(¥4-)

8. Write short notes on any two :

() Local Binding
(if) Abstraction Boundaries

(iii) Ihher_itance.. ,

MCA- 1st/Principles of Programming Languages (Sét-Ql)

id e 28

" BE-100

Total Pages—4

Bl |
Q 0 (Set-Q,)
- MCA-1st)
Principles of Programming Languages

Full Marks_: 70
' Time:3hours_

Answer any six questions including
Q.No.1 which is compulsory

The figures in the right-hand margin indicate marks

1. Answer all questions : 2x10

(@) What do you ‘mean by mutu'ally recursive
- procedures ?- ;

(b) Draw an abstract syntax tree for the lamda
calculus expression ; '
‘((lar"nba (@ (@hb))o)

(¢) Differentiate between cal-by-value .énd
call-by-reference = parameter passing
mechanisms.

(Turn Over)

MCA- Ist/Principles of Programming Languages (Set-Q,)

€

{(d) What is the need of type inférence 7

(é) What are the limitations of multiple

inheritance ?

) Write an expression in BNF for floating

point numbers.

(g) Compare elementary data with structured
data. :

(h) Show the steps of computing thé recursive
function fact (4) to compute the factorial
of 4.

(i) What do you mean by scope of variable ?

(/) What are the characteristics of a strongly

typed language ?

Prove : Let S € <bintree >, where <bintree> is

defined by

<bintree > ;= < number > i
(< symbol > < bintree > <bintree>)

‘then S contains an odd number of nodes. 10

(Continued) =

(G 3)

Consider a stack data type with procedures
empty-stack, push, pop, top and full-stack. Write

a procedural representation of the above

operations. 10

.. Why type checking isrequired ? What are the

two alternatives of type checking ? Explaif and
compare the same. 2+2+6

. (@) Explain how exception are raised ? o

(b) How exception are propa,gated“? Explain. 6

Explain : j : L
(@) Multithreading - :

" (b) Logic programming,.

For each expression E, below, find the
expression [E] - [£]. . 3aat3

(@) addl ((f (gxy) +(w,v)))
(b) zero ? (if (fa)then(px)else (py))
(c) letx=lety=8in (py) in x.

'MCA- Ist/Principles of Programming Languages (Set-Q) ~ (Turn Over)

