(Set-R₁)

B.Tech - 2nd Physics

Full Marks: 70

Time: 3 hours

Answer Q. No. 1 which is compulsory and five questions from the rest

The figures in the right-hand margin indicate marks

1. Answer all questions:

 2×10

- (a) Why the fringes in the Newton's ring interference are circular and concentric?
- (b) A thin plate of mica (RI = 1.58) is used to cover one of the slit of a double-slit arrangement. The central point on the screen is occupied by what used to be the seventh bright fringe. If λ = 5,500 Å, what is the thickness of the mica?

(Turn Over)

- (c) A plane grating has 15000 lines/inch. Find the angle of separation of the 5048 Å and 5016 A lines of helium in the second order spectrum.
- (d) Distinguish (in brief) between circular and elliptically polarized light.
- (e) Define Divergence and curl of a vector field. Express it in Cartesian-coordinates.
- (f) Write the differential form of the following operators (i) momentum (ii) energy (iii) Position (iv) Hamiltonian.
- (g) Write the general form of an eigenvalue equation. Show that sin 2x is an eigen function of the operator $\frac{d^2}{dx^2}$. What is the eigenvalue?
- (h) What are the characteristics of Laser? How laser beam is different from all other conventional light sources?

(Continued)

- (i) What do you mean by numerical aperture and acceptance angle of an optical fibre?
- (j) Explain quantum confinement (quantum dot and quantum wire) in nanomaterials.
- (a) Distinguish between coherent and incoherent superposition.
 - (b) Write the condition for the maxima and minima in the interference due to reflected and transmitted waves in the interference due to division of amplitude.
 - (c) In the Newton's ring experiment, the diameter of 10th dark ring due to wavelength 6000 Å in air is 0.5 cm. Find the radius of curvature of the ring.
 - Fresnel's and 3. (a) Distinguish between Fraunhoffer diffraction.
 - (b) A narrow slit, illuminated by monochromatic light produces Fraunhoffer diffraction. Graphically show the intensity distribution

B.Tech-2nd/Physics(Set-R.)

(Turn Over)

3

3

3

B.Tech-2nd/Physics(Set-R.)

	distribution.	4	Explain in other	3
(c)	What is resolving power? When you say that the two lines of wavelengths λ and $\lambda + d\lambda$		(i) Pyonting theorem(ii) Waveguides.	
	are just resolved?	3 6. (a)	The inadequacy of classical mechanics led	
	State and explain Malu's law.	3.	to the development of quantum mechanics. Justify this statement briefly with reference	
(b)	Explain the construction of Nicol's prism.		to any one experiment.	3
	How it is used as a polarizer and analyzer.		Establish the time-dependent Schrödinger	
(c)	State Brewster's law. The refractive index of the material of lead glass plate is 1.96. Find		equation in one dimension for a particle of mass m moving in a constant potential V .	4
	the Brewster's angle for which the reflected			
123	light will be plane polarized.	3 (c)	Draw the levelled neat sketch of (i) particle	
5 (a)	Write mathematical form of		in a box (ii) potential step (no description and mathematical derivation).	3
	(i) Gauss divergence theorem			
	(ii) Stokes theorem	7./ (a)	Write Einstein's coefficients of different emissions in laser (no derivation).	3
	(iii) Green' theorem.	3 (b)	Draw the neat sketch of Ruby laser and	
(b)	Derive Maxwell's theorem in differential		explain its principle and working. Mention	
1	form.	4	any two industrial applications of laser.	4
100				

- (c) With neat sketch show three and four level pumping (no description).
- 8, (a) Distinguish between step index fiber and graded index fiber.
 - (b) Discuss the principle of fiber optic communication using ray approach.
 - (c) Discuss nanomaterials with reference to (i) size dependent property (ii) surface to volume ration.

3