
DIGITAL ELECTRONICS

Dr. Pradip Kumar Sahu

Department of Information Technology

Lecture of Module 1

Introduction to Digital Systems

Overview

 Introduction

 Digital and Analog Signals

 Logic Levels and Digital Waveforms

 Positive and Negative Logics

 Combinational and Sequential logics

 Types of Logic Devices

Digital electronics is a field of electronics involving the study of digital

signals and the engineering of devices that use or produce them.

This is in contrast to analog electronics and analog signals.

Digital electronic circuits are usually made from large assemblies of logic

gates, often packaged in integrated circuits.

Complex devices may have simple electronic representations of Boolean

logic functions.

Introduction

Analog versus Digital

 Most observables are analog

 But the most convenient way to represent and transmit information electronically is digital

 Analog/digital and digital/analog conversion is essential

Analog Signals: The analog signals were used in many systems to produce signals to carry

information. These signals are continuous in both values and time.

In short, analog signals – all signals that are natural or come naturally are analog signals.

Digital Signals: Unlike analog signals, digital signals are not continuous but signals are discrete in

value and time. These signals are represented by binary numbers and consist of different voltage

values.

Difference Between Analog And Digital Signal

Analog Signals Digital Signals

Continuous signals Discrete signals

Represented by sine waves Represented by square waves

Human voice, natural sound, analog

electronic devices are few examples

Computers, optical drives, and other

electronic devices

Continuous range of values Discontinuous values

Records sound waves as they are Converts into a binary waveform.

Only be used in analog devices.
Suited for digital electronics like

computers, mobiles and more.

Signal Examples Over Time

Time

Analog

Digital

Asynchronous

Synchronous

Continuous in value &
time

Discrete in value

Digital Signal

 An information variable represented by physical quantity.

 For digital systems, the variable takes on discrete values.

 Two level, or binary values are the most prevalent values in digital
systems.

 Binary values are represented abstractly by:

 digits 0 and 1

 words (symbols) False (F) and True (T)

 words (symbols) Low (L) and High (H)

 and words On and Off.

 Binary values are represented by values or ranges of values of physical
quantities

Binary Values: Other Physical Quantities

 What are other physical quantities represent 0 and 1?

 CPU: Voltage Levels

 Disk: Magnetic Field Direction

 CD: Surface Pits/Light

 Dynamic RAM: Electrical charge

Digital System

System State

Discrete
Information
Processing
System

Discrete
Inputs Discrete

Outputs

Takes a set of discrete information inputs and discrete internal information (system state) and

generates a set of discrete information outputs.

Digital representations of logical functions

 Digital signals offer an effective way to execute logic. The formalism for performing logic with binary
variables is called switching algebra or Boolean algebra.

 Digital electronics combines two important properties:

 The ability to represent real functions by coding the information in digital form.

 The ability to control a system by a process of manipulation and evaluation of digital variables
using switching algebra.

 Digital signals can be transmitted, received, amplified, and retransmitted with no degradation.

 Binary numbers are a natural method of expressing logic variables.

 Complex logic functions are easily expressed as binary function.

 Digital information is easily and inexpensively stored

Logic Levels

In digital circuits, a logic level is one of a finite number of states that a digital signal can inhabit. Logic levels are

usually represented by the voltage difference between the signal and ground, although other standards exist. The

range of voltage levels that represent each state depends on the logic family being used.

In binary logic the two levels are logical high and logical low, which generally correspond to binary numbers 1

and 0 respectively. Signals with one of these two levels can be used in Boolean algebra for digital circuit design

or analysis.

Logic level Active-high signal Active-low signal

Logical high 1 0

Logical low 0 1

5.0

4.0

3.0

2.0

1.0

0.0

Volts

HIGH

LOW

HIGH

LOW

OUTPUT INPUT

Combinational Logic Circuit

The outputs of Combinational Logic Circuits are

only determined by the logical function of their

current input state, logic “0” or logic “1”, at any

given instant in time.

Sequential Logic Circuits

the output state of a “sequential logic circuit” is a function of

the following three states, the “present input”, the “past input”

and/or the “past output”. Sequential Logic circuits remember

these conditions and stay fixed in their current state until the

next clock signal changes one of the states, giving sequential

logic circuits “Memory”.

Sequential logic circuits are generally termed as two state or

Bistable devices which can have their output or outputs set in

one of two basic states, a logic level “1” or a logic level “0” and

will remain “latched” (hence the name latch) indefinitely in this

current state or condition until some other input trigger pulse or

signal is applied which will cause the bistable to change its state

once again.

Fixed function Logic devices

Fixed logic device such as a logic gate or a multiplexer or a flip-flop performs a given logic function that is known

at the time of device manufacture

Complexity Classification for Fixed-Function ICs

SSI (Small-scale integration) – 10 gates–

MSI (Medium-scale integration) – 10—100 gates

LSI (Large-scale integration) – 100—10,000 gates

VLSI (Very large-scale integration) – 10,000—100,000 gates

ULSI (Ultra large-scale integration) -- >100,000 gates

Programmable Logic Devices

A programmable logic device can be configured by the user to perform a large variety of logic functions

A programmable logic device (PLD) is an electronic component used to build reconfigurable digital circuits

PLD has an undefined function at the time of manufacture

Before using PLD in a circuit it must be programmed (reconfigured) by using a specialized program

Purpose of PLD:

 Permits elaborate digital logic designs to be implemented by the user on a single device.

 Is capable of being erased and reprogrammed with a new design.

Advantages of PLDs

 Programmability

 Re-programmability

 PLDs can be reprogrammed without being removed from the circuit board.

 Low cost of design

 Immediate hardware implementation

 less board space

 lower power requirements (i.e., smaller power supplies)

 Faster assembly processes

 higher reliability (fewer ICs and circuit connections => easier troubleshooting)

 availability of design software

Types of PLDs

 SPLDs (Simple Programmable Logic Devices)

 ROM (Read-Only Memory)

 PLA (Programmable Logic Array)

 PAL (Programmable Array Logic)

 GAL (Generic Array Logic)

 HCPLD (High Capacity Programmable Logic Device)

 CPLD (Complex Programmable Logic Device)

 FPGA (Field-Programmable Gate Array)

PLD

SPLD

ROM PLA PAL GAL

HCPLD

CPLD FPGA

PLD Configuration

 Combination of a logic device and memory

 Memory stores the pattern the PLD was programmed with

 EPROM

 Non-volatile and reprogrammable

 EEPROM

 Non-volatile and reprogrammable

 Static RAM (SRAM)

 Volatile memory

 Flash memory

 Non-volatile memory

 Antifuse

 Non-volatile and no re-programmability

PLA: A programmable logic array (PLA) has a programmable AND gate array, which links to

a programmable OR gate array

PLA

PAL: PAL devices have arrays of transistor cells arranged in a "fixed-OR, programmable-
AND" plane

PAL

GAL: An improvement on the PAL was the Generic Array Logic device

This device has the same logical properties as the PAL but can be erased and

reprogrammed

The GAL is very useful in the prototyping stage of a design, when any bugs in the logic

can be corrected by reprogramming

GALs are programmed and reprogrammed using a PAL programmer

GAL

HCPLD

 CPLD (Complex Programmable Logic Device)

 Lies between PALs and FPGAs in degree of complexity.

 Inexpensive

 FPGA (Field-Programmable Gate Array)

 Truly parallel design and operation

 Fast turnaround design

 Array of logic cells surrounded by programmable I/O blocks

FPGA

Number Systems

Overview

 Introduction

 Number Systems [binary, octal and hexadecimal]

 Number System conversions

Introduction

• Number System

Code using symbols that refer to a number of items

• Decimal Number System

Uses ten symbols (base 10 system)

• Binary System

Uses two symbols (base 2 system)

• Octal Number System

Uses eight symbols (base 8 system)

• Hexadecimal Number System

Uses sixteen symbols (base 16 system)

• Numeric value of symbols in different positions.

• Example - Place value in binary system:

Binary

8s 4s 2s 1s

Number

Place Value

Yes Yes No No

1 0 01

RESULT: Binary 1100 = decimal 8 + 4 + 0 + 0 = decimal 12

Binary Number

BINARY TO DECIMAL CONVERSION

Convert Binary Number 110011 to a Decimal Number:

32 + 16 + 0 + 0 + 2 + 1 = 51

1 1 0 0 1 1

Decimal

Binary

TEST

Convert the following binary

numbers into decimal numbers:

Binary 1001 =

Binary 1111 =

Binary 0010 =

TEST

Convert the following binary

numbers into decimal numbers:

Binary 1001 = 9

Binary 1111 =

Binary 0010 =

15

2

DECIMAL TO BINARY CONVERSION

Divide by 2 Process

1 101

Decimal # 13 ÷ 2 = 6 remainder 1

6 ÷ 2 = 3 remainder 0

3 ÷ 2 = 1 remainder 1

1 ÷ 2 = 0 remainder 1

TEST

Convert the following decimal

numbers into binary:

Decimal 11 =

Decimal 4 =

Decimal 17 =

TEST

Convert the following decimal

numbers into binary:

Decimal 11 =

Decimal 4 =

Decimal 17 =

1011

0100

10001

HEXADECIMAL NUMBER SYSTEM

Uses 16 symbols -Base 16 System, 0-9, A, B, C, D, E, F

Decimal
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Binary
0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

0000

Hexadecimal
0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

100001

HEXADECIMAL AND BINARY CONVERSIONS

•Hexadecimal to Binary Conversion

Hexadecimal C 3

Binary 1100 0011

Binary 1110 1010

Hexadecimal E A

•Binary to Hexadecimal Conversion

DECIMAL TO HEXADECIMAL CONVERSION

Divide by 16 Process

Decimal # 47 ÷ 16 = 2 remainder 15

2 ÷ 16 = 0 remainder 2

F2

HEXADECIMAL TO DECIMAL CONVERSION

Convert hexadecimal number 2DB to a decimal number

512 + 208 + 11 = 731

2 D BHexadecimal

Decimal

Place Value 256s 16s 1s

(256 x 2) (16 x 13) (1 x 11)

TEST

Convert Hexadecimal number A6 to Binary

Convert Hexadecimal number 16 to Decimal

Convert Decimal 63 to Hexadecimal

63 =

16 =

A6 = 1010 0110

(Binary)

22

(Decimal)

3F

(Hexadecimal)

 Translate every hexadecimal digit into its

4-bit binary equivalent

 Examples:

(3A5)16 = (0011 1010 0101)2

(12.3D)16 = (0001 0010 . 0011 1101)2

(1.8)16 = (0001 . 1000)2

OCTAL NUMBERS

Uses 8 symbols -Base 8 System

0, 1, 2, 3, 4, 5, 6, 7

Decimal

0

1

2

3

4

5

6

7

8

9

Binary

000

001

010

011

100

101

110

111

000

001

Octal

0

1

2

3

4

5

6

7

10

11

001

001

OCTAL AND BINARY CONVERSIONS

•Octal to Binary Conversion

Octal 5 6

Binary 101 110

Binary 100 101

Octal 4 5

•Binary to Octal Conversion

DECIMAL TO OCTAL CONVERSION

Divide by 8 Process

Decimal # 129 ÷ 8 = 16 remainder 1

2 ÷ 8 = 0 remainder 2

12

16 ÷ 8 = 2 remainder 0

0

OCTAL TO DECIMAL CONVERSION

Convert octal number 201to a decimal number

128 + 0 + 1 = 129

2 0 1Octal

Decimal

Place Value 64s 8s 1s

(64 x 2) (8 x 0) (1 x 1)

Convert 0.101112 to base 8: 0.101_110 = 0.568

Convert 0.1110101 to base 16: 0.1110_1010 = 0.EA16

Arithmetic Operations

Overview

 Arithmetic Operations

 Decimal Arithmetic

 Binary Arithmetic

 Signed Binary Numbers

Arithmetic Operations

Addition

 Follow same rules as in decimal addition, with
the difference that when sum is 2 indicates a
carry (not a 10)

 Learn new carry rules

 0+0 = sum 0 carry 0

 0+1 = 1+0 = sum 1carry 0

 1+1 = sum 0 carry1

 1+1+1 = sum 1carry1

Carry 1 1 1 1 1 0

Augend 0 0 1 0 0 1

Addend 0 1 1 1 1 1

Result 1 0 1 0 0 0

1 1 1

0 1 0 1

+ 1 0 1 1

1 0 0 0 0

Carry Values

Subtraction
 Learn new borrow rules

 0-0 = 1-1 = 0 borrow 0

 1-0 = 1 borrow 0

 0-1 = 1 borrow 1

Borrow 1 1 0 0

Minuend 1 1 0 1 1

Subtrahend 0 1 1 0 1

Result 0 1 1 1 0

The rules of the decimal base applies to binary

as well. To be able to calculate 0-1, we have to

“borrow one” from the next left digit.

1 2

0 2 0 2

1 0 1 0

- 0 1 1 1

0 0 1 1

Decimal Subtraction

 9’s Complement Method

 10’s Complement Method

9’s Complement Method
Example: 72532 – 3250

9’s complement of 3250 is

9 9 9 9 9 – 0 3 2 5 0 = 9 6 7 4 9

7 2 5 3 2

+ 9 6 7 4 9

1 6 9 2 8 1

+1

6 9 2 8 2If Carry, result is positive.

Add carry to the partial result

Example: 3250 – 72532

9’s complement of 72532 is

9 9 9 9 9 – 7 2 5 3 2 = 2 7 4 6 7

0 3 2 5 0

+ 2 7 4 6 7

3 0 7 1 7

= – 6 9 2 8 2

If no Carry, result is negative.

Magnitude is 9’s complement of the result

Decimal Subtraction

 9’s Complement Method

 10’s Complement Method

10’s Complement Method
Example: 72532 – 3250

10’s complement of 3250 is

1 0 0 0 0 0 – 0 3 2 5 0 = 9 6 7 5 0

7 2 5 3 2

+ 9 6 7 5 0

1 6 9 2 8 2

Result is 6 9 2 8 2

If Carry, result is positive.

Discard the carry

Example: 3250 – 72532

10’s complement of 72532 is

1 0 0 0 0 0 – 7 2 5 3 2 = 2 7 4 6 8

0 3 2 5 0

+ 2 7 4 6 8

3 0 7 1 8

= – 6 9 2 8 2

If no Carry, result is negative.

Magnitude is 10’s complement of the result

Binary Subtraction

 1’s Complement Method

 2’s Complement Method

1’s Complement Method

Example: 1010100 – 1000100

1’s complement of 1000100 is 0111011

1 0 1 0 1 0 0

+ 0 1 1 1 0 1 1

1 0 0 0 1 1 1 1

+1

0 0 1 0 0 0 0If Carry, result is positive.

Add carry to the partial result

Example: 1000100 – 1010100

1’s complement of 1010100 is 0101011

1 0 0 0 1 0 0

+ 0 1 0 1 0 1 1

1 1 0 1 1 1 1

= – 0 0 1 0 0 0 0

If no Carry, result is negative.

Magnitude is 1’s complement of the result

Binary Subtraction

 1’s Complement Method

 2’s Complement Method

2’s Complement Method

If Carry, result is positive.

Discard the carry

If no Carry, result is negative.

Magnitude is 2’s complement of the result

Example: 1010100 – 1000100

2’s complement of 1000100 is 0111100

Example: 1000100 – 1010100

2’s complement of 1010100 is 0101100

1 0 1 0 1 0 0

+ 0 1 1 1 1 0 0

1 0 0 1 0 0 0 0

0 0 1 0 0 0 0

1 0 0 0 1 0 0

+ 0 1 0 1 1 0 0

1 1 1 0 0 0 0

= – 0 0 1 0 0 0 0

Signed Binary Numbers

 When a signed binary number is positive

• The MSB is ‘0’ which is the sign bit and rest bits represents the magnitude

 When a signed binary number is negative

• The MSB is ‘1’ which is the sign bit and rest of the bits may be represented

by three different ways

❖ Signed magnitude representation

❖ Signed 1’s complement representation

❖ Signed 2’s complement representation

Signed Binary Numbers

- 9 + 9

Signed magnitude representation 1 1001 0 1001

Signed 1’s complement representation 1 0110 0 1001

Signed 2’s complement representation 1 0111 0 1001

- 0 + 0

Signed magnitude representation 1 0000 0 0000

Signed 1’s complement representation 1 1111 0 0000

Signed 2’s complement representation -None- 0 0000

Range of Binary Number

Binary Number of n bits

 General binary number: ()

 Signed magnitude binary number: – () to + ()

 Signed 1’s complement binary number: – () to + ()

 Signed 2’s complement binary number: – () to + ()

Signed Binary Number Arithmetic

 Add or Subtract two signed binary number including its sign bit either signed 1’s

complement method or signed 2’s complement method

 The 1’s complement and 2’s complement rules of general binary number is applicable

to this

• It is important to decide how many bits we will use to represent the number

• Example: Representing +5 and -5 on 8 bits:

– +5: 00000101

– -5: 10000101

• So the very first step we have to decide on the number of bits to represent number

Digital Codes

Overview

 Introduction

 Binary Coded Decimal Code

 EBCDIC Code

 Excess-3 Code

 Gray Code

 ASCII Code

Introduction

 Calculations or computations are not useful until their results can be displayed in a

manner that is meaningful to people.

 We also need to store the results of calculations, and provide a means for data input.

 Thus, human-understandable characters must be converted to computer-

understandable bit patterns using some sort of character encoding scheme.

 As computers have evolved, character codes have evolved.

 Larger computer memories and storage devices permit richer character codes.

 The earliest computer coding systems used six bits.

 Binary-coded decimal (BCD) was one of these early codes. It was used by IBM

mainframes in the 1950s and 1960s.

 In 1964, BCD was extended to an 8-bit code, Extended Binary-Coded Decimal

Interchange Code (EBCDIC).

 EBCDIC was one of the first widely-used computer codes that supported upper and

lowercase alphabetic characters, in addition to special characters, such as punctuation

and control characters.

 EBCDIC and BCD are still in use by IBM mainframes today.

 Other computer manufacturers chose the 7-bit ASCII (American Standard Code for

Information Interchange) as a replacement for 6-bit BCD codes.

 While BCD and EBCDIC were based upon punched card codes, ASCII was based upon

telecommunications (Telex) codes.

 Until recently, ASCII was the dominant character code outside the IBM mainframe world.

Binary Coded Decimal (BCD)

 Consider 5 + 5

 5 0 1 0 1

 +5 0 1 0 1

 giving 1 0 1 0 which is binary 10

but not a BCD digit!

 What to do?

 Try adding 6??

 Had 1010 and want to add 6 or 0110

 so 1 0 1 0

 plus 6 0 1 1 0

 Giving 1 0 0 0 0

 Add 7 + 6

 have 7 0 1 1 1

 plus 6 0 1 1 0

 Giving 1 1 0 1 and again out

of range

 Adding 6 0 1 1 0

 Giving 1 0 0 1 1 so a 1 carries

out to the next BCD digit

 FINAL BCD answer 0001 0011

or 1310

 Add the BCD for 417 to 195

 Would expect to get 612

 BCD setup - start with Least Significant

Digit

 0 1 0 0 0 0 0 1 0 1 1 1

 0 0 0 1 1 0 0 1 0 1 0 1

 1 1 0 0

 Adding 6 0 1 1 0

 Gives 1 0 0 1 0

 Had a carry to the 2nd BCD digit position

 1

 0 1 0 0 0 0 0 1 done

 0 0 0 1 1 0 0 1 0 0 1 0

 1 0 1 1

 Again must add 6 0 1 1 0

 Giving 1 0 0 0 1

 And another carry

 Had a carry to the 3rd BCD digit position

 1

 0 1 0 0 done done

 0 0 0 1 0 0 0 1 0 0 1 0

 0 1 1 0

 And answer is 0110 0001 0010 or the BCD for the base 10 number

612

EBCDIC Code

 The EBCDIC code is an 8-bit alphanumeric code that was
developed by IBM to represent alphabets, decimal digits and
special characters, including control characters.

 The EBCDIC codes are generally the decimal and the hexadecimal
representation of different characters.

 This code is rarely used by non IBM-compatible computer systems.

The Excess-3- Code

 Excess-3 code is self complementary code? Justify.

Gray Code

 Gray code is another important code that is also used to convert the decimal

number into 8-bit binary sequence. However, this conversion is carried in a

manner that the contiguous digits of the decimal number differ from each other by

one bit only

 In pure binary coding or 8421 BCD then counting from 7 (0111) to 8 (1000)

requires 4 bits to be changed simultaneously

 Gray coding avoids this since only one bit changes between subsequent numbers

Binary to Gray

Example:

Binary:

Gray:

+ ++++ +

1 0 11 10

1 1 1 0 1 1
g5 g4 g3 g2 g1 g0

b5 b4 b3 b2 b1 b0 g5 = b5

g4 = b5 Ꚛ b4

g3 = b4 Ꚛ b3

g2 = b3 Ꚛ b2

g1 = b2 Ꚛ b1

g0 = b1 Ꚛ b0

Gray to Binary

b5 = g5

b4 = g5 Ꚛ g4

b3 = g5 Ꚛ g4 Ꚛ g3

b2 = g5 Ꚛ g4 Ꚛ g3 Ꚛ g2

b1 = g5 Ꚛ g4 Ꚛ g3 Ꚛ g2 Ꚛ g1

b0 = g5 Ꚛ g4 Ꚛ g3 Ꚛ g2 Ꚛ g1 Ꚛ g0

Reflection of Gray Codes

00

01

11

10

0

0

0

0

1

1

1

1

10

11

01

00

00

01

11

10

0

0

0

0

0

0

0

0

000

001

011

010

110

111

101

100

1

1

1

1

1

1

1

1

100

101

111

110

010

011

001

000

So, called reflected code

Alphanumeric Codes

 How do you handle alphanumeric data?

 Easy answer!

 Formulate a binary code to represent characters! ☺

 For the 26 letter of the alphabet would need 5 bit for

representation.

 But what about the upper case and lower case, and the digits, and

special characters

ASCII

 ASCII stands for American Standard Code for Information Interchange

 The code uses 7 bits to encode 128 unique characters

 Formally, work to create this code began in 1960. 1st standard in 1963. Last updated in 1986

 Represents the numbers

 All start 011 xxxx and the xxxx is the BCD for the digit

 Represent the characters of the alphabet

 Start with either 100, 101, 110, or 111

 A few special characters are in this area

 Start with 010 – space and !”#$%&’()*+.-,/

 Start with 000 or 001 – control char like ESC

ASCII Properties

ASCII has some interesting properties:

▪ Digits 0 to 9 span Hexadecimal values 3016 to 3916

▪ Upper case A - Z span 4116 to 5A16

▪ Lower case a - z span 6116 to 7A16

• Lower to upper case translation (and vice versa)

occurs by flipping bit 6.

▪ Delete (DEL) is all bits set, a carryover from when

punched paper tape was used to store messages.

▪ Punching all holes in a row erased a mistake!

Lecture of Module 2

Logic Gates

Overview

 Introduction

 Logical Operators

 Basic Gates

 Universal Gates

 Realization of Basic Gates using Universal Gates

 Other Logic Gates

Introduction

Binary variables take on one of two values

Logical operators operate on binary values and binary variables

Basic logical operators are the logic functions AND, OR and NOT

Logic gates implement logic functions

Boolean Algebra: a useful mathematical system for specifying and

transforming logic functions

We study Boolean algebra as a foundation for designing and analyzing digital

systems

Binary Variables

 Recall that the two binary values have different names:

 True/False

 On/Off

 Yes/No

 1/0

 We use 1 and 0 to denote the two values.

 Variable identifier examples:

 A, B, x, y, z, or X1 , X2 etc. for now

Logical Operations

 The three basic logical operations are:

 AND

 OR

 NOT

 AND is denoted by a dot (·)

 OR is denoted by a plus (+)

 NOT is denoted by an over bar (¯), a single quote mark (') after, or (~) before

the variable

Operator

AND

0 · 0 = 0

0 · 1 = 0

1 · 0 = 0

1 · 1 = 1

OR

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 1

NOT

10=

01=

▪Operators operate on binary values and binary variables

▪Operations are defined on the values "0" and "1" for each operator:

Truth Tables

 Truth table - a tabular listing of the values of a function for all possible combinations of values

on its arguments

 Example: Truth tables for the basic logic operations:

111

001

010

000

Z = X·YYX

AND OR

X Y Z = X+Y

0 0 0

0 1 1

1 0 1

1 1 1

NOT

X Z = ̅X

0 1

1 0

Logic Function Implementation

 Using Switches

 For inputs:

 logic 1 is switch closed

 logic 0 is switch open

 For outputs:

 logic 1 is light on

 logic 0 is light off.

Switches in parallel => OR

Switches in series => AND

Logic Gates

 In the earliest computers, switches were opened and closed by magnetic

fields produced by energizing coils in relays. The switches in turn opened

and closed the current paths.

 Later, vacuum tubes that open and close current paths electronically replaced

relays.

 Today, transistors are used as electronic switches that open and close current

paths.

 NOT, AND and OR Gates (Basic gates)

 NAND and NOR Gates (Universal logic gates)

NOT Gate

A NOT gate accepts one input signal (0 or 1) and returns the opposite signal as output

AND Gate

If all inputs are 1, the output is 1; otherwise, the output is 0

Or if any input is 0, output is 0

OR Gate

If all inputs are 0, the output is 0; otherwise, the output is 1

Or if any input is 1, output will be 1

Universal Gates

❑ Universal Logic Gate: Any basic gate or logic function can be

realized using this gate

❑ Two universal logic gates

❖ NAND

❖ NOR

NAND Gate

If all inputs are 1, the output is 0; otherwise, the output is 1

NOR Gate

If all inputs are 0, the output is 1; otherwise, the output is 0

NAND gates are sometimes called universal gates because they can be used to

produce the other basic Boolean functions.

Inverter

AA

AND gate

A

B
AB

A

B

A + B

OR gate

A

B

A + B

NOR gate

Realization

NOR gates are also universal gates and can form all of the basic gates.

Inverter

AA

OR gate

A

B
A + B

A

B

AB

AND gate

A

B

AB

NAND gate

Realization

XOR Gate

If odd numbers of inputs are 1, the output is 1; otherwise, the output is 0

X-NOR Gate

X Y Z
XNOR

X

Y
Z 0 0 1

0 1 0

1 0 0

1 1 1

Constructing Gates

Transistor

A device that acts either as a wire that conducts electricity or as a resistor that blocks the
flow of electricity, depending on the voltage level of an input signal

A transistor has no moving parts, yet acts like a switch

It is made of a semiconductor material, which is neither a particularly good conductor of
electricity nor a particularly good insulator

A transistor has three terminals

 A source

 A base

 An emitter, typically connected to a ground wire

If the electrical signal is grounded, it is allowed to flow through
an alternative route to the ground (literally) where it can do
no harm

AND Gate OR Gate

Timing Diagram

A

B

F=A•B

G=A+B

H=A’

1

1

1

1

1
0

0

0

0

0

t0 t1 t2 t3 t4 t5 t6

Input

signals

Gate

Output

Signals

Basic

Assumption:

Zero time for

signals to

propagate

Through gates

Transitions

Gate Delay

 In actual physical gates, if one or more input changes causes the output to change, the

output change does not occur instantaneously.

 The delay between an input change(s) and the resulting output change is the gate delay

denoted by tG:

tG tG

Input

Output

Time (ns)

0

0

1

1

0 0.5 1 1.5

tG = 0.3 ns

Boolean Algebra

Overview

 Introduction

 Boolean Algebra

 Properties

 Algebraic Manipulation

 De-Morgan Theorem

 Complementation

 Truth Table

Introduction

 Understand the relationship between Boolean logic and digital computer circuits.

 Learn how to design simple logic circuits.

 Understand how digital circuits work together to form complex computer systems.

 In the latter part of the nineteenth century, George Boole suggested that logical

thought could be represented through mathematical equations.

 Computers, as we know them today, are implementations of Boole’s Laws of

Thought.

 In this chapter, you will learn the simplicity that constitutes the essence of the

machine (Boolean Algebra).

Boolean algebra

 Boolean algebra is a mathematical system for the manipulation of

variables that can have one of two values.

 In formal logic, these values are “true” and “false.”

 In digital systems, these values are “on” and “off,” 1 and 0, or “high”

and “low.”

 Boolean expressions are created by performing operations on Boolean

variables.

 Common Boolean operators include AND, OR, NOT, XOR, NAND

and NOR

 A Boolean operator can be completely described using a truth

table.

 The truth table for the Boolean operators AND, OR and NOT are

shown at the right.

 The AND operator is also known as a Boolean product.

 The OR operator is the Boolean sum.

 The NOT operation is most often designated by an over-bar. It is

sometimes indicated by a prime mark (‘) or an “elbow” ().

 A Boolean function has:

• At least one Boolean variable,

• At least one Boolean operator, and

• At least one input from the set {0,1}

 It produces an output that is also a member of the set {0,1}

Now you know why the binary numbering system is so

handy in digital systems

Conceptually

Boolean

Algebra

Logic

Circuit
Truth

Table

 Digital computers contain circuits that implement Boolean functions.

 The simpler that we can make a Boolean function, the smaller the circuit

that will result.

 Simpler circuits are cheaper to build, consume less power, and run faster

than complex circuits.

 With this in mind, we always want to reduce our Boolean functions to their

simplest form.

 There are a number of Boolean identities that help us to do this.

 Most Boolean identities have an AND (product) form as well as an OR

(sum) form.

Properties of Boolean Algebra

 Our second group of Boolean identities should be familiar to you

from your study of algebra:

 Our last group of Boolean identities are perhaps the most useful.

 If you have studied set theory or formal logic, these laws are also familiar to you.

 We can use Boolean identities to simplify the function:

as follows:

With respect to duality, Identities 1 – 8 have the following

relationship:

1. X + 0 = X 2. X • 1 = X (dual of 1)

3. X + 1 = 1 4. X • 0 = 0 (dual of 3)

5. X + X = X 6. X • X = X (dual of 5)

7. X + X’ = 1 8. X • X’ = 0 (dual of 8)

Algebraic Manipulation

 Boolean algebra is a useful tool for simplifying digital circuits.

 Why do it? Simpler can mean cheaper, smaller, faster.

 Example: Simplify F = x’yz + x’yz’ + xz.
F= x’yz + x’yz’ + xz
= x’y(z+z’) + xz
= x’y•1 + xz
= x’y + xz

 Example: Prove x’y’z’ + x’yz’ + xyz’ = x’z’ + yz’

 Proof: x’y’z’+ x’yz’+ xyz’
= x’y’z’ + x’yz’ + x’yz’ + xyz’
= x’z’(y’+y) + yz’(x’+x)
= x’z’•1 + yz’•1
= x’z’ + yz’

 Sometimes it is more economical to build a circuit using the complement of a

function (and complementing its result) than it is to implement the function

directly.

 DeMorgan’s law provides an easy way of finding the complement of a Boolean

function.

 DeMorgan’s law states:

Complementation

 Find the complement of F(x, y, z) = x y’ z’ + x’ y z

 G = F’ = (xy’z’ + x’yz)’

= (xy’z’)’ • (x’yz)’ DeMorgan

= (x’+y+z) • (x+y’+z’) DeMorgan again

 Note: The complement of a function can also be derived by finding the

function’s dual, and then complementing all of the literals

Truth Table

 Enumerates all possible combinations of variable values

and the corresponding function value

 Truth tables for some arbitrary functions

F1(x,y,z), F2(x,y,z), and F3(x,y,z) are shown to the right.

x y z F1 F2 F3

0 0 0 0 1 1

0 0 1 0 0 1

0 1 0 0 0 1

0 1 1 0 1 1

1 0 0 0 1 0

1 0 1 0 1 0

1 1 0 0 0 0

1 1 1 1 0 1

 Truth table: a unique representation of a Boolean function

 If two functions have identical truth tables, the functions
are equivalent (and vice-versa).

 Truth tables can be used to prove equality theorems.

 However, the size of a truth table grows exponentially with
the number of variables involved. This motivates the use of
Boolean Algebra.

Standard SOP and POS

Overview

 Introduction

 SOP and POS

Minterms and Maxterms

Canonical Forms

Conversion Between Canonical Forms

Standard Forms

 Through our exercises in simplifying Boolean expressions, we

see that there are numerous ways of stating the same Boolean

expression.

These “synonymous” forms are logically equivalent.

Logically equivalent expressions have identical truth tables.

 In order to eliminate as much confusion as possible, designers

express Boolean functions in standardized or canonical form.

Introduction

 There are two canonical forms for Boolean expressions: Sum-Of-Products
(SOP) and Product-Of-Sums (POS).

 Recall the Boolean product is the AND operation and the Boolean sum
is the OR operation.

 In the Sum-Of-Products form, ANDed variables are ORed together.

 For example:

 In the Product-Of-Sums form, ORed variables are ANDed together:

 For example:

SOP and POS

Definitions

 Literal: A variable or its complement

 Product term: literals connected by •

 Sum term: literals connected by +

 Minterm: a product term in which all the variables appear exactly

once, either complemented or un-complemented

 Maxterm: a sum term in which all the variables appear exactly

once, either complemented or un-complemented

Truth Table notation for Minterms and Maxterms

 Minterms and Maxterms are easy to denote
using a truth table.

 Example:
Assume 3 variables x,y,z (order is fixed)

x y z Minterm Maxterm

0 0 0 x’y’z’ = m0 x+y+z = M0

0 0 1 x’y’z = m1 x+y+z’ = M1

0 1 0 x’yz’ = m2 x+y’+z = M2

0 1 1 x’yz = m3 x+y’+z’= M3

1 0 0 xy’z’ = m4 x’+y+z = M4

1 0 1 xy’z = m5 x’+y+z’ = M5

1 1 0 xyz’ = m6 x’+y’+z = M6

1 1 1 xyz = m7 x’+y’+z’ = M7

 Any Boolean function F() can be expressed as a
unique sum of minterms and a unique product
of maxterms (under a fixed variable ordering).

 In other words, every function F() has two
canonical forms:

 Canonical Sum-Of-Products (sum of
minterms)

 Canonical Product-Of-Sums (product of
maxterms)

Canonical Forms

 Canonical Sum-Of-Products:

The minterms included are those mj such that F() = 1 in row j of the truth table for F().

 Canonical Product-Of-Sums:

The maxterms included are those Mj such that F() = 0 in row j of the truth table for F().

• f1(a,b,c) = ∑ m(1,2,4,6), where ∑ indicates that this is a sum-of-products form, and

m(1,2,4,6) indicates that the minterms to be included are m1, m2, m4, and m6.

• f1(a,b,c) = ∏ M(0,3,5,7), where ∏ indicates that this is a product-of-sums form,

and M(0,3,5,7) indicates that the maxterms to be included are M0, M3, M5, and M7.

• Since mj = Mj’ for any j,

∑ m(1,2,4,6) = ∏ M(0,3,5,7) = f1(a,b,c)

Conversion Between Canonical Forms

 Replace ∑ with ∏ (or vice versa) and replace those j’s that appeared in

the original form with those that do not.

 Example:

f1(a,b,c) = a’b’c + a’bc’ + ab’c’ + abc’

= m1 + m2 + m4 + m6

= ∑(1,2,4,6)

= ∏(0,3,5,7)

= (a+b+c)•(a+b’+c’)•(a’+b+c’)•(a’+b’+c’)

=+++=+++=)7,5,2,0(7520 mmmmmXYZZYXZYXZYXF

=+++=+++=)6,4,3,1(6431 mmmmmZXYZYXYZXZYXF

=
++++++++==

=+++=

+++=

)6,4,3,1(

))()()((6431

64316431

6431

M

ZYXZYXZYXZYXMMMMF

mmmmmmmmF

mmmmF

Standard Forms

• Standard forms are “like” canonical forms, except that not all

variables need appear in the individual product (SOP) or sum

(POS) terms.

• Example:

f1(a,b,c) = a’b’c + bc’ + ac’

is a standard sum-of-products form

• f1(a,b,c) = (a+b+c)•(b’+c’)•(a’+c’)

is a standard product-of-sums form.

Conversion of SOP from standard to canonical form

 Expand non-canonical terms by inserting equivalent of 1 in

each missing variable x:

(x + x’) = 1

 Remove duplicate minterms

 f1(a,b,c) = a’b’c + bc’ + ac’

= a’b’c + (a+a’)bc’ + a(b+b’)c’

= a’b’c + abc’ + a’bc’ + abc’ + ab’c’

= a’b’c + abc’ + a’bc’ + ab’c’

Conversion of POS from standard to canonical form

 Expand non-canonical terms by adding 0 in terms of missing

variables (e.g., xx’ = 0) and using the distributive law

 Remove duplicate maxterms

 f1(a,b,c) = (a+b+c)•(b’+c’)•(a’+c’)

= (a+b+c)•(aa’+b’+c’)•(a’+bb’+c’)

= (a+b+c)•(a+b’+c’)•(a’+b’+c’)•(a’+b+c’)•(a’+b’+c’)

= (a+b+c)•(a+b’+c’)•(a’+b’+c’)•(a’+b+c’)

Minimization Techniques

Overview

 Introduction

 Karnaugh Map (K-Map)

 Simplification Rules

 K-Map Simplification for Two Variables

 K-Map Simplification for Three Variables

 K-Map Simplification for Four Variables

 Don’t Care Conditions

 Redundancy

 Design of Combinational Circuits

Introduction

Unique Many different expressions exist

Simplification from Boolean function

- Finding an equivalent expression that is least expensive to implement

- For a simple function, it is possible to obtain a simple expression for

low cost implementation

- But, with complex functions, it is a very difficult for implementation

Truth

Table

Boolean

Function

Truth

Table

Boolean

function

Karnaugh

Map

Simplified

Boolean

Function

Karnaugh Map (K-map) is a simple procedure for simplification of

Boolean expressions.

Karnaugh Map (K-Map)

 Karnaugh maps (K-maps) are graphical
representations of Boolean functions.

 One map cell corresponds to a row in the truth
table.

 Also, one map cell corresponds to a minterm or
a maxterm in the Boolean expression

 Each term is identified by a decimal number
whose binary representation is identical to the
binary interpretation of the input values of the
term.

A’B’

A’B

AB

AB’

C’D’ C’D CD CD’

K-Map Simplification for Two Variables

 Of course, the Minterm function that we derived from our

Truth Table was not in simplest terms.

 That’s what we started with in this example.

 We can, however, reduce our complicated expression to its

simplest terms by finding adjacent 1s in the K-map that can

be collected into groups that are powers of two.

• In our example, we have two

such groups.

– Can you find them?

The rules of K-map simplification are:

• Groupings can contain only 1s; no 0s.

• The number of 1s in a group must be a power of 2 – even if it

contains a single 1.

• Nearby 1s are to be grouped.

• Corner 1s are to be grouped.

• Group that wraps around the sides of a K-map.

• Diagonal groups are not allowed.

• The groups must be made as large as possible.

• Groups can overlap.

K-Map Rules

 The best way of selecting two groups of 1s form our simple K-

map is shown.

 We see that both groups are powers of two and that the groups

overlap.

K-Map Rules

2-variable Karnaugh maps are trivial but can be used to introduce the
methods you need to learn. The map for a 2-input OR gate looks like this:

A

B
Y

A B Y

0 0 0

0 1 1

1 0 1

1 1 1

A

B
0 1

0

1

1

11

B

A

A+B

K-Map Simplification for Two Variables

K-Map Simplification for Three Variables

 A K-map for three variables is constructed as shown in the diagram below.

 We have placed each Minterm in the cell that will hold its value.

 Notice that the values for the yz combination at the top of the matrix

form a pattern that is not a normal binary sequence.

 Consider the function:

F (X, Y, Z) = X’Y’Z + X’YZ + XY’Z + XYZ

 Its K-map is given below.

 What is the largest group of 1s that is a power of 2?

 This grouping tells us that changes in the variables x and y have no influence upon

the value of the function: They are irrelevant.

 This means that the function, F (X, Y, Z) = X’Y’Z + X’YZ + XY’Z + XYZ

reduces to F = Z.

You could verify this

reduction with

Boolean Algebra

 Now for a more complicated K-map. Consider the function:

 Its K-map is shown below. There are (only) two groupings of 1s.

 Can you find them?

 In this K-map, we see an example of a group that wraps around the

sides of a K-map.

 == C B(0,4)f == BA (4,5)f == B(0,1,4,5)f == A(0,1,2,3)f

BC
00

0

01

1

11 10A

1 0 0 0

1 0 0 0

BC
00

0

01

1

11 10A

0 0 0 0

1 1 0 0

BC
00

0

01

1

11 10A

1 1 1 1

0 0 0 0

BC
00

0

01

1

11 10A

1 1 0 0

1 1 0 0

 == C A(0,4)f == CA (4,6)f == C A(0,2)f == C(0,2,4,6)f

BC
00

0

01

1

11 10A

0 1 1 0

0 0 0 0

BC
00

0

01

1

11 10A

0 0 0 0

1 0 0 1

BC
00

0

01

1

11 10A

1 0 0 1

1 0 0 1

BC
00

0

01

1

11 10A

1 0 0 1

0 0 0 0

f = ∑ (1,3) = A’C

K-Map Simplification for Four Variables

 The K-map can be extended to accommodate the 16 Minterms that are

produced by a four-input function.

 This is the format for a 16-minterm K-map.

 We have populated the K-map shown below with the nonzero minterms

from the function:

 Can you identify (only) three groups in this K-map?

 Our three groups consist of:

 A purple group entirely within the K-map at the right.

 A pink group that wraps the top and bottom.

 A green group that spans the corners.

 Thus we have three terms in our final function:

 It is possible to have a choice as to how to pick groups within a K-map, while

keeping the groups as large as possible.

 The (different) functions that result from the groupings below are logically

equivalent.

 ••== DCB(0,8)f ••== DCB(5,13)f ••== DBA(13,15)f ••== DBA(4,6)f

 •== CA(2,3,6,7)f •== DB)(4,6,12,14f •== CB)(2,3,10,11f •== DB(0,2,8,10)f

CD
00

00

01

01

11

11

10

10

AB

1 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

CD
00

00

01

01

11

11

10

10

AB

0 0 0 0

0 1 0 0

0 1 0 0

0 0 0 0

CD
00

00

01

01

11

11

10

10

AB

0 0 0 0

0 0 0 0

0 1 1 0

0 0 0 0

CD
00

00

01

01

11

11

10

10

AB

0 0 0 0

1 0 0 1

0 0 0 0

0 0 0 0

CD
00

00

01

01

11

11

10

10

AB

0 0 1 1

0 0 1 1

0 0 0 0

0 0 0 0

CD
00

00

01

01

11

11

10

10

AB

0 0 0 0

1 0 0 1

1 0 0 1

0 0 0 0

CD
00

00

01

01

11

11

10

10

AB

0 0 1 1

0 0 0 0

0 0 0 0

0 0 1 1

CD
00

00

01

01

11

11

10

10

AB

1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

CD
00

00

01

01

11

11

10

10

AB

0 0 0 0

1 1 1 1

0 0 0 0

0 0 0 0

CD
00

00

01

01

11

11

10

10

AB

0 0 1 0

0 0 1 0

0 0 1 0

0 0 1 0

CD
00

00

01

01

11

11

10

10

AB

1 0 1 0

0 1 0 1

1 0 1 0

0 1 0 1

CD
00

00

01

01

11

11

10

10

AB

0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0

CD
00

00

01

01

11

11

10

10

AB

0 1 1 0

0 1 1 0

0 1 1 0

0 1 1 0

CD
00

00

01

01

11

11

10

10

AB

1 0 0 1

1 0 0 1

1 0 0 1

1 0 0 1

CD
00

00

01

01

11

11

10

10

AB

0 0 0 0

1 1 1 1

1 1 1 1

0 0 0 0

CD
00

00

01

01

11

11

10

10

AB

1 1 1 1

0 0 0 0

0 0 0 0

1 1 1 1

f (4,5,6,7) A B= = • f (3,7,11,15) C D= = •
f (0,3,5,6,9,10,12,15)= f (1,2,4,7,8,11,13,14)=

f A B C D= f A B C D=

f (1,3,5,7,9,11,13,15)= f (0,2,4,6,8,10,12,14)= f (4,5,6,7,12,13,14,15)= f (0,1,2,3,8,9,10,11)=

f D= f D= f B= f B=

Don’t Care Conditions

 Real circuits don’t always need to have an output defined for every possible

input.

 For example, some calculator displays consist of 7-segment LEDs. These

LEDs can display 2 7 patterns but all patterns are not used.

 If a circuit is designed so that a particular set of inputs can never happen, we

call this set of inputs a don’t care condition.

 They are very helpful to us in K-map circuit simplification.

 In a K-map, a don’t care condition is identified by an X in the cell of the

minterm(s) for the don’t care inputs, as shown below.

 In performing the simplification, we are free to include or ignore the X’s

when creating our groups.

 In one grouping in the K-map below, we have the function:

 F = W’X’ + YZ

 A different grouping gives us the function:

 The truth table of:

F (W, X, Y, Z) = W’X’ + YZ

differs from the truth table of:

 However, the values for which they differ, are the inputs for which we have

don’t care conditions.

Redundancy

Design of combinational digital circuits

 Steps to design a combinational digital circuit:

 From the problem statement derive the truth table

 From the truth table derive the unsimplified logic expression

 Simplify the logic expression

 From the simplified expression draw the logic circuit

 Example: Design a 3-input (A,B,C) digital circuit that will give at its

output (X) a logic 1 only if the binary number formed at the input has

more ones than zeros.

BCABACX ++=

A B C

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

X

0

0

0

1

0

1

1

1

Inputs Output

0

1

2

3

4

5

6

7

BC
00

0

01

1

11 10A

0 0 1 0

0 1 1 1

A B C

X

= 7) 6, 5, (3,X

C BABACAX ++=

A B C

X

= ,7,8,9)(2,3,4,5,6XA B C

0

0

0

0

0

1

X

0

0

Inputs Output

0

1

D

0

0

0 0 0 12 1

0 0 1 13 1

0 1 0 14 0

0 1 1 15 0

0 1 0 16 1

0 1 1 17 1

1 0 0 18 0

1 0 1 19 0

1 0 0 010 1

1 0 1 011 1

1 1 0 012 0

1 1 1 013 0

1 1 0 014 1

1 1 1 015 1
D

CD
00

00

01

01

11

11

10

10

AB

0 0 1 1

1 1 1 1

0 0 0 0

1 1 0 0

X

Same

 Example: Design a 4-input (A,B,C,D) digital circuit that will give at its output (X) a

logic 1 only if the binary number formed at the input is between 2 and 9 (including).

Conclusion

 K-maps provide an easy graphical method of simplifying Boolean

expressions.

 A K-map is a matrix consisting of the outputs of the minterms of a

Boolean function.

 In this section, we have discussed 2- 3- and 4-input K-maps. This

method can be extended to any number of inputs through the use of

multiple tables.

Recapping the rules of K-map simplification:

• Groupings can contain only 1s; no 0s.

• Groups can be formed only at right angles; diagonal groups are not
allowed.

• The number of 1s in a group must be a power of 2 – even if it contains a
single 1.

• The groups must be made as large as possible.

• Groups can overlap and wrap around the sides of the K-map.

• Use don’t care conditions when you can.

• Redundancy must be reduced

Lecture of Module 3

Combinational Circuits

Overview

 Introduction

 Half Adder

 Full Adder

 Half Subtractor

 Full Subtractor

 Ripple/Parallel Adder

 Adder-Subtractor

 Look-ahead carry Adder

The outputs of Combinational Logic

Circuits are only determined by the logical

function of their current input state(s), logic

“0” or(and) logic “1”, at any given instant.

Combinational logic circuits give us many

useful devices.

One of the simplest is the half adder, which

finds the sum of two bits.

Introduction

Half Adder

Full Adder

Full Adder using Half Adders

Half Subtractor

Full Subtractor

Full Subtractor using Half Subtractor

Ripple/ Parallel Adder

 Just as we combined half adders to make a full adder, full adders can connected

in series.

 The carry bit “ripples” from one adder to the next; hence, this configuration is

called a ripple-carry adder.

One’s Complement Circuit

In order to make an adder/subtractor, it is

necessary to use a gate that can

either pass the value through or generate its

one’s–complement.

The exclusive OR gate, XOR, is exactly what

we need.

This is controlled by a binary signal: Neg.

Let B = 1011.

If Neg = 0, then Y = 1011.

If Neg = 1, then Y = 0100.

Adder-Subtractor

 In any combinational circuit, the signal must propagate through the gates
before the correct output is available in the output terminal.

 The total propagation time equal to the propagation delay of a typical gate
times multiplied with the gate levels in the circuit.

 The propagation delay time in a parallel adder is the time it takes the
carry to propagate through the full adder.

 In each full adder the carry out from the carry in passes through two gate
levels.

 For n-bit parallel adder the total gate delay will be 2n.

 So, the carry propagation time is a limiting factor on the speed

with which two numbers are added in parallel.

 To avoid that another adder is widely used which employs the

principle of Look-ahead carry.

 The adder designed using the principle of Look-ahead carry is

called as Look-ahead carry adder or Carry look-ahead adder.

Look-Ahead Carry Adder

Ai

Bi

Ci

Pi

Gi

Si

Ci+1

Pi = Ai Ꚛ Bi

Gi = Ai Bi

The output Sum and Carry can be

expressed as:

Si = Pi Ꚛ Ci

Ci+1 = Gi + Pi Ci

Gi is called as carry generator and Pi is

called as carry propagator.

These equations show that a carry signal will be generated in two cases:

1) if both bits Ai and Bi are 1

2) if either Ai or Bi is 1 and the carry-in Ci is 1.

C1 = G0 + P0C0

C2 = G1 + P1C1 = G1 + P1(G0 + P0C0) = G1 + P1G0 + P1P0C0

C3 = G2 + P2C2 = G2 + P2G1 + P2P1G0 + P2P1P0C0

C4 = G3 + P3C3 = G3 + P3G2 + P3P2G1 + P3P2P1G0 + P3P2P1P0C0

Let's apply these equations for a 4-bit adder:

• These expressions show that C2, C3 and C4 do not depend on its previous carry-in.

• Therefore C4 does not need to wait for C3 to propagate.

• As soon as C0 is computed, C4can reach steady state.

• The same is also true for C2 and C3.

• The general expression is

Ci+1= Gi+ PiGi-1 + PiPi-1Gi-2 + PiPi-1....P2P1G0 + PiPi-1 P1P0C0.

• This is a two level circuit

Carry Look-Ahead Generator Full Adder with Look-Ahead Carry

Total 4 gate delay: One gate delay for Pi and Gi generator, two gate delay for Carry

generator and one gate delay for Sum generator.

•CLA Adders generate the carry-in for each full adder simultaneously, by

using simplified equations involving Pi, Gi, and Cin.

•This system reduces the propagation delay.

•This is because the output carry at any stage is dependent only on the first

Carry signal given at the input.
•It is the fastest adder when compared to other addition mechanisms.

•The carry look-ahead adder circuit gets more complicated as the number of variables

increase.

•The circuit for a carry look-ahead adder is expensive as it involves more hardware.

•As the number of variables increases, the circuit implements more hardware.

•Thus, when the carry look-ahead adder is implemented as an IC, the area is bound to

increase.

Advantages:

Disadvantages:

Ripple Carry Adder Carry Look Ahead Adder

The Carry bit passes through a long logic
chain through the entire circuit.

The Carry bit enters in the system only at the
input.

As the full adder blocks are dependent on

their predecessor blocks’ carry value, the
entire system works a little slow.

Since the entire system depends on the first

carry input, the computations are very
quick, making it the fastest adder.

It has a simple repetitive design.
Has a slightly complicated design with many

logic gates

The system design is cheap to manufacture.
The manufacturing process is expensive as

compared to other systems.

The ripple carry adder chips have a
considerable size and area.

The chip area increases, as there are many
components in the circuit.

Ripple Carry Adder vs. Carry Look Ahead Adder

Combinational Circuits

Overview

 BCD Adder

 BCD Subtractor

 Comparator

 Error detection and correction codes

BCD

Decimal

Digit

BCD

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

BCD Addition Rules

Comparing Binary and BCD Sums

 In the previous table Decimal sum from 0 to 9, the Binary sum same as BCD sum. So, no

conversion is needed.

 Apply correction if the Decimal sum is between 10-19.

❖ The correction is needed (Decimal sum 16-19)when the binary sum has an output carry

K = 1

❖ The correction is needed (Decimal sum 10-15)when Z8 = 1 and either Z4 = 1 or Z2 = 1.

 So, the condition for a correction and an output carry can be expressed by the Boolean

function:

C = K + Z8Z4 + Z8Z2

 When C = 1, it is necessary to add 0110 to the binary sum to get BCD sum and provide an

output carry for the next stage.

BCD Adder

Cascading of BCD Adders

BCD Subtraction Rules

Let two BCD numbers are A and B.

B to be subtracted from A.

RULES:

• Add 9’s Complement of B to A

• If result > 9, Correct by adding 0110

• If carry is generated at most significant position

then the result is positive and the End around carry

must be added

• If carry is not generated at most significant position

then the result is negative and the result is 9’s

complement of original result

Example

9’s Complement Circuit

• 9’complement of 2 is 7

• Binary equivalent of 2 is 0010

• 1’s complement of 0010 is 1101

• Then, 1101

+ 1010

= 0111 which is Binary equivalent of 7

• If carry discard it.

• 9’complement of 3 is 6

• Binary equivalent of 3 is 0011

• 1’s complement of 0011 is 1100

• Then, 1100

+ 1010

= 0110 which is Binary equivalent of 6

• If carry discard it.

BCD Subtractor Circuit

RULES:
• Add 9’s Complement of B to A

• If result > 9, Correct by adding 0110

• If carry is generated at most significant position

then the result is positive and the End around

carry must be added

• If carry is not generated at most significant

position then the result is negative and the result

is 9’s complement of original result

Comparator

 A magnitude digital Comparator is a combinational circuit that compares two digital or

binary numbers in order to find out whether one binary number is equal, less than or

greater than the other binary number.

 We logically design a circuit for which we will have two inputs one for A and other for B

and have three output terminals, one for A > B condition, one for A = B condition and one

for A < B condition.

 A comparator makes use of a cascade connection of identical sub networks similar to the

case of the parallel adder.

1-Bit Magnitude Comparator

 A comparator used to compare two bits is called a single bit comparator.

 It consists of two inputs each for two single bit numbers and three outputs to

generate less than, equal to and greater than between two binary numbers.

From the above truth table logical expressions for each

output can be expressed as follows:

A>B: AB' A<B: A'B A=B: A'B' + AB

Logic Diagram

From the above expressions we can derive the

following formula:
By using these Boolean expressions, we can implement a logic

circuit for this comparator as given below:

2-Bit Magnitude Comparator

A comparator used to compare two binary numbers each of two bits is called a 2-bit Magnitude

comparator. It consists of four inputs and three outputs to generate less than, equal to and greater

than between two binary numbers.

From the Truth Table K-map for each output can be drawn as follows:

A>B: A1B1’ + A0B1’B0’ + A1A0B0’ A<B: A1’B1 + A0’B1B0 + A1’A0’B0

A=B: A1’A0’B1’B0’ + A1’A0B1’B0 + A1A0B1B0 + A1A0’B1B0’

A1’B1’ (A0’B0’ + A0B0) + A1B1 (A0B0 + A0’B0’)

(A0B0 + A0’B0’) (A1B1 + A1’B1’)

(A0 Ex-Nor B0) (A1 Ex-Nor B1)

Logic Diagram

By using these Boolean expressions, we can implement a logic circuit for this comparator as given below:

4-Bit Magnitude Comparator

In a 4-bit comparator the condition of A = B can be possible in the following four cases:

A = B is possible only when all the individual bits of one number exactly coincide with

corresponding bits of another number.

If A3 = B3 and A2 = B2 and A1 = B1 and A0 = B0

As the numbers are binary, the digits are either 0 or 1.

The equality relation of each pair of bits can be expressed logically with an equivalence function.

xi = AiBi + Ai’Bi’ i = 0, 1, 2, 3 where xi = 1 if the pair of bits in position i are equal.

So,

(A = B) = x3 . x2 . x1. x0

•A comparator used to compare two binary numbers each of four bits is called a 4-bit magnitude

comparator.

• It consists of eight inputs each for two four bit numbers.

• Three outputs to generate less than, equal to and greater than between two binary numbers.

In a 4-bit comparator the condition of A>B can be possible in the following four cases:

If A3 = 1 and B3 = 0

If A3 = B3, A2 = 1 and B2 = 0

If A3 = B3, A2 = B2, A1 = 1 and B1 = 0

If A3 = B3, A2 = B2, A1 = B1, A0 = 1 and B0 = 0

The sequential comparison can be expressed logically as:

(A>B) = A3B3’ + x3 A2B2’ + x3x2 A1B1’ + x3x2x1 A0B0’

In a 4-bit comparator the condition of A<B can be possible in the following four cases:

If A3 = 0 and B3 = 1

If A3 = B3, A2 = 0 and B2 = 1

If A3 = B3, A2 = B2, A1 = 0 and B1 = 1

If A3 = B3, A2 = B2, A1 = B1, A0 = 0 and B0 =1

The sequential comparison can be expressed logically as:

(A<B) = A3’B3 + x3 A2’B2 + x3x2 A1’B1 + x3x2x1 A0’B0

Logic Diagram

(A = B) = x3 . x2 . x1. x0

(A>B) = A3B3’ + x3 A2B2’ + x3x2 A1B1’ + x3x2x1 A0B0’

(A<B) = A3’B3 + x3 A2’B2 + x3x2 A1’B1 + x3x2x1 A0’B0

Cascading Comparator

A comparator performing the comparison operation to more than four bits by cascading two or more 4-bit

comparators is called cascading comparator.

When two comparators are to be cascaded, the outputs of the lower-order comparator are connected to

corresponding inputs of the higher-order comparator.

Applications of Comparators

• Comparators are used in central processing units (CPUs) and microcontrollers (MCUs).

• These are used in control applications in which the binary numbers representing physical

variables such as temperature, position, etc. are compared with a reference value.

• Comparators are also used as process controllers and for Servo motor control.

• Used in password verification and biometric applications.

Error Detection and Correction Codes

 Bits 0 and 1 corresponding to two different range of analog voltages. During transmission of
binary data from one system to the other, the noise may also be added. Due to this, there may
be errors in the received data at other system.

 That means a bit 0 may change to 1 or a bit 1 may change to 0. We can’t avoid the interference
of noise. But, we can get back the original data first by detecting whether any errors present
and then correcting those errors.

 For this purpose, we can use the following codes.

❖ Error detection codes

❖ Error correction codes

 Error detection codes − are used to detect the errors present in the received data. These
codes contain some bits, which are included to the original bit stream. These codes detect
the error, if it is occurred during transmission of the original data.

Example − Parity code, Hamming code, CRC code etc.

 Error correction codes − are used to correct the errors present in the received data so that,
we will get the original data. Error correction codes also use the similar strategy of error
detection codes.

It also detects the error.

Example − Hamming code, CRC code etc.

 Therefore, to detect and correct the errors, additional bits are appended to the data bits at
the time of transmission.

Parity Code Method

 A parity bit is an extra bit included in binary message to make total number of 1’s either odd or even.

 Parity word denotes number of 1’s in a binary string.

 There are two parity system-Even Parity and Odd Parity.

 In even parity system 1 is appended to binary string if there is an odd number of 1’s in string otherwise 0

is appended to make total even number of 1’s.

 In odd parity system, 1 is appended to binary string if there is even a number of 1’s to make an odd

number of 1’s.

 The receiver knows that whether sender is an odd parity generator or even parity generator.

 Suppose if sender is an odd parity generator then there must be an odd number of 1’s in received binary

string.

 If an error occurs to a single bit that is either bit is changed to 1 to 0 or 0 to 1, received binary bit will

have an even number of 1’s which will indicate an error.

Parity Generator

Parity Generator and Checker

Even Parity Generator and Checker

Parity Generator
Parity Generator

Parity CheckerParity Checker

Odd Parity Generator and Checker

Parity Generator and Checker

 The limitation of this method is that only error in a single bit would be identified.

 It does not tell which bit is incorrect .

 It also can not correct the incorrect bit.

 To overcome this another code called Hamming Code is used to detect an error.

 It indicates which bit is in error.

 It also correct that error.

 Because of this Hamming Code is called as self correcting code.

Hamming Code

 It was developed by R.W. Hamming for error correction.

 Hamming code is useful for both detection and correction of error present in the received
data.

 This code uses multiple parity bits and we have to place these parity bits in the positions of
powers of 2.

 The minimum value of 'k' for which the following relation is correct is nothing but the
required number of parity bits.

2k ≥ n + k + 1 Where, ‘n’ is the number of bits in the binary code, ‘k’ is the
number of parity bits

 Therefore, the number of bits in the Hamming code is equal to n + k.

 Based on requirement, we can use either even parity or odd parity while forming a
Hamming code. But, the same parity technique should be used in order to find whether any
error present in the received data.

 Let us find the Hamming code for 4-bit binary code

 We can find the required number of parity bits by using the following mathematical relation.

 2k ≥ n + k +1

 Substitute, n = 4 in the above mathematical relation.

 ⇒2k ≥ 4 + k + 1 ⇒ 2k ≥ 5 + k

 The minimum value of k that satisfied the above relation is 3. Hence, we require 3 parity

bits.

 Therefore, the number of bits in Hamming code will be 7, since there are 4 bits in binary

code and 3 parity bits.

 We have to place the parity bits and bits of binary code in the Hamming code as shown below.

 Now the Hamming code word format will be d7 d6 d5 p4 d3 p2 p1, where ‘d’ represents the data
bit and ‘p’ represents the parity bit.

 The parity bit p1, p2 and p4 are assigned values by the following three parity relations.

 p1 = d7 ⊕ d5 ⊕ d3 p2 = d7 ⊕ d6 ⊕ d3 p4 = d7 ⊕ d6 ⊕ d5

Example: 1

Construct an even parity seven bit Hamming code for a word 1011.

d7 d6 d5 p4 d3 p2 p1

1 0 1 ? 1 ? ?

From first relation to have even parity p1 should be 1. From second relation to have even parity p2
should be 0. From third relation to have even parity p4 should be 0. So, the final Hamming code is
1 0 1 0 1 0 1.

 For finding the position of error the following relations are to be followed.

 x = d7 ⊕ d5 ⊕ d3 ⊕ p1 y = d7 ⊕ d6 ⊕ d3 ⊕ p2 z = d7 ⊕ d6 ⊕ d5 ⊕ p4

 The parity check may be even parity or odd parity

 If parity relation is satisfied then x or y or z equal to 0, otherwise 1.

Example: 2

The Hamming code is received 1010001. What was the correct code transmitted.

The code received d7 d6 d5 p4 d3 p2 p1

1 0 1 0 0 0 1

Applying first parity relation x = 1. Applying second parity relation y = 1. Applying third parity
relation z = 0.

So, z y x = 011, which is equal to 3, that is, third data bit is erroneous one and should be corrected as
1 instead of 0. Now, the correct code is 1 0 1 0 1 0 1.

Combinational Circuits

Overview

 Multiplexer

 De-Multiplexer

 Decoder

 Encoder

 Priority Encoder

 BCD to Seven Segment Display

Multiplexer

 A Multiplexer or Mux is a device that has many inputs

and a single output.

 It selects a single input to the output from several inputs.

 The particular input chosen for output is determined by

the value of the multiplexer’s control lines.

 To be able to select among n inputs, log2n control lines

are needed.

 A multiplexer is also called as a data selector.

 The main purpose of Mux is to perform high speed

switching.

 In analog applications, these are made up of transistor

switches and relays, whereas in digital applications,

these are made up of logic gates.

Block diagram of Multiplexer

4-to-1 multiplexer

 This is what a 4-to-1 multiplexer looks like on
the inside.

 The 4X1 multiplexer comprises 4-input bits, 1-
output bit, and 2- control bits.

 The control bit AB decides which of the i/p
data bit should transmit the output.

 For example, when the control bits AB =00,
then the higher AND gate are allowed while
remaining AND gates are restricted. Thus, data
input d0 is transmitted to the output ‘q”

8-to-1 multiplexer

I0

I1

S2 S1 S0

A7

A6

A5

A4

A3

A2

A1

A0

16-to-1 multiplexer

I0

I1

S3 S2 S1 S0

Applications

 A Multiplexer is used in various applications wherein multiple data can be transmitted

using a single line.

 A Multiplexer is used to increase the efficiency of the communication system by

allowing the transmission of data, such as audio & video data from different channels

via cables and single lines.

 A Multiplexer is used in computer memory to decrease the number of copper lines

necessary to connect the memory to other parts of the computer.

 A multiplexer is used in telephone networks to integrate the multiple audio signals on a

single line of transmission.

 A Multiplexer is used to transmit the data signals from the computer system of a

satellite to the ground system by using a GSM (Global System for Mobile

communication) communication.

MUX as Universal Logic Circuit

Boolean function implementation using Mux

Rules:

• If two min-terms are not circled in a coloumn,

apply 0 to Mux input.

• If two min-terms are circled in a coloumn,

apply 1 to Mux input.

• If bottom one is circled and top one is not

circled in a column, apply A to Mux input.

• If bottom one is not circled and top one is

circled in a column, apply A’ to Mux input.

Demultiplexer

 A Demultiplexer or Demux is a circuit which can distribute or
deliver multiple outputs from a single input.

 It can perform as single input many output switch.

 The output lines of demultiplexer are ‘N’ in number, select line
number is ‘M’ and N = 2M.

 The control signal or select input code decides the output line to
which the input has to be transmitted.

 It is also called as Data distributor.

 There are several types of Demultiplexers

❖ 1:2 Demultiplexer or 1-to-2 Demultiplexer

❖ 1:4 Demultiplexer

❖ 1:8 Demultiplexer

❖ 1:16 Demultiplexer

1:2 Demultiplexer

1:4 Demultiplexer

• The input bit is Data D with two

select lines A and B.

• The input bit D is transmitted to four

output bits Y0, Y1, Y2, and Y3.

• When AB is 00 the upper AND

gate is enabled while the other AND

gates are disabled. Thus, the data is

transmitted to Y0.

• If D is low, then Y0 is low and if D

is high, Y0 is high. The value of Y0

depends on the value of D.

1:8 Demultiplexer

Applications of Demultiplexer (Demux)

 Demux are widely used in microprocessor, computers and digital electronics.

 Demultiplexer and Multiplexer both are used in communication systems to carry multiple data signals
(i.e. audio, video etc) using single line for transmission.

 In Arithmetic logic unit (ALU), the output of ALU can be stored in storage unit (multiple registers) by
using Demultiplexer.

It is also used

 To enable the different rows of memory chips depends on the address. Also to chose different banks of
memory.

 To enable different functional unit in the system

 To select different IO devices for data transfer

 Data acquisition systems

 Automatic test equipment systems

 Security monitoring systems

Decoder

 Decoder is a combinational logic

circuit whose purpose is to decode the

information.

 It is comprised of n number of input

lines and 2n number of output lines.

 In every probable input condition,

among the various output signals, only

one output signal will produce the

logic one.

 So, this is n-to-2n decoder, where n

input lines and 2n output lines.

 Generally, there are 3 types of line

decoders (2-to-4, 3-to-8 and 4-to-16).

Logic Design Using Decoders

 An 𝑛-to-2𝑛 line decoder is a minterm generator.

 By using or-gates in conjunction with an 𝑛-to-2𝑛 line decoder, realizations

of Boolean functions are possible.

 Do not correspond to minimal sum-of-products.

 Are simple to produce. Particularly convenient when several functions of

the same variable have to be realized.

Implementation of a Full Adder circuit using Decoder.

S(x0, x1, x2) = ∑(1, 2, 4, 7)

C(x0, x1, x2) = ∑(3, 5, 6, 7)

S

C

x y z C S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Decoders with enable inputs

 When disabled, all outputs of the decoder can either be at logic-0 or logic-1.

 Enable input provides the decoder with additional flexibility.

 Idea: if data is applied to the enable input.

 Process is known as demultiplexing.

 Now Decoder works as Demultiplexer.

 Enable inputs are useful when constructing larger decoders from smaller decoders.

Data

𝑥0𝑥1𝐸

If 𝑥0 = 0, 𝑥1 = 0 then

data appears on

line 𝑧0.

Larger Decoders from smaller Decoder

Applications

 In digital electronic decoder play an important role. It is used to convert the data from
one form to another form.

 Generally, these are frequently used in the communication systems like
telecommunication, networking, and transfer the data from one end to the other end.

 In the same way it is also used in the digital domain for easy transmission of data.

 It is also used as

Binary to Octal converter

BCD to Decimal converter

BCD to Seven Segment Display

 Boolean functions can be implemented using decoder.

BCD to Seven segment display

 The Seven segment display is most frequently used the digital display in

calculators, digital counters, digital clocks, measuring instruments, etc.

 Usually, the displays like LED’s as well as LCD’s are used to display the

characters as well as numerical numbers.

 These displays are frequently driven by the output phases of

digital integrated circuits like decade counters as well as latches.

 However, the outputs of these are in the type of 4-bit BCD (Binary Coded

Decimal), so not appropriate for directly operating the seven segment

display.

 For that, a display decoder can be employed for converting BCD code to

seven segment code.

 Generally, it has four input lines as well as seven output lines.

 The Decoder is an essential component in BCD to seven segment display.

 The circuit design, as well as operation, mainly depends on the concepts of Boolean

Algebra as well as logic gates.

 The common terminals are either anode or cathode. So, it may be common cathode type

or common anode type.

Truth Table

a = F1 (A, B, C, D) = ∑m (0, 2, 3, 5, 6, 7, 8, 9)

b = F2 (A, B, C, D) = ∑m (0, 1, 2, 3, 4, 7, 8, 9)

c = F3 (A, B, C, D) = ∑m (0, 1, 3, 4, 5, 6, 7, 8, 9)

d = F4 (A, B, C, D) = ∑m (0, 2, 3, 5, 6, 8, 9)

e = F5 (A, B, C, D) = ∑m (0, 2, 6, 8)

f = F6 (A, B, C, D) = ∑m (0, 4, 5, 6, 8, 9)

g = F7 (A, B, C, D) = ∑m (2, 3, 4, 5, 6, 8, 9)

K-Map

Logic Circuit

IC and Connection Diagram

Encoder

 An Encoder is a combinational circuit that performs

the reverse operation of Decoder.

 It has maximum of 2N input lines and ‘N’ output

lines, hence it encodes the information from 2N

inputs into an N-bit code.

 It will produce a binary code equivalent to the

input.

 The 4 to 2 Encoder consists of four inputs Y3,

Y2, Y1, Y0 and two outputs A1 and A0.

 At any time, only one of these 4 inputs can be ‘1’

in order to get the respective binary code at the

output.

 The 8 to 3 Encoder or octal to Binary encoder

consists of 8 inputs : Y7 to Y0 and 3 outputs :

A2, A1 & A0.

 Each input line corresponds to each octal digit and

three outputs generate corresponding binary code.

4 to 2 Encoder

8 to 3 Encoder

4-to-2 Binary Encoder

0

0

1

1

1

0

1

w 3 y 1

0

y 0

0

0

1

0

w 2

0

1

0

0

w 1

1

0

0

0

w 0

0

0

0

1
w 1

w 0

y 0

w 2

w 3
y 1

8-to-3 Binary Encoder

At any one time, only
one input line has a value of 1.

Inputs Outputs

D0 D1 D2 D3 D4 D5 D6 D7 A B C

1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 1 1

0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 1 0 0 1 0 1

0 0 0 0 0 0 1 0 1 1 0

0 0 0 0 0 0 0 1 1 1 1

Priority Encoder

 One of the main disadvantages of standard digital encoder is that they can generate
the wrong output code when there is more than one input present at logic level “1”.

 One simple way to overcome this problem is to “Prioritize” the level of each input
pin.

 If there is more than one input at logic level “1” at the same time, the actual output code
would only correspond to the input with the highest designated priority.

 This type of digital encoder is known as Priority Encoder or P-Encoder for short.

 The Priority Encoder solves the problems by allocating a priority level to each input.

 The priority encoders output corresponds to the currently active input which has the highest
priority.

 So, when an input with a higher priority is present, all other inputs with a lower priority will
be ignored.

x

0

0

1

0

1

0

w0 y1

x

y0

1 1

1

x

x

0

x

w1

0

1

x

0

x

w2

0

0

1

0

x

w3

0

0

0

0

1

x

0

0

1

0

1

0

w0 y1

x

y0

1 1

1

x

x

0

x

w1

0

1

x

0

x

w2

0

0

1

0

x

w3

0

0

0

0

1

1 x x x

0 1 x x

0 0 1 x

0 0 0 1
0 0 0 0 x x

4-to-2 Priority Encoder

Truth Table

K-Map

xx w1 w0

x

00 01 11 10

0 0 0

1 1 1 1

1 1 1 1

1 1 1 1

00

01

11

10

w3 w2

y1 = w3 + w2

xx w1 w0

x

00 01 11 10

0 1 1

0 0 0 0

1 1 1 1

1 1 1 1

00

01

11

10

w3 w2

y0 = w3 + w1 w2

y0 = w3 + w1 w2

y1 = w3 + w2

Circuit for the 4-to-2 priority encoder

 From the truth table of the Priority

Encoder, the Boolean expression

with data inputs D0 to D7 and

outputs Q0, Q1, Q2 is given as:

8-to-3 Priority Encoder

Applications

 Keyboard Encoder

 Interrupt Requests

 Octal to Binary Encoder

 Decimal to Binary Encoder

 Decimal to BCD Encoder

Lecture of Module 4

Sequential Circuits

(Latch/Flip Flop)

Overview

 Introduction

 Latch

 Flip Flops

 Triggering of Flip Flop

 SR, D, JK, T Flip Flop

 Master Slave Flip Flop

 Characteristic Table and Characteristic Equation

 Excitation Table

Sequential Logic Circuits

The output state of a “sequential logic circuit” is a function of

the following three states, the “present input”, the “past input”

and/or the “past output”. Sequential Logic circuits remember

these conditions and stay fixed in their current state until the

next clock signal changes.

Sequential logic circuits are generally termed as two state or

Bistable devices. Outputs set in one of two basic states, a logic

level “1” or a logic level “0” and will remain “latched” (hence

the name is latch) indefinitely in this current state or condition

until some other input trigger pulse or signal is applied which

will cause the bistable to change its state once again.

Sequential Logic: Concept

 Sequential Logic circuits remember past inputs and past circuit state.

 Outputs from the system are “fed back” as new inputs.

 The storage elements are circuits that are capable of storing binary information: Memory.

The basic sequential circuit elements can be divided in two categories:

 Level-sensitive (Latches)

 High-level sensitive

 Low-level sensitive

 Edge-triggered (Flip-flops)

 Rising (positive) edge triggered

 Falling (negative) edge triggered

 Dual-edge triggered

Clock

Sequential circuits can be Asynchronous or Synchronous.

Asynchronous sequential circuits change their states and output values whenever a change in

input values occurs. Circuit output can change at any time (clock less).

Synchronous sequential circuits change their states and output values at fixed points of time.

This type of circuits achieves synchronization by using a timing signal called the clock.

Clock generator: Periodic train of clock pulses

Latches: A latch is a memory element whose excitation signals control the state of the
device. A latch has two stages set and reset. Set stage sets the output to 1. Reset stage set
the output to 0.

Latches are also called level triggered flip flops, because the change on the outputs will
follow the changes of the inputs as long as the Enable input is set.

❖ This causes synchronization problems.

Solution: use latches to create flip-flops that can respond (update) only on specific times
(instead of any time).

Flip-flops: A flip-flop is a memory device that has clock signals control the state of the
device.

Flip Flops are Edge triggered that change there outputs only at the transition of the clock
signal.

Memory Devices

Latch Vs. Flip Flop

Synchronous Sequential Circuits:

Flip flops as state memory

◼ The flip-flops receive their inputs from the combinational circuit and also from a clock

signal with pulses that occur at fixed intervals of time, as shown in the timing diagram.

271

0

0

1

R=1

S=0
t

Q

Q

S (set) SR latch

R (reset)

1

0 0

1
0

1

t

Q

S=0

R=0

t

Q

S=1

R=0

0

1

1

t

Q

R=0

S=0

1

01

0

0

0
1

1

X
0

Recall…

a

t

Q

R=1

S=1

0

0

Reset Set ForbiddenLast State Last State

S-R Latch(NOR version)

R S Q Q Comment
0 0 ? ? Stored state unknown
0 1 1 0 “Set” Q to 1
0 0 1 0 Now Q “remembers” 1
1 0 0 1 “Reset” Q to 0
0 0 0 1 Now Q “remembers” 0
1 1 0 0 Both go low
0 0 ? ? Unstable!

Time

S-R Latch(NAND version)

S’

R’

Q

Q’

0 0
0 1
1 0
1 1

S’ R’ Q Q’0

1

1

0

1 0 Set

0 0 1
0 1 1
1 0 1
1 1 0

X Y NAND
Characteristic Table

S-R Latch(NAND version)

S’

R’

Q

Q’

0 0
0 1
1 0
1 1

S’ R’ Q Q’1

1

1

0 1 0 Last State

0 0 1
0 1 1
1 0 1
1 1 0

X Y NAND

1 0 Set

Characteristic Table

S-R Latch(NAND version)

S’

R’

Q

Q’

0 0
0 1
1 0
1 1

S’ R’ Q Q’1

0

0

1

0 0 1
0 1 1
1 0 1
1 1 0

X Y NAND

1 0 Last State

1 0 Set
0 1 Reset

Characteristic Table

S-R Latch Flop(NAND version)

S’

R’

Q

Q’

0 0
0 1
1 0
1 1

S’ R’ Q Q’1

1

0

1

0 0 1
0 1 1
1 0 1
1 1 0

X Y NAND

0 1 Last State

1 0 Set
0 1 Reset
1 0 Last State

Characteristic Table

S-R Latch(NAND version)

S’

R’

Q

Q’

0 0
0 1
1 0
1 1

S’ R’ Q Q’0

0

1

1

0 0 1
0 1 1
1 0 1
1 1 0

X Y NAND

0 1 Last State

1 0 Set
0 1 Reset
1 0 Last State

1 1 Forbidden

Characteristic Table

S-R Latch(NAND version)

S-R Flip Flop with Clock signal

Latch is sensitive to input changes ONLY when C=1

Latch is sensitive to input changes ONLY when C=1

S-R Flip Flop with Clock signal

Characteristic Equation of S-R Flip Flop

Triggering of Flip Flop

D Flip Flop

 One way to eliminate the undesirable indeterminate state in the RS flip flop

is to ensure that inputs S and R are never 1 simultaneously.

Characteristic Equation of D Flip Flop

Q (n+1) = D

Characteristic Equation

J-K Flip Flop

 In SR Flip Flop S=R=1 should be
avoided.

 To overcome that JK Flip Flop
developed.

 Both the S and the R inputs of the
previous SR bistable have now been
replaced by two inputs called
the J and K inputs respectively after its
inventor Jack Kilby. Then this may
equates to: J = S and K = R.

 When J=0, K=0, no change in state.

 When J=0, K=1, Q will reset.

 When J=1, K=0, Q will set.

 When J=1, K=1, Toggle i.e Q’n

 When J=1, K=1, Toggle i.e Q’n

 For JK flip-flop if J, K and Clock are equal to 1 the
state of flip-flop keeps on toggling which leads to
uncertainty in determining the output of the flip-
flop. This problem is called Race
around the condition.

 This can be avoided by

❖ Using Edge triggering of JK Flip Flop

❖ Enhancing the propagation delay

❖ Using Master-Slave Flip Flop

Master-Slave Flip Flop

 Master-slave flip flop is designed using two
separate flip flops. Out of these, one acts as the
master and the other as a slave.

 The J-K flip flops are presented in a series
connection.

 The output of the master J-K flip flop is fed to
the input of the slave J-K flip flop.

 The output of the slave J-K flip flop is given as a
feedback to the input of the master J-K flip flop.

 The clock pulse [Clk] is given to the master J-K
flip flop and it is sent through a NOT Gate and
thus inverted before passing it to the slave J-K
flip flop.

 It avoids the race around condition of J-K Flip
Flop

CLK

Characteristic Equation of J-K Flip Flop

Q(t+1) = JQ’ + K’Q

Characteristic Equation

T Flip Flop

 We can construct the "T Flip Flop" by
making changes in the "JK Flip Flop".

 The "T Flip Flop" has only one input, which
is constructed by connecting the input of JK
Flip Flop.

 This single input is called T.

 Sometimes the "T Flip Flop" is referred to
as single input "JK Flip Flop".

 In T flip flop, "T" defines the term "Toggle"

Characteristic Equation of T Flip Flop

Q(t+1) = TQ’ + T’Q

Characteristic Equation

Excitation Table

 The characteristic table is useful for analysis

and for defining the operation of flip flop.

 It specifies the next state when the inputs and

present state are known.

 During design process we usually know the

transition from present state to next state.

 So, we want to know the flip flop input

conditions that will cause the required

transition.

 Therefore, we need a table that lists the required

inputs for a given change of states.

 Such table is called as Excitation Table. Excitation Table for different Flip Flops

Sequential Circuit Design

Count Sequences Flip Flop Inputs

A B C TA TB TC

0 0 0 0 0 1

0 0 1 0 1 1

0 1 0 0 0 1

0 1 1 1 1 1

1 0 0 0 0 1

1 0 1 0 1 1

1 1 0 0 0 1

1 1 1 1 1 1

1

1

A’

A

B’C’ B’C BC BC’

TA = BC

1 1

1 1

B’C’ B’C BC BC’

TB = C

1 1 1 1

1 1 1 1

B’C’ B’C BC BC’

TC = 1

BA C1

CLK

A B C

Example:

A’

A

A’

A

Let the state equations are:

A (t+1) = A’B’CD + A’B’C + ACD + AC’D’

B (t+1) = A’C + CD’ + A’BC’

C (t+1) = B

D (t+1) = D’

The above equation can be rearranged in the form of
characteristic equation of J-K flip flop.

Characteristic equation of J-K flip flop is

A (t+1) = A’B’CD + A’B’C + ACD + AC’D’

= (B’CD + B’C)A’ + (CD + C’D’)A

So, J = B’CD + B’C = B’C

K = (CD + C’D’)’ = C’D + CD’

B (t+1) = A’C + CD’ + A’BC’

= (A’C + CD’)(B+B’) + A’BC’

= (A’C + CD’)B’ + (A’C + CD’)B + A’BC’

= (A’C + CD’)B’ + (A’C + CD’ + A’C’)B

So, J = A’C + CD’

K = (A’C + CD’ + A’C’)’ = AC’+AD

Example:

Q(t+1) = JQ’ + K’Q

C (t+1) = B = B(C+C’) = BC’ + BC

So, J = B

K = B’

D (t+1) = D’ = (1) D’ + (0) D

So, J = 1

K = 1

So, finally

J A= B’C KA = C’D + CD’

JB = A’C + CD’ KB = AC’+ AD

JC = B KC = B’

J D = 1 KD = 1

Setup time and Hold time

The Clocking event can be either from low to high or
from high to low. The input signal around clocking
event must remain unchanged in order to have a
correct effect on the outcome of the new state.

 Ts: the minimum time interval preceding the
clocking event the input signal must remain
available and unchanged.

 Th: the minimum time interval after edge of the
clocking event, the input signals must remain
unchanged

Applications

Flip flops will find their use in many of the fields in digital electronics. Flip flops are the

main components of sequential circuits. Particularly, edge triggered flip flops are very

resourceful devices that can be used in wide range of applications like storing of binary data

and transferring binary data from one location to other etc. Some of the most common

applications of flip flops are

 Shift Register

 Counter

 Storage Registers

 Memory

 Data transfer

 Frequency Dividers etc.

Sequential Circuits

(Shift Register)

Overview

 Register

 Shift Register

 Types of Shift Register

 Bidirectional Shift Register

 Universal Shift Register

 Typical ICs for Shift register

Register

 The filp flops are essential component in clocked sequential circuits.

 Circuits that include filp flops are usually classified by the function they perform.

 Two such circuits are registers and counters.

 An n-bit register consists of a group of n flip flops capable of storing n bits of binary information.

 So, Register is a collection of flip flops.

 A flip flop is used to store single bit digital data. For storing a large number of bits, the storage
capacity is increased by grouping more than one flip flops.

 It is used to perform simple data storage, movement, manipulation and processing operations (e.g.
load, increment, shift, add, etc.)

 The computer processes data by performing operations on registers, e.g. ADD A, B where A and B
are the registers.

 A register capable of shifting its binary information in one or both direction is called a shift register.

 All flip-flops receive common clock pulses, which activate the shift from one stage to the next.

Shift Register

 The simplest possible shift register is one that uses only flip-flops, as shown in Fig.

 Each clock pulse shifts the contents of the register one bit position to the right.

 The serial input determines what goes into the leftmost flip-flop during the shift.

 The serial output is taken from the output of the rightmost flip-flop.

 Following are the four types of shift registers based on applying inputs and accessing of outputs.

 Serial In − Serial Out shift register

 Serial In − Parallel Out shift register

 Parallel In − Serial Out shift register

 Parallel In − Parallel Out shift register

Serial In − Serial Out (SISO) shift register

 The shift register, which allows serial input and produces serial output is known as Serial In – Serial

Out (SISO) shift register.

 This block diagram consists of three D flip-flops, which are cascaded. That means, output of one D flip-flop

is connected as the input of next D flip-flop.

 All these flip-flops are synchronous with each other since, the same clock signal is applied to each one.

 In this shift register, we can send the bits serially from the input of left most D flip-flop. Hence, this input is

also called as serial input.

 For every positive edge triggering of clock signal, the data shifts from one stage to the next. So, we can

receive the bits serially from the output of right most D flip-flop. Hence, this output is also called as serial

output.
1 0 1

Serial In − Parallel Out (SIPO) shift register

 The shift register, which allows serial input and produces parallel output is known as Serial In –

Parallel Out (SIPO) shift register.

 In this shift register, we can send the bits serially from the input of left most D flip-flop. Hence,

this input is also called as serial input.

 For every positive edge triggering of clock signal, the data shifts from one stage to the next.

 In this case, we can access the outputs of each D flip-flop in parallel. So, we will get parallel

outputs from this shift register.

1 0 1

Parallel In − Serial Out (PISO) shift register

 In the "Parallel In Serial Out" register, the data is entered in a parallel way, and the outcome
comes serially.

 The shift mode and the load mode are the two modes in which the "PISO" circuit works.

 In "Parallel In Parallel Out", the inputs and the outputs come in a parallel way in the register.

 The inputs B0, B1, B2, and B3, are directly passed to the data inputs D0, D1, D2, and D3 of the

respective flip flop.

 The bits of the binary input is loaded to the flip flops when the negative clock edge is applied. The

clock pulse is required for loading all the bits. At the output side, the loaded bits appear.

Parallel In − Parallel Out (PIPO) shift register

Input

Bidirectional Shift Register

 Below is the diagram of 4-bit "bidirectional" shift register where DR is the "serial right shift data

input", DL is the "left shift data input", and M is the "mode select input".

(L/R)
M

Universal Shift Register

 A shift-right control to enable the shift operation and the serial input and output lines associated with the shift right.

 A shift-left control to enable the shift operation and the serial input and output lines associated with the shift left.

 A parallel-load control to enable a parallel transfer and the n input lines associated with the parallel transfer.

 If the Shift register has the capability of

Serial In − Serial Out

Serial In − Parallel Out

Parallel In − Serial Out

Parallel In − Parallel Out

and act as Bidirectional shift register is referred as a universal shift register.

 Shift registers are often used to interface digital system situated remotely from each other. If the distance is far, it

will be expensive to use n lines to transmit the n bits in parallel.

 Transmitter performs a parallel-to-serial conversion of data and the receiver does a serial-to-parallel conversion.

SH/LOAD

R / L

Serial

input for

shift-left

Universal Shift Register using MUX

Typical ICs for Shift register

 Commonly available SISO IC is 74HC595, which is 8-bit.

 Commonly available SIPO IC’s include the standard 8-bit 74LS164, 74LS594.

 Commonly available PISO IC is 74HC166, which is 8-bit.

 Commonly available PIPO IC’s include the standard 8-bit M54HC195, M74HC195.

 Today, there are many high speed bi-directional or “universal” type Shift

Registers available such as the TTL 74LS194, 74LS195 or the CMOS 4035 which are

available as 4-bit multi-function devices that can be used in either serial-to-serial, left

shifting, right shifting, serial-to-parallel, parallel-to-serial, or as a parallel-to-parallel

multifunction data register, hence their name “Universal”.

 The 74HC299 is an 8-bit Universal Shift register.

 The 74S299 is an 8-bit Universal Shift and Storage Register.

Lecture of Module 5

Sequential Circuits

(Counter)

Overview

 Introduction

 Synchronous counter

 Asynchronous counter

 Up counter

 Down counter

 Decade counter

 Ring counter

 Johnson counter

Introduction

▪ Counter essentially a register that goes through predetermined sequence of states upon the application of
input pulses.

▪ A counter is a device which can count any particular event on the basis of how many times the particular
event(s) is occurred.

▪ In a digital logic system or computers, this counter can count and store the number of time any particular
event or process have occurred, depending on a clock signal.

▪ Most common type of counter is sequential digital logic circuit with a single clock input and multiple
outputs.

▪ The outputs represent binary or binary coded decimal numbers.

▪ Each clock pulse either increase the number or decrease the number.

▪ Modulus of a counter is the total number of states through which a counter can progress.

▪ Two types of counters:

❖ Synchronous (parallel) counters

❖ Asynchronous (ripple) counters

Synchronous Counter

▪ Synchronous counter known as parallel counter.

▪ All flip flops of the counter changes their states at the same time in synchronous with the
input clock signal.

▪ All flip-flops of the counter driven by same clock.

▪ Circuit delay is equal to the propagation delay of one flip flop.

Asynchronous Counter

▪ Known as Ripple counter.

▪ Also known as Serial counter.

▪ Output of one flip flop is used as clock input of other flip flop.

▪ Circuit delay is equal to the sum of propagation delay of all flip flops.

Count Sequences Flip Flop Inputs

A B C TA TB TC

0 0 0 0 0 1

0 0 1 0 1 1

0 1 0 0 0 1

0 1 1 1 1 1

1 0 0 0 0 1

1 0 1 0 1 1

1 1 0 0 0 1

1 1 1 1 1 1

1

1

A’

A

B’C’ B’C BC BC’

TA = BC

1 1

1 1

B’C’ B’C BC BC’

TB = C

1 1 1 1

1 1 1 1

B’C’ B’C BC BC’

TC = 1

BA C1

CLK

A B C

Binary Counter

A’

A

A’

A

Synchronous Counter

 A 4-bit decade synchronous counter can also be built using synchronous binary counters to produce a count
sequence from 0 to 9.

 A standard binary counter can be converted to a decade (decimal 10) counter with the aid of some additional
logic to implement the desired state sequence.

 After reaching the count of “1001”, the counter recycles back to “0000”. We now have a decade or Modulo-
10 counter or MOD-10 counter.

Decade or BCD synchronous counter

Asynchronous Counter

 Ripple counter is an Asynchronous counter. It got its name because the clock pulse ripples through the
circuit.

 It is an asynchronous counter.

 Different flip-flops are used with a different clock pulse.

 All the flip-flops are used in toggle mode.

 Only one flip-flop is applied with an external clock pulse and another flip-flop clock is obtained from the
output of the previous flip-flop.

 The flip-flop applied with external clock pulse act as LSB (Least Significant Bit) in the counting sequence.

 A counter may be an up counter that counts upwards or can be a down counter that counts downwards or
can do both i.e. count up as well as count downwards depending on the input control.

 When counting up, for n-bit counter the count sequence goes from 000, 001, 010, … 110, 111, 000, 001, …
etc.

 When counting down the count sequence goes in the opposite manner: 111, 110, … 010, 001, 000, 111, 110,
… etc.

Binary Ripple Counter

Ripple Counter

Count Up: When counting up, for n-bit counter

the count sequence goes from 000, 001, 010, …

110, 111, 000, 001, … etc.

Q2Q1Q0

Count

States

Q2 Q1 Q0

7 1 1 1

6 1 1 0

5 1 0 1

4 1 0 0

3 0 1 1

2 0 1 0

1 0 0 1

0 0 0 0

Count Down: When counting down the count

sequence goes in the opposite manner: 111, 110, …

010, 001, 000, 111, 110, … etc.

Ripple Counter

Up/Down Counter (Asynchronous)

 If we take the modulo-16 asynchronous counter and modify it with additional logic gates it can be made to
give a Decade counter output for use in standard decimal counting and arithmetic circuits. Such counters
are generally referred to as Decade Counters or BCD Counters.

 A decade counter requires resetting to zero after the output count reaches the decimal value of 9, i.e. when
DCBA = 1001.

 This type of asynchronous counter counts upwards on each input clock signal starting from 0000 until it
reaches an output 1001 (decimal 9).

 When it is 1001, both outputs QA and QD are now equal to logic “1”. On the application of the next clock
pulse, by connection NAND gate to QA and QD, the output from the NAND gate changes state from logic
“1” to a logic “0” level.

 The output of NAND gate is connected to CLEAR inputs of flip flpos.

 As, the output of the NAND gate is connected to the CLEAR (CLR) inputs of all the flip-flops, this signal
causes all of the Q outputs to be reset back to binary 0000 after the count 9.

 So, the counter restarts again from 0000. We now have a decade or Modulo-10 up-counter.

Decade or BCD asynchronous counter

Up/Down Counter (Synchronous)

Ring Counter

 A ring counter is a type of counter composed of flip flops working as shift register, with the output
of the last flip-flop fed to the input of the first, making a "circular" or "ring" structure.

 There are two types of ring counters:

 A straight ring counter, connects the output of the last shift register to the first shift register input
and circulates a single one bit around the ring.

 A twisted ring counter, also called switch-tail ring counter, Johnson counter connects the
complement of the output of the last shift register to the input of the first register and circulates a
stream of ones followed by zeros around the ring.

 The straight and twisted forms have different properties, and relative advantages and disadvantages.

 A binary counter can represent 2^N states, where N is the number of bits (flip flops).

 Whereas a straight ring counter can represent only N states.

 Johnson counter can represent 2N states.

 Johnson counters are sometimes favored, because they offer twice as many count states from the

same number of flip flops in the shift registers, and because they are able to self-initialize from the

all-zeros state, without requiring the first count bit to be injected externally at start-up.

 The Johnson counter generates a code in which adjacent states differ by only one bit (that is, have

a Hamming distance of 1), as in a Gray code, which is advantageous in communication system.

 When a fully decoded representation of the counter state is needed, as in some sequence controllers,

the straight ring counter is preferred.

 There are two types of ring counters:

Straight ring counter

Twisted ring counter

Straight ring counter Johnson counter

State Q0 Q1 Q2 Q3 State Q0 Q1 Q2 Q3

0 1 0 0 0 0 0 0 0 0

1 0 1 0 0 1 1 0 0 0

2 0 0 1 0 2 1 1 0 0

3 0 0 0 1 3 1 1 1 0

0 1 0 0 0 4 1 1 1 1

1 0 1 0 0 5 0 1 1 1

2 0 0 1 0 6 0 0 1 1

3 0 0 0 1 7 0 0 0 1

0 1 0 0 0 0 0 0 0 0

Ring Counter

Johnson Counter

Q’

Johnson Counter

Timing Diagram of Ring Counter Timing Diagram of Johnson Counter

Ring counter has 4 sequences: 1000, 0100, 0010,

0001.
Johnson ring counter has sequences like “1000”,

“1100”, “1110”, “1111”, “0111”, “0011”, “0001”,

“0000”.

Differences:
SYNCHRONOUS COUNTERS ASYNCHRONOUS COUNTERS

The propagation delay is very
low.

Propagation delay is higher
than that of synchronous
counters.

Its operational frequency is
very high.

The maximum frequency of
operation is very low.

These are faster than that of
ripple counters.

These are slow in operation.

Large number of logic gates
are required to design

Less number of logic gates
required.

High cost. Low cost.

Synchronous circuits are easy
to design.

Complex to design.

Standard logic packages

available for synchronous.

For asynchronous counters,

Standard logic packages are
not available.

Applications

Some of the counter applications are listed below.

 Frequency counters

 Digital clocks

 With some changes in their design, counters can be used as frequency divider
circuits. The frequency divider circuit is that which divides the input frequency
exactly by ‘2’.

 Counter used as a timer in electronic devices like ovens and washing machines

 Alarm Clock, AC Timer, timer in camera to take the picture, flashing light
indicator in automobiles, car parking control etc.

 Counting the time allotted for special process or event by the scheduler.

 They are also used in machine moving control.

