

o Operand fetch

o Execution etc.

IF

ID

OF

EX

 Whether the performance of the system enhanced if each sub-operation is
performed in a dedicated segment?

That gives the concept of Pipeline

 Pipelining is used by all modern microprocessors to enhance the performance by
overlapped execution of instructions.

 Analogous to fluid flow in pipelines and assembly line in factories.

 It is a technique of decomposing a sequential process into sub-operations with
each sub-operation being in a dedicated segment.

 Each segment performs partial processing and is transferred to the next segment
in the pipeline.

 The final result is obtained after the instructions have passed through all
segments.

 If the stages of a pipeline are not balanced and one stage is slower than another,

the entire throughput of the pipeline is affected.

 The overlapping of computation is made possible by associating register with

each segment in the pipeline.

 Registers provide isolation between each segment so that each can operate on

distinct data simultaneously.

 In a non pipelined computer, these steps must be completed before the next

instruction can be issued.

 Pipelining doesn’t help latency of single instruction, it helps throughput of entire

workload.

 Time taken by each stage is tp and that is to be decided first.

General Structure of Pipeline

S 1 R2 R3 4R11 S R2 S R3 SInput

Clock

IF ID OF EX

IF ID OF EX

IF ID OF EX

i

i+1

i+2

IF ID OF EX

IF ID OF EX

IF ID OF EX

i

i+1

i+2

Non-Pipeline

Pipeline

Space-Time Diagram

1 2 3 4 5 6 7 8 9

I1

I1

I1

I1

I2

I2

I2

I2

I3

I3

I3

I3 I4

I4

I4

I4 I5

I5

I5

I5 I6

I6

I6

I6

Clock cycles

Segment IF

ID

OF

EX

1 2 3 4 5 6 7 8 9

I1

I1

I1

I1

Clock cycles
IF

ID

OF

EX

I2

I2

I2

I2

I3

Segment

Non-pipeline vs. Pipeline

n: Number of tasks to be performed

Conventional Machine (Non-Pipelined)

tn: Clock cycle

t1: Time required to complete the n instructions

t1 = n * tn

Pipelined Machine (k stages)

tp: Clock cycle (time to complete each sub operation)

tk: Time required to complete the n instructions

tk = (k + n - 1) * tp

Speedup (Sk)

Sk = n*tn / (k + n - 1)*tp

n →
Sk =

tn
tp

= k, if tn = k * tplim
Sk = k, this is the maximum theoretical

Speed up that a Pipeline can achieve.

Efficiency (Ek)

Ek =
Sk

k
=

n

k + (n-1)

n*tn

k (k + n - 1)*tp

=

If n >> k then

Hk =
n

[k + (n-1)] tp

=
1

tp

Pipelined system is better than non-pipelined system

Ek = 1

Throughput (Hk)

The number of instructions completed per unit time

Ek

tp

If then Ek = 1 Hk =

 Generally there are two areas of computer design where the pipeline mostly applicable.

▪ Instruction pipeline

▪ Arithmetic pipeline

 The pipeline what are discussed is Instruction pipeline.

 The Arithmetic pipeline divides an arithmetic operation into sub-operations for execution
in the pipeline segments.

 Pipelined arithmetic units are usually found in very high speed special purpose computers.

 Generally they are used to solve scientific, complex problems etc.

 An array multiplier is an example of pipelined multiplier.

IF ID OF EX

IF ID OF EX

IF ID OF EX

i

i+1

i+2

Example of Arithmetic Pipeline

 Suppose we want the operation Ai × Bi + Ci for i = 1, 2, 3, …, n

R3R4

R2R1

Multiplier

Adder

Ai Bi Ci

R5 Design arithmetic pipeline for floating point

addition/subtraction and multiplication/division.

Comments about Pipeline

❑ The good news

Multiple instructions are being processed at same time

Best case speedup is equal to number of stages of the pipeline

❑ The bad news

Instructions interfere with each other and unable to proceed at their designated tp - Hazard

- Example: different instructions may need the same piece of hardware (e.g., memory) in
same clock cycle – Structural Hazard

- Example: instruction may require a result produced by an earlier instruction that is not
yet complete – Data Hazard

- Example: branch and other instructions that changes the PC makes the fetch of the exact
instruction to be delayed or some of the wrong instructions entered to pipeline – Control
Hazard

 An important aspect of CPU architecture is the design of the instruction set for

the processor.

 The instruction set chosen for a particular computer determines the way that

machine language programs are constructed.

 As digital hardware became cheaper with the advancement of integrated

circuits, computer instructions tended to increase both in number and

complexity.

 In one approach, a computer has large number of instructions and many of

which are capable of performing complex tasks.

 A computer that follows this approach is referred to as a Complex Instruction

Set Computer (CISC).

CPU Architecture

CISC

 The instruction set of a CISC system is made efficient by

incorporating a large number of powerful instructions.

 The number of instructions are more and of variable length.

 More number of addressing modes.

 Single instruction for each statement.

 The goal is to reduce the size of the compiled program and to improve

the performance.

 Algorithms can be expressed in more concise form.

 Because of the limited size of the compiled program, the requirement

for main memory is also small.

 The lesser the number of instructions in a compiled program, the lesser is the

time spend by the CPU to fetch instructions.

 This decreases the execution time considerably.

 However, a highly efficient compiler is required to use the powerful instructions

more frequently.

 Hence, the system software (compiler) becomes huge in order to generate a

small object code.

 High level statements are implemented in hardware using complex decoding

circuits. Thus, more emphasis is given to the hardware.

 Example: Motorola 68000, DEC VAX, IBM 370, Intel Pentium etc.

Advantages

 Presence of more varieties of instructions, variable length instructions, and

more addressing modes eases the task of the compiler writer.

 Improved execution efficiency, because complex sequence of operations

can be implemented in microcode.

 Provides support for even more complex and sophisticated high-level

language.

 Programs are shorter and faster.

 Fewer instructions means fewer instruction bytes to be fetched.

 In a paging environment, smaller programs occupy fewer pages, reducing

number of page faults.

Disadvantages

 The control unit design (mainly instruction decoding) becomes complex since the instruction set is large

with heavily encoded instructions.

 There is a lot of hardware circuitry due to complexity of the CPU. This increases the hardware cost of the

system as well as power consumption.

 Due to increased circuits, the propagation delays are more, and the CPU cycle time is large and hence, the

effective clock speed is reduced.

 The heavy hardware prone to frequent failures.

 Troubleshooting and detecting a fault is a big task due to presence of a large number of circuits.

 These complex hardware circuits compete for space with the CPU registers leading to reduction in the

number of general-purpose registers.

 Reduction in the number of general-purpose registers leads to more memory-to-memory operations which

increases the average clock cycles required to complete an instruction execution.

 Not suitable for pipeline implementation due to presence of variable length instructions as balancing

pipeline stages becomes difficult.

RISC

 The second approach follows a different type of architecture.

 It is observed that usually 80% of instructions are used less frequently
only for 20% of the time.

 The 20% of instructions are used more frequently for 80% of the time.

 Keeping this point RISC architecture has been developed.

 Only simple instructions.

 Small instruction set.

 Instruction length remains same for all the instructions.

 Single clock cycle instruction execution.

 Large number of registers for storing the operands.

 Emphasis on register-to-register operation.

 The only references to memory are limited to load and store of an operand.

 Reduced addressing modes. This makes decoding instructions easy.

 Almost all instructions use register addressing mode except load and store.

 Additional addressing modes like implied or immediate addressing mode may be
included.

 Decoding circuits can be integrated as part of the CPU chip. This enables
instruction decoding faster.

 Suitable for pipeline processing. Emphasis on optimizing the instruction pipeline.

 No operation that combine LOAD/STORE with arithmetic.

 No more than one memory-addressed operand per instruction.

 Hardwired rather than microprogrammed control unit.

 Example: Motorola 88000, Intel i860, Power PC

Advantages

 Presence of simple instructions makes it low cycles per instruction.

 Reduced instructions lead to less hardware circuits.

 More space available for general purpose registers.

 Instruction execution is faster.

 More operands can be stored in registers

 Less memory references will be generated making instruction execution faster.

 Simple instruction format simplify the control unit.

 Suitable for pipeline implementation and easier to balance the pipeline stages.

Disadvantages

 Simple instructions make code size larger.

 More instruction bytes to be fetched.

 More memory space required to store program.

 In a paging environment, larger programs occupy

more pages, increasing number of page faults.

